www ktunotes.in

(c

Kl

the learning companion.

> KTU NOTES APP
www ktunotes.in .

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

Chapter 4 — Macro Processors

® A macro represents a commonly used group of
statements in the source programming language. The
macro processor replaces each macro instruction with the
corresponding group of source language statements. This
is called expanding the macros.

® Macro instructions allow the programmer to write a
shorthand version of a program, and leave the
mechanical details to be handled by the macro processor.

® For example, suppose that it is necessary to save the
contents of all registers before calling a subprogram.

On SIC/XE, this would require a sequence of seven
instructions (STA, STB, etc.).

Using a macro instruction, the programmer could simply
write one statement like SAVEREGS. This macro
instruction would be expanded into the seven assembler
language instructions needed to save the register
contents.

® The most common use of macro processors is in
assembler language programming. However, macro
processors can also be used with high-level programming
languages, operating system command languages, efc.

4.1 Basic Macro Processor Functions
4.1.1 Macro Definition and Expansion

® Fig 4.1 shows an example of a SIC/XE program using
macro instructions. The definitions of these macro
instructions (RDBUFF and WRBUFF) appear in the

Written by WWF 1

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

5
10
15
20
25
20
as
40
45
=
55
60
65

-
]

75

i)

85

ab

95
100
145
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
190
195
200
205
210
215
220
225
230
235
240
245
250
255

source program following the START statement.

COFY
EOEUFF

FIRST

EMDFIL

RETADR

ELUFFER

STAET 4]

COPY FILE FRONM INFUT TO CQUT2UT

MACED EINDEY, REUFAIER, &EFRECLTH

MECHO TO READ EEDORD INTC EUFFER

CLERR X
A
=S
#4096
=X ETNDEV
e |
X' ETNDEV*
A5
4 *11
EROFADE, X
T
*-19
&ERECLTH

+

X
&RECLTH
&BUFRDR, X

=X LOUTDEV?
-3

=X * &OUTTEV

“-14

CLEAR LODE COUNTER

SET MAETMM FECORD LEKGTH

TEST INFUT DEVICE

LOCP UNTIL HEARDY

EEAD CHARARCTER IMTO FEG A

TEST FOR END OF EEZ00RD

EXTT LOCF IF ECR

STCORE CHARACTER INM BUFFES

LOCP UMLESS MAXIMUM LENGTH
HAS BEEN REACHED

SANVE FECCRD LENGTH

EOUTDEVY , §BUFALDR , &RECLTH

TO WEITE EECORD FROHM EUFFER

CLEAR LOOP OOUNTER

ZET CHARMCTER FROM BUFFER

TESET CTUTEUT DEVICE

LCOF UNTIL FEERSTY

WRITE CHARACTER

LOOFP UNTIL ALL CHARACTESS
HAVE BEEN WRITTEH

SAVE EETURN ACDRESS

Fl,BUFFER, LEMGTE EREEAD RECORD IWTD EUFFER

TEST FOR END OF FILE

EXIT IF EOF FOUKD

VRHIFF 05, BUFFER, LENGTH WRITE COUTFUT RECOED

5TL RETATE
RDEURE

LR LENGTH
CoMP #0

JEQ ENCEIL
J CLODP
WREUFF 0%, EOF , THREE
J ARETALR
EXTE C EOE
WoRD 3

RE=W %

RESW 1
RESE 4086&
B FIRST

LoOP
INSERT EOF MARFER

LENGTH OF RECORD
4095-E¥TE BUFFER AFER

Figure 4.1 Use of macros in a SIC/XE program.

Written by WWF

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

® Two new assembler directives (MACRO and MEND) are
used in macro definitions.

The first MACRO statement (line 10) identifies the
beginning of a macro definition.

The symbol in the label field (RDBUFF) is the name of the
macro, and the entries in the operand field identify the
parameters of the macro instruction.

® In our macro language, each parameter begins with the
character &, which facilitates the substitution of
parameters during macro expansion.

The macro name and parameters define a pattern or
prototype for the macro instructions used by the
programmer.

Following the MACROQO directive are the statements that
make up the body of the macro definition.

The MEND assembler directive marks the end of the
macro definition.

® Fig 4.2 shows the output that would be generated. Each
macro invocation statement has been expanded into the
statements that form the body of the macro, with the
arguments from the macro invocation substituted for the
parameters in the macro prototype.

Written by WWF 3

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

5
184
130
190a
190k
i90s
190d
190a
190F
L1o0g
10k
1924
1875
150k
1201
150m
185
20D
205
210
Z10a
2100
210c
2104
210=
21CE
210y
2i0h
21%
220
2208
2200
220z
2204
Z3De
220fF
220y
220k
225
230
235
240
245
2E0
285

'

HTHRTUETH

£y g E

#4058
=H"Fe
L

=g IELe
B.5
411
BUFFER. X

¥-19

0

05, BUFFER, LENGCTH

BUFFER. X
=X’ 05"
-3
=x' 05"

*-14

05, BOF , THRER

EOF, X
=X’ 05"
*=3
=X 05"
T

*~14
ERETRDR
C* EOF*
3

1

1

4096
FIRST

COFY FILE FROM INFUT TO OUTPUT
SAVE RETURN AUDRESE

READ FECORD INTO BUFFER

CLEAR LOOF COUNTER

SET MAXIMIM EECORD LENGTH

TEST INFUT CEVICE

LOOF TMTIL READY

RERD CHARACTER INTC REQ A

TEET FOR END OF RECORD

BETT LOOE IF BEOR

STCHE CHARACTER IN BHUFFER

LOOEP UNLESS MAXINIM LEMGTH
HAS EEEN REACHED

SAVE RFECORD LENGTH

TEST FOR ENMD OF FILE

EXTT IF EOF FOIRND
WREITE OUTEUT EECORD
CLERFR LOGP COUNTER

GET CHARACTER FROM EUFFER

TEST OUTEUT DEVICE

LOOF UNTIL READY

WRITE CHARRCTER

LOCP UNTIL ALL CHARACTERS
HAVE EEEN WRITTEN

INSERT EOF MARVER
CLEAR LOOP COOMTER

GET CHARMCTEER FROM BUFFER

TEST OUTPUT DEVICE

LOOP UNTIL EEAY

WEITE CHARRCTER

LOOE UMITL ALL CHARACTERS
HAVE BEEN WRITTEN

LENGTH OF RECORD
40S5-EYTE BOFFER AREA

Figure 4.2 Program from Fig. 4.1 with macros expanded.

® For example, in expanding the macro invocation on line
190,_the argument F1 is substituted for the parameter
&INDEV wherever it occurs in the body of the macro.

Written by WWF

4

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

Similarly, BUFFER is substituted for &BUFADR, and
L ENGTH is substituted for &RRECLTH.

The comment lines within the macro body have been
deleted. Note that the macro invocation statement itself
has been included as a comment line. This serves as

documentation of the statement written by the
programmer.

The label on the macro invocation statement (CLOOP)

has been retained as a label on the first statement
generated in the macro expansion.

This allows the programmer to use a macro instruction in
exactly the same way as an assembler language
mnemonic.

Note that the two invocations of WRBUFF specify
different arguments, so they produce different
expansions.

After macro processing, the expanded file (Fig 4.2) can
be used as input to the assembler.

In general, the statements that form the expansion of a
macro are generated (and assembled) each time the

macro is invoked (see Fig 4.2). Statements in a

subroutine appear_only once, regardless of how many

times the subroutine is called (see Fig 2.5).

Written by WWF 5

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

Line

5
10
12
13
1=
=0
Z5
an
is
40
A5
50
55
60
6E
70
a0
a5
100
145
110
115
120
125
130
133
133
135
140
145
150
158
160
163
173
175
180
185
195
200
205
210
212
215
220
228
23q
235
240
245
250
255

COPY FILE FROM INPUT TO OUTPUT
SAVE REETURM ADDRESS
ESTAELISH BASE REGISTER

READ INPFUT REOCRD
TEST FOR EQF (LENGTH = 0)

E{IT TF BEOF FOOMD

VRITE OUTPUT E=00RD

LOOE

INEERT END OF FILE MARKER

SET LENGTH = 3
WRITE EOF
RETURNM TO CALLER

LENGTH OF RECORD
4026-BYTE BUFFER AREA

SUBRROUTINE TO READ RECCHD INTO SUFFER

CLEAR LOCP COMTER
CLEAR A TO ZERO
CLEAR 5 TO ZERD

TEST INPUOT DEVICE
LOOP TMTIL: RERDY
TEAD CEARASTER INTO REGISTER A
TEST FOA END OF RECCRD (X 00"}
EXIT LOCP IF EOR
STORE CHARACTER IN BUFFER
LOOP UNLESS MAX LESGTH
KAS BEEN REACHED
SANVE RECORD LENGTS
RETURN TO CALLER
CODE FOR INFUOT DEVICE

STEROUTINE TO WRITE FE2CORD FRCOM BUFFER

Source statement
COFY START 0o
FIRST STL RETATE
LIB FLENGTH
BASE LENGTE
CLOOP + JSUIE FOR=EC
LA LENETH
ooMP §0
B ErDEIL
I 5= WRREC
Jd CLOOP
EMDEFIL LI, ECF
ETA HLUFFE=
LI r3
STh LEMGTH
+JEUTR WEEEC
fu) BREETADE
EQF BYTE CrBOF "
BRETADR RESw 1
LENGTH RESH 1
BIOOFFEFR RESB 4096
ROREC CLEAR x
CLELNR A
CLEAR 5
LT R4096
HLOOE T IMNEUT
JEQ BELOOF
BD INFUT
DO AL S
JTED EXIT
STCH BUFFER, X
TILHER T
JLT FLOC=
EXIT STH LEIGCTH
RSUE
IDPCT BYTE K'FL*
WEREC CLEAR X
LDT LENGTH
WLOOF D oUTROT
JBECQ WLOOP
LDCH BOFFZER, X
%] OUTEUT
TLYR T
JLT WLOCE
RSB
QTP BYTE xras-”
D FIRST

CLERR LOOF COUMNTER

TEST OUTEUT DEVICE

LOOF UNTIL REATY

GET CHARRCTER FROM BUFFER

FRITE CHARNCTER

LOOF UTIL ALL. CHARACTERS
WE BEEN WREITTER

BEETUEN TO CALLER

CODE FOR COUTEUT DEVICE

Figure 2.5 Example of a SIC/XE program.

4.1.2 Macro Processor Algorithm and Data Structures

® Approach 1: It is easy to design a two-pass macro
processor in which all macro definitions are processed
during the first pass, and all macro invocation statements

are expanded during the second pass.

Written by WWF

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

However, such a two-pass macro processor would not
allow the body of one macro instruction to contain
definitions of other macros (because all macros would
have to be defined during the first pass before any macro
invocations were expanded).

® Approach 2: A one-pass macro processor that can
alternate between macro definition and macro expansion
is able to handle macros like those in Fig 4.3.

1 MATRCE MACED {Daefines SIC stancard version macroo)
2 EOEUFF MACED & ITHMO=EV, &PUFADE , & RECLTH

{SIT astandard version}

3 MEMDY {En3 of FIOEBUFF}
4 WEEUFE MACEO EOUTEEVY , &8UFADE, SRECLTHE

{210 standsrd wversicn)

MERMD (Bngd of WREROFF)}

=
G MERD {End of HMACRDS)
{ay

1 FACEOE MECE [Defines SIC/XE macras)

s BOBUEF o T 2 ETHNDEY, &BUFADS , &BECLTH
(SIC/¥E wversicon}

3 MEMD {End of RDBUFF]

d WEBLUFF AT LEOUTDEY, &BUFADE, =EECTLTH
[{SIC/¥XE wversioml?

5 HMERL {End of WERUFF}

& MEIT {End of MACRDH]

(i)

Figure 4.3 Example of the definition of macros within a macro body.

Because of the one-pass structure, the definition of a
macro must appear in the source program before any

statements that invoke that macro.
Written by WWF 7

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

® There are three main data structures involved in our
macro processor.

The macro definitions themselves are stored in a
definition table (DEFTAB), which contains the macro
prototype and the statements that make up the macro
body (with a few modifications). Comment lines from the
macro definition are not entered into DEFTAB because
they will not be part of the macro expansion.

