
A Generalisation of Pre-Logical

Predicates and Its Applications

Shin-ya Katsumata

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2004

Abstract

This thesis proposes a generalisation of pre-logical predicates to simply typed for-

mal systems and their categorical models. We analyse the three elements involved

in pre-logical predicates — syntax, semantics and predicates — within a categorical

framework for typed binding syntax and semantics. We then formulate generalised

pre-logical predicates and show two distinguishing properties: a) equivalence with the

basic lemma and b) closure of binary pre-logical relations under relational composi-

tion.

To test the adequacy of this generalisation, we derive pre-logical predicates for

various calculi and their categorical models including variations of lambda calculi and

non-lambda calculi such as many-sorted algebras as well as first-order logic. We then

apply generalised pre-logical predicates to characterising behavioural equivalence. Ex-

amples of constructive data refinement of typed formal systems are shown, where be-

havioural equivalence plays a crucial role in achieving data abstraction.

iii

Acknowledgements

First of all, I thank my supervisor Don Sannella for all aspects of my Ph.D. study.

This thesis would not be here without his continuous support and encouragement. His

careful reading and comments are always valuable for improving my thesis.

I thank Atsushi Ohori who encouraged me to study abroad, and Masahito Hasegawa

who helped me to start a new life in Edinburgh.

During my Ph.D. study in Edinburgh, I had a lot of opportunities to discuss various

topics in computer science. Many thanks to John Longley, Furio Honsell, John Power,

Ian Stark, Alex Simpson, Miki Tanaka, Misao Nagayama and Samuel Lindley for in-

tellectual stimulation and guidance. Daniel Turi’s insightful comments contributed to

improve this thesis.

I would like to thank Martin Dicks and Nanako Dicks for the best friendship in Ed-

inburgh. Particularly, I am very grateful to them and Jon Cook for offering temporary

accomodaion when I had a difficulty in finding a new flat after leaving Mylnes Court.

Finally, special thanks to Louise for her support and endurance during the final stages

of writing.

My Ph.D. study was funded for three years by LFCS studentship and Nihon Ikueikai

studentship.

iv

To my parents

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

The material in chapter 3 and 4 are the extended version of [Kat04] published by the

author.

(author)

v

Table of Contents

1 Introduction 1

1.1 Overview . 1

1.2 Structure of this Thesis . 8

1.3 Notational Conventions . 10

2 Preliminaries 11

2.1 Contexts . 11

2.2 Category Theory . 12

2.3 Fibred Category Theory . 12

2.4 Properties of Fibrations . 18

2.4.1 Structures in Each Fibre Category 18

2.4.2 Structures Between Fibre Categories 20

2.4.3 Global Structure . 23

2.5 Internal Logic of a Fibration . 27

2.5.1 Predicates Definable in Internal Logic 38

2.5.2 Partial Equivalence Relations 38

3 Pre-Logical Predicates for Simply Typed Formal Systems 43

3.1 Introduction . 43

3.2 Category of Presentation Models . 45

3.3 Syntax: Typed Formal Systems . 47

3.4 Semantics: Weak Categorical Interpretation 51

3.5 Predicates: Subscone . 55

3.6 Pre-logical Predicates . 57

vii

3.7 Relational Composition of Binary Pre-Logical Relations 65

3.8 The Least Pre-Logical Extension . 69

3.9 Conclusion . 72

4 Examples of Pre-logical Predicates 73

4.1 Pre-Logical Predicates for First-order Typed Signatures 74

4.2 Interpretation of Lambda Terms via Combinatory Logic 77

4.3 Lax Logical Predicates and Pre-Logical Predicates 85

4.4 An Example from Moggi’s Computational Metalanguage 91

4.5 An Example from First-Order Logic 100

4.6 Conclusion . 104

5 Behavioural Equivalence and Indistinguishability 105

5.1 Behavioural Equivalence and Pre-Logical Relations 106

5.1.1 Formulation of Behavioural Equivalence 107

5.1.2 A Characterisation of Behavioural Equivalence 110

5.2 Indistinguishability Relations . 111

5.3 Factorisability . 115

5.4 Standard Satisfaction and Behavioural Satisfaction of Higher-Order

Logic . 119

5.4.1 Syntax . 119

5.4.2 Standard Satisfaction and Behavioural Satisfaction 121

5.4.3 Equivalence of Standard Satisfaction and Behavioural Satis-

faction . 123

5.5 Conclusion . 128

6 An Application of Pre-Logical Predicates to Data Refinement 131

6.1 Specification for Typed Formal Systems 132

6.2 Translation Between Simply Typed Formal Systems 136

6.3 Pre-Logical Data Refinement . 139

6.4 Stability and Composition of Data Refinement 145

6.5 Related Work . 147

6.6 Conclusion . 148

viii

7 Conclusions 149

7.1 Future Directions . 150

7.1.1 Beyond Simply Typed Formal Systems 150

7.1.2 Applications of Pre-Logical Refinements 151

A A Counterexample of Composability of Pre-logical Relations in
���

153

A.1 Introduction . 153

A.2 System
���

. 154

A.2.1 The Syntax and Type System of
���

. 154

A.2.2 A Set-Theoretic Semantics of
���

. 155

A.3 Pre-logical Relations for
���

. 157

A.4 A Counterexample . 159

A.5 Discussion . 163

Bibliography 165

ix

Chapter 1

Introduction

1.1 Overview

In the study of the semantics of programming languages, constructing submodels and

relational models is a widely acknowledged method to show properties and compare

models of a language. For example, in the field of algebraic specification, the equiv-

alence of models ”up to observation” can be captured well by relations between two

algebras, rather than homomorphisms. That is, there are algebras � and � representing

sets of integers that have the same externally visible behaviour where there is neither

a homomorphism � � � nor ��� � ; however there is a homomorphic relation

called a correspondence [Sho83, Sch90] which witnesses their similarity. In the sim-

ply typed lambda calculus, there is a construction method called logical predicates,

which constructs a part of a model by induction on types. Thanks to its simplicity,

logical predicates are widely applied to show various properties of the lambda calcu-

lus, such as the strong normalisation theorem of the simply typed lambda calculus,

characterisation of ��� -equality, computational adequacy result, etc.

Once you construct a part of a model, you would like to show that it is a submodel.

However this is sometimes difficult, depending on the way it is constructed. Therefore

it is desirable to have an equivalent characterisation of submodels. Pre-logical predi-

cates serve this purpose; they provide an equivalent characterisation of submodels of

the set-theoretic models of the simply typed lambda calculus.

1

2 Chapter 1. Introduction

There are two differences between logical predicates and pre-logical predicates.

First, logical predicates are more like a concrete method to construct a submodel, while

pre-logical predicates capture the whole class of submodels. Thus logical predicates

are pre-logical predicates, but not vice versa. Second, it is known that binary logical

relations are not closed under relational composition, while binary pre-logical relations

are (here a binary logical relation between two models is just a logical predicate on

their product model, and similarly for binary pre-logical relations). By this property,

binary pre-logical relations can characterise the equivalence of models of the lambda

calculus up to observation, in the same way as we can characterise such equivalence

for algebras. Furthermore, pre-logical predicates for certain class of models of the

simply typed lambda calculus have a simple algebraic characterisation by means of

combinators. This provides a convenient method to construct pre-logical predicates.

The goal of this thesis is to propose a generalisation of pre-logical predicates, not

only to the extensions of the simply typed lambda calculus, but also for any typed

calculus with variable binding — we call them typed formal systems.

Typed formal systems are a generic name for type systems whose typing rules

match the following scheme:
��������� ��	��
����������
��� ����� ����������� �����
����������
���

� ����� � ��� "!�$# ��� � ����� � � �� �%�&# �'�)(�
�

This scheme expresses an inference rule of a term construct � which behaves as a

binder of
�� ��* in ��* for each +-, ./, 0 . Examples of typing rules which match

the above scheme are ordinary operators in many-sorted signatures (where no binding

takes place), lambda abstraction in the simply typed lambda calculus, the case syntax

and let binding in extensions of the lambda calculus, universal and existential quanti-

fiers in first-order logic, the name restriction operator in pi calculus, and more.

Therefore our generalisation covers all of the above calculi, that is, the extensions

of the simply typed lambda calculus and the non-lambda calculi such as logics and

process calculi. The key observation of this generalisation is that the notion of sub-

model is not special to the simply typed lambda calculus; we can talk about submodels

of logics, programming languages, process calculi, etc. Our generalisation stems from

this observation.

1.1. Overview 3

We move to looking in more detail at several key topics: logical predicates, pre-

logical predicates and behavioural equivalence.

Logical Predicates

The origin of logical predicates is the technique used by Tait to prove the strong nor-

malisation theorem [Tai67]. The definition of the strongly normalising terms is easy,

but it is not obvious to prove that all the terms are strongly normalising, since naive

induction on the structure of terms does not work. To overcome this difficulty, Tait

constructed a subset of the set of simply typed lambda terms by induction on the struc-

ture of types. Instead of his proof, in the following we show a reformulated and sketchy

version of his proof [HS86, GLT88]. Tait essentially constructed the following type-

indexed family of subsets of typed terms:

����� � � ��� � # � ���

	���� is strongly normalising ��	���� (
� �� �� � � � ��� � # � ���
��� ��������� � � # �!�"� � #� #

where � is the set of base types. The core idea of this construction is that
� �� �� is

determined by
� and

� �� . Tait’s proof continues as follows; the two milestones of

Tait’s proof are then the following.

$ He showed that for any type � ,
� is included in the set of strongly normalising

terms of type � . This shows that the definition of
�

successfully captures a

subset of the set of strongly normalising terms. We note that variables of type �
are also included in

� .
$ He then showed that

�
is closed under term substitution: for any terms � �%�

� "! � ����� � ���&� � �% and term � �
 ��� � ����� � ����
�������
� , we have

�(' ����)��	� � ����� � ���*)����,+-� � #

The theorem is a corollary of the second statement, by simply letting � � � ����� � �'� be

variables.

His construction was considered in a semantic framework in [Plo80, Sta85]. Below

we introduce logical predicates for set-theoretic models of the simply typed lambda

4 Chapter 1. Introduction

calculus. We write ����� � ��� (for the set of types defined by the BNF ��

 � 	 � ��� �
where 	 ranges over � . A set-theoretic model � of the simply typed lambda calculus

consists of a ����� � � � (-indexed family of carrier sets
��� ���	�
��������� , application op-

erators $ �� �
 � �� ��� � � � � for each � � � � � ����� � � � (and a meaning function

� ' ' � + + , which maps a well-formed lambda term
� � �
 � and a

�
-environment �

to an element � ' ' � + + � in
� , where a

�
-environment is an assignment of a value to

each variable in
�

that respects types. A logical predicate in general form is a fam-

ily of subsets
��� �� � ���	�
� � ����� such that the subset at a higher type is given by

exponentiation with respect to the application operator:

� �� �� � �! � � �� �� � � � � � # $ �� �� ��� � #� # (1.1)

Another way to view logical predicates is that they provide a method to extend a family

of subsets
��� � � � � � �"� for base types to those for higher-order types.

Any logical predicate is large enough to interpret the simply typed lambda calculus.

This proposition is referred to as the basic lemma or the fundamental lemma of logical

predicates. 1 Formally, it is the following proposition:

� �	�
 ��� � ����� � ����
�������
� #
�$# � � � "! � ����� � #�� � � �% #
� ' ' � + + � �	��%� #)� � ����� � ���&%� #�� � � (1.2)

Statement 1.2 is saying nothing other than that the logical predicate forms a submodel

of the simply typed lambda calculus.

Since Tait’s proof, logical predicates have been extensively applied to the study of

properties of the simply typed lambda calculus. Here is an incomplete list of applica-

tions of logical predicates:

$ Friedman showed that ��� -equality is characterised by the full type hierarchy

over an infinite set for a base type [Fri73].

$ Sieber’s definability result up to rank 2 [Sie92].

1When the lambda calculus has (possibly higher-order) constants, to show the basic lemma, for each
constant of type ' , we need to show that its meaning is included in (�) .

1.1. Overview 5

$ Mitchell’s representation independence result [Mit86].

$ Plotkin’s computational adequacy result for PCF [Plo77].

Besides the application of logical predicates, there have been several researches to

understand logical predicates in a category theoretic way. In the categorical semantics

of the simply typed lambda calculus, the carrier sets are replaced with objects. How-

ever, the notion of predicate, which was just subsets in set-theoretic models, is more

subtle. The pioneering works on categorical generalisation of logical predicates are

[MS93],[MR92] and [Her93].

