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Abstract
We study Julia components of transcendental entire functions with multiply-

connected wandering domains. Under the assumption that the poet singular
set is contained in the Fatou set, it is shown that every repelling periodic point
$p$ satisfies either
(1) $C(p)\supset\partial U$, where $C(p)$ is the Julia component containing $p$ and $U$ is an
immediate attractive basin.
(2) $C(p)=\{p\}$ and this is a buried singleton component of $J(f)$ .

\S 1 Introduction
Let $f$ be a transcendental entire function, $F(f)$ it8 Fatou set and $J(f)$ its Julia set. The

folowing are some fundamental results on the connectivity of $J(f)$ :

Proposition 1 If every Fatou component is bounded and simply connected, then $J(f)\subset$

$\mathbb{C}$ is connected.

So it folows that if $J(f)\subset \mathbb{C}$ is disconnected, then either

(a) $f$ has an unbounded Fatou component or
(b) $f$ has a multiply-connected Fatou component.

For the case (a), the foUowing holds. Note that an unbounded Fatou component $U$ is
always simply connected (see [Bal]) and so we can consider a Riemann map $\varphi$ : $Darrow U$

of $U$ .

Theorem 2 ( $[K$ , p.192, Main Theorem]) Suppose there exists an unbounded invariant
Fatou component $U$ and let us consider the following conditions:

数理解析研究所講究録
第 1586巻 2008年 26-31 26



(A) $\infty\in\partial U$ is accessible in $U$ .
(B) There exist a finite point $q\in\partial U$ with $q\not\in P(f),$ $m_{0}\in N$ and a continuous curve

$C(t)\subset U(0\leq t<1)$ with $C(1)=q$ which satisfies $f^{mo}(C)\supset C$ , where

$P(f)= \bigcup_{n\simeq 0}^{\infty}f^{n}(sing(f^{-1}))$

is the $poet-S\dot{i}$gular set of $f$ .
(1) If $U$ is either an attractive basin with (A) and (B), or a parabolic basin with (A) and
(B), or a Siegel disk with (A), then the set

$\Theta_{\infty}$

$:= \{e^{1\theta}|\varphi(e^{1\theta}):=\lim_{r\nearrow 1}\varphi(re^{j\theta})=\infty\}\subset\partial D$

is dense in $\partial D$ . In particular, $J(f)\subset \mathbb{C}$ is disconnected.
(2) If $U$ is a Baker domain with (B) and $f|U$ is not univalent, then $\Theta_{\infty}$ is dense in OD
or at least its closure $\overline{\Theta_{\infty}}$ contains a certain perfect set in $\partial D$ . In particular, $J(f)\subset \mathbb{C}$ is
disconnected.

Next result is a generalization of the above result:

Theorem 3 [BD1, p.439, Theorem 1.1, 1.2, Corollary 1.3] $Th\infty rem2$ holds without
the assumption (B).

On the other hand, $J(f)\subset \mathbb{C}$ can be connected nevertheless $f$ has an unbounded Fatou
component. For example,

$f(z)=2-\log 2+2z-e^{z}$

has a Baker domain but $J(f)$ is connected ( $[K$ , p.194, Theorem 4]).

For the case (b), it is known that if $f$ has a multiply-connected Fatou component $U$ , then
$U$ is a wandering $doma\dot{i}$ and bounded (see, [Ba2, Theorem 3.1]) and therefore $J(f)\subset \mathbb{C}$

is always disconnected. Furthermore $J(f)\cup t\infty$} $\subset\hat{\mathbb{C}}$ is also disconnected imd actually
this is the only case where $J(f)\cup t\infty$ } $\subset\hat{\mathbb{C}}$ can be disconnected as follows:

Proposition 4 ( $[K$ , p.191, Theorem 1]) $J(f)\cup\{\infty\}\subset\hat{\mathbb{C}}$ is disconnected if and only
if $f$ has a multiply-connected wandering domain.

In what follows, we will concentrate on the case (b), that is, the case where $f$ has a multiply-
connected wandering domam $U$ and investigate some properties of connected components
of the Julia set, which we call Julia components. We note the following fact (see, [Ba2,
p.565, Theorem 3.1]):

Proposition 5 If $U$ is a multiply-connected wandering $doma\dot{i}$ , then $f^{n}|Uarrow\infty$ .
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Definition 6 (1) We call a connected component of $J(f)$ a Julia component.

(2) $z\in J(f)$ is called a buried point if $z$ satisfies $z\not\in\partial U$ for any Fatou component $U$ .
(3) We call the set

$J_{0}(f):=$ {$z\in J(f)|z$ is a buried point}

the residud Julia set of $f$ .
(4) A Julia component $C$ is called a buried component if $C\subset J_{0}(f)$ .
For rational cases, the folowing are known:

Example 7 ([Mc]) Let $f(z)=z^{2}+ \frac{\lambda}{z^{3}}$ , where $\lambda>0$ is small. Then $J(f)$ is a Cantor set
of nested quasi-circles. So there are buried components. In particular, $J_{0}(f)\neq\emptyset$ .
Theorem 8 ([Mo, p.208, Theorem 3]) Let $f$ be a hyperbolic rational function. Then
$J_{0}(f)\neq\emptyset$ if and only if

(1) $F(f)$ has a completely invariant component, or
(2) $F(f)$ consists of only two components.

Example 9 ([Mo, p.209]) Let $f(z)= \frac{-2z+1}{(z-1)^{2}}$ , then the following hold:

(1) The set $\{0,1, \infty\}$ is a super-attracting cycle.

(2) $f$ is hyperbolic.

(3) Any Fatou component is a preimage of the super-attractive basin above.