References to the macro instruction parameters are
converted to a positional notation for efficiency in
substituting arguments.

The macro names are entered into NAMTAB, which
serves as an index to DEFTAB. For each macro
instruction defined, NAMTAB contains pointers to the
beginning and end of the definition in DEFTAB.

® The third data structure is an argument table (ARGTAB),
which is used during the expansion of macro invocations.

When a macro invocation statement is recognized, the
arguments are stored in ARGTAB according to their
position in the argument list.

As the macro is expanded, arguments from ARGTAB are
substituted for the corresponding parameters in the
macro body.

® Fig 4.4 shows portions of the contents of these tables
during the processing of program in Fig 4.1.

Written by WWF 8

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

NAMTAB DEFTAB
I~ -
-
=]
L]
-
- RDBUFF LINDEV &BUFADR . &RECLTH
s - CLEAR X
CLEAR A
: CLEAR 5
- +L DT FA096
TD =X"FLl"
JEQ e
RD =K'71"
COMPR A.S
JEg 411
STCH 2 X
TIXR T
JLT “_19
ETX *3
* wEnD
-
-
ARGTAB (=)
1 F1
2| BUFFER
3| LENGTH
()

Figure 4.4 Contents of macro processor tables for the program in
Fig. 4.1: {a) entries in NAMTAB and DEFTAB defining macro RDBUFF.
(b) entries in ARGTAB for invocation of RDBUFF on line 190.

Fig 4.4(a) shows the definition of RDBUFF stored in
DEFTAB, with an entry in NAMTAB identifying the
beginning and end of the definition.

Note the positional notation that has been used for the
parameters: &INDEV - ?1 (indicating the first parameter
in the prototype), &BUFADR - ?2, etc.

Fig 4.4(b) shows ARGTAB as it would appear during
expansion of the RDBUFF statement on line 190. In this
case (this invocation), the first argument is F1, the second
is BUFFER, etc.

® The macro processor algorithm is presented in Fig 4.5.

Written by WWF 9

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

bagin {(macro processor)
EXPAMNCING ::= FALSE
while CECIDE # "'EVL' do
bagin
SGETLIHNE
FROCESSLIINE
and [(whils!l
and {macro processor)

Procadura FROCESSLINNE
bagin

search NAMNTAE for OPODDE

if found then
EXEAN™

alsa 1f OPCODE = ‘MACRO" then
DEFINS

elee write source line to expandesd file

and {FROCESSLINE}

procedure DEFINE
bagin
eEnter macro name into NAMTAR

enter macro prototype into DEFTAR
LEVEL :=]
while LEVEL > 0 do
begin
GETLINE
if this is not & cowsnt line than

bagin
subatitute positicnal notation for paramecers

enter line into DEFTAB

if OPCODE = "MACED' then
LEVEL := LEVEL + 1

else if OPOODE = ‘MEND' then
LEVEL (:= LEVEL - 1

and {if not comment)
and (while}
store In MAMTABR pointers to beginning and end of definition

and [DEFINE}

procedure E{PAND
begin

EXPANDING := TRUE
get first line of macro definition (prototype! from DEFTAE

set up arguments from macro invocation in ARGTABR
write macro invocation to expanded file as a comment
while not end of macro definition deo
begin
GETLINE
FROCESSLINE
and (while}
EXPANDING := FALSE
end {EXPRMD]

procedure GETLIMNE

begin
if EXPANDING then
begin
get next line of macro definition from DEFTABE
substituce arguments from ARGTAB for positional notation
and {if}
else

read next line from input file
end (GETLINE}

Figure 4.5 Algorithm for a one-pass macro processor.

Written by WWF 10

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

The procedure DEFINE, which is called when the
beginning of a macro definition is recognized, makes the
appropriate entries in DEFTAB and NAMTAB.

EXPAND is called to set up the argument values in
ARGTAB and expand a macro invocation statement.

The procedure GETLINE, which is called at several points
in the algorithm, gets the next line to be processed. This
line may come from DEFTAB (the next line of a macro
begin_expanded), or from the input file, depending on
whether the Boolean variable EXPANDING is set to
TRUE or FALSE.

® One aspect of this algorithm deserves further comment:
the handling of macro definitions within macros (as
illustrated in Fig 4.3).

The DEFINE procedure maintains a counter named
LEVEL. Each time a MACRO directive is read, the value
of LEVEL is increased by 1.

Each time an MEND directive is read, the value of LEVEL
is decreased by 1.

When LEVEL reaches 0, the MEND that corresponds to
the original MACRO directive has been found.

® The above process is very much like matching left and
right parentheses when scanning an arithmetic
expression.

4.2 Machine-Independent Macro Processor Features
4.2.1 Concatenation of Macro Parameters

® Suppose that a program contains one series of variables
named by the symbols XA1, XA2, XA3, ..., another series
named by XB1, XB2, XB3, ..., etc.

Written by WWF 11

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

If similar processing is to be performed on each series of
variables, the programmer might want to incorporate this
processing into a macro instruction.

The parameter to such a macro instruction could specify
the series of variables to be operated on (A, B, etc.). The
macro processor would use this parameter to construct
the symbols required in the macro expansion (XA1, XB1,
etc.).

® Most macro processors deal with this problem by
providing a special concatenation operator.

This operator is the character -.
For example, the statement LDA X&ID>1
so that the end of the parameter &ID is clearly identified.

The macro processor deletes all occurrences of the
concatenation operator immediately after performing
parameter substitution, so - will not appear in the macro
expansion.

® Fig 4.6(a) shows a macro definition that uses the
concatenation operator as previously described. Fig 4.6(b)
and (c) shows macro invocation statements and the
corresponding macro expansions.

Written by WWF 12

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

1 S MCRO &I
2 L HeTID—1
3 ALD E&EID-—2
4 AT ¥ETIl—3
5 STA E&ID—S
= MENT
(=)
S £
LIa =a1
BT Hao
ALD Al
=TA Hrs
)
SiRd EBETA
LA HEETM]
AT HBEETAL
ADD XBETAS
STA XZETAS

(<)

Figure 4.6 Concatenation of macro parameters.

4.2.2 Generation of Unique Labels

® Consider the definition of WRBUFF in Fig 4.1. If a label
were placed on the TD instruction on line 135, this label
would be defined twice — once for each invocation of
WRBUFF.

This duplicate definition would prevent correct assembly
of the resulting expanded program.

® Many macro processors avoid these problems by
allowing the creation of special types of labels within
macro instructions. Fig 4.7 illustrates one technique for
generating unique labels within a macro expansion.

Written by WWF 13

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

25 ROBEUFF MATRO &INDEV, #BUFADE , *RECLTH

3D CLEAR x CLEAR LOOF COUNTER

i5 CLEAR A

40 CLEAR 5

45 <LDOT #4095 CET MAXIMIM RECORD LENGTH
L] SLOCP ™ =X‘'&INDEV" TEST INPUT DEVICE

58 JEQ SLOCP LOC? UNTIL EEADY

€0 FD =X’ &INDEY® READ CHARACTER INTC REG A
€= TOMPR M5 TEST FOR EMD CF RECORD

70 JEQ SEXIT EXIT LOOP IF EOR

75 STCH LEUFADR, X STORE CHARACTER IN BUFFER
E0 TIXE T LOOP UNLESS MLXTMIIM LENGTH
B JI! SLOOP EAS BEEN REACHED

o0 SEXIT STX &RECLTH SAVE RECCRC LENGTH

Qs MEND

(a)

2MBUFF F1, BUFFER, LENGTH

3Q CLEAR 4 CLEAR LOOF CCUNTER
35 CLEAR A

ac CLEAR s

4% +LDT #4095 SET MAXIMUM RECORD LENGTHE
5C SAALOCOP TD =X'F1* TEST INPUT LEVICE

55 JEQ SAALOOP LOOP UNTIL READY

60 RD =X'F1° READ CHARACTER TNTC REG A
65 COMER A5 TEST FOR END CF RECORD

70 JEC SAAEXIT EXIT LOOF IF ECR

75 STCH BUFFER, ¥ STORE CHARACTER INM BUFFER
an TIXR T LCOP UNLESS MAXTWUM LENGTH
=L JLT SAALOOP HAS BEEN REACHED

g0 SAAEXIT SIX LENGTH SAVE REOCOED LEWNGTH

(&)

Figure 4.7 Generation of unique labels within macro expansion.

® Fig 4.7(a) shows a definition of the RDBUFF macro.
Labels used within the macro body begin with the special
character $.

Fig 4.7(b) shows a macro invocation statement and the
resulting macro expansion. Each symbol beginning with $
has been modified by replacing $ with $AA.

Written by WWF 14

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

More generally, the character $ will be replaced by $xx,
where xx is a two-character alphanumeric counter of the
number of macro instructions expanded.

For the first macro expansion in a program, xx will have
the value AA. For succeeding macro expansions, xx will
be set to AB, AC, etc.

4.2.3 Conditional Macro Expansion

® Most macro processors can also modify the sequence of
statements generated for a macro expansion, depending
on the arguments supplied in the macro invocation. This
is called conditional macro expansion.

® Fig 4.8 shows the use of one type of conditional macro
expansion statement.

25 BRDBUFF DR &INDEWV, &BUFADER , SRECLTH , &EOR , &MANIITH
-5 I {(RBOR NE **)
=7 EEOFRCE SET 1
I8 EMNDIF
30 CLEAR, x CLERR LOOP COUNTER
= CLEAR B
38a IFr IEEORCK EZ 1)
a0 LD =X " &EOR ' SET ECE CHARACTER
az oD A, S
43 EMNDTF
LT] IF (EMAXTTH BQ “*)
45 +LDT F4O9E SET MAX LE¥STH = 4096
4= ELESE
a7 +LDT W EMARITTH SET MAXIMIM FREDCORD LEMGTH
48 EMDIF
=0 SLOOP D =X & IHDEV " TEST INPUT DEVICE
55 JTEQ SLOOP LOOEP UNTIL READY
6D RD» =X * &ITNOEW " READ CHARACTER INTO RESG A
63 IF (&EEQRCK EJD 1)
65 COMER A.S TEST FOR END OF REOORD
TO JEQ SETT EXIT LOOF IF BEOR
73 BENDIF
TE STCH &SBUFADS , X STORE CHARACTER IN BUFFER
=0 TIXR T LOOP UNLESS MANTMIM LEMGTH
a5 JLT SLOOP HAS BEEN FEACHED
=1 SEXTT STX ERECLTH SAVE RECORD LENITH
95 MEMND
(a)
ROBUEF F3, B UF, RECL,. 04, 2048
k [n] CLEMR x CTLEAR LOOF COUNTER
35 CLEMR A
410 LD =3"04 ' SET ECOR CHARACTER
42 hzilm] A, S
47 +LDT #2048 SET MANIMIPM RECOSD LENGTH
S0 SARLOOE i e =X 'F3* TEST INPUT DEVICE
S5 JBEQ SAALOOP LOOP UNTIL READY
&l BFD =X*'F3" BREAD CHARACTER INTO REG A
a5 OOrER A, S TEST FOR END OQF RECORD
0 JEQ SARENIT EXIT LOOF IF =ECE
i STCH BUF ., X STORE CHARACTER IHN BUFFEER
80 TIXKR T LOOP UNMLESS MANTIMINM LEMCTH
BS JLT SAALOOE HAS ZEEN BEACHED
20 SAAEXTT STX FECL. SAVE REBCOORD LEMGTH
(e}
Written by WWF 15

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

RDEUFF 0E, BEUFFER, LENS3TH, , 80

30 CLEAF. X CLEAFR LCOOP OCUNTER
35 CLEAR A
a7 +LIT #B0O SET MAXTMIIM BRECCED LENGTH
50 SABELOCE D =X*0E" TEST INPUT DEVICE
55 JEQ SABRLOOP LOOF UMNTIL REARDY
&0 hzin] =X'0E"’ RELAD CHARACTER INTC RES A&
= 5TCH BUFFER, X STORE CHARACTER IN EBUFFER
82 TIXR T LOCP UNMLESS MANIMITM [ENGTH
87 JoT SABLOOE HAS BEEN REACHED
qn SABEXIT STH LENZTH SAVE RECORD LENGTH
{c)

RODBUFF Fl, BUFF,.ELENG, 04
ac CLEATR x CLEAR LOOT COUMTER
35 CLERR A
40 LOCH =X 04" SET BOR CHARACTER
42 FMO A, 5
45 ~LDT #4098 SET MAX LENGTS = 4095
S0 SACTOOP TD =X Fl1* TEST INPFUT DEVICE
S5 JE SACLOOE LOCE UMTIL READY
&0 RO =X+ Fl°* AREAD CHARACTER INTO FES A
65 COCMER. A5 TEST FOR =END OF RECORD
70 JED SACENIT EXIT LOOF IF EOR
75 STCH BUFF, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP INLESS MANIMR LEMNTTH
85 JLT SACLOOE HAS RBEEN REACHED
90 SAROEXRTT STE RLEITG SAVE RECORD LENSTH

(i}

Figure 4.8 Use of macro-time conditional statements.