Before we move to reviewing these works, we quickly recall the categorical seman-

tics of the simply typed lambda calculus. In category theoretic terms, an interpretation

of the simply typed lambda calculus in a Cartesian closed category (CCC) � is ex-

pressed by a functor � from the free CCC � generated from a set of base types � to

a CCC � preserving finite products and exponentials strictly (see e.g. [Cro94]).

In [MS93], Mitchell and Scedrov formulated predicates as subsets of global ele-

ments of objects:

�
is a predicate over an object � in � � � � � � � + � � (#

This is a reasonable generalisation of the notion of predicate, since when � �����	��

,

the notion of predicate coincides with subsets. They then constructed the category�
� of predicates over � which they called sconing, together with a projection functor

 �� � � . They showed that

�
� is a CCC, exponential objects in

�
� corresponds

to the exponentiation (1.1) of predicates and strictly preserves the CCC structure.

They then showed that giving a logical predicate over an interpretation �
 � � � is

equivalent to giving a functor
�
 � � �

� such that
��� � � .

In [MR92], Ma and Reynolds gave a more general formulation of the notion of

predicate. They considered two CCCs � and � linked by a finite product preserving

functor �
 � � � , then formulated a predicate by the following mono from some

object � :
�

is a predicate over � � � �
 ��� ��� #
Mitchell and Scedrov’s formulation is the special case where � � ���	��

and � �
� � + � � (. Ma and Reynolds constructed the category of predicates

����� � � � � � � (with

6 Chapter 1. Introduction

a projection functor �
 ����� � � � � � � (� � , and showed that
����� � � � � � � (is a CCC

and preserves finite products and exponentials when � has pullbacks. Following

Mitchell and Scedrov, they showed that giving a logical predicate over an interpretation
�
 ��� � is equivalent to giving a functor

�
 ��� � ��� � � � � � � (such that
��� � � .

In [Her93], Hermida further generalised Ma and Reynolds’ work using fibrations.

A fibration is a functor
�� � � having the so-called Cartesian lifting property. One

way to view a fibration is that it expresses a situation where a category � is equipped

with a category � of predicates on the objects in � . The notion of predicate in this

setting is:
�

is a predicate over � � � � � � #

Hermida showed that certain structures over and � yield a CCC structure over �

which is strictly preserved by . Exponential objects are expressed by exponentia-

tion (1.1) in the internal logic of fibrations. Ma and Reynolds’ formulation is then an

instance of Hermida’s theory for a fibration
 ����� � � � � � � (� � .

The benefit of these categorical generalisations is that we can consider logical pred-

icates in more abstract settings. For example, Kripke semantics of the simply typed

lambda calculus [MM91] has a natural description in terms of category theory. By

applying the above categorical formulations, we obtain a natural construction of log-

ical predicates over the Kripke semantics of the simply typed lambda calculus. This

provides fruitful results [JT93, PR00].

Another direction of the evolution of logical predicates concerns the extension of

the simply typed lambda calculus with various type constructors. In [FS99], Fiore and

Simpson considered Grothendieck logical predicates over the simply typed lambda

calculus with stable sums, and showed the strong normalisation theorem. Girard’s

strong normalisation theorem of System F uses an extension of logical predicates to

System F (see e.g. [GLT88]). Binary logical relations for System F play a crucial

role in define the concept of parametricity advocated by Reynolds [MR92]. Logical

relations have also been considered in Moggi’s computational metalanguage [Mog91];

see [GLLN02] and [LS05, Lin04]. There are of course many other applications and

extensions of logical predicates which are not listed here.

1.1. Overview 7

Pre-Logical Predicates

In [HS02], Honsell and Sannella proposed pre-logical predicates as a weakening of

logical predicates. A pre-logical predicate is a type-indexed family of subsets
��� �

� ���	�
�"� ��� � satisfyiing

$ for each � � � �� �� and � � � , � $ � � � �� holds and

$ for each term � �
��� � ����� � ���
��� � �
�&���
� � and values #)� � � "! � ����� � #��&�
� �% ,

�$#�� � # � ' ' � + + � �	� %� # � � ����� � ���&%� #�� � � %� # � � #�

implies

� ' ' � � # � + + � �	� %� # � � ����� � ���&%� #�� � � �� � #

The first condition is equivalent to the left-to-right inclusion in (1.1). The right-to-left

inclusion is weakened to the second condition, which is necessary to show that any

pre-logical predicate satisfies (1.2) (the basic lemma of pre-logical predicates). The

converse is also true; any family of subsets
��� � � ��	�
���������� satisfying (1.2) is

pre-logical. This equivalence is unique to pre-logical predicates, since logical predi-

cates in general imply (1.2) but not the other way around.

The type-wise relational composition of two binary pre-logical relations is again a

binary pre-logical relation. This property, which does not hold for logical relations in

general, is appropriate for characterising observational equivalence 2 and data refine-

ment. In [HS02] Honsell and Sannella showed that pre-logical predicates can char-

acterise observational equivalence in terms of the existence of a binary pre-logical

relation which is a partial injection at observable types.

The construction of logical predicates are type-directed. On the other hand, there

is a syntax-directed construction of the least pre-logical predicates extending a given

type-indexed family of subsets of the carrier sets. In particular, the least pre-logical

extension of the empty predicate yields the predicate which consists of values that are

definable in a model.

2There is a possible terminological confusion: some people use observational equivalence to refer to
contextual equivalence, while in this context we mean the equivalence relation between two models.

8 Chapter 1. Introduction

Behavioural Equivalence and Data Refinement

Behavioural equivalence arose in the study of abstract data types. An abstract data type

is a type whose internal representation is hidden from programmers. Programmers can

only access values of the abstract data type via operators associated with it, but cannot

inspect their internal representation. The opposite of abstract data types is observable

data types; programmers can freely touch, create and inspect the values of observable

data types. Abstract data types are now widely recognised as an important concept for

modular programming of large systems.

This distinction of types restricts programmers’ knowledge about programming

environments to the observable parts. Thus there are implementations in which pro-

grams over observable types show the same behaviour, despite the fact that they realise

abstract data types in different ways. From the programmer’s viewpoint, such “obser-

vationally” equivalent implementations realise the same abstract data types.

The equivalence relation between models “up to observation” was formulated in the

field of universal algebra [ST87], where it is called observational equivalence or be-

havioural equivalence. Schoett characterised behavioural equivalence in terms of the

existence of a correspondence, which is a homomorphic relation between two algebras

[Sch85, Sch90]. Mitchell used a similar idea to show representation independence in

the simply typed lambda calculus in [Mit86]. He showed that certain binary logical

relations can characterise observational equivalence, provided that the underlying sig-

nature for the abstract data types in question have at most rank 1 (that is, they cannot

take functions as arguments). This restriction on rank is later removed by [HS02], in

which Honsell and Sannella used binary pre-logical relations instead of binary logical

relations.

1.2 Structure of this Thesis

The goal of this thesis is to propose an extension of pre-logical predicates from the

simply typed lambda calculi and their set-theoretic models to a class of simple type

systems (called simply typed formal systems) and their categorical models. We then

re-construct the behavioural theory of models and formulate data refinement for sim-

1.2. Structure of this Thesis 9

ply typed formal systems by means of pre-logical relations. This reconstruction is a

strict generalisation of the traditional many-sorted case. Toward this goal, this thesis is

organised as follows.

The development of our generalisation of pre-logical predicates relies on fibred

category theory and the internal logic of fibrations. We devote chapter 2 to preliminary

on fibred category theory. This chapter does not contain anything new, and a reader

who is familiar with this topic can skip it.

We propose the generalisation of pre-logical predicates in chapter 3. There are

three underlying elements on which pre-logical predicates are defined: syntax (the

simply typed lambda calculus), semantics (set-theoretic environmental models) and

predicates (as subsets of carrier sets). These three elements are generalised, and are

expressed in the category of presentation models of [MS03]. We then formulate what

it means for a predicate to satisfy the basic lemma and define pre-logical predicates,

and show their equivalence. We then show that binary pre-logical relations are closed

under (a categorical generalisation of) relational composition, and that the least pre-

logical extension of a given predicate can be explicitly constructed, provided that the

semantic category satisfies certain conditions.

In the following chapter, we examine our generalisation of pre-logical predicates

by means of several examples, such as the case of traditional many-sorted algebras,

the formal equivalence between lax logical predicates and pre-logical predicates for

the simply typed lambda calculus with finite products, Moggi’s computational meta-

language [Mog91], and first-order logic.

We then move to an application of pre-logical predicates (chapter 5). First we

show that pre-logical predicates can characterise behavioural equivalence. Next, we

introduce the concept of indistinguishability, which is another approach to achieving

data abstraction. We show that behavioural equivalence is factorisable by the indistin-

guishability relation, that is, it characterises behavioural equivalence in terms of the

isomorphism between models quotiented by the indistinguishability relation.

Behavioural equivalence plays an essential role in data refinement. We apply our

characterisation theorem of behavioural equivalence by means of binary pre-logical

relations to develop a theory of constructive data refinement for typed formal systems,

10 Chapter 1. Introduction

called pre-logical refinement. We see two examples of pre-logical refinements; one is

the standard example of implementing finite sets of elements by finite lists, and the

other is implementing the lambda calculus by a combinatory algebra.

1.3 Notational Conventions

The vector notation
��� ����� � �
expression represents a finite sequence of the expression whose

metavariables are indexed by + ������� � ����� . For example, when � and � are reserved for

metavariables ranging over object variables and types of a language,
��� ���
� represents

the sequence � �
 ��� � ���
	��� � ����� � ����
	� � for some length 0 , which is referred to by
� ��� ��
��� . The meaning of this sequence depends on the context; for example,

� �� � # �
expands to

� � � � ����� � ��� # � , which usually means the lambda term
� � � # ����� � ��� # � ,

while � � �� (means a tuple � ��� � ����� � ���(.
For a finite set

�
, by � �

we mean the number of elements contained in
�

.

Chapter 2

Preliminaries

2.1 Contexts

Throughout this thesis we fix a countably infinite set of variables � ranged over by
� � �

��� ���
. Let � be the set of simple types (ranged over by Greek letters � and �).

A � -context
�

is a function from a finite subset of � to � . When � is obvious from

the context, we just say “a context
�

”. We assume an enumeration of variables given

by a bijection �
	� � � and linear ordering ,�
 over � defined by � ,�
 � � �
�� � � � (,��� � � � (. We just write � * instead of � � . (. The purpose of introducing this

enumeration is to give a precise interpretation of contexts. Later in this thesis we

assign to a context
�

an interpretation by the product object ����� ������� ����� � � � � ��*�((in a

Cartesian category. When taking this product object, we need to specify an order for

the variables in ��� � � � (. To give such an order for a context
�

, we define an indexing

function (which will be written by the small letter of the context) !
 ��� � � � (�� + � ����� � �"��� � � � (by ! � � (� . if � is the . -th smallest variable in ��� � � � (by ,�
 .

With this indexing function, we take variables in �#� � � � (from ! � � + (to ! � � � � (to

obtain the above product object. We note that this is just a design choice in this thesis

to resolve the above problem. Another solution is to use de-Bruijn indexing, but we

prefer to use variables for convenience and readability. We identify a sequence of types
��� � ����� � ��� and a context

� � � %� ��� � ����� � � � %� ��� .
11

12 Chapter 2. Preliminaries

2.2 Category Theory

We assume that readers have basic knowledge of category theory. Good references are

[Mac71, LS86, Cro94, Bor94] and many other textbooks.

We use letters � � � etc. to range over categories. The categories we consider in

this thesis are at most locally small. We identify a set and its discrete category. When

a category has certain structures, such as limits, colimits, exponentials, etc, we always

talk about specified structure. We adopt the following notations:

����� � � (� � � � ��� (The collection of objects in � and the hom-set
��� ��

The category of sets

��� � � (��� � � � (The domain and codomain of a morphism

� � � ����� � � � � � * �
	 � * Products
� � � � � � � * * ��	 �� � � ��� Projections and tupling

� ��� ������� � � ��� * ��	 � * Coproducts
� � � � � � � * * ��	 � ' � � � + Injections and cotupling

� � �
An exponential object

� � (��� A currying of a morphism

and an evaluation map

in a CCC

2.3 Fibred Category Theory

Fibration

We use fibrations as a categorical formulation of the situation when a category is

equipped with a notion of predicates. The material in this section and the next sec-

tion is mainly taken from [Jac99]. Let � ��� be categories and
 � � �
be a functor.