(4) $J(f)$ is connected.

So by Theorem 8, we have $J_{0}(f)\neq\emptyset$ . But since $J(f)$ is connected, there is no buried
component.

Example 10 ([U]) There exists a rational function $f$ whose Julia set is $hom\infty morphic$

to a Sierpinski gasket. So $J_{0}(f)\neq\emptyset$, but again there is no buried component.

Here are some fundamental properties for buried points and residual Julia sets. Note that
$f$ need not be rational and these hold also for transcendental entire functions and even for
meromorphic functions.

Proposition 11 (1) If $F(f)$ has a completely invariant component, then $J_{0}(f)=\emptyset$ .
(2) If there exists a buried component of $J(f)$ , then $J(f)$ is disconnected.
(3) If $J_{0}(f)\neq\emptyset$, then $J_{0}(f)$ is completely invariant, dense in $J(f)$ , and uncountable.

More information on residual Julia sets, see [DF].
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\S 2 Results
Main result of this paper is as follows:

Theorem A Let $f$ be a transcendental entire function. Assume that

(a) $P(f)= \bigcup_{n=0}^{\infty}f^{n}(sing(f^{-1}))\subset F(f)$ ,

(b) $f$ has a multiply-connected wandering $doma\dot{i}$ .
Then every repeling periodic point $p$ satisfies either one of the folowing:

(1) $C(p)\supset\partial U$ , where $C(p)$ is the Julia component $contain\dot{i}gp$ and $U$ is an immediate
attractive basin.
(2) $\{p\}$ is a buried singleton component of $J(f)$ .
Corollary B Let $f$ be a transcendental entire fiiction. Assume the above conditions
(a), (b) and also

(c) $f^{n}(z)arrow\infty$ for any $z\in F(f)$ .
Then every repelling periodic point $p$ is a buried singleton component of $J(f)$ .

Remark $f$ is called hyperbolic if

$dist_{C}(P(f), J(f))>0$,

where $\bm{i}st_{\mathbb{C}}$ is the Euclidean distance on $\mathbb{C}$ . So the condition (a) in $Th\infty rem$ A is slightly
weaker than hyperbolicity.

(Outline of the Proof): Let $p$ be a repeling periodic point. For simplicity, we assume
that $p$ is a fixed point. Suppose that $p$ does not satisfy (1). Let $C(p)\subset J(f)$ be the Julia
component containing $p$ . Then $f(C(p))=C(p)$ and we can show that $C(p)$ is bounded. If
there exists a Fatou component $U\subset F(f)$ such that $C(p)\cap\partial U\neq\emptyset$ , then it $f_{0}nows$ that
$U$ Is a wandering domain which satisfies $f^{n}(U)arrow\infty(narrow\infty)$ . Then this contradicts the
fact that $C(p)$ is bounded. Hence $C(p)$ is a buried component.

Next we can show that the complement of $C(p)$ has no bounded component. Then since
$P(f)\subset F(f)$ and $C(p)$ is bounded, we have

$dist_{\mathbb{C}}(C(p), P(f))>0$.
Then there exists a simply connected domain $W$ such that $C(p)\subset W$ and there exists
a branch $g_{n}$ of $f^{-n}$ which satisfies $g_{n}(p)=p$. It is $wen$-known that $\{g_{n}\}_{n=1}^{\infty}$ is a normal
family and hence there exists a subsequence $g_{n}$: converging to a constant function which
must be the point $p$. On the other hand, we have $g_{\mathfrak{n}}(C(p))=C(p)$ , so we conclude
that $C(p)=\{p\}$ . This completes the proof of Theorem A. Corollary $B$ is an immediate
consequence of $Th\infty rem$ A. $O$
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\S 3 Examples
Example 12 ([BD2, p.375, Theorem $G]$ ) There exists an $f(z)$ with the following
form

$f(z)=k \prod_{\mathfrak{n}=1}^{\infty}(1+\frac{z}{r_{n}})$ , $0<r_{1}<r_{2}<\cdots,$ $k>0$

such that for every repelling periodic point $p$ is a buried singleton component of $J(f)$ .

Example 13 ([KS]) There exists a transcendental entire function $f$ with doubly-
connected wandering domains, which satisfies the following: Every critical point $c$ sat-
isfies $f^{2}(c)=0$ and $0$ is a super-attracting fixed point. This implies that this $f$ satisfies
the assumptions of $Th\infty rem$ A. Therefore every repelling periodic point $p$ satisfies either
$C(p)\supset\partial U$ for the immediate attractive basin $U$ of the super-attractive fixed point $0$ or
$\{p\}$ is a buried singleton component of $J(f)$ .

Example 14 ([Be]) By using the similar method as in Example 13, Bergweiler con-
structed an example of transcendental entire function $f$ which has both a simply connected
and a multiply connected wandering domain. Critical points of $f$ satisfy the following:

(1) Cg $=0<c_{1}<c_{2}<\cdotsarrow\infty$ ,

(2) $f(0)=0,$ $f($儒 $)=$ 果+1, $i=1,2,$ $\ldots$

(3) $c_{i}$ is contained in a simply connected wandering domain $U_{i}$ which satisfies

$f(U_{1}\cdot)=U_{\dot{|}+1}$ , $f^{n}|U_{1}\cdotarrow$ 科科 $(narrow$ 科科).

So this $f$ also satisfies the assumptions (a) and (b) of Theorem A.

Example C We can construct an $f$ which satisfies the assumptions (a), (b) and (c) by
using the similar method as in Example 13. Hence every repelhng periodic point $p$ is a
buried singleton component of $J(f)$ from Corollary B. We omit the details.
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