Fig 4.8(a) shows a definition of a macro RDBUFF, the
logic and functions of which are similar to those

previously discussed.

Two additional parameters are defined in RDBUFF:
&EOR, which specifies a hexadecimal character code
that marks the end of a record, and &MAXLTH, which
specifies the maximum length record that can be read.

® 1% jllustration: The statements on lines 44 through 48 of
this definition illustrate a simple macro-time conditional

structure.
The |IF statement evaluates a Boolean expression that is

its operand (In this case, itis [&MAXLTH EQ "].). If TRUE,
the statements following the IF are generated until an

Written by WWF 16

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck
ELSE is encountered (Line 45 is generated.).

If FALSE, these statements are skipped, and the
statements following the ELSE are generated (Line 47 is
generated.).

The ENDIF statement terminates the conditional
expression that was begun by the |IF statement.

® 2" jllustration: On line 26 through 28, line 27 is another
macro _processor_directive (SET). This SET statement
assigns the value 1 to &EORCK.

The symbol &EORCK is a macro time variable, which can
be used to store working values during the macro
expansion. Note any symbol that begins with the
character & and that is not a macro instruction parameter
iIs assumed to be a macro-time variable. All such
variables are initialized to a value of 0.

® Other illustrations: On line 38 through 43 and line 63
through 73.

® Fig 4.8 (b-d) shows the expansion of 3 different macro
invocation statements that illustrate the operation of the IF
statements in Fig 4.8(a).

® Note that the macro processor must maintain a symbol
table that contains the values of all macro-time variables
used.

Entries in this table are made or modified when SET
statements are processed. The table is used to look up
the current value of a macro-time variable whenever it is
required.

® Syntax 1 — |F_(Boolean Exp.) (statements) ELSE
(statements) ENDIF: If IF statement is encountered
during the expansion of a macro, the specified Boolean

expression is evaluated.
Written by WWF 17

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

If TRUE, the macro processor continues to process lines
from DEFTAB until it encounters the next ELSE or ENDIF
statement. If an ELSE is found, the macro processor then
skips lines in DEFTAB until the next ENDIF. Upon
reaching the ENDIF, it resumes expanding the macro in
the usual way.

If FALSE, the macro processor skips ahead in DEFTAB
until it finds the next ELSE or ENDIF statement. The
macro processor then resumes normal macro expansion.

® The implementation outlined above does not allow for
nested IF structures.

® |t is extremely important to understand that the testing of
Boolean expressions in |F statements occurs at the time
macros are expanded.

By the time the program is assembled, all such decisions
(must) have been made.

The conditional macro expansion directives (must) have
been removed. The same applies to the assignment of
values to macro-time variables, and to the other
conditional macro expansion directives.

® Fig 4.9 shows the use of macro-time loop statements.
The definition in Fig 4.9(a) uses a macro-time loop
statement WHILE.

Written by WWF 18

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

a5 ROEUFF MACRO &INDEV, eBUFADR, &RECLTH, 520K
Z7 &EQRCT SET RNITEMS (&EOR)
30 CLEAR X CLEAR LOOP COUNIER

3= CLEAR A

4= +1DT #4095 SET MAX LENGTH = 4096

5¢ SLOCP TD =3'&INCEY”" TEST INFPUT DEVICE

55 JED SLOOP LOCP UNTIL READY

1] ED =X ' &INDEYV' READ CHARACTER INTO REG &4
53 ECTR 5ET 1

54 WHILE {&CTHR LE &3CRCT)

63 e =)'000CEEOR [&CTR] '
briv] JB0 SEIT

71l &CTR SET ECTR+1

73 EMIN

75 STCH EBUFALR, X STORE CHAFACTER IN BUFFER
an TIXR T LOOPF UNLESS MAXTIMUIM LEMGTH
85 wLT ELOOF HAS BEEM REMHED

) SEIT ST &RECLTH SAVE HECORD LEMGTH
10D MEND

{a)
FDEUFF F2, BUFFER, LENGTH, (00,03, 04)

30 CLEAR X CLEAR LOOP COUNTER
i3 CLEAR A

43 +LDT #4096 SET MAX LENGTH = 4096

50 SAALOCP TD =X*F2* TEST INPUT DEVICE

=5 JEQ SAALOOP LOOP UNTTIL READY
=) FD =X'F2' FEAD CHARACTER INTO REG A
85 COMP =X 000000 -

0 JED SAAREXTIT

&S CoMp =X " 000003

70 JEQ) SAAEXTT

&5) =X*000004

70 JEG SAREXTT

i} STCH BUFFER, X STORE CHARACTER IN BUFFER
a0 TIER T LOOP UMLESS MAXIMUNM LEMGTH

a JLT SAALOCE HAS BEEN REACHED

&0 SAREXTT STX LENGTH SAVE RECORD LENGTH

(b)

Figure 4.9 Use of macro-time looping staterments.

The WHILE statement specifies that the following lines,
until the next ENDW statement, are to be generated
repeatedly as long as a particular condition is true. Note
that all the generation is done at the macro expansion
time. The conditions to be tested involve macro-time

variables and arguments, not run-time data values.
Written by WWF 19

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

® The use of the WHILE-ENDW structure is illustrated on
lines 63 through 73 of Fig 4.9(a). The macro-time

variables &EORCT has previously been set (line 27) to
the value %NITEMS(&EOR).

%NITEMS is a macro processor function that returns as
its value the number of members in an argument list. For
example, if the argument corresponding to &EOR is (00,
03, 04), then %NITEMS(&EOR) has the value 3.

The macro-time variable &CTR is used to count the
number of times the lines following the WHILE statement
have been generated. The value of &CTR is initialized to
1 (line 63), and incremented by 1 each time through the
loop (line 71).

Fig 4.9(b) shows the expansion of a macro invocation
statement using the definition in Fig 4.9(a).

® Syntax 2 — WHILE (Boolean Exp.) (statements) ENDW:
When a WHILE statement is encountered during macro
expansion, the specified Boolean expression is
evaluated.

If the value of this expression is FALSE, the macro
processor skips ahead in DEFTAB until it finds the next
ENDW statement, and then resumes normal macro
expansion.

If TRUE, the macro processor continues to process lines
from DEFTAB in the usual way until the next ENDW
statement. When ENDW is encountered, the macro
processor returns to the preceding WHILE, re-evaluates
the Boolean expression, and takes action based on the
new value of this expression as previously described.

® Note that no nested WHILE structures are allowed.

Written by WWF 20

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck
4.2.4 Keyword Macro Parameters

® All the macro instruction definitions we have seen thus far
used positional parameters. That is, parameters and
arguments were associated with each other according to
their positions in the macro prototype and the macro
invocation statement.

® \With positional parameters, the programmer must be
careful to specify the arguments in the proper order. If an
argument is to be omitted, the macro invocation
statement must contain a null argument (two consecutive
commas) to maintain the correct argument positions.

For example, a certain macro instruction GENER has 10
possible parameters, but in a particular invocation of the
macro, only 3 and 9™ parameters are to be specified.
Then, the macro invocation might look like GENER

, , DIRECT, , ,,,, 3.

® Using a different form of parameter specification, called
keyword parameters, each argument value is written with
a keyword that names the corresponding parameter.

Arguments may appear in any order.

For example, if 3" parameter in the previous example is
named &TYPE and 9" parameter is named & CHANNEL,
the macro invocation statement would be

GENER TYPE=DIRECT, CHANNEL=3.

® Fig 4.10(a) shows a version of the RDBUFF macro
definition using keyword parameters.

Written by WWF 21

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

25
26
a7
28
34
E]
38
a0
4
43
a7
=14

a5
60
63
65
7C
gk
75
B0
85
20
35

RD2UFF MACRD &INDEV=F1 , kBEUFADR=, LRECLTH=, SECR=04 , &MAXLTH=40%6

IF (&EOR ME ')
EECRCE SET 1
ENMDIF
CLEAR X CLEAR LOCP OOUNTER
CLEAR A
IF [&BEORCE 20 1)
LDCH =X'&ECR’ SET ECR CHARRCTER
D A.S
ENDIF
LT $EMANTTH SET MAXIMUM REECORD LENGTH
SLOCP D =X'&INDEV" TEST INPUT DEVICE
JBE0 SLoOP LOOP UNTIL READY
RD =X’ & INDIV" FEAD CHARACTER INTO REG A
IF (&EDRCK EQ 1)
COMPR A5 TEST FOR END OF RECCRD
JEQ SEXTT EXIT LOCPE IF EQR
ENDIF
5TCH &BUFADR, X STCRE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MANTIMUM LEMNOTH
JLT SLOOP EAS BEEN BREACHED
SEXIT 5TX &RECLTH SAVE REECORD LENGTH
MEND

(s)

Figure 4.10 Use of keyword parameters in macro instructions.

In the macro prototype, each parameter name is followed
by an_ equal sign (=), which identifies a_keyword
parameter.

After = sign, a default value is specified for some of the
parameters. The parameter is assumed to have this
default value if its name does not appear in the macro
invocation statement.

Default values can simplify the macro definition in many

cases.

4.3 Macro Processor Design Options

4.3.1 Recursive Macro Expansion

® Fig 4.11 shows an example of macro invocations within
macro definitions.
Written by WWF 22

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

10 ROBUFF MACRO &BUFADR, &FECLTH, & INDEV

15 .

20 . EACRC TC READ RECOSD INTO BUFFER

25 .

30 CLEAR X CLEAR LOOP COUNTER

3as CLEAR A

40 CLERH 8

45 +1DT H4086 SET MAXTMIIM RECORD LENGTH
50 SLOCF RDCHAR &INDEV READ CHARACTER INTO REG A
&5 COMPR A.S TEST FOR END CF RBECORD

TO JEQ SEXIT EXIT LOOP IF EOR

™ STCH LEUFADR. X STORE CHARACTER IN BUFFER
&0 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT SLOCP HAS BEEM REACHED

o0 SENTT ETX LRECLTH SAVE RECOFD LENGTH

95 MEND

(a)

3 RIOCHAR MACRO &IN
10 .
15 . MACRC TO READ CHARACTER INTO REGISTER A

20

a5 ™ u)X’&IN" TEST INPUT DEVICE
k[JED *a] LOOF UNTIL REARDY
as RD =X EIN" READ CHARACTER

40 KEND

(b)
RDEUFF BUFFER, LENGTH,Fl
(e
Figure 4.11 Example of nested macro invocation.
Fig 4.11(a) shows the definition of RDBUFF. In this case,

a macro invocation (RDCHAR) is invocated in the body of
RDBUFF and a related macro instruction already exists.

The definition of RDCHAR appears in Fig 4.11(b).

® Unfortunately, the macro processor design we have
discussed previously cannot handle such invocations of
macros within macros.

Fig 4.11(c) shows a macro invocation statement of
RDBUFF. According to the algorithm in Fig 4.5, the
procedure EXPAND would be called when the macro was
recognized. The arguments from the macro invocation

Written by WWF 23

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck
would be entered into ARGTAB as shown in page 201.

The processing would proceed normally until line 50,
which contains a statement invoking RDCHAR. At that
point, PROCESSLINE would call EXPAND again. This
time, ARGTAB would look like as shown in page 201.

The expansion of RDCHAR would also proceed normally.
At the end of this expansion, however, a problem would
appear. When the end of the definition of RDCHAR was
recognized, EXPANDING would be set to FALSE. Thus,
the macro processor would “forget” that it had been in the
middle of expanding a macro when it encountered the
RDCHAR statement.