Definition 2.3.1 An object � in � is above an object � in
�

if � � � . A morphism
�
 � � �

in � is above

 � � � in

�
if �� �

. A morphism �
 � � �
is

vertical if it is above an identity morphism. For objects � and
�

in � and a morphism

 � � � in

�
, we define ��� � � ��� (� � � � ��� � ��� (� �� � . �

2.3. Fibred Category Theory 13

Definition 2.3.2 We define a fibre category � 	 over an object � in
�

by the following

data:

An object in � 	 is an object � in � above � .

A morphism in � 	 is a morphism
 � ��� ��� � � ��� (. �

Definition 2.3.3 ([Jac99], definition 1.1.3 and definition 1.4.3) A morphism �
 � �
�

in � is Cartesian above a morphism

 � � � in

�
if �� �

and for any mor-

phisms #
�� � �
in � and �
 �� � � in

�
such that

 � � � �# , there exists a

unique morphism
�
�� � � above � such that � � � � # .

We say that a functor
 � � �
is a fibration if for each pair of an object � in

� and a morphism

 � � � in

�
, there exists an object

�
in � and a Cartesian

morphism �
 � � � above

called the Cartesian lifting of � � � (. � is called the

total category and
�

is called the base category of fibration .

A choice of a Cartesian lifting for each � � � (is called a cleavage (on), and the

choice is denoted by
 � . A fibration with a cleavage is called a cloven fibration. The

mapping

	
 � %� ��� � � � (induces a reindexing functor

 �	
 �� � � 	 ; it sends

a morphism �
 � � �
in ��� to the morphism #
 	 � � 	 �

obtained by the

universal property of the Cartesian morphism
 ��

:

 �	 �
�

��

���
// �
�

�� 	 � ��� // �

For any morphisms

 � � � and �
 � � � in

�
, we have natural isomorphisms

� � � (�� � 	 � � 	 and � � 		 � ��� ��� � satisfying certain coherence conditions (see [Jac99]).

When they are identities, the cleavage is called a splitting and a fibration with a splitting

is called a split fibration.

A fibration is preordered (partially ordered) if each fibre category is a preorder

(partial order). A fibration is preordered if and only if is faithful. Let
 � � �

be a preordered fibration, � ��� be objects in � and

 � � � be a morphism in

�
.

We write

 � � �

if there exists a unique morphism from � to
�

above

. Note

that a partially ordered fibration is always split (see [Jac99], exercise 1.4.5). �

14 Chapter 2. Preliminaries

Proposition 2.3.4 Let
 � � �
be a cloven fibration,

 � � � and �
 � � � be

morphisms in
�

, � and
�

be objects in � above � and � . We have an isomorphism:

�
������ � � � ��� (� � ��� � � � � 	 � (#

(thus � � � � ��� (� � � 	 � � � �	�� (for any morphism

 � � � in

�
). �

PROOF From the universal property of Cartesian lifting, for a morphism �
 � � �

in � above � �& , there exists a unique morphism #�
 � � 	 �
in � above � such

that
 �� � # � � . Thus we define

� � � (� # . On the other hand, for a morphism

 � � 	 �

in � , we define
� � � #�(by

� � � # (� �� � # . It is easy to see that they

form an isomorphism. �

We can create a new fibration by taking a pullback of a fibration along some functor.

This is called a change-of-base of the fibration, and provides a convenient way to

construct a fibration over some category.

Theorem 2.3.5 ([Jac99], lemma 1.5.1) Let
�� � �
be a (cloven, split, preordered,

partially ordered) fibration and �
 � � �
be a functor. Then we take the pullback of

 along � as follows:

� 	 � //

���
	
��

_
�

�
	

��
� � // �

The functor � 	 obtained by the pullback is again a (cloven, split, preordered, partially

ordered) fibration. �

PROOF The category � 	 � is defined by the following data.

An object in � 	 � is a pair � � � � (such that � is an object in � above � � .

A morphism in � 	 � from � � � � (to � � ��� (is a pair � � � (such that �
 � � �
is a

morphism in � and

 � � �

is a morphism in � and � is above � .

Let

 � � �

be a morphism in � and � � �� (be an object in � 	 � . We define the

Cartesian lifting of

by � � � � (
$� � � (� � � (� � � ��� (. We leave readers to

check that this is indeed a Cartesian morphism. �

2.3. Fibred Category Theory 15

Op-Fibration

We introduce the dual of Cartesian morphisms and fibration.

Definition 2.3.6 ([Jac99], definition 9.1.1) A morphism �
 � � �
in � above a

morphism

 � � � in

�
is op-Cartesian if � is Cartesian above

for
���� 	 � � � 	 .

In other words, �� �
and for any morphism #
 � � � in � and �
 � � � in

�

such that � � � # , there exists a unique morphism
�
 � � � above � such that� � � � # .

A functor
 � � �
is an op-fibration if
 � � 	 � � � 	 is a fibration. That is,

for an object � in � and a morphism

 � � � in

�
, there exists an op-Cartesian

morphism (called op-Cartesian lifting) �
 � � $ in � above

. An op-fibration is

cloven if it comes with a cleavage on
���� 	 � � � 	 . We denote the op-Cartesian lifting

of � � � (by
 � . For a morphism

 � � � in
�

, cleavage induces an op-reindexing

functor
 	
�� 	 � ��� which sends an object � in � 	 to ��� � � � (in ��� .

A functor �
�� � �
is a (cloven) bifibration if it is both a (cloven) fibration and a

(cloven) op-fibration. �

The following is the dual of proposition 2.3.4.

Proposition 2.3.7 Let
 � � �
be a cloven op-fibration,

 � � � and �
 � �
� be morphisms in

�
, and � and

�
be objects in � above � and � . We have an

isomorphism:
�
���� � � � � ��� (� � � � � 	 � ��� (#

Proposition 2.3.8 Let /
 � � �
be a cloven fibration. Then is a bifibration if and

only if for each morphism

 � � � in

�
,
 	
���� � � 	 has a left adjoint. �

PROOF See [Jac99], lemma 9.1.2.

Subobject Fibration

The fibration we use most in this thesis is subobject fibration. First we define the

category of subobjects.

16 Chapter 2. Preliminaries

Definition 2.3.9 Let � be a category. We define an equivalence relation
� � over

monomorphisms in � by

 � � � � � � � � � (� � � � � � (
� � �
 �#� � � (� ��� � � � (# � is an isomorphism � � � � � #

The category
��� � � � (of subobjects is defined by the following data.

An object in
��� � � � (is an equivalence class

�
of monomorphisms in � by

� � . We

write �� � for the common codomain of monomorphisms in
�

.

A morphism in
��� � � � (from

�
to
� � is a morphism

 �� � � �� � � in � such that

there exists morphisms � � � �
� � � � � and a (necessarily unique) morphism

�
 �#� � � � (� �#� � � � � (in � such that � � � � � �
� . �

The above assignment ��
 ����� � ��� � � � ((� ��� � � � (of objects can be extended to a

functor ��
 ��� � � � (� � .

We note that for each object � in � , the fibre category
��� � � � (� is a partial order,

since when two objects
�

and
� � in ��� � � � (
� are isomorphic, they should be the same

equivalence class of monos.

In general �� might not be a fibration, but when � has pullbacks, it is a fibration.

Proposition 2.3.10 For any category � with pullbacks, ��
 ��� � � � (� � is a par-

tially ordered fibration. �

PROOF Let
�

be an object in
��� � � � (and

 � � �� � be a morphism in � . We

take a monomorphism �
 ��� �� � from
�

and consider its pullback along

.

$
���
��

//
_
� �

�� �
��

� � // �� �

The morphism 0 is mono because pullback of a monomorphism yields a monomor-

phism. It is easy to see that ' 0 +��� does not depend on the choice of � � �
but is

determined only by

and
�

, so we write
 �	��

for ' 0 +��� . From the definition of mor-

phisms in
��� � � � (, is a morphism from

 	 �
to

�
. We take

itself as the Cartesian

lifting of

.

2.3. Fibred Category Theory 17

To see that

is Cartesian, let
�

be a subobject,
� � �

be a monomorphism,

�
 � � � � � (� � be a morphism in � and assume that there exists a morphism �

��� � � � (� � such that �

� � � � � � � . Since the previous square is a pullback, we

have the mediating morphism
�
 �#� � � � (� $ satisfying 0 � � � � � � .

��� � � � (
���
��

� //

�
(($

�� �
��

//
_

� �
��
�

��� � � � � (� // � � // �� �

Thus we showed that � is a morphism from
�

to
 �	 � � (in

��� � � � (. Its uniqueness is

obvious. �

It is often tedious to discuss equivalence classes of monos. We identify a mono and its

equivalence class.

Example 2.3.11 Probably the most intuitive example of subobject fibrations is ������
	

��� � � ��� ��
 (� ���	��

. We give a description of
��� � � ���	��
 (as follows:

An object in
��� � � ���	��
 (is, according to the formal definition, an equivalence class

of monos by
� � . However it is more convenient to represent it by a pair of sets

� � � � (such that � � � . These two definitions are interchangeable; for an equiv-

alence class � of monos and � � � , we have a pair � � � � � (� � � � � � (��� �
��� � � � (��� � � � � ((. This does not depend on the choice of � . On the other

hand, a subset � � � specifies a subobject ' � + � of � , where �
 ��� � � is the

inclusion function.

A morphism from � � � � (to � � � � (is a function

 � � � such that

 � � (� � holds

for each � � � .

When it is obvious that � and
�

are subsets of � and � respectively, then we

simply write

 � � �

to mean that

is a function from � to � satisfying
� � � � # � � (� � .

The functor ������	
 ��� � � ���	��
 (� ���	��

acts on objects and morphisms as follows:

������	 � � � � (� � �������	 �

18 Chapter 2. Preliminaries

���	��

has pullbacks, thus �����
	 is a partially ordered fibration. For a set � , the fibre

category � �����
	 (is the preorder � � � � (� � (. �

2.4 Properties of Fibrations

We introduce structures over fibrations. We fix a cloven fibration
�� � �
.

2.4.1 Structures in Each Fibre Category

Definition 2.4.1 ([Jac99], definition 1.8.1) Let � be a name of a structure of cate-

gories (e.g. finite limits, coproducts, CCC, etc.). We say that has fibred � if for each

object � in
�

, the fibre category � 	 has structure � and for any morphism

 � � �

in
�

, the reindexing functor
 	
���� � � 	 preserves � . �

We adopt the following notational conventions.

1. We use � � � for fibred finite products.

2. We use � ��� for fibred finite coproducts.

3. We use
� � for fibred exponentials.

Example 2.4.2 (Continued from example 2.3.11) For a set � , the fibre category � ������
	 (�
� � � � (� � (has a CCC structure by taking � � � , � � � � ��� �

, � �
	 , � � � �
��� �

, � � � � � � �� � (� �
. Pullbacks in

���	��

preserve this CCC structure.

Therefore ������	 is a fibred CCC. �

Proposition 2.4.3 ([Jac99], lemma 1.8.4) Consider the situation in theorem 2.3.5. If
 has fibred � , then the fibration . obtained by change-of-base also has fibred � . �

Choosing a terminal object � in the fibre category � 	 for each object � in
�

is

equivalent to giving a functor �
 � � � such that � � � � ��� .
Proposition 2.4.4 ([Jac99], lemma 1.8.8) The fibred terminal objects functor �
 � �
� is a right adjoint to �
�� � �

. �

2.4. Properties of Fibrations 19

Example 2.4.5 For a category � with pullbacks, the subobject fibration �
 ��� � � � (�
� has fibred terminal objects given by � � � ' � � 	 + � . �

Proposition 2.4.6 Assume that has fibred finite (resp. small) products � and
�

has

finite (resp.small) products � . Then � has finite (resp. small) products �� which are

strictly preserved by . �

PROOF The proof can be found in e.g. [Jac99], lemma 8.5.2. We only give the def-

inition of �� . We define the finite product ��
�* � � * of objects � � � ����� � � � in � by

��
�
* � � * � �

�* � � 	* � * where � *
 �
�* � � * � � * is a projection in

�
for each

+ , . , 0 . The terminal object �+ in � is the terminal object � in � � . �

Example 2.4.7 (Continued from example 2.4.2) A binary product in
��� � � ���	��
 (is

calculated by

� � � � (�� � � � � (� � � . ��� (� � � � � . � � � � � � #

The following proposition is the dual of the above proposition.