In addition, the arguments from the original macro
invocation (RDBUFF) would be lost because the values in
ARGTAB were overwritten with the arguments from the
invocation of RDCHAR.

® This cause of these difficulties is the recursive call of the
procedure EXPAND.

When the RDBUFF macro invocation is encountered,
EXPAND is called. Later, it calls PROCESSLINE for line
50, which results in another call to EXPAND before a
return is made from the original call.

A similar problem would occur with PROCESSLINE since
this procedure too would be called recursively.

® These problems are not difficult to solve if the macro
processor is being written in a programming language
that allows recursive calls.

® [f a programming language that supports recursion is not
available, the programmer must take care of handling
such items as return addresses and values of local
variables (that is, handling by looping structure and data

Written by WWF 24

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

values being saved on a stack).

4.3.2 General-Purpose Macro Processors

The most common use of macro processors is as an aid
to assembler language programming. Macro processors
have also been developed for some high-level
programming languages.

These special-purpose macro processors are similar in
general function and approach. However, the details differ
from language to language.

The general-purpose macro processors are not
dependent on any particular programming language, but
can be used with a variety of different languages.

There are relatively few general-purpose macro
processors. The major reason is the large number of
details that must be dealt within a real programming
language. That is to say, a general-purpose facility must
provide some way for a user to define the specific set of
rules to be followed. Therefore, there are some difficulties
in some way.

Case 1. Comments are usually ignored by a macro
processor (at least in scanning for parameters). However,
each programming language has its own methods for
identifying comments.

Case 2: Another difference between programming
languages is related to their facilities for grouping
together terms, expressions, or statements. A
general-purpose macro processor may need to take
these groupings into account in scanning the source
statements.

Case 3: Languages differ substantially in their restrictions
on the length of identifiers and the rules for the formation

Written by WWF 25

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

of constants (i.e. the tokens of the programming
language — for example, identifiers, constants, operators,
and keywords).

® Case 4: Another potential problem with general-purpose
macro processors involves the syntax used for macro
definitions and macro _invocation statements. With most
special-purpose macro processors, macro invocations
are very similar in form to statements in the source
programming language.

4.3.3 Macro Processing within Language Translators

® The macro processors might be called preprocessors.
Consider an alternative: combining the macro processing
functions with the language translator itself.

® The simplest method of achieving this sort of combination
is a line-by-line macro processor.

Using this approach, the macro processor reads the
source program statements and performs all of its
functions as previously described.

The output lines are then passed to_ the language
translator as they are generated (one at a time), instead
of being written to an expanded source file.

Thus, the macro processor operates as a sort of input
routine for the assembler or compiler.

® Although a line-by-line macro processor may use some of
the same utility routines as the language translator, the
functions of macro processing and program translation
are still relatively independent.

® There exists even closer cooperation between the macro
processor and the assembler or compiler. Such a scheme
can be thought of as a language translator with an

inteqrated macro processor.
Written by WWF 26

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

An integrated macro processor can potentially make use
of any information about the source program that is
extracted by the language translator.

For example, at a relatively simple level of cooperation,
the macro processor may use the results of such
translator operations as scanning for symbols, constants,
etc. The macro processor can simply use the results
without being involved in such details as
multiple-character operators, continuation lines, and the
rules for token formation.

There are disadvantages to integrated and line-by-line
macro processors.

They must be specially designed and written to work with
a particular implementation of an assembler or compiler.

The costs of macro processor development must be
added to the cost of the language translator, resulting in a
more expensive piece of software.

The size may be a problem if the translator is to run on a
computer with limited memory.

4.4 Implementation Examples
4.4.1 (Skip)
4.4.2 ANSI C Macro Language

In the ANSI C language, definitions and invocations of
macros are handled by a preprocessor. This preprocessor
is generally not integrated with the rest of compiler. Its
operation is similar to the macro processor we discussed
before.

Two simple (and commonly used) examples of ANSI C
macro definitions:

Written by WWF 27

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

#define NULL O
#define EOF (-1)

After these definitions, every occurrence of NULL will be
replaced by 0, and every occurrence of EOF will be
replaced by (-1).

® |t is also possible to use macros like this to make limited
changes in the syntax of the language. For example, after
defining the macro

#define EQ ==,

A programmer could write while (I EQ 0)...

The macro processor would convert this into while (I ==
0) ...

® ANSI|I C macros can also be defined with parameters.
Consider, for example, the macro definition

#define ABSDIFF(X,Y) ((X) > (Y)) ?2 (X) = (Y) : (Y) = (X))
For example, ABSDIFF (I1+1, J-5) would be converted by
the macro processor into

((1+1) > (J-5) ? (I+1) — (J-5) : (J-5) — (I+1)).

The macro version can also be used with different types
of data. For example, we could invoke the macro as
ABSDIFF(l, 3.14159) or ABSDIFF('D', 'A).

® |t is necessary to be very careful in writing macro
definitions with parameters. The macro processor simply
makes string substitutions, without considering the syntax
of the C language.

For example, if we had written the definition of ABSDIFF
as

#define ABSDIFF(X, Y) X>Y ? X-Y : Y-X. The macro
invocation ABSDIFF(3+1, 10-8) would be expanded into

Written by WWF 28

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

3+1>10-8 ? 3+1-10-8 : 10-8-3+1.

® The ANSI C preprocessor also provides conditional
compilation statements. For example, in the sequence

#ifndef BUFFER_SIZE
#define BUFFER _SIZE 1024
#endif

the #define will be processed only if BUFFER_SIZE has
not already been defined.

® C(Conditionals are also often used to control the inclusion of
debugging statements in a program. (See page 213 for
example.)

4.4.3 (Skip)

Written by WWF 29

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Chapter 4 Macro Processors

Professor Gwan-Hwan Hwang
Dept. Computer Science and Information Engineering
National Taiwan Normal University
9/17/2009

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Introduction

* A macro instruction (abbreviated to macro) 1s
simply a notational convenience for the
programmer.

* A macro represents a commonly used group of
statements 1n the source programming language

* Expanding a macros

— Replace each macro instruction with the corresponding
group of source language statements

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Introduction (Cont' d)

* E.g.
— On SIC/XE requires a sequence of seven instructions to
save the contents of all registers
* Write one statement like SAVERGS
* A macro processor 1s not directly related to the
architecture of the computer on which it is to run

* Macro processors can also be used with high-level
programming languages, OS command languages,
etc.

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Basic Macro Processor Functions

Expanded program

A program with ‘
Macrg dfﬁnitions and Macro 4{ A program W}thout J
Macro invocations Processor Macro definitions
Assembler
{ Object program}

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Basic Macro Processor Functions

e Macro Definition

— Two new assembler directives
« MACRO
« MEND

— A nattern or n
« Macro name and parameters

— See figure 4.1

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Line Source statement

5 copy START 0 COPY FILE FROM INPUT TO OUTEUT
10 RDBUFF ~ MACRO &INDEV, &BUFADR, &RECLTH
15
20 : MACRO TO READ RECORD INTO BUFFER
25
30 CLEAR X CLEAR LOOP COUNTER
35 CLEAR A
40 CLEAR S
45 +LDT #4096 SET MAXIMUM RECORD LENGTH
50 ™D =X &INDEV' TEST INPUT DEVICE
55 JEQ *-3 LOOP UNTIL READY
60 RD =X*&INDEV' READ CHARACTER INTO REG A
65 COMPR A,S TEST FOR END OF RECORD
70 JEQ *411 EXIT LOOP IF EOR
75 STCH &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT *-19 HAS BEEN REACHED
90 STX &RECLTH SAVE RECORD LENGTH
95 MEND
100 WRBUFF ~ MACRO &OUTDEV, &BUFADR, &RECLTH
105 ;
110 : MACRO TO WRITE RECORD FROM BUFFER
115 ;
120 CLEAR X CLEAR . LOOP COUNTER
125 LoT &RECLTH
130 LDCH &BUFADR, X GET CHARACTER FROM BUFFER
135 D =X ! LOUTDEV ' TEST OUTPUT DEVICE
140 JEQ = LOOP UNTIL READY
145 o =X ' &OUTDEV' WRITE CHARACTER
150 TIXR T LOOP UNTIL ALL CHARACTERS
155 JLT *-14 HAVE BEEN WRITTEN
160 MEND
165 ;
170 4 MAIN PROGRAM
175 i
180 FIRST STL RETADR SAVE RETURN ADDRESS
190 CLOOP RDBUFF F1,BUFFER, LENGTH READ RECORD INTO BUFFER
195 LDA LENGTH TEST FOR END OF FILE
200 COMP #0
205 JEQ ENDFIL EXIT IF EOF FOUND
210 WRBUFF 05, BUFFER, LENGTH WRITE OUTPUT RECORD
215 T CLOOP LOOP
220 ENDFIL ~ WRBUFF 05,EOF,THREE INSERT EOF MARKER
225 T @RETADR
230 EOF BYTE C'EOF’
235 THREE WORD 3
240 RETADR RESW 1
245 LENGTH RESW 1 LENGTH OF RECORD
250 BUFFER RESB 4096 4096-BYTE BUFFER AREA 6
255 END FIRST

Figure 4.1 Use of macros in a SIC/XE program.

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Basic Macro Processor Functions

e Macro invocation

— Often referred to as a macro call

* Need the name of the macro instruction begin invoked and the
arguments to be used in expanding the macro

* Expanded program
— Figure 4.2
— No macro instruction definitions

— Each macro invocation statement has been expanded
into the statements that form the body of the macro,
with the arguments from the macro invocation
substituted for the parameters in the prototype

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Source statement

CoPY START 0 COPY FILE FROM INPUT TO OUTPUT
FIRST STL RETADR SAVE RETURN ADDRESS
.CLOOP RDBUFF F1,BUFFER,LENGTH READ RECORD INTO BUFFER
CLOOP CLEAR X CLEAR LOOP COUNTER
CLEAR A
CLEAR s
+LDT #4096 SET MAXIMUM RECORD LENGTH
TD =X'F1 TEST INPUT DEVICE
JEQ *-3 LOOP UNTIL READY
RD =X'ELC READ CHARACTER INTO REG A
COMPR A,S TEST FOR END OF RECORD
JBQ *4+11 EXIT LOOP IF EOR
STCH BUFFER, X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAXIMUM LENGTH
JLT *-19 HAS BEEN REACHED
STX LENGTH SAVE RECORD LENGTH
LDA LENGTH TEST FOR END OF FILE
coMp #0
JEQ ENDFIL EXIT IF EOF FOUND
WRBUFF 05, BUFFER,LENGTH WRITE OUTPUT RECORD
CLEAR X CLEAR LOOP COUNTER
10T LENGTH
LDCH BUFFER, X GET CHARACTER FROM BUFFER
™ =X 05" TEST OUTPUT DEVICE
JEQ *3 LOQP UNTIL READY
WD =% 057 WRITE CHARACTER
TIXR T LOOP UNTIL ALL CHARACTERS
JLT *-14 HAVE BEEN WRITTEN
J CLOOP LOOP
.ENDFIL WRBUFF 05, EOF, THREE INSERT EOF MARKER
ENDFIL CLEAR X CLEAR LOOP COUNTER
LDT THREE
LDCH EOF, X GET CHARACTER FROM BUFFER
TD =X'05" TEST QUTPUT DEVICE
JEQ *- . LOOP UNTIL READY
WD =%’ 057 WRITE CHARACTER
TIXR T LOOP UNTIL ALL CHARACTERS
JLT *-14 HAVE BEEN WRITTEN
J @RETADR
EOF BYTE C*EOF"
THREE WORD 3
RETADR RESW 1
LENGTH RESW 1 LENGTH OF RECORD
BUFFER RESE 4096 4096-BYTE BUFFER AREA 8
END FIRST

Figure 4.2 Program from Fig. 4.1 with macros expanded.

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Basic Macro Processor Functions

e Macro invocations and subroutine calls are
different

* Note also that the macro instructions have
been written so that the body of the macro
contains no label

— Why?