Proposition 2.4.8 Assume that is a bifibration with fibred finite (resp. small) coprod-

ucts � and
�

has finite (resp. small) coproducts
�

. Then � has finite (resp. small)

coproducts �� which are strictly preserved by . �

PROOF The proof can be found in e.g. [Jac99], lemma 9.2.2. We only give the def-

inition of �� . We define the finite coproduct ��
�
* � � * of objects in � � � ����� � � � in �

by ��
�
* � � * � �

�* � � � * (� * where � *
 � * � � �* � � * is an injection in
�

for each

+ , . , 0 . The initial object �� in � is the initial object � in ��� . �

Example 2.4.9 (Continued from example 2.4.2) A binary coproduct in
��� � � ���	��
 (is

calculated by

� � � � (�� � � � � (� � � � � � � �)��� . � � # � � � � � . ((� � � � � � # � � �	��� � (#

20 Chapter 2. Preliminaries

2.4.2 Structures Between Fibre Categories

In this section we assume that the base category
�

of the fibration
 � � �
has finite

products.

Definition 2.4.10 ([Jac99], definition 3.4.1) We say that has equality if for each pa-

rameterised diagonal morphism � 	�� � � � � � � � � � �
 � � � � � � � � � , we have a

left adjoint to � 		�� �
 � 	�� � � � � � 	�� � , namely ��� 	�� �
 � 	�� � � � 	�� � � � , satisfying the

Beck-Chevalley condition: for each morphism

 � � � in

�
, the canonical natural

transformation
�	�

	�� �
� � � � (� � � � � � (�
�	� 	�� �

is an isomorphism.

Furthermore, we say that the equality satisfies Frobenius if for any objects � and �
in
�

, � in � 	�� � � � and
�

in � 	�� � , the canonical morphism in � 	�� � � � :

�	�
	 � � � � 		 � � � � � (� � � ��� 	�� � �

is an isomorhism. �

Proposition 2.4.11 ([Jac99], example 3.4.4) For a category � with finite limits, ��

��� � � � (� � has equality satisfying Frobenius. �

PROOF The left adjoint to � 		�� � is given by � � 	 � � (' � + � � ' � 	�� � � � +� � . This is well-

defined, since �
 � � � � � � � � � is a monomorphism (actually, in a subobject

fibration, for any monomorphism

 � � � in � ,

 	
has a left adjoint). We leave

readers to check that it satisfies Beck-Chevalley and Frobenius. �

Example 2.4.12 (Continued from example 2.4.2) �����
	 has equality satisfying Frobe-

nius. We define ��� 	 � � � for � � � � � � � by:

��� 	 � � � � � � . ������ (� � � � � � � � . ��� (� � #

This is a left adjoint of � 		�� � , since for
� � � � � , we have the following equivalence:

� � � 	 � � � � � . � � ��� � � # � . ��� (� � � � � . ������ (� � (� � ��� 	�� � � � � #

The reader can check that the Beck-Chevalley and Frobenius are satisfied. �

2.4. Properties of Fibrations 21

Definition 2.4.13 ([Jac99], definition 1.9.1) We say that has simple products if for

each projection morphism �
 � � � � � in
�

, we have a right adjoint to � 	
 � 	 �
� 	�� � , namely � 	 � �
 � 	�� � � � 	 , satisfying the Beck-Chevalley condition: for any

morphism

 � � � in

�
, the canonical natural transformation

 	 � � 	�� � � ��� � � � � � � (

is an isomorphism. �

Proposition 2.4.14 For a category � with finite limits and exponentials, �
 ��� � � � (�
� has simple products. �

PROOF See [Jac99], corollary 1.9.9. �

Example 2.4.15 (Continued from example 2.4.2) ������	 has simple products. We de-

fine � 	�� � � for � � � � � by:

� 	�� � � � � . � � ��� � � � # � . � � (� � #

This is a right adjoint to � 	 , since for any
� � � ,

� 	 � � � � � � � . � � � � � � # . � � � � � . � � (� � (
� � � � . � � # . � � � � � � � � # � . ��� (� � (
� � � � � 	�� � � #

The reader can check that the Beck-Chevalley is satisfied. �

Definition 2.4.16 ([Jac99], definition 1.9.1) We say that has simple coproducts if

for each projection morphism �
 � � � � � in
�

, we have a left adjoint to � 	

� 	 � � 	�� � , namely � 	 � �
 � 	�� � � � 	 , satisfying Beck-Chevalley condition: for any

morphism

 � � � in

�
, the canonical natural transformation

� 	�� � � 	 � � � � (� ��� � �

is an isomorphism.

22 Chapter 2. Preliminaries

Furthermore, we say that the simple coproducts satisfy Frobenius if for any objects

� and � in
�

, � in � 	 and
�

in � 	�� � , the following canonical morphism in � 	�� � :

� 	 � ��� � 	 � � � (� � ��� 	�� � � � (� �
 � � � � � is a projection (

is an isomorphism. �

Example 2.4.17 (Continued from example 2.4.2) ������	 has simple coproducts. We

define � 	�� � � for � � � � � by:

� 	 � � � � � . � � � � � � � # � . ��� (� � #

This is a left adjoint to � 	 , since for any
� � � ,

� � � 	 � � � � � . � � ��� � � # � . � � (� � � � . � � (
� � � � . � � # ��� � � � # � . ��� (� � (� � . � � (
� � � 	 � � � � � #

The reader can check that the Beck-Chevalley and Frobenius are satisfied. �

Definition 2.4.18 ([Jac99], definition 4.4.2) A category � with finite limits has im-

ages if for each morphism

 � � � in � , there exists a factorisation � �� � (of

(that

is, a pair � �� � (such that
 �

�
� �

) with � mono

�
�

//

�

""EE
EE

EE
EE

E �

� � � (
<<

�
<<yyyyyyyy

satisfying the following universal property: for any factorisation � � � � � � (of

with � �
mono, there exists a unique morphism

�
making the following triangles commute:

�
�

//

�

""EE
EE

EE
EE

E

� �
##

�

� � � (
�
��

<<
�

<<yyyyyyyy

�
::

� �

MM

2.4. Properties of Fibrations 23

Furthermore, we say that images are stable if for each pullback square on the left,

$
�

��

//
_
�
$
�

��
� � // �

� � � #�(
��

��

// � � � � (
��

��
� � // �

the right square is also a pullback, where � � � #�(� � � � � (is the morphism obtained

by the universal property of image factorisation of � .

A category is regular if it has finite limits and stable images. �

Proposition 2.4.19 Let � be a category with finite limits. Then � is a regular category

if and only if �� has simple coproducts satisfying Frobenius. �

PROOF See [Jac99], theorem 4.4.4. �

Proposition 2.4.20 ([Jac99], lemma 8.5.2) Let
 � � �
be a fibration such that

�

has finite products, is a fibred CCC and has simple products. Then � has exponen-

tials. �

PROOF For objects � and
�

in � above � and � respectively, the following object:

� �� � � � 	 � � � 	 � � � � (� � � � 	 � (

gives an exponential object in � . For details, see [Jac99]. �

Example 2.4.21 The exponential in
��� � � ���	��
 (is calculated by

� � � � (�� � � � � (� �!
 � � � ��� ��� � # � � (� � #

This appears in the pattern defining logical relations (see section 1.1). �

2.4.3 Global Structure

Definition 2.4.22 ([Jac99], definition 4.6.1) We say that a fibration with fibred ter-

minal objects �
 � � � has subset types if � has a right adjoint
� �
 � � �

. We

write �
� ��� (
 �

� � � � � � for the subset projection, where �
 � � � �
� � � is the counit of the adjunction � � � � . �

24 Chapter 2. Preliminaries

Proposition 2.4.23 ([Jac99], example 4.6.3) For a category � with pullbacks, the sub-

object fibration ��
 ��� � � � (� � has subset types. �

PROOF Under the axiom of choice, we can choose a representative monomorphism

��� � � for each subobject
�

in
��� � � � (. We then define

� �
 ��� � � � (� � to be

��� � � ��� (. This determines a right adjoint to � . �

Proposition 2.4.24 ([Jac99], lemma 4.6.2) Let �
 � � �
be a preordered fibration

with fibred terminal objects �
 � � � and subset types
� �
 � � �

. Then the

subset projection � �
 � � � � is a monomorphism. �

PROOF Let
 � �
 � � � � be morphisms in � and assume � � �� � � � � � . We

transpose
 � � by the adjunction � � � � and obtain

 � �
 � � � � . Then we have

 � � � � � � (� � � � � � � � � � � #

Since is preordered, we conclude
 � � , that is,

 � � . �

Lifting of Initial Algebra

We introduce the concept of lifting of an endofunctor via a fibration.

Definition 2.4.25 Let
�
 � � �

be an endofunctor. An endofunctor ��
 � � � is a

lifting of
�

(via) if � �� ��� � holds. �

Example 2.4.26 ([Jac99], lemma 1.7.5) Let � be a category with pullbacks and
�

� � � be an endofunctor preserving pullbacks. Then the following endofunctor

��
 ��� � � � (� ��� � � � (defined by:

�� ' � + �� � ' � � +���

is a lifting of
�

. �

For an endofunctor
�
 � � �

and its lifting ��
 � � � via a fibration

� � �

, any �� -algebra � � � ��
 �� � � � (is above an underlying
�

-algebra � � � ���

 � �� � (��� � � (� � (. Like the way an object � in � specifies a part (or predicate)

of the object � in
�

, we can regard � � � � (as a sub-
�

-algebra of � � � �� (.

2.4. Properties of Fibrations 25

Suppose we have an initial
�

-algebra � � ���
 � � � � (. One of the properties of

the initial algebra is that it has no proper sub-algebra. However, this property holds

only in
�

, and does not take sub-algebras in the above sense into account. To make

this property hold across the fibration, one might require that there is an initial �� -

algebra � � � � �� (above � � ��� (. This seems a natural requirement, since � � represents
�

itself in � , and the initiality of � � � � �� (guarantees that any �� -algebra above � ����� (
is isomorphic to � � � � �� (, that is, there exists no proper sub-algebra in the above sense.

In the following theorem, we show that the above requirement is satisfied when
has subset types and there exists a natural vertical isomorphism .
 �� � � � � � � .

This theorem is a mild generalisation of theorem 4.3 in [HJ95]. 1

Theorem 2.4.27 Let
�� � �
be a fibration with fibred terminal objects �
 � � �

and subset types
� �
 � � �

. Let
�
 � � �

be an endofunctor, ��
 � � � be a

lifting of
�

via and .
 �� � � � � � � be a natural vertical isomorphism. Then for

any initial
�

-algebra � � ���
 � � � � (, � � � � � � � .�� (is an initial �� -algebra above
� ����� (. �

PROOF We write �
 � � � � � � � and �
 � � � � � � � for the unit and counit of the

adjunction � � � � .
Let ��� � 	
 �� � � � (be an �� -algebra. We first find an �� -algebra morphism

�

from � � � � � � � .�� (to ��� � 	 (. To do so, we construct an
�

-algebra � � � � � (in the

following way:

	
 �� � � � �� � �
 �� � � � � (� �� �	 � �� � �
 �� � � � � (� �	 � �� � �
� .

�
� ���

 � � � � � (� �
� � � 	 � �� � �

� . �� ��� � �	� � �
�
 �&� � � � � #

From initiality, we obtain a unique
�

-algebra morphism
� �
 � � � � . We give the

1The main difference from theorem 4.3 in [HJ95] is that theorem 2.4.27 is proved with respect to
an arbitrary pair of an endofunctor � and its lifting �� via , rather than those constructed from a given
polynomial using the property of bicartesian fibrations. On the other hand, theorem 2.4.27 is an instance
of a 2-categorical fact on inserters (theorem A.7 in [HJ95]), which is also used to derive theorem 4.3 in
[HJ95].

26 Chapter 2. Preliminaries

�
in question by

� � � �
� � � � . We check that this is indeed a �� -algebra morphism:

� � � � � � ��(� � ��� . � � � �
� � � � � � � � ��(� .��

� � �
� � � � . � ��� � �� � � � � (

� � �
� � � � 	 � �� � �

� . �� ��� � � � � �
� (� . � ��� � �� � � � ��(
� 	 � �� � �

� . �� ���
� � � � � ���

� � � � � ��� � . � �
� � �� � � � ��(
� 	 � �� ��� � � � � ��(#

To show that
�

is the unique �� -algebra morphism, let
� � be another �� -algebra mor-

phism from � � ��� � � � .�� (to ��� � 	�(. Then a calculation shows that
� � � � � �
 � � � �

is an
�

-algebra morphism from � � ��� (to � � � � � (. Thus
� � � � � � � � � , which implies

� � � �
. �

This theorem will be applied to the endofunctor corresponding to a typed binding sig-

nature in section 3.6.

2.4.3.1 Quotient Types

Definition 2.4.28 ([Jac99], definition 4.8.1) Assume that has equality and fibred

terminal objects �
 � � � . We write
�
 � � �

for the functor sending an ob-

ject � to � � � . We obtain a new fibration
� 	
 � 	 � � �

by change-of-base along
�

:
� 	 � //

� � 	
��

_
�

�
	

���
� // �

Note that
� 	 � has fibred finite products by proposition 2.4.3, thus

� 	 � has finite

products strictly preserved by
� 	 � by proposition 2.4.6.

There is then an equality relation functor � �
 � � � 	 � :

� �
 � %� � � 		 � ��� � � 	 � � � + � � (((� � (

where
� 	 � �� � � � � � �
 � � � � + � � � � (see [Jac99], section 4.8 for how � � sends

morphisms). We note that �
� � � � � ��� .

2.5. Internal Logic of a Fibration 27

We say that has quotient types if � � has a left adjoint � . For an object
�

in
� 	 �

above an object � in
�

, we often write �) � instead of �
�

to emphasise that � gives the

quotient of � by (the equality relation generated from)
�

. We write �
� � � (�
 � � �

for the canonical quotient map, where �
 � � � � � � � � is the unit of the adjunction

�
� � � .

Furthermore, we say that the quotient types satisfies Frobenius if for any objects �
and � in

�
and � in

� 	 ��� , the canonical map

� � � � (#) � � � � � (�� � (� � � �) �

is an isomorphism. �

2.5 Internal Logic of a Fibration

In this thesis we use the internal logic of a fibration as a convenient tool to reason about

objects and morphisms in the base and the total category of a fibration. You can think

of internal logic as providing a logic-style user interface for structures on a fibration.

Logical connectives, quantifiers and their inference rules in the internal logic have

a tight correspondence with structures on a fibration. For example, when a fibration

has fibred finite coproducts, the internal logic admits falsum and disjunction. The

presentation of internal logic in this section takes this point into account. First we

introduce the base logic, which provides a basis for all variations of internal logic.

Then it is followed by various extensions to the base logic by logical connectives and

quantifications, such as equality predicate, universal quantification, etc. We associate

each extension with a structure on a fibration, and give a categorical semantics of

judgements and inference rules provided by the extension.

The internal logic has the following judgements.

A Type Judgement is of the form � where � is just a type.

A Term Judgement is of the form
� � �
 � where

�
is a context and � is a term

of the internal logic. This judgement means that “term � has type � under the

assignment
�

of types to free variables in � .”

28 Chapter 2. Preliminaries

A Predicate Judgement is of the form
� � �

, where
�

is a context and
�

is a formula

of the internal logic. This judgement means that “
�

is a well-formed formula

under the assignment
�

of types to free variables in
�

.”

A Sequent is of the form
� ��� � �

, where
�

is a context, � is a finite sequence
� � � ����� � � � of predicates and

�
is a predicate. This judgement means that

“
� � �-����� � � � implies

�
under the assignment

�
of types to free variables

in
� � � ����� � � � � � .”

These judgements will be interpreted in a preordered fibration �
�� � �
:

$ Type judgements are interpreted by objects in the base category
�

.

$ Term judgements are interpreted by morphisms in the base category
�

.

$ Predicate judgements are interpreted by objects in some fibre preorder.

$ Sequents are interpreted by inequalities in some fibre preorder.

The logic has inference rules of the following form:

� � ����� � �
�

where � � � � � ����� � � � are judgements. We interpret an inference rule by a procedure

for constructing an object / morphism ' ' � + + corresponding to the conclusion � of the

rule from given objects / morphisms ' ' � � + + � ����� � ' ' � �,+ + corresponding to the assumptions

� � � ����� � � � of the rule. The fibration we consider is preordered, thus when all judge-

ments � � � � � ����� � � � are sequents, the interpretation of an inference rule is just a state-

ment that “inequalities ' ' � � + + � ����� � ' ' � �,+ + imply ' ' � + + .”
For readability, we often write the formal proof in the internal logic in plain En-

glish. For example, “let �'
 � � � and ...” corresponds to the formal proof in the internal

logic under the context ��
 � � � .

The Base Logic

The base logic ��� provides the inference rules which are common in various exten-

sions, and those for truth and conjunction.

2.5. Internal Logic of a Fibration 29

The base logic is designed to reason about the following fibration.

Definition 2.5.1 Let
 � � �
be a fibration. We say that supports � � if is

preordered, has fibred finite products and
�

has finite products. �
Type Inference Rules of � � consists of:

� � ����� � � (� � ����� � �
�
�* � � *

Any object � in
�

is a type, and also the finite product �
�* � � * of types � � � ����� � � �

is a type. The meaning of a type � in
�

, denoted by ' ' � + + , is straightforward.

We interpret a context
�

by the finite product object � � ����� �����* � � � ! � � . ((in
�

denoted by ' ' � + + . In the rest of this chapter, by
��� � �
 � � � ����� � ���
 � � , we mean

a context such that � � ,
 ����� ,
 ��� . Therefore we have an intuitive equation:
' ' ��� �	�
 � � � ����� � ����
 � �,+ + � ' ' � + + � ' ' � � + + � ����� � ' ' � � + + .

Term Inference Rules of � � consists of:� � � (� �� � ��
 �
��� ��
 � � �
 � ���
 ���� ��
 � ��� ' �) � +
 �� � �
 �
 ' ' � + + � ' ' � + +� � �
 �

� � ���
 � � ����� � ������
 � �� � � ��� � ����� � ��� (�
 �
�* � � *

In the first rule, we implicitly assume that all types in context
�

are correctly

formed by type inference rules. The second rule is contraction of term variables.

The third rule introduces a morphism in
�

as an operation in the internal logic.

The fourth rule is for the tuple � � � � ����� � �'� (of terms ��� � ����� � �'� . We do not

explicitly need terms for projection because we can express them by application:� ���
 �
�* � � * ���
 ' ' �

�* � � * + + � �
�* � ' ' � * + + � ' ' � � + +� � ��� �
 � �

We interpret a term judgement
� � �
 � as a morphism ' ' � + +
 ' ' � + + � ' ' � + + in �

.

The above rules are interpreted as follows:

' ' � + + � ��� � � �
' ' �(' �) � + + + � ' ' � + + � � � � � � � � �

' ' � ��� � # # # � ���(+ + � ' ' ��� + + � ����� � ' ' ���,+ + �
' ' � + + � � ' ' � + + #

30 Chapter 2. Preliminaries

Predicate Inference Rules A predicate of � � is either an application
� � of a term

� to an object
�

in a fibre category, the truth � or a conjunction
� � � .

� ���
 � � � ��� � � � 	 (� � � � � � �
� � � � � �
� � � � �

We interpret a predicate judgement
� � �

by an object in the fibre category
��� � ��� � . An application

� � is interpreted by reindexing of
�

along ' ' � + + 	 . Truth

and conjunction are interpreted by the terminal object and binary product object

in the fibre category.

' ' � � + + � ' ' � + + 	 �
' ' � + + � �

' ' � � � + + � ' ' � + + � ' ' � + +

We note that giving a sequent
� � � � � � is equivalent to asserting that ' ' � + +

' ' � + + � ' ' � + + in � (c.f. proposition 2.3.4).

We interpret a sequence of predicates � � � � � ����� � � � by the object �
�* � ' ' � * + +

(denoted by ' ' � + +) in the fibre category ��� � ��� � .
Sequent Inference Rules of � � consists of three groups of rules. The first group

consists of axiom and substitution:
' ' � + + , ' ' � + + holds in ��� � ��� �� � � � �

��� �
 � � � � � � ���
 �� � � ' �)�� + � � ' �)�� +
� � � � � � ��� � � � �

� � � � � � �

The first rule asserts that any inequality ' ' � + + , ' ' � + + in � � � ��� � is an axiom. This rule

makes the internal logic reflect all inequalities between predicates in each fibre

category. The second rule says that inequality is preserved by substitution. The

third rule is the cut rule.

The second group consists of structural rules for assumptions.
� � � � � ����� � � ��� �

� � �	� � � � � ����� � �	� � � � � � � � � � � ����� ��� � � � *
� � � � � ����� � � � � � � � � *
� � � � � ����� � � � � � *

2.5. Internal Logic of a Fibration 31

where �
 � + � ����� � 0 � � + � ����� � 0 is a permutation.

The third group consists of the standard rules for reasoning about the truth and

conjunctions in natural deduction style.

� � � � �
� � � � � � � � � �

� � � � � � �
� � � � � � �
� � � � �

� � � � � � �
� � � � �

Fibred finite products are nothing but finite meets in the preorder � � � ��� � . We inter-

pret the above inference rules by the following axioms on finite meets:

' ' � + + , �
' ' � + + , ' ' � + + and ' ' � + + , ' ' � + + � � ' ' � + + , ' ' � � � + +
' ' � + + , ' ' � � � + + , ' ' � + + � ' ' � + + #

Later we consider a logic with set-indexed conjunctions. We refer to this logic by

����� . This logic is supported by a preordered fibration
 � � �
with fibred small

products and finite products in
�

. We write � * ��	 � * for the conjunction of the � -

indexed family of predicates
� * . Inference rules and their categorical interpretation are

straightforward.

Extensions to the Base Logic

We introduce extensions to � � . We fix a fibration which supports � � .

Equality Predicate

This fragment � provides an extension of the base logic � � with an equality predi-

cate. We say that supports � if has equality satisfying Frobenius (see definition

2.4.10).

Predicate Inference Rule � ���
 � � � �
 �� ��� � �
The equality predicate in the internal logic is called the internal equality, and

is distinguished from the equality of morphisms ' ' � + + � ' ' � + + which is called

external equality.

32 Chapter 2. Preliminaries

We interpret the equality predicate � � � by the following object in � � � ��� � :
 � � � � ��� � � ' ' � + + � ' ' � + + � 	 � ��� � � ��� ��� � � 	 � � � � ((

where � is the terminal object in � � � ��� � � � � 	 � � .
Sequent Inference Rules

� ���
 � � � �
 � ' ' � + + � ' ' � + +� � � � � � �
��� ��
 � � � � � ' �) � +��� ��
 � � �
 � � � � � � � � �

The first rule guarantees that the external equality implies the internal equality.

In general the internal and external equality do not coincide, but if they do, we

say that the equality is very strong.

We interpret the first rule by ' ' � + + , ' ' � � � + + � ' ' � � � + + � � .

The second rule is called Lawvere equality [Law70]. The double line means that

you can use this rule in both directions. Lawvere equality captures the essence

of the equality predicate which is usually presented by the following four rules

(see [Jac99], lemma 3.2.2):

� ���
 �� � � ��� � �
� � � � � � �
� � � ��� � �

� � � � � � � � � � � � � �� � � ��� � �
� � � � � � � ��� ��
 � ���
 �� � � ��� ' �&)�� + � � ' �)�� +

We interpret Lawvere equality by the following equivalence:

' ' � + + , � 	� � ��� ��� � � 	 � � ' ' � + + � ' ' � ' �) � + + +
� � ' ' � � � � � + + � � � 	 ' ' � + +�� ��� � � ��� ��� � � 	 � � � � (� � �	� � � ��� ��� � � 	 � � �#' ' � + + (, ' ' � + +

where �
 ' ' � + + � ' ' � + + � ' ' � + + � ' ' � + + � ' ' � + + is a projection.

Falsum and Disjunction

This fragment ��� provides an extension of the base logic with the falsum and disjunc-

tions. We say that supports ��� if has fibred finite coproducts (see definition 2.4.1).

We simply give inference rules; their interpretation is straightforward.

2.5. Internal Logic of a Fibration 33

Predicate Inference Rule

� � �
� � � � � �
� � � � �

Sequent Inference Rules

� � � � � � �
� � � ��� � � � � � � � � �

� � � � � � � � �
� � � � �

� � � � � � �
� � � � �

� � � � � � �

Later we consider a logic with set-indexed disjunctions. We refer to this logic by

� ��� . This logic is supported by a preordered fibration
 � � �
with fibred small

coproducts. We write � * �
	 � * for the disjunction of the � -indexed family of predicates
� * . Inference rules and their categorical interpretation are straightforward.

Universal Quantifier

This fragment � � provides an extension of the base logic with an universal quantifier.

We say that supports � � if has simple products (see definition 2.4.13).