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

e~~~ AT~ eoed e A
1UCCODdHYUIL ﬂlgUllul 11 Al11lU
Data Structures

It 1s easy to design a two-pass macro processor

— Pass 1:

 All macro definitions are processed

— Pass 2:

 All macro invocation statements are expanded

 However, a two-pass macro processor would not
allow the body of one macro instruction to contain
definitions of other macros

— See Figure 4.3
10

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

B =

B~ W

=

w

MACROS MACRO {Defines SIC standard version macros}
RDBUFF MACRO &INDEV, &BUFADR, &RECLTH

{SIC standard version}

MEND {End of RDBUFF}
WRBUFF MACRO &OUTDEV, &BUFADR,, &RECLTH

{SIC standard version}

MEND {End of WRBUFF}

MEND {End of MACROS}
(a)
MACROX MACRO {Defines SIC/XE macros}
RDBUFF MACRO &INDEV, &BUFADR, &RECLTH

{SIC/XE version}

MEND {End of RDBUFF}
WRBUFF MACRO &OUTDEV , &BUFADR,, &RECLTH

{SIC/XE version}

MEND {End of WRBUFF}

MEND {End of MACROX}
(b)

Figure 4.3 Example of the definition of macros within a macro body.

Downloaded from Ktunotes.in

11

http://www.ktunotes.in/
http://ktunotes.in/

Data Structures

e Sub-Macro definitions are only processed
when an ivocation of their Super-Macros
are expanded

— See Figure 4.3: RDBUFF

* A one-pass macro processor that can
alternate between macro definition and
macro expansions able to handle macros
like those 1n Figure 4.3

12

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Data Structures

* Because of the one-pass structure, the
definition of a macro must appear in the

source program before any statements that
invoke that macro

* Three main data structures involved 1n an
one-pass macro processor
— DEFTAB, NAMTAB, ARGTAB

Downloaded from Ktunotes.in

13

http://www.ktunotes.in/
http://ktunotes.in/

NAMTAB DEFTAB

,ﬂ—-—pm——ﬁ-—wdp- RDBUFF &INDEV, &BUFADR, &RECLTH
CLEAR X

RDBUFF | *T o=

CLEAR A
: CLEAR S
. +LDT #4096
TD =X'?1’
JEQ *-3
RD =X*?1’
COMPR A.S
JEQ *+11
STCH ?72.X
TIXR T
JET *—19
STX ?3

' MEND

ARGTAB (a)
F1

BUFFER

LENGTH

(b)

Figure 4.4 Contents of macro processor tables for the program in
Fig. 4.1: (a) entries in NAMTAB and DEFTAB defining macro RDBUFF,
(b) entries in ARGTAB for invocation of RDBUFF on line 190.

Downloaded from Ktunotes.in

14

http://www.ktunotes.in/
http://ktunotes.in/

begin {macro processor}
EXPANDING := FALSE
while OPCODE # ’‘END’ do
begin
GETLINE
PROCESSLINE
end {while}
end {macro processor}

procedure PROCESSLINE
begin
search NAMTAB for OPCODE
if found then
EXPAND
else if OPCODE = ’'MACRO’ then
DEFINE
else write source line to expanded file
end {PROCESSLINE}

Figure 4.5 Algorithm for a one-pass macro processor.

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

KTU
NOTES

N

procedure DEFINE
begin

enter macro name into NAMTAB

enter macro prototype into DEFTAB

LEVEL :=1

while LEVEL > 0 do

begin

GETLINE
if this is not a comment line then

begin
substitute positional notation for parameters

enter line into DEFTAB

if OPCODE = 'MACRO’ then
LEVEL := LEVEL + 1

else if OPCODE = 'MEND’ then
LEVEL := LEVEL - 1

end {if not comment}
end {while}
store in NAMTAB pointers to beginning and end of definition

end {DEFINE}

procedure EXPAND
begin

EXPANDING := TRUE
get first line of macro definition {prototype} from DEFTAB

set up arguments from macro invocation in ARGTAB
write macro invocation to expanded file as a comment
while not end of macro definition do
begin
GETLINE
PROCESSLINE
end {while}
EXPANDING := FALSE
end {EXPAND}

procedure GETLINE
begin
if EXPANDING then

begin
get next line of macro definition from DEFTAB

substitute arguments from ARGTAB for positional notation

end {if}
else
read next line from input file
end {GETLINE} 16

Figure 4.5 (contd)

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Processor Feature

Concatenation of Macro Parameters
Generation of Unique Labels
Conditional Macro Expansion

Keyword Macro Parameters

Downloaded from Ktunotes.in

17

http://www.ktunotes.in/
http://ktunotes.in/

=
=
»—a

£ vt Aatrate et
wollvalllidiiull U
Parameters

* Most macro processors allow parameters to
be concatenated with other character strings

— The need of a special catenation operator

 LDA X&ID1
 LDA X&ID

— The catenation operator
e LDA X&ID—1

* See figure 4.6

18

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

1 suM MACRO &ID

2 LDA X&ID—1

3 ADD X&ID—2

4 ADD X&TDH—3
LDA XBETA1
ADD XBETA2
ADD XBETA3
STA XBETAS

(c) 10

Figure 4.6 Concatenation of macro parameters.

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Generation of Unique Labels

It 1s in general not possible for the body of a
macro 1nstruction to contain labels of the usual
kind

— Leading to the use of relative addressing at the source
statement level
* Only be acceptable for short jumps
* Solution:

— Allowing the creation of special types of labels within
macro instructions

— See Figure 4.7

20

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

30
35
40
45
50
55
60
65
70
75
80
85
80

RDBUFF MACRO
CLEAR
CLEAR
CLEAR
+L.DT
SLOOP TD

COMPR
JEQ
STCH
TIXR

SEXIT STX

RDBUFF

CLEAR

&TINDEV, &BUFADR, &RECLTH

2
A
S
#4096
=X'&INDEV’
SLOOP
=X ' &INDEV
A,S
SEXTIT
&BUFADR, X
T
$LOOP
&RECLTH

CLEAR LOOP COUNTER

SET MAXTMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXTMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

F1, BUFFER, LENGTH

X
A
S
#4096
=X'F1'
SAALOOP
=X F1
A,S
SAAEXIT
BUFFER, X
T
SAALOOP
LENGTH

(b)

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

21

Figure 4.7 Generation of unique labels within macro expansion.

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Generation of Unique Labels

e Solution:

— Allowing the creation of special types of labels
within macro 1nstructions

— See Figure 4.7

@)
on
Q
<
on
O

e [abels used within he macr

special character $

— Programmers are instructed no to use $ in their
source programs

22

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Conditional Macro Expansion

* Most macro processors can modify the
sequence of statements generated for a
macro expansion, depending on the
arguments supplied 1n the macro invocation

° a T ... A 0O
See Figure 4.8

23

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

KTU
NOTES

£

25 RDBUFF MACRO &INDEV, &BUFADR, &RECLTH, &EOR , &MAXLTH

26 IF (&EOR NE ')
27 &BORCK SET 1
28 ENDIF
30 CLEAR X CLEAR LOOP COUNTER
35 CLEAR A
38 IF (&EORCK EQ 1)
40 LDCH =X'&EOR"’ SET EOR CHARACTER
42 RMO A,S
43 ENDIF
44 IF (&MAXLTH EQ *')
45 +LDT #4096 SET MAX LENGTH = 4096
46 ELSE
47 +LDT #&MAXLTH SET MAXIMUM RECORD LENGTH
48 ENDIF
50 SLOOP TD =X’ &INDEV’ TEST INPUT DEVICE
55 JEQ SLOOP LOOP UNTIL READY
60 RD =X'&INDEV’ READ CHARACTER INTO REG A
63 IF (&EORCK EQ 1)
65 COMPR als TEST FOR END OF RECORD
70 JEQ SEXIT EXIT LOOP IF EOR
73 ENDIF
15 STCH &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT $SLOOP HAS BEEN REACHED
90 SEXIT STX &RECLTH SAVE RECORD LENGTH
95 MEND
(a)

RDBUFF F3,BUF,RECL, 04,2048

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

40 LDCH =X'04' SET EOR CHARACTER

42 RMO A,S

47 +LDT #2048 SET MAXIMUM RECORD LENGTH

50 SAALOOP TD =X'F3" TEST INPUT DEVICE

55 JEQ SAALOOP LOOP UNTIL READY

60 RD =X'F3’ READ CHARACTER INTO REG A

65 COMPR A,S TEST FOR END OF RECORD

70 JEQ SAAEXIT EXIT LOOP IF EOR

75 STCH BUF, X STORE CHARACTER IN BUFFER

80 TIXR T LOOP UNLESS MAXIMUM LENGTH

85 JLT SARLOOP HAS BEEN REACHED

90 SAAEXIT STX RECL SAVE RECORD LENGTH 24
(b)

Figure 4.8 Use of macro-time conditional statements.

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

30
35
47
50
55
60
75
80
87
90

30
35
40
42
45
50
55
60
65
70
75
80
85
90

RDBUFF

CLEAR
CLEAR
+LDT
SABLOOP TD
JEQ
RD
STCH
TIXR

SABEXIT STX

RDBUFF

CLEAR
CLEAR
LDCH
RMO
+LDT
SACLOOP TD
JEQ
RD
COMPR
JEQ
STCH
TIXR
JLT
SACEXIT STX

Figure 4.8 (contd)

OE, BUFFER, LENGTH, , 80

#80

=X'0E’
$ABLOOP

=X'0E’
BUFFER, X

SABLOOP
LENGTH

(c)

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

F1, BUFF, RLENG, 04

=X'04'
A,S
#4096
=X'F1’
SACLOOP
=X'F1’
A,S
SACEXIT
BUFF, X

SACLOOP

(d)

CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAX LENGTH = 4096

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

Downloaded from Ktunotes.in

25

http://www.ktunotes.in/
http://ktunotes.in/

(‘A
'V

14
111U

10N 9
1U11A4

* Most macro processors can modify the sequence
of statements generated for a macro expansion,

depending on the arguments supplied in the macro
Invocation

* See Figure 4.8

— Macro processor directive
e IF, ELSE, ENDIF
+ SET
— Macro-time variable (set symbol)

 WHILE-ENDW
— See Figure 4.9

26

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

KTU
NOTES

N

25 RDBUFF MACRO &INDEV, &BUFADR, &RECLTH, &ECR

27 &EORCT SET SNITEMS (&EOR)

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

45 +LDT #4096 SET MAX LENGTH = 4096

50 SLOOP D =X'&INDEV' TEST INPUT DEVICE

55 JEQ SLOOP LOOP UNTIL READY

60 RD =X'&INDEV' READ CHARACTER INTO REG A
63 &CTR SET 1

64 WHILE (&CTR LE &EORCT)

65 COMP =X'0000&EOR [&CTR] ’

70 JEQ SEXIT

Ml &CTR SET &CTR+1

73 ENDW

75 STCH &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT $LOOP HAS BEEN REACHED

90 SEXIT STX &RECLTH SAVE RECORD LENGTH

100 MEND

(a)

RDBUFF F2,BUFFER,LENGTH, (00,03, 04)

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

45 +LDT #4096 SET MAY LENGTH = 4096

50 SAALOOP 1D =X'F2' TEST INPUT DEVICE

55 JEQ SAALOOP LOOP UNTIL READY

60 RD =X'F2' READ CHARACTER INTO REG A
65 COMP =X'000000"

70 JEQ SAAEXIT

65 COMP =X'000003"

70 JEQ SAAEXIT

65 COMP =X'000004"

70 JEQ SAREXIT

75 STCH BUFFER, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT SAALOOP HAS BEEN REACHED

90 SAAEXIT STX LENGTH SAVE RECORD LENGTH

(b
’ 27

Figure 4.9 Use of macro-time looping statements.