Predicate Inference Rule ��� ��
 � � �
� ��� �
 � # �

We interpret a universally quantified predicate � ��
 � # � as follows:

' ' � ��
 � # � + + � � � � ��� ��� � � 	 � � � ' ' � + + (#

Seuqent Inference Rules

��� ��
 � � � � � � is not free in �� � � � � �
 � # �
� � � ��� ��
 � # � � � �
 �� � � � � ' �)�� +

We notice that when
� � �'
 � � � contains no � , we can derive

� � � and show

that � 	 ' ' � � � + + � ' ' ��� ��
 � � � + + . To interpret the first rule, assume that � 	 ' ' � + + ,
' ' � + + holds. By transposing this inequality by the adjunction � 	 � � � � ��� ��� � � 	 � � , we

obtain ' ' � + + , ' ' � �
 � # � + + in ��� � ��� � .

34 Chapter 2. Preliminaries

To interpret the second rule, let � 	 � � � � ��� ��� � � 	 � � ' ' � + + (� � � 	 �#' ' � ��
 � # � + + (, ' ' � + + be the

inequality corresponding to the counit of the adjunction � 	 � � � � ��� ��� � � 	 � � . For any� ���
 � , we have the following inequality:
 � � � � ��� � � ' ' � + + � 	 � 	 � ' ' � ��
 � # � + + (� � ' ' � �
 � # � + + , � � � � ��� � � ' ' � + + � 	 � ' ' � + + (� ' ' � ' �)�� + + +
Therefore ' ' � + + , ' ' � �
 � # � + + implies ' ' � + + , ' ' � ' �)�� + + + .

Existential Quantifier

This fragment ��� provides an extension of the base logic with an existential quanti-

fier. We say that supports ��� if has simple coproducts satisfying Frobenius (see

definition 2.4.16).

Predicate Inference Rule � � ��
 � � �
� ������
 � # �

We interpret an existentially quantified predicate ����
 � # � as follows:

' ' ���
 � # � + + � � � � ��� ��� � � 	 � � � ' ' � + + (#

Seuqent Inference Rules� � � ������
 � # � � � ��
 � ��� ��� � �
� � � � � � �

� � � � � ' �)�� + � ���
 �� � � � ���
 � # �

In the first rule, we assume that � � � does not contain � as a free variable.

To interpret the first rule, we assume that ' ' � + + , ' ' ���
 � # � + + and ' ' � � � + + �
� 	 ' ' ��+ + � ' ' � + + , � 	 ' ' � + + . From the mate rule of adjunction � � � ��� ��� � � 	 � � � � 	 and

Frobenius property, we have ' ' ��+ + � ' ' ���
 � # � + + � � � � � ��� ��� � � 	 � � � � 	 ' ' ��+ + � ' ' � + + (, ' ' � + + .
Therefore we obtain the inequality:

' ' ��+ + � ' ' � + + , ' ' ��+ + � ' ' ���
 � # � + + � � � � � ��� ��� � � 	 � � � � 	 ' ' ��+ + � ' ' � + + (, ' ' � + + #

To interpret the second rule, let ' ' � + + , � 	 � � � � ��� ��� � � 	 � � ' ' � + + (� � 	 ' ' ����
 � # � + + be

the inequality corresponding to the unit of adjunction � � � ��� ��� � � 	 � � � � 	 . For any� ���
 � , we have the following inequality:

' ' � ' �)�� + + + � � � � � ��� � � ' ' � + + � 	 ' ' � + + , � � � � ��� � � ' ' � + + � 	 � 	 ' ' ���
 � # � + + � � ' ' ���
 � # � + +
Thus ' ' � + + , ' ' � ' �)�� + + + implies ' ' � + + , ' ' ���
 � # � + + .

2.5. Internal Logic of a Fibration 35

Subset Types

This fragment � � � provides an extension of the base logic with subset types. We say

that supports � � � if has subset types (see definition 2.4.22).

Type Inference Rule Subset types embody comprehension: for a predicate
�

with a

single variable � of type � , we can form a new type
� �
 � � � representing

the collection of elements in � satisfying
�

. This is expressed by the following

inference rule for types: ��
 � � �
� ��
 � � �

We interpret subset types as follows:

' ' � ��
 � � � + + � � ' ' � + + #

Term Inference Rule Subset types introduce two term constructs, . � � and � � � .

The term . � � asserts that � is included in a subset type
� ��
 � � � provided

that
� ' �)�� + holds, while � � � is just another notation for � � �

� � � � .

��
 � � � � � �
 � � � � � � ' �)�� +
� � . � �
 � ��
 � � �

� ���
 � ��
 � � � � � �
� � �
 ' ' � �
 � � � + + � ' ' � + +� � �

�
� � � � �

� � � �
 �
We interpret . � � in the following way. Assume we have the inequality � ,
' ' � ' �)�� + + + � ' ' � 	 + + �#' ' � + + (in ��� � ��� � , where � is the terminal object in � � � ��� � . By

applying proposition 2.3.4, we obtain a morphism

 � � ' ' � + + in � . We trans-

pose

by the adjunction � � � � and obtain a morphism

 � � � ' ' � + + �

' ' � ��
 � � � + + . With this, we interpret . � � by:

' ' . � � + + � #

In the internal logic, we have the following axioms between terms:

. � � � � � ' ' � + + � ' ' �
� . � � + + ' ' � + + #

which will soundly be interpreted in the fibration supporting � � � .

36 Chapter 2. Preliminaries

Sequent Inference Rule Suppose that
� � � (implies

� � � (for any �
 � . Then
� � � (

is true for any � satisfying
� � � (, i.e. for any � in

� ��
 � � � � � (. The sequent

inference rule for subset types formulates this idea:

� � ��
 � � � ��� � � � ��
 � � �
��� �
 � ��
 � � � � � ' � � �)�� + � � ' �

�
�)�� +

To interpret this rule, we assume the inequality ' ' � + + � � � 	 ' ' � + + , ' ' � + + in � � � ��� � � � � 	 � � ,
where � �
 ' ' � + + � ' ' � + + � ' ' � + + is a projection. We send this by �#' ' � + + � � � �

� � � (and

obtain ' ' � ' � � �)�� + + + � � � 	 � 	 � � � � � ' ' � + + , ' ' � ' � � �)�� + + + in � � � ��� � � � � � � � � � . Since the counit
��� �
� � �
 � � ' ' � + + � ' ' � + + of adjunction � � � � is above � � �

� � � , the inequality

� � � � � 	 � , � � 	 � 	 � � � � � ' ' � + + holds in � � � ��� � � � � � � � � � . Thus we obtain ' ' � ' � � �)�� + + + ,
' ' � ' �
�
�)�� + + + . This shows that the above inference rule is sound with respect to

the interpretation of sequents.

Quotient Types

This fragment � � provides an extension of the base logic with quotient types. We

say that supports � � if supports � and has quotient types satisfying Frobenius

(see definition 2.4.28).

Type Inference Rule The quotient type represents the quotient of a type � by an

equivalence relation generated from a binary relation
�

over � . The type in-

ference rule is the following:

��
 � � �
 � � �
�) �

We interpret a quotient type as follows:

' ' �) � + + � � ' ' � + +

where � is a left adjoint to � �
 � � � 	 � (see definition 2.4.28).

Term Inference Rule Quotient types introduce two term constructs, ' � +�� and

“pick � � �
in � ”. Let �
 � � �
 � � � � � � � (be a binary relation. The term

2.5. Internal Logic of a Fibration 37

' � + � is just another notation for the term � � � � � � � :

� ���
 � � � � � � � �
 ' ' � + + � ' ' �) � + +� � ' � + � � � � � � � � �
 �) �

The term “pick � � �
in � ” extends the term � depending on a value in � to one

depending on �) � , provided that � yields the same result for any values that are

related by
�

.

��� �
 � � �
 � �����
 � � 	
 � � � � ��� 	�(� � ' �)�� + � � ')�� +� � �
 �) � � pick ��� �
in �
 �

We interpret “pick ��� �
in � ” in the following way: we assume that

� � ��� ��
 � .

By applying Lawvere equality for all variables in
�

, we infer:

��� ���
 � ���
 � � 	
 � � � � ��� 	�(� � ' �)�� + � � ')�� +��� ���
 � ���
 � � � ��� �� �
 � � 	
 � � ����� �� � � � � � � ��� 	�(� � ' �)�� + � � ')�� +

This means that in
� 	 � � � ��� � � � � 	 � � we have an inequality:

� � �#' ' � + + (�� � � � � � � ' ' � � + + (�� ����� �� � � �#' ' � � + + (�� � , ' ' � + + 	 � � �#' ' � + + (�

which yields a morphism

 � � � ' ' � + + (�� � � � � � ' ' � + + (in

� 	 � . By transposing

this morphism by adjunction �
� � � , we obtain

 �#' ' � + + � ' ' � + + () � � � � ' ' � + + (�
' ' � + + (� � . From the Frobenius property, we obtain

 � �
 ' ' � + + � ' ' � + +)�' ' � + + � ' ' � + + ,
where

�
 ' ' � + + � ' ' � + +)�' ' � + + � �#' ' � + + � ' ' � + + (#) � � � �#' ' � + + (�� ' ' � + + (is the isomorphism.

With this morphism we interpret:

' ' pick ��� �
in � + + � � � #

In the internal logic, we have the following axioms between terms:

pick � � ' � + � in � + + � ' ' � ' �)�� + + + � pick � �'� in � ' ' � + �) � + + + � ' ' � ' �) � +

which will soundly be interpreted in the fibration supporting � � .

38 Chapter 2. Preliminaries

Sequent Inference Rule
� � �
 � � � �
 � ��
 � � �
 � � �� � � ' �)�� � �&) � + � ' � + � � ' � + �

This rule asserts that any terms related by the relation belong to the same equiv-

alence class.

To interpret this rule, we consider the unit � � � � � �
 ' ' � + + � � � � � ' ' � + + (of the ad-

junction �
� � � . This yields an inequality ' ' � + + , � 	 � � � � � � �

� � � ' ' � + + ((in
� 	 � � � 	 � � .

This inequality is equivalent to ' ' � + + , � � � � � � � � � � � � � � (� � � � � ' ' � + + ((in � � � 	 � � � � � 	 � � .
Thus we obtain an inequality ' ' � ' �)�� � �&) � + + + , ' ' ' � + � + + � ' ' ' � + � + + � 	 � � � � � ' ' � + + ((� �
' ' ' � + � � ' � + � + + , which gives the interpretation of the above rule.

2.5.1 Predicates Definable in Internal Logic

Let �
�� � �
be a fibration supporting � � � � � ��� .

Definition 2.5.2 Let � � � be objects in
�

and
�

be an object in � 	�� � .

1.
�

is bijective if the following holds in the internal logic.

�	�
 � � � ��
 � � ���
 � � � �$
 � � � � �	� � � � (� � � ��� � � � (� �	� � ����� � � � � �

�	�
 � � � ��
 � � ���
 � � � �$
 � � � � �	� � � � (� � � ��� � � � (� � � � � ��� �	� � ���

2.
�

is total if the following holds in the internal logic.

��
 � � � � � �
 � # � � � � � (

�
 � � � � � �
 � # � � �
� � (#

2.5.2 Partial Equivalence Relations

Let �
�� � �
be a fibration supporting � � � � � � � �

� � � .

Definition 2.5.3 A partial equivalence relation (or simply PER)
�

over an object � in
�

is an object
�

in � 	�� 	 such that

2.5. Internal Logic of a Fibration 39

$ � is symmetric, that is, ��
 � � �
 � � � � � � � (�� � � �
� � (holds, and

$ � is transitive, that is, ��
 � � �
 � ���
 � � � � � � � (� � � �
��� (�� � � � ��� (holds.

We denote
��� � � (for the full subcategory of

� 	 � whose objects are partial equiva-

lence relations. We write � 	
 ��� � � (� �
for the restriction of

� 	 to
��� � � ((� 	

is indeed a fibration). �

Proposition 2.5.4
��� � � (has finite products which are strictly preserved by � 	 . �

PROOF Since has fibred finite products and
�

has finite products, by proposition

2.4.6 and proposition 2.4.3,
� 	 � also has finite products. We thus only need to check

that for objects
�

and � in
��� � � (, � �� � is again an object in

��� � � (. Let
� � �

be objects in
��� � � (. We show that

� �� � is a symmetric and transitive relation.

We let � � � 	 � � � � � 	 � � ��
 � � � � �
 � � � and assume
� � � � � � � (� � � � � � � � � � (.

Since
�

and � are symmetric relations, we have
� � � �

� � � (� � � � � � � � � � (, which is� �� � � �
� � (. We can similarly show that

� �� � is a transitive relation. �

Proposition 2.5.5 If has fibred exponentials and simple products, then
��� � � (has

exponentials. �

PROOF The assumption on equips � 	 with fibred exponentials and simple products.