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Keyword Macro Parameters

* Positional parameters

— Parameters and arguments were associated with
each other according to their positions in the
macro prototype and the macro invocation
statement

— Consecutive commas 1s necessary for a null
argument

GENER ,,DIRECT.,...3

28

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Keyword Macro Parameters

« Keyword parameters

— Each argument value is written with a keyword
that names the corresponding parameter

— A macro may have a large number of
parameters , and (mlv a few of these are g1 Jen

values 1n a typlcal Invocation
GENER TYPE=DIRECT, CHANNEL=3

29

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

KTU
NOTES

N

25 RDBUFF MACRO &INDEV=F1 , &BUFADR=, &RECLTH=, &EOR=04 , &MAXLTH=4096

26 IF (&EOR NE ')

27 &EORCK SET 1

28 ENDIF

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

38 IF (&EORCK EQ 1)

40 LDCH =X'&EOR’ SET EOR CHARACTER

42 RMO A,S

43 ENDIF

47 +LDT #EMAXLTH SET MAXIMUM RECORD LENGTH
50 SLOOP TD =X'&INDEV' TEST INPUT DEVICE

55 JEQ $LOOP LOOP UNTIL READY

60 RD =X'&INDEV' READ CHARACTER INTO REG A
63 IF (&EORCK EQ 1)

65 COMPR A,S TEST FOR END OF RECORD

70 JEQ SEXIT EXIT LOOP IF EOR

73 ENDIF

75 STCH &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT SLOOP HAS BEEN REACHED

90 SEXIT STX &RECLTH SAVE RECORD LENGTH

95 MEND

(a)

RDBUFF BUFADR=BUFFER, RECLTH=LENGTH

30 CLEAR X CLEAR LOOP COUNTER
35 CLEAR A
40 LDCH =X'04' SET EOR CHARACTER
42 RMO A,S
47 +LDT #4096 SET MAXIMUM RECORD LENGTH
50 SAALOOP D =X AP1Y TEST INPUT DEVICE
55 JEQ SAALOOP LOOP UNTIL READY
60 RD =X'F1’ READ CHARACTER INTO REG A
65 COMPR A,S TEST FOR END OF RECORD
70 JEQ SAAEXIT EXIT LOOP IF EOR
75 STCH BUFFER, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT SAATLOOP HAS BEEN REACHED
90 SAAEXIT STX LENGTH SAVE RECORD LENGTH
(b) 30

Figure 4.10 Use of keyword parameters in macro instructions.

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

30
35
47
50
55
60
75
80
85
90

RDBUFF RECLTH=LENGTH, BUFADR=BUFFER, EOR=, INDEV=F3

CLEAR X CLEAR LOOP COUNTER

CLEAR A

LT #4096 SET MAXIMUM RECORD LENGTH
SABLOOP TD =X"F3’ TEST INPUT DEVICE

JEQ SABLOOP LOOP UNTIL READY

RD =X'E3* READ CHARACTER INTO REG A

STCH BUFFER, X STORE CHARACTER IN BUFFER

TIXR i LOOP UNLESS MAXIMUM LENGTH

JLT SABLOOP HAS BEEN REACHED
SABEXIT STX LENGTH SAVE RECORD LENGTH

(c)

Figure 4.10 (contd)

31

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Macro Processor Design Options

« Recursive Macro Expansion

— In Figure 4.3, we presented an example of the
definition of on macro instruction by another.

* We have not dealt with the invocation of one macro
by another (nested macro invocation)

— See Figure 4.11

32

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

10
15
20
25
30
35
40
45
50
65
70
45
80
85
90
895

10
L5
20
25
30
35
40

RDBUFF MACRO &BUFADR, &RECLTH, &INDEV

MACRO TO READ RECORD INTO BUFFER

CLEAR b.¢ CLEAR LOOP COUNTER
CLEAR A
CLEAR S
+LDT #4096 SET MAXIMUM RECORD LENGTH
SLOOP RDCHAR &INDEV READ CHARACTER INTO REG A
COMPR A,S TEST FOR END OF RECORD
JEQ SEXIT EXIT LOOP IF EOR
STCH &BUFADR, X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAXIMUM LENGTH
JLT SLOOP HAS BEEN REACHED
SEXIT STX &RECLTH SAVE RECORD LENGTH
MEND

(a)
RDCHAR ~ MACRO &IN

MACRO TO READ CHARACTER INTO REGISTER A

TD =X'&IN' TEST INPUT DEVICE
JEQ *-3 LOOP UNTIL READY
RD =X'&IN’ READ CHARACTER
MEND

(b)
RDBUFF BUFFER, LENGTH, F1
(c)
Figure 4.11 Example of nested macro invocation.

Downloaded from Ktunotes.in

33

http://www.ktunotes.in/
http://ktunotes.in/

Macro Processor Design Options

* Recursive Macro Expansion Applying
Algorithm of Fig. 4.5

 Problem:

— The processing would proceed normally until line 50,
which contains a statement invoking RDCHAR

— In addition, the argument from the original macro
invocation (RDBUFF) would be lost because the values in

ARGTAB were overwritten with the arguments from the
invocation of RDCHAR

e Solution:

— These problems are not difficult to solve i1f the macro
processor is begin written in a programming language that
allows recursive call

34

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Processors
e Macro processors have been developed for
some high-level programming languages

* These special-purpose macro processors are
similar 1n general function and approach;
however, the details differ from language to
language

35

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Processors

* The advantages of such a general-purpose
approach to macro processing are obvious

— The programmer does not need to learn about a
different macro facility for each compiler or
assembler language, so much of the time and
expense involved in training are eliminated

— A substantial overall saving in software
development cost

36

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Processors

« In spite of the advantages noted, there are
still relatively few general-purpose macro
processors. Why?

1. Ina typical programming language, there are

several situations in which normal macro

DAl viVviLILIY A1 VvV1ill A1 11VU1 111Ul 111Uy

parameter substitution should no occur

— E.g. comments should usually be 1gnored by a
macro processor

37

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Processors

2. Another difference between programming
languages 1s related to their facilities for
grouping together terms, expressions, or
statements

— E.g. Some languages use keywords such as begin
and end for grouping statements. Others use
special characters such as { and }.

38

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Processors

3. A more general problem involves the tokens
of the programming language

— E.g. identifiers, constants, operators, and
keywords

— E.g. blanks

39

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Processors

4. Another potential problem with general-
purpose macro processors involves the syntax
used for macro definitions and macro
invocation statements. With most special-
purpose macro processors, macro invocations
are very similar in form to statements in the
source programming language

40

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

he end.

41

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Chapter 4
Macro Processors

Sg::;e > Macro | Expanded| | Compileror | , obj
(with macro) Processor \CO}_ Assembler
/

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

4.1 Basic Macro Processor Functions
4.1.1 Macro Definition and Expansion

Fig. 4.1 shows an example of a SIC/XE program
using macro instructions.

o RDBUFF and WRBUFF

o MACRO and MEND

o RDBUFF is name

o Parameters (= g}v) of the macro instruction, each
parameter begins with the character &.

o Macro invocation (J [*'|) statement and the arguments
(5 [Eip) to be used in expanding the macro.

Fig. 4.2 shows the output that would be generated.

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

COPY
RDBUEFF

g

START 0 COPY FILE FROM INPUT TO OUTPUT
MACRO &INDEV, &§BUFADR, &RECLTH

MACRO TO READ RECORD INTO BUFFER

CLEAR X CLEAR LOOP COUNTER

CLEAR A

CLEAR S |

+LDT #4096 SET MAXIMUM RECORD LENGTH

TD =X’ &INDEV" TEST INPUT DEVICE
provsipsaeseee s oo TNTTI. READY
B ~15 B S TRDEY READ CHARACTER INTO REG A
,..COMPR__ A,S . _ TEST FOR END OF RECORD
LLJEQ L AL EXIT LOOP IF EOR

STCH &BUFADR, X STORE CHARACTER IN BUFFER

TIXR T LOOP UNLESS MAXIMUM LENGTH
prosr it g S EEN REACHED
e S RECLTY SAVE RECORD LENGTH

MEND

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175

WRBUFF

MACRO
MACRO

CLEAR

&OUTDEV, &BUFADR, &RECLTH

TO WRITE RECORD FROM BUFFER
X CLEAR LOOP COUNTER
&RECLTH
&BUFADR, X GET CHARACTER FROM BUFFER

=X’ §OUTDEV’ TEST OUTPUT DEVICE
x-3 LOOP UNTIL READY
""" ~X " &OUTDEV " WRITE CHARACTER
T LOOP UNTTIL ALL CHARACTERS
....... so14 HAVE BEEN WRITTEN
PROGRAM

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

180
190
195
200
205
210
215
220
225
230
235
240
245
250
255

FIRST
CLOOP

ENDFTI,

EOF
THREE
RETADR
LENGTH
BUFFER

Figure 4.1

STL
RDBUFF
LDA
COMP
JEQ
WRBUFT
g
WRBUFF
J

BYTE
WORD
RESW
RESW
RESB
END

RETADR SAVE RETURN ADDRESS
F1,BUFFER, LENGTH READ RECORD INTO BUFFER

LENGTH TEST FOR END OF FILE
#0

ENDFTIL, EXIT IF EOF FOUND
05,BUFFER, LENGTH WRITE OUTPUT RECORD
CLOOP LOOP

05, EOF, THREE INSERT EOF MARKER
@RETADR

C’"EOQF'’

3

1

1 LENGTH OF RECORD

4096 4096-BYTE BUFFER AREA
FIRST

Use of macros in a SIC/XE program.

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

5
180
190
190a
190b
190c¢
190d
190e
190t
190g
190h
1901
1907
190k
1901
190m
195
200
205

COPY START 0
FIRST STL RETADR
i .CLOOP RDBUFF F1,BUFFER, LENGTH :
! CLOOP CLEAR X :
: CLEAR A :
: CLEAR S :
JLDT #4096
: TD =X'F1" :
: JEQ *_3 :
: RD =X 'F1’ :
: COMPR A,S :
: JEQ *417 :
: STCH BUFFER, X :
: TIXR T :
: JLT *-19 ;
LDA LENGTH
COMP #0
JEQ ENDFIL

Downloaded from Ktunotes.in

£

COPY FILE FROM INPUT TO OUTPUT
SAVE RETURN ADDRESS

READ RECORD INTO BUFFER

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXTIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

TEST FOR END OF FILE

EXIT IF EOF FOUND

http://www.ktunotes.in/
http://ktunotes.in/

210 ‘o WRBUFF 05,BUFFER, LENGTH : WRITE OUTPUT RECORD

210a CLEAR X : CLEAR LOOP COUNTER

210b LDT LENGTH f

210c LDCH BUFFER, X ! GET CHARACTER FROM BUFFER
210d TD =X 05" TEST OUTPUT DEVICE

210e JEQ *x-3 : LOOP UNTIL READY

210f WD =X'05" i WRITE CHARACTER

210g TIXR T ! LOOP UNTIL ALL CHARACTERS
L SN - SO S § HAvE moEN wRITTEN

215 J CLOOP LOOP

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

220
220a
220b
220c¢
220d
220e
220f
2209
220h
225
230
235
240
245
250
255

TIXR

EOF BYTE
THREE WORD
RETADR RESW
LENGTH RESW
BUFFER RESB
END

05, EQF, THREE
X

THREE

EQF, X
=X'05"

*-3
=X'05"

4096
FIRST

INSERT EOF MARKER
CLEAR LOOP COUNTER

GET CHARACTER FROM BUFFER

TEST OUTPUT DEVICE

LOOP UNTIL READY

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

LENGTH OF RECORD
4096-BYTE BUFFER AREA

Figure 4.2 Program from Fig. 4.1 with macros expanded.

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Source

STRG MACRO
STA DATAl
STB DATAZ2
STX DATAS3
MEND

STRG

STRG

Expanded source

.STRG
STA
STB
STX

.STRG
STA
STB
STX

DATAl
DATAZ2
DATA3

DATA1l
DATAZ2
DATA3

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

4.1.2 Macro Processor Algorithm
and Data Structures

Two-pass macro processor
o All macro definitions are processed during the first pass.

o All macro invocation statements are expanded during
the second pass.

o Two-pass macro processor would not allow the body of
one macro instruction to contain definitions of other
macros.

Such definitions of macros by other macros Fig.
4.3

Downloaded from Ktunotes.in 10

http://www.ktunotes.in/
http://ktunotes.in/

1
2

)

MACROS
RDBUFF

WRBUF'F

MACRO
MACRO

MACRO

{Defines SIC standard version macros}
&INDEV, &§BUFADR, &RECLTH

{SIC standard version}

{End of RDBUFF}
&OUTDEV, &BUFADR, &RECLTH

{SIC standard version}

{End of WRBUFF}

{End of MACROS}

Downloaded from Ktunotes.in 1

http://www.ktunotes.in/
http://ktunotes.in/

1 MACROX MACRO {Defines SIC/XE macros}
2 RDBUFF MACRO &INDEV, &§BUFADR, &§RECLTH

{SIC/XE version}?

1

{End of RDBUFF}

4 WRBUFF MACRO &OUTDEV, &§BUFADR, &RECLTH
{SIC/XE version}

5 MEND {End of WRBUFF}

6 MEND {End of MACROX}

(b)

Figure 4.3 Example of the definition of macros within a macro body.

Downloaded from Ktunotes.in 12

http://www.ktunotes.in/
http://ktunotes.in/

4.1.2 Macro Processor Algorithm
and Data Structures

A one-pass macro processor that can alternate
between macro definition and macro expansion.

a The definition of a macro must appear in the source
program before any statements that invoke that
macro.

o Inconvenience of the programmer.
o Macro definitions are stored in DEFTAB
o Comment lines are not entered the DEFTAB.

Downloaded from Ktunotes.in 13

http://www.ktunotes.in/
http://ktunotes.in/

4.1.2 Macro Processor Algorithm
and Data Structures

o The macro names are entered into NAMTAB, NAMTAB
contains two pointers to the beginning and the end of
the definition in DEFTAB

o The third data structure is an argument table ARGTAB,
which is used during the expansion of macro invocations.

o The arguments are stored in ARGTAB according to their
position in the argument list.

Downloaded from Ktunotes.in 14

http://www.ktunotes.in/
http://ktunotes.in/

4.1.2 Macro Processor Algorithm
and Data Structures

Fig. 4.4 shows positions of the contents of these
tables during the processing.

o Parameter &INDEV -> Argument ?1

o Parameter &BUFADR -> Argument ?2

2 When the ?n notation is recognized in a line form
DEFTAB, a simple indexing operation supplies the
proper argument form ARGTAB.

Downloaded from Ktunotes.in 15

http://www.ktunotes.in/
http://ktunotes.in/

NAMTAB

RDBUFF

DEFTAB

ARGTAB

ARTE}? | |

RDBUFF &INDEV, &BUFADR, &RECLTH
CLEAR X
CLEAR A
CLEAR S
+L.DT #4096
TD =X'?71’
JEQ *-3
RD =X'?71'
COMPR A.S
JEQ *+]1
STCH ?2,.X
TIXR T
JLT *-19
STX ?3
MEND
.
.
(a)

Downloaded from Ktunotes.in

16

http://www.ktunotes.in/
http://ktunotes.in/

4.1.2 Macro Processor Algorithm
and Data Structures
The macro processor algorithm itself is presented
in Fig. 4.5.

o The procedure PROCESSING
o The procedure DEFINE

Called when the beginning of a macro definition is recognized,
makes the appropriate entries in DEFTAB and NAMTAB.

o The procedure EXPAND

Called to set up the argument values in ARGTAB and expand a
macro invocation statement.

o The procedure GETLINE

Called at several points in the algorithm, gets the next line to be
processed.

o EXPANDING is set to TRUE or FALSE.

Downloaded from Ktunotes.in 17

http://www.ktunotes.in/
http://ktunotes.in/

begin {macro processor}
EXPANDING := FALSE
while OPCODE # 'END’ do
begin
GETLINE
PROCESSLINE
end {while}
end {macro processor}

procedure PROCESSLINE
begin
search NAMTAB for OPCODE
if found then
EXPAND
else if OPCODE = 'MACRO’ then
DEFINE
else write source line to expanded file
end {PROCESSLINE}

Figure 4.5 A}Ig;orithm for-a-one-pass-macro processor.
ownloaded from Ktunotes.in

18

http://www.ktunotes.in/
http://ktunotes.in/

procedure DEFINE
begin
enter macro name into NAMTAB
enter macro prototype into DEFTAB
LEVEL :=1
while LEVEL > 0 do
begin
GETLINE
if this is not a comment line then
begin
substitute positional notation for parameters
enter line into DEFTAB
if OPCODE = 'MACRO’ then
LEVEL := LEVEL + 1
else if OPCODE = 'MEND’ then
LEVEL := LEVEL - 1
end {if not comment}
end {while}
store in NAMTAB pointers to beginning and end of definition

end {DEFINE}

Downloaded from Ktunotes.in 19

http://www.ktunotes.in/
http://ktunotes.in/

procedure EXPAND L,
begin
EXPANDING := TRUE
get first line of macro definition {prototype} from DEFTAB

set up arguments from macro invocation in ARGTAB
write macro invocation to expanded file as a comment
while not end of macro definition do
begin
GETLINE
PROCESSLINE
end {while}
EXPANDING := FALSE
end {EXPAND}

procedure GETLINE

begin
if EXPANDING then
begin
get next line of macro definition from DEFTAB
substitute arguments from ARGTAB for positional notation
end {if}
else

read next line from input file
end {GETLINE}

Figure 4.5 (conta) Downloaded from Ktunotes.in 20

http://www.ktunotes.in/
http://ktunotes.in/

4.1.2 Macro Processor Algorithm
and Data Structures

= To solve the problem is Fig. 4.3, our DEFINE
procedure maintains a counter named LEVEL.
o MACRO directive is read, the value of LEVEL is inc. by 1.
o MEND directive is read, the value of LEVEL is dec. by 1.

Downloaded from Ktunotes.in 21

http://www.ktunotes.in/
http://ktunotes.in/

4.2 Machine-Independent Macro Processor

Features
4.2.1 Concatenation of Macro Parameters

Most macro processors allow parameters to be
concatenated with other character strings.

o A program contains one series of variables named by
the symbols XA1, XA2, XAS3, ..., another series named
by XB1, XB2, XB3, ..., etc.

o The body of the macro definition might contain a
statement like
SUM Macro &ID

LDA X&ID1
LDA X&ID2
LDA X&ID3
LDA X&IDS

Downloaded from Ktunotes.in

22

http://www.ktunotes.in/
http://ktunotes.in/

4.2.1 Concatenation of Macro Parameters

o The beginning of the macro parameter is identified by
the starting symbol &; however, the end of the
parameter is nhot marked.

o The problem is that the end of the parameter is not
marked_ Thus X&ID:L may mean uX” + ID + “1” or “X” +
ID1.

o In which the parameter &ID is concatenated after the
character string X and before the character string 1.

Downloaded from Ktunotes.in

23

http://www.ktunotes.in/
http://ktunotes.in/

4.2.1 Concatenation of Macro Parameters

Most macro processors deal with this problem by
providing a special concatenation operator (Fig. 4.6).

a In SIC or SIC/XE, -> is used

1 SUM MACRO &ID

2 LDA X&ID—1
3 ADD X&ID—>2
4 ADD X&ID—3
5 STA X&ID—S
6 MEND

(a)

Downloaded from Ktunotes.in 24

http://www.ktunotes.in/
http://ktunotes.in/

4.2.2 Generation of Unique Labels

g

As we discussed in Section 4.1, it is in general not
possible for the body of a macro instruction to
contain labels of usual Kind.

Q

Q

WRBUFF (line 135) is called twice.

Fig. 4.7 illustrates one techniques for generating unique
labels within a macro expansion.

Labels used within the macro body begin with the
special character $.

Each symbol beginning with $ has been modified by
replacing $ with $AA.

Downloaded from Ktunotes.in 25

http://www.ktunotes.in/
http://ktunotes.in/

4.2.2 Generation of Unique Labels

Because it was not possible to place a label on line 135 of this macro defini-
tion, the Jump instructions on lines 140 and 155 were written using the relative
operands *-3 and *-14. This sort of relative addressing in a source statement
may be acceptable for short jumps such as “JEQ *-3.” However, for longer
jumps spanning several instructions, such notation is very inconvenient, error-
prone, and difficult to read. Many macro processors avoid these problems by
allowing the creation of special types of labels within macro instructions.

: 26
Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

4.2.2 Generation of Unique Labels

25 RDBUFF MACRO &INDEV, &BUFADR, &RECLTH

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

40 CLEAR S

45 +LDT #4096 SET MAXIMUM RECORD LENGTH
50 SLOOP D =X'&INDEV' TEST INPUT DEVICE

55 JEQ SLOOP LOOP UNTIL READY

60 RD =X'&INDEV’ READ CHARACTER INTO REG A
65 COMPR A,S TEST FOR END OF RECORD

70 JEQ SEXIT EXIT LOOP IF EOR

75 STCH &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT $SLOOP HAS BEEN REACHED

90 SEXIT STX &RECLTH SAVE RECORD LENGTH

95 MEND

(a)

: 27
Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

30
35
40
45
50
55
60
65
70
75
80
85
90

RDBUFF F1, BUFFER, LENGTH

CLEAR X CLEAR LOOP COUNTER

CLEAR A

CLEAR S

+LDT #4096 SET MAXTIMUM RECORD LENGTH
SAATOOP TD =X'F1’ TEST INPUT DEVICE

JEQ SAALQOQP LOOP UNTIL READY

RD =X'F1' READ CHARACTER INTO REG A

COMPR A,S TEST FOR END OF RECORD

JEQ SAAEXIT EXIT LOOP IF EOR

STCH BUFFER, X STORE CHARACTER IN BUFFER

TIXR T LOOP UNLESS MAXTMUM LENGTH

JLT SAATQOOP HAS BEEN REACHED
SAAEXIT STX LENGTH SAVE RECORD LENGTH

(b)

Figure 4.7 Generation of unique labels within macro expansion.

. 28
Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

4.2.3 Conditional Macro Expansion

The use of one type of conditional macro
expansion statement is illustrated in Fig. 4.8.

o The definition of RDBUFF has two additional
parameters: &EOR and &MAXLTH.

o Macro processor directive SET
o This SET statement assigns the value 1 to &EORCK.

o The symbol &EORCK is a macro time variables, which
can be used to store working values during the macro

expansion.
o RDBUFF F3,BUF,RECL, 04,2048
0 RDBUFF OE,BUFFER, LENGTH, , 80
o RDBUFF F1l,BUFF,RLENG, 04

Downloaded from Ktunotes.in 29

http://www.ktunotes.in/
http://ktunotes.in/

25
26
27
28
30
35
38
40
42
43
44
45
46
47
438
50
55
60
63
65
70
73
75
80
85
90
95

. -RDBUEE..... MACRO..... GINDEV, 5BUFADR, §RECLTH, GEOR, SMAXLTH L
: IF (S&EOR NE ') :
:1 gEORCK SET 1 :
o -
CLEAR X CLEAR LOOP COUNTER
S &1 S - S
: F (&EORCK EQ 1)
P o LDCH =X'&EOR’ SET EOR CHARACTER
: RMO A, S

i i i o i i i i i i i i i i P i i i T e T e e T e T T e e

- IF (SMAXLTH EQ ') :
: +LDT #4096 SET MAX LENGTH = 4096
D3 ELSE :
: +LDT #&MAXTTH SET MAXIMUM RECORD LENGTH
$LOOP TD =X’ & INDEV’ TEST INPUT DEVICE
JEQ $LOOP LOOP UNTIL READY
RD =X’ &INDEV’ READ CHARACTER INTO REG A
A et L
g 4 COMPR A,S T@ST FOR END OF RECORD
: JEQ SEXIT EXIT LOOP IF EOR
STCH &BUFADR, X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAXIMUM LENGTH
JLT SLOOP HAS BEEN REACHED
SEXIT STX &RECLTH SAVE RECORD LENGTH
MEND

Downloaded fron(laktunotes.in 30

http://www.ktunotes.in/
http://ktunotes.in/

30
35
40
42
47
50
5h
60
65
70
75
80
85
90

RDBUFFE
CLEAR X
CLEAR A
e ¢ DCH 1';&7'621'?
IIIIIIIIIIIIIliﬂﬂ&‘lIIIIIII#éblaIéIIIIIIIII
TV OO i
JEQ SAAT.O0P
RD =X'F3°
poreeenee SR MBS
i TEQ. o, SAREXIT !
STCH BUF, X
TIXR T
JLT $AALOOP
SAAEXIT STX RECL,

(b)

F3,BUF,RECL, 04,2048

CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAXTMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXTT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXTMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

Figure 4.8 Use of macro-time conditional statements.