From proposition 2.4.20,
� 	 has a CCC structure which is strictly preserved by � 	 . We

thus only need to check that
��� � � ��� � (is closed under construction of exponential

objects. Let
� � � be objects in

��� � � (, � � � 	 � � � � � 	 � ,

 � � � � �
 � � � and

assume � � � � � (� � � � # � � � � � (� � � � � � (� � � � (((this formula expresses
� �� �

through the internal logic of fibration). From the symmetry of
�

and � , it is easy to see

that
� �� � is a symmetric relation. We can similarly show that

� �� � is a transitive

relation. �

Definition 2.5.6 We define a functor � � ��
 ��� � � (� �
and ' � +
 ��� � � (� �

as

follows. Let
�

be an object in
��� � � (above an object � in

�
. By ��
 � � � � � (� we

mean the predicate
� � � � � (.

1. The functor � � � sends
�

to the subset type
� ��
 � � � � � (� .

40 Chapter 2. Preliminaries

2. The functor ' � + sends
�

to the following quotient type:

��
 � � � � ��
 � � �
��
 � � � � � ����
 �

�
 � � � � �
 � � �
�
 � � � � � � �
 ���
 � � � � �
�� � �� � � � � � � � � � (� � �) � � � � � � � � � (

Lemma 2.5.7 1. The functor � � ��
 ��� � � (� �
preserves finite products.

2. The functor ' � +
 ��� � � (� �
preserves finite products. �

PROOF Let
�

and � be PERs over � and � respectively. We construct terms in the

internal logic of fibration and show that they form an isomorphism by term calculation.

1. We define
�� � � � � � ��� �
 � � �� � � and
 � � �� � � � �
 � � � � � � � by

� � . � � ���� � � � � � � � � � � (� � � � � � � � � ((
� � � . � � � � � � ��� � � ���� � � ((� . � � � � � � ��� � � � ���� � � (((

Easy calculation shows that � ' �) + � and
� ' �) + � . Therefore, the mor-

phisms corresponding to
�

and � give the desired isomorphism.

2. We define
 ' � �� � + � �
 ' � + � ' � + and �
 ' � + � ' � + � �
 ' � �� � + by:

� �
pick ��� in � ' . � � � ��� � �� � � ((+ � � ' . � � � � � � � �� � � ((+ � (

� � pick � � � � in pick � � � � � in ' . � �� � ��� � �
� � � � (+ � �� � #

We show that � ' �) � + � and
� ' �) + � � . Below, for readability, we omit

subscripts of . and � . We first show that � ' �) � + � .

� ' �) � + � pick � � � � in pick � � � � � in ' . ��� � � � � (+ � �� ��
pick ��� in ' . ��� � . � � � ��� (((� ��� . � � ��� ��� ((((+ � �� ��
pick ��� in ' . � � � ��� (� � ������� ((+ � �� ��
pick ��� in ' . ����� (+ � �� ��
pick ��� in ' � + � �� �� #

2.5. Internal Logic of a Fibration 41

Next, we show
� ' �) + � � .

� ' �) +
�

pick ��� � in �#' . � � � ��� ((+ � � ' . � � � ����� ((+ � (
�

pick � � � � in pick � � � � � in � ' . � � ��� � . ��� � � � � ((((+ � � ' . � � � ��� � . � � � � � � ((((+ � (
�

pick � � � � in pick � � � � � in � ' . � � � (+ � � ' . � � � (+ �
�

pick � � � � in pick � � � � � in � ' � + � � ' � + � (
� � � � � � � � (
� � #

Therefore, the morphisms corresponding to
�

and � give the desired isomor-

phism. �

Chapter 3

Pre-Logical Predicates for Simply

Typed Formal Systems

3.1 Introduction

Pre-logical predicates (relations) [HS02] are a generalisation of logical predicates.

They are defined for the simply typed lambda calculus and its set-theoretic environ-

mental models called lambda applicative structures [Mit96]. Two important properties

are enjoyed by pre-logical predicates but not logical predicates. One is that pre-logical

predicates are equivalent to predicates satisfying the basic lemma (interpretation of all

terms respects predicates — this is the key to many applications of logical predicates),

and the other is that binary pre-logical relations are closed under relational composi-

tion.

We aim to generalise pre-logical predicates from the simply typed lambda calculus

to arbitrary simply typed formal systems (we just say typed formal system below) and

their categorical models, then show that the above important properties hold in this

generalised setting.

This generalisation enables us to extend pre-logical predicates systematically to

other calculi, such as lambda calculus with various type constructors and variable

binders, and calculi other than lambda calculus, such as logics and process calculi.

This opens up the possibility of characterising observational equivalence [HS02] and

43

44 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

constructive data refinement [HLST00] in various non-lambda calculi.

There are three underlying elements on which pre-logical predicates are defined:

syntax (the simply typed lambda calculus), semantics (set-theoretic environmental

models) and predicates (as subsets of carrier sets). We generalise these three elements

along the following dimensions:

$ We generalise syntax to an arbitrary typed formal system described by a typed

binding signature [MS03]. A typed formal system is a formal system whose

inference rules fit within the following scheme:��� ����� ��	��
��� ��� �
 � � ����� ��� � ����� �����
� ��� ����
 � �� � � � � �� !� # ��� � ����� � � �� �%� # ��� (�
�

This is general enough to subsume various simple type systems and calculi such

as the simply typed lambda calculus, many-sorted first-order logic, pi-calculus,

etc.

$ We generalise from set-theoretic to category-theoretic semantics. Following the

principle of categorical semantics, we give a semantics of a typed formal system

in a Cartesian category � by mapping types to objects and terms to morphisms

in � .

$ As we move to category theory, we need to change the notion of predicates from

subsets to appropriate category-theoretic constructs. We use subscones, which is

a mild generalisation of the injective scones of [MS93].

We represent all three elements as objects and morphisms in the category of presen-

tation models
���

, where � is the set of types [MS03]. In this category, the collection

of well-formed terms modulo � -equivalence is represented as the initial algebra of an

endofunctor corresponding to a typed binding signature.

After this generalisation, we formulate pre-logical predicates and predicates satis-

fying the basic lemma, and show their equivalence. Then we show that binary pre-

logical relations are closed under composition of binary pre-logical relations.

In the next chapter, we examine the generalisation of pre-logical predicates in this

chapter by instantiating these general definitions to several simply typed formal sys-

tems and their semantics. We consider the case of many-sorted algebra, the simply

3.2. Category of Presentation Models 45

typed lambda calculus with products, Moggi’s computational metalanguage and first-

order logic.

3.2 Category of Presentation Models

We introduce the category of contexts and the category of presentation models [MS03].

We represent all three elements involved in the notion of pre-logical predicates (syntax,

semantics and predicates) in this category. We reserve the letter � to denote any set of

types, which are ranged over by Greek letters � and � .

Definition 3.2.1 We define the category � � of � -contexts as follows:

An object is a � -context (see section 2.1).

A morphism from
�

to
� � is a function

 �#� � � � (� ��� � � � � (such that
���-� � � .

For a morphism

 � � � � in � � , we define a variable renaming substitution � � to be

' � �	� ()��	� � ����� � � ���(#)����,+ , where
� �	� � ����� � ��� � ��� � � � (. �

Category � � has finite coproducts (written �). For any objects
� � and

� � in � � , we

assume that
� � � � � is equal to

� � � � � � where
� � � is chosen to be isomorphic to

� �
and satisfy ��� � � � � � (� ��� � � � � (� 	 . By

��� �	�
 ��� � ����� � ����
 � � , we mean a context� � � � �
��� � ����� � � ��
� � such that � * is equal to �	��� � *�(, where �	�
 � � �
��� � ����� � � ��

��� � � � � � ��
 ��� � ����� � � ��
��� is the right injection.

We note that � � is a free co-Cartesian category generated from � .

Definition 3.2.2 ([MS03]) We define the category of presentation models to be the

functor category
��� � ' � � � � � ���	��
 + . �

Intuitively, a presheaf (a covariant functor from � � � � to
���	��

)
�

in
� �

at an object
� ��� ��(in � � � � is a set of some entities which take inputs of shape

�
and output a

value of type � . Such an entity could be anything; for example, a well-formed term �
of type � under a context

�
of some type system can be such an entity by regarding free

variables as inputs and the term itself as an output. Another example of an entity is a

morphism in a category. That
�

is a presheaf means that such entities is equipped with

46 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

an action with respect to morphisms in � � . A typical action is to apply a permutation

expressed by a morphism in � � to the inputs of the entity. For example, for an entity
� � � � and a morphism

 � � � � in � � ,
� � � (represents the operation which first

applies a permutation

to its input, then passes the result to
� �

.

Proposition 3.2.3 Category
���

has small limits, small colimits and exponentials. �

PROOF See e.g. [MM92]. �

In fact
� �

is a topos, but we do not use this fact in this thesis.

In [MS03], the category of presentation models is defined as ' � � � ' � � ��� ��
 + + , which

is isomorphic to
� �

. For detail, see [MS03] and its precursor [FPT99].

We introduce a presheaf and endofunctors which are used in the next section to

construct the endofunctor corresponding to a typed formal system.

Definition 3.2.4 1. We define the presheaf ����� of variables in
� �

by

����� � ��� ��(� � � � � � � (� � #
2. For an object

�
in
���

, by
� � � � ��� ��(we mean the presheaf over � � sending a

context
� � to the set

� � � � � ��� ��(. We then define an endofunctor � � (�!�
 � � �
� �

by
� � � � � � � � � � � (� � , where �
 � � � � � � � is the first projection.

3. We define an endofunctor � � (��
 � � � � �
as follows:

� � � ��� ��� (�
� 	 � ���� � � (
� � ��� ��(� � � � � (

Proposition 3.2.5 Endofunctors � � (�!� and � � (�� preserve pullbacks and colimits. �

PROOF $ We show a stronger statement that � � (� � preserves limits and colimits.

We notice that
� �!� � � � � � � where � � �
 � � � � � � � � � is a functor

defined by � � � � � � � � � (� � � � � ��� ��(. It is known that left and right Kan extension

of
�
 ' � � � � � ���	��
 + along � �!� exists (see e.g. [Bor94]). Therefore � � (� � has

both left and right adjoints, thus preserves limits and colimits.

3.3. Syntax: Typed Formal Systems 47

$ First we write � �
 � � � � � � for the second projection. Then we notice that
� � � � � � � � � � (� � � (� � , because

� � � � � � (� � � � � (� ��� � � (� � � � � � � (� � � ��� � � (� �
� � � ��� � � (� � � � � (
	 � � �� � � (#

The above isomorphism shows that � � (�� preserves pullbacks. Since
���

is a

CCC, � � � � � (� � � � � is a right adjoint of � � (� . Therefore it preserves

colimits. �

Proposition 3.2.6 For any presheaves
� � � and type � � � , we have an isomorphism

� � � � � � � (� � ' � � � ���	��
 + � � � � � � (� � � � � � ((. �

PROOF We give a function
�
 ��� � � � � � (� ' � � � ��� ��
 +"� � � � � ��(� � � � � � ((and its

inverse
� � by

� � � (� � � � �
� � � � (� � � �

�
� � � � � � (
� � � �� � (

where
�
 	 � � � ��� � (is the unique function in

���	��

. It is easy to see that they define

an isomorphism. �

3.3 Syntax: Typed Formal Systems

We use typed binding signatures [MS03] for describing simply typed formal systems.

Definition 3.3.1 ([MS03]) A typed binding signature (ranged over by
�

) is a tuple
� � ��� (where � is the set of types and

�
is the set of operators (ranged over by �), each

of which is a pair of an operator symbol � and its arity � � �� ��� � � � (� ����� � � �� � � � � � (� ��(&�
� ��� (� � . We write � � � "! � � ! � �	�	�	� � � � �%�� � % � � for such a pair in

� 1. A typed first-order

signature (ranged over by
) is just a typed binding signature � � ��� (such that for each

operator � � � "! � � ! � �	�	�	� � � � �%�� � %�� � � �
,
�� ��* � � . It coincides with the notion of many-sorted

signature. �
1This definition of typed binding signature is a special case of the one in [MS03] where the set of

types allowed for variables is equal to the set of all types. We also use � to range over typed binding
signatures instead of , to distinguish them from typed first-order signatures.