Downloaded from Ktunotes.in

31

http://www.ktunotes.in/
http://ktunotes.in/

30
35
47
50
55
60
75
80
87
90

RDBUFF OE, BUFFER, LENGTH, , 80

CLEAR X CLEAR LOOP COUNTER
CLEAR A
N o o7 U [S SET MAXIMUM RECORD LENGTH
$ABLOOP TD =X’ OE’ TEST INPUT DEVICE
JEQ $ABLOOP LOOP UNTIL READY
RD =X’ OE READ CHARACTER TNTO REG A
STCH BUFFER, X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAXIMUM LENGTH
JLT $ABLOOP HAS BEEN REACHED
SABEXIT STX LENGTH SAVE RECORD LENGTH

(c)

Downloaded from Ktunotes.in 32

http://www.ktunotes.in/
http://ktunotes.in/

30
35
40
42
45
50
55
60
65
70
75
80
85
90

SACEXIT

RDBUFF

STX

F1l,BUFF, RLENG, 04

SACLOOP
RLENG

Downloaded from Ktunotes.in

CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAX LENGTH = 4096

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

33

http://www.ktunotes.in/
http://ktunotes.in/

4.2.3 Conditional Macro Expansion

A different type of conditional macro expansion
statement is illustrated in Fig. 4.9.
a There is a list (00, 03, 04) corresponding to &EOR.

o %NITEMS is a macro processor function that returns as
its value the number of members in an argument list.

o0 %NITEMS(&EOR) is equal to 3.

0 &CTR is used to count the number of times the lines
following the WHILE statement have been generated.

a Thus on the first iteration the expression &EOR[&CTR]
on line 65 has the value 00 = &EOR[1]; on the second
iteration it has the value 03, and so on.

o How to implement nesting WHILE structures?

Downloaded from Ktunotes.in 34

http://www.ktunotes.in/
http://ktunotes.in/

25 RDBUFF MACRO
27 i &EORCT SET
30 CLEAR
35 CLEAR
45 +1L.DT
50 SLOOP TD

55 JEQ
60 RD

63 SET
64 - WHILE
65 : COMP
70 : JEQ
71§ &CTR SET
73 ENDW
75 STCH
80 TIXR
85 JLT
90 SEXIT STX
100 MEND

&INDEV,&BUFADR,&RECLTH,&EOR

#4096

=X'&INDEV’
SLOOP

=X'&INDEV'’

CLEAR LOOP COUNTER

SET MAX LENGTH = 4096
TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

.'i'ﬁ'ﬁ'i'ﬁ'ﬁ

(&CTR LE &EORCT)
=X’ OOOO&EOR[&CTR]’

SLOOP
&RECLTH

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

Downloaded f%ﬂ)n Ktunotes.in 35

http://www.ktunotes.in/
http://ktunotes.in/

30
35
45
50
55
60
65
70
65
70
65
70
75
80
85
90

RDBUFF

F2,BUFFER, LENGTH, (00,03, 04)

[]
%

SAAEXIT

STCH
TIXR
JLT
STX

X CLEAR LOOP COUNTER
A
#4096 SET MAX LENGTH = 4096
=X'F2’ TEST INPUT DEVICE

SAALOOP LOOP UNTIL READY
=X'F2’ READ CHARACTER INTO REG A
= G olalereioy

SAAEXTT
=X’ 000003’

SAAEXTT
=X’ 000004

SAAEXTT

BUFFER, X STORE CHARACTER IN BUFFER
T LOOP UNLESS MAXIMUM LENGTH
$AALOOP HAS BEEN REACHED

LENGTH SAVE RECORD LENGTH

(b)

Downloaded from Ktunotes.in 30

http://www.ktunotes.in/
http://ktunotes.in/

4.2.4 Keyword Macro Parameters

Positional parameters

o Parameters and arguments were associated with each
other according to their positions in the macro
prototype and the macro invocation statements.

a A certain macro instruction GENER has 10 possible

parameters.
GENER MACRi//i;iij;/iﬁype, .y &j;?iiii;/ﬁ;o
GENER ,”, DIRECT, , , , , , 3

Downloaded from Ktunotes.in 37

http://www.ktunotes.in/
http://ktunotes.in/

4.2.4 Keyword Macro Parameters

Keyword parameters

o Each argument value is written with a keyword that
names the corresponding parameter.

o Arguments may appear in any order.

GENER , , DIRECT, , , , , , 3
GENER TYPE=DIRECT, CHANNEL=3
GENER CHANNEL=3, TYPE=DIRECT

parameter=argument
o Fig. 4.10 shows a version of the RDBUFF using keyword.

Downloaded from Ktunotes.in 38

http://www.ktunotes.in/
http://ktunotes.in/

25 RDBUFF MACRO &INDEV=F1, &BUFADR=, &RECLTH=, &EOR=04 , &MAXLTH=4096

26 ° IF (§EOR NE)

27: &EORCK SET 1 :

2B ENDLE i :

30 CLEAR X CLEAR LOOP COUNTER
33— CLEAR A e,

38 : IF (&EORCK EQ 1) :

40 : ILDCH =X’&EOR’ : SET EOR CHARACTER

42: 2 RMO A,S :

43 s D :

47 +LDT #&MAXLTH SET MAXIMUM RECORD LENGTH
50 $LOOP TD =X'&INDEV’ TEST INPUT DEVICE

55 JEQ $LOOP LOOP UNTIL READY

60 RD =X’ &INDEV’ READ CHARACTER INTO REG A
g3 s Prra (EEORCR 501

65 i 4 COMPR A,S :TEST FOR END OF RECORD

70 JEQ SEXTT “EXIT LOOP IF EOR

73 : ENDIF :

Jp e Fry T AL STORE CHARACTER TN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT SLOOP HAS BEEN REACHED

90 $EXIT STX &RECLTH SAVE RECORD LENGTH

95 MEND

: 39
Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

RDBUFF BUFADR=BUFFER, RECLTH=LENGTH

30 CLEAR X CLEAR LOOP COUNTER
L CLEAR A ..
40 1277 LDCH =X'04 : SET EOR CHARACTER
42 : RMO . BAS
g7 T +LDT $4096 SET MAXIMUM RECORD LENGTH
50 SAALOOP TD =X'F1’ TEST INPUT DEVICE
55 JEQ $AALOOP LOOP UNTIL READY
60 RO =X EL READ CHARACTER INTO REG A
65 1 COMPR A,S : TEST FOR END OF RECORD
70 : 3 JEQSAREXIT : EXIT LOOP IF EOR
/- S STCH BUFFER, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT SAALOOP HAS BEEN REACHED
90 SAAEXTT STX ILENGTH SAVE RECORD LENGTH
(b)

Figure 4.10 Use of keyword parameters-in-macro-instructions.

. 40
Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

30
35
47
50
55
60
75
80
85
90

£

RDBUFF RECLTH=LENGTH, BUFADR=BUFFER, EOR=, INDEV=F3

CLEAR X CLEAR LOOP COUNTER
CLEAR A
+L.DT #4096 SET MAXTMUM RECORD LENGTH
SABLOOP TD =X'F3' TEST INPUT DEVICE
JEQ SABLOOP LOOP UNTIL READY
RD =X'F3’ READ CHARACTER INTO REG A
STCH BUFFER, X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAXTMUM LENGTH
JLT SABLOOP HAS BEEN REACHED
SABEXIT STX LENGTH SAVE RECORD LENGTH

(c)

Figure 4.10 (contd)

Downloaded from Ktunotes.in #

http://www.ktunotes.in/
http://ktunotes.in/

4.3 Macro Processor Designh Options
4.3.1 Recursive Macro Expansion

In Fig. 4.3 we presented an example of the
definition of one macro instruction by another.

Fig. 4.11(a) shows an example - Dealt with the
invocation of one macro by another.

The purpose of RDCHAR Fig. 4.11(b) is to read one
character from a specified device into register A,
taking care of the necessary test-and-wait loop.

Downloaded from Ktunotes.in 42

http://www.ktunotes.in/
http://ktunotes.in/

5
10
15
20
25
30
35
40

RDCHAR

MACRO &IN

MACRO TO READ CHARACTER INTO REGISTER A

TD =X"&IN' TEST INPUT DEVICE
JEQ NS LOOP UNTIL READY
RD =X'"&IN' READ CHARACTER
MEND

(b)

RDBUFF BUFFER, LENGTH, F1

Downloaded from Ktunotes.in 43

http://www.ktunotes.in/
http://ktunotes.in/

10 RDBUFF MACRO &BUFADR, &RECLTH, & INDEV

15 .

20 . MACRO TO READ RECORD INTO BUFFER

25 .

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

40 CLEAR S

45 +LDT #4096 SET MAXTMUM RECORD LENGTH
50 SLOOP RDCHAR &INDEV READ CHARACTER INTO REG A
65 COMPR A,S TEST FOR END OF RECORD

70 JEQ SEXIT EXIT LOOP IF EOR

75 STCH &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT SLOOP HAS BEEN REACHED

90 SEXIT STX &RECLTH SAVE RECORD LENGTH

95 MEND

Downloaded from Ktunotes.in 44

http://www.ktunotes.in/
http://ktunotes.in/

4.3.1 Recursive Macro Expansion

Fig. 4.11(c), applied to the macro invocation statement
RDBUFF BUFFER, LENGTH, F1

The procedure EXPAND would be called when the macro
was recognized.

The arguments from the macro invocation would be
entered into ARGTAB as follows:

Parameter Value

1 BUFFER

2 LENGTH

3 Fl

4 (unused)

45

Downloaded Trom Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

4.3.1 Recursive Macro Expansion

The Boolean variable EXPANDING would be set to TRUE,
and expansion of the macro invocation statement would be
begin.

The processing would proceed normally until line 50, which
contains a statement invoking RDCHAR. At that point,
PROCESSLINE would call EXPAND again.

This time, ARGTAB would look like

Parameter Value
1 Fl
2 (unused)

Downloaded from Ktunotes.in 46

http://www.ktunotes.in/
http://ktunotes.in/

4.3.1 Recursive Macro Expansion

At the end of this expansion, however, a problem
would appear. When the end of the definition of
RDCHAR was recognized, EXPANDING would be
set to FALSE.

Thus the macro processor would “forget” that it
had been in middle of expanding a macro when it
encountered the RDCHAR statement.

Use a Stack to save ARGTAB.
Use a counter to identify the expansion.

Downloaded from Ktunotes.in 47

http://www.ktunotes.in/
http://ktunotes.in/

WO 1O Ui Wi

Pages 208-209, MASM

ABSDIF

EXTIT:

MACRO
LOCAL
IFNB

IFDIF

OPl1,0P2,SIZE

EXIT
<SIZE> ;; IF SIZE IS NOT BLANK
<SIZE>, <E> HH THEN IT MUST BE E

; ERROR -- SIZE MUST BE E OR BLANK

.ERR
EXTITM
ENDIF
ENDIF
MOV
SUB
JNS
NEG

ENDM

;; END OF IFDIF
;: END OF IFNB
SIZE&AX,0OP1 ; COMPUTE ABSOLUTE DIFFERENCE

SIZE&AX,OP2 ;; SUBTRACT OP2 FROM OPl
EXIT ;; EXIT IF RESULT GE O
STIZE&AX H OTHERWISE CHANGE SIGN

(a)

Downloaded from Ktunotes.in 48

http://www.ktunotes.in/
http://ktunotes.in/

??0000:

??0001:

ABSDIF

MOV

JNS

ABSDIF

MOV

JNS
NEG

(b)

M,N,E

; COMPUTE ABSOLUTE DIFFERENCE

EAX,M ; COMPUTE ABSOLUTE DIFFERENCE

EAX,N
2?2?0001
EAX

Downloaded fg%}n Ktunotes.in

49

http://www.ktunotes.in/
http://ktunotes.in/

ABSDIF P,Q, X

2

; ERROR —-- SIZE MUST BE E OR BLANK
(d)

Figure 4.12 Examples of MASM macro and conditional statements.

Downloaded from Ktunotes.in S0

http://www.ktunotes.in/
http://ktunotes.in/

U= W N

NODE MACRO NAME
IRP S,<'LEFT’, 'DATA’, 'RIGHT' >
NAME&S W 0
ENDM ;; END OF IRP
ENDM ; ; END OF MACRO
(a)
NODE X
XLEFT DIV 0
XDATA DIV 0
XRIGHT W 0
(b)
Figure 4.13 Eﬁam le-of MASM-iteration-statement: =
ownloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