48 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

A typed binding signature
�

specifies a typed formal system. We first define the set

of raw-
�

terms (ranged over by � � �) by the BNF �

 � � � ��� ��� # � � ����� � ��� # � (.
In this BNF,

��� # � means binding of variables
��� in � . As usual, we identify � -

equivalent terms. The typed formal system is a system to derive judgements of the

form
� ��� �
� . The system consists of the following rules:

� � � (� �
� ��� �
�

� � ��� �
 � � � � � � � � � (� ��� � � �
�
��������� ��	��
������� ����
 � � ����� ����������� �����
������� ����
 � �� ��� � � � "! � � ! � �	�	�	� � � � �%�� � %� � � � � ��	� ! # ��� � ����� � � � ���� %�# ��� (
�

The first rule is the introduction rule for variables. The second rule is a compact repre-

sentation of the structural rules. It is equivalent to the following three rules (weakening,

contraction and variable renaming):
� ��� �
�� � ��
�&��� �
�

���
�
� ���
�&��� �
�

� � ��
 �&��� � ' �) � � �) � +
 �
���

�
�&��� �
�
��� ��
�&��� �(' �) � +
� (3.1)

The third rule is the rule for an operator � � � "! � � ! � �	�	�	� � � � % � � % � � � �
.

Example 3.3.2 In this chapter we use the simply typed lambda calculus as a running

example of a typed formal system. The lambda calculus we consider here is the min-

imal fragment built over a set of base types � . The set of types is defined by the

BNF

����� � ��� (�� �

 � 	�� � � �

and the calculus has the following standard rules (apart from the structural rules in

(3.1)):
� � � (� �
� � �
 �

��� ��
�&���
� �� � � � # �
 � � � �
� � �
 ��� � � � � �
�� ��� �
� �

The above rules fit into the scheme of typed formal systems. The inference rule for

lambda abstraction takes a term � of type � � and binds the free variable � in � , then

yields a term
� � # � of type � � � � . Thus this step can be regarded as an operation

(namely � ���) whose arity is � � � � � (� �!� � � . We should not confuse � and �
here: � is used for writing the arity of the operator while � is the function type in the

3.3. Syntax: Typed Formal Systems 49

lambda calculus. The inference rule for application takes two terms � of type � � � �
and � of type � , and constructs a term � � of type � � . This step can be regarded as

an operation (namely �����) whose arity is � � � � � � � � � .
To summarise, the typed binding signature for the simply typed lambda calculus

(over the set of base types �) is given by:

����� � ����� � � � (� � � ��� � �� ���� � �� �� � ����� �� �� � � �� (
where � � � � ranges over ����� � ��� (.

A more complex example involving bindings is case syntax for coproduct types.

Suppose that the set of types is extended with coproduct types � ��� � . Case syntax for

coproducts is given as follows:

� ���
������	� ��� ��
�� � �
��	�
� ���
�
��	�	� �
��	�
�

� � case � of �
 � � � (� � or �
�� � � � (� �
�� �
�
To find the arity of this operator, we look at the types appearing in both contexts and

entailment emphasised with bold face. This tells us that the arity of case syntax is
� ��� � � � � � � � � (� � � � � � � � (� � � � . �

To a typed binding signature
�

, we assign an endofunctor
�

(we use the same letter

as the signature) over
���

as follows.

� �!� ����� � ����
��� !�� � !���� � � ��� �
� �� % � � % � � � ���
 "!
��#)*�#)� � � � � ���%$'&&&&& #

We are interested in algebras of
�

. We give an explicit description of a
�

-algebra by

the following lemma.

Lemma 3.3.3 There is a bijective correspondence between a
�

-algebra �
 � � � �

and a choice of morphisms � �
 ����� � �
in
� �

and �
�

 � �* � � � � � �� ��* � � * (�

� � � � � (in ' � � � ���	��
 + for each operator � � �
of arity � �� ��� � � � (� ����� � � �� � � � � �)(� � . �

50 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

PROOF We expand the definition of
�

and use the property of coproducts.

� � � � � ��� (
�� � ���� ����� � ���� � �� ! � � !%� � � � � � � � �� % � � % � � � � �

 �!
* �

� � � � ��� $ &&&&& ������
�� � � � ����� ��� (�

!
� � ��� ! � � !%��� � � � � � � �� % � � % � � � ��� � �

 �!
* �

� � � � ��� &&&&& ��� $
We note that �

�* � � � � � ��� � �
�* � � � � � � �� � * � � * (� � (�� � �

�* � � � � � �� ��* � � *�((� � . We

expand the summand of the above big coproducts by proposition 3.2.6:

� �
 �!
* �

� � � � ��� &&&&& � � $
� � ' � � � ���	��
 +

 �!
* �

� � � � �� ��* � � * ($ � � $ � � � � (��� � � � � ($
� ' � � � ���	��
 +

 �!
* �

� � � � �� ��* � � *�(��� � � � � ($
The above isomorphism tells us that

�
-algebra structure over a presheaf

�
consists of

1. a morphism � �
 ����� � �
in
� �

and

2. a morphism �
�

 �

�* � � � � � �� � * � � *�(� � � � � ��(in ' � ��� ���	��
 + for each operator
� � �

of arity � �� ��� � � � (� ����� � � �� ��� � � �(� � . �

From proposition 3.2.5 and the fact that finite products preserve
�

-colimits, the

above endofunctor preserves
�

-colimits (see e.g. [AC98]). Therefore we can construct

an initial
�

-algebra using
�

-colimits. As one can imagine, this initial algebra corre-

sponds to the set of well-formed terms of the simply typed formal system described by
�

. The next theorem states that this intuition is indeed true.

Definition 3.3.4 Let
�

be a typed binding signature. We define the presheaf � � in
� �

by

� � � ��� � (� � � � � ��� �
�
� � � � ��(� � (� � � � �

3.4. Semantics: Weak Categorical Interpretation 51

Theorem 3.3.5 ([MS03]) � � has an initial
�

-algebra structure � �
 � � � � � � . �

PROOF We first give a
�

-algebra structure � � over � � . From lemma 3.3.3, it suffices

to give a morphism � �
 ����� � � � in
� �

and a morphism � �
 �
�* � � � � � � �� � * � � * (�

� � � � � � (in ' � � � ���	��
 + for each operator � � �
of arity � �� ��� � � � (� ����� � � �� � � � � �(� � .

$ We define � � by � � � (��� � � � � (� � for each � ��� ��(� � � � � .

$ We define � � for each operator ��� �
of arity � �� ��� � � � (� ����� � � �� ��� � � �(� � and

well-formed terms
� ������� ���*
��* ��� ��*
 � * � + , . , 0 (by

� � � (� � ��� � ����� � ��� (� � �
� ��� !� # ��� � ����� � � �� %� # ���(

To show initiality, let � � � �
 � � � � (be a
�

-algebra. We write � � � � � for the

morphisms specified by lemma 3.3.3. We then define a
�

-algebra morphism
�
 � � �

�
by induction on the structure of terms:

�
��� � � � � (� � � � � (

�
��� � � � ���

� ��� "!�$# ��� � ����� � � �� �%� # �'� ((� � � � � ����� � "! � � ! � � � � (� ����� � � ����� � �%�� � % � � ��� ((#

It is easy to see that
�

is the unique
�

-algebra morphism by induction. �

3.4 Semantics: Weak Categorical Interpretation

We formulate the semantics of a typed formal system
� � � � ��� (by a morphism to

an object in
���

which has the structure of a Cartesian category. The notion of seman-

tics considered here is very weak in the sense that it does not exploit any categorical

structure other than finite products. The semantics only keeps the basic principle of

categorical model theory: that is, types are interpreted as objects and terms are inter-

preted as morphisms (but not substitution-as-composition).

Definition 3.4.1 1. An interpretation of types is just a functor
�
 � � � where

� is a Cartesian category. We extend it to a functor
� 	
 � � � � � 	 by

� 	 � � � � ! � � + ((� ����� � � � ! � � 0 ((
� 	 �
 � � � � (� � � � � � � � � ! � � � � � � ����� � � � � � � � � � ! � � � � � � #

52 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

Here, ! and ! � are the indexing functions for
�

and
� � respectively (see sec-

tion 2.1). In this thesis we write � �� ! �	�	�	� � ��%
 �
�* � � 	 � * � � 	 ���

�* � � * (for the

canonical isomorphism. The superscript
�

may be omitted if it is obvious from

context.

2. For an interpretation of types
�
 � � � , we define an object � � in

� �
by

� � � ��� � (� � � � 	 ��� � � (. Let � be a Cartesian category. For a functor �
 � �
� preserving finite products strictly, we define a morphism �

�
 � � � �
� �

in
� �

by �
� � ��� ��(�
 � 	 � � � � (� �
�� � � (� � � � � 	 � (� � � � .

3. A categorical interpretation of
�

consists of a Cartesian category � , an inter-

pretation of types
�
 � � � and a morphism .
 � � � � � in

� �
called the

interpretation of terms.

Unless stated explicitly, we use the notation � ' ' � + + � to range over categorical

interpretations. In this notation, � stands for the interpretation category,
�

for

the interpretation of types, and � ' ' � + + � itself for the interpretation of terms. The

interpretation of a well-formed term
� � � �
 � by � ' ' � + + � is written by � ' ' �!+ + �

(component selection of � ' ' � + + � at � ��� � (is implicit).

4. We say that a categorical interpretation � ' ' � + + � satisfies the semantic substitution

lemma if for all well-formed terms
� � ��� ���
 ��� � ����� � � �'��� ���
 ��� and

�	�
��� � ����� � ���
������� �
� , the following holds:

� ' ' � + + � � � ' ' ��� + + � � ����� � � ' ' �/��+ + � � � � ' ' � ' � � ��� !)��	� � ����� � ��� ��� %)���� + + +

where � *
 � * � �
�
� � � � is the . -th injection. �

Definition 3.4.2 Let � ' ' � + + � ! � � ' ' � + + ��� be categorical interpretations of
�

in � . We

define the product interpretation � ' ' � + + � ! � � ' ' � + + ��� of
�

in � � � by the following

data:

$ The interpretation of types is given by
 � � � � � �
 � � � � � . We note that

��� � ! � ���
	 � � � !�� � ��� .
$ The interpretation of terms is given by

 � ' ' � + + � ! � � ' ' � + + ��� �
 � � � � � ! � � ��� .
�

3.4. Semantics: Weak Categorical Interpretation 53

Example 3.4.3 (Continued from example 3.3.2) A lambda applicative structure �
consists of a ����� � ��� (-indexed family of non-empty sets

�
called carrier sets (which

can be identified with an interpretation of types
�
 ����� � � � (� ���	��

), a family of

application operators � $ �� � �
 � � � � � � (� � � � � � � and a meaning function

� ' ' � + + which maps a well-formed term
� � ���&�
 � to a function

� 	 � � � � , such

that: 2

� ' ' � + + � � ��� � � � �
� ' ' � � + + � � � ' ' � + + � $ � ' ' � + + �

� ' ' � � # � + + � � � ' ' � � # � ' �)�� + + + �
� ' ' � � � + + � � � ' ' � + +"� � � 	 (� (� � ���
� � � � � � � � � � ((#

A lambda applicative structure specifies an interpretation � � � � ' ' � + + (of
� �

in
���	��

.

We write � ' ' � + + for this interpretation. �

Interpretation of Terms by Initiality

The presheaf of well-formed terms is equipped with an initial
�

-algebra structure (the-

orem 3.3.5). Thus we can use initiality to obtain an interpretation of terms. Indeed

� � is often equipped with a
�

-algebra structure. In this case initiality yields the

unique
�

-algebra morphism
�
 � � � � � . This is so-called initial algebra semantics

[FPT99, MS03].

For the presheaf � � of an interpretation of types
�
 � � � , there always exists an

evident morphism � �
 ����� � � � defined by � � � (� �!� � � � (� ��� � � � , which gives the

natural interpretation of variables by projections. Thus to specify a
�

-algebra structure

over � � , it suffices to specify a morphism

�
�

�!
* � �

� � � � �� ��* � � * (� � � � � � � (

in ' � � � ���	��
 + for each operator � � �
of arity � �� ��� � � � (� ����� � � �� � � � � �(� � (see lemma

3.3.3).

2The above conditions are an adaptation of acceptable meaning function in [Mit96], section 8.2.2.
In this thesis we added the last condition, which is a natural requirement missing in [Mit96].

54 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

Example 3.4.4 ([FPT99, MS03]) (Continued from example 3.3.2) We give a cate-

gorical interpretation of
� �

in a CCC � . We take an interpretation of types
�

����� � ��� (� � satisfying
� � � � � � (� � � � (� � � � � (.

To give a
���

-algebra structure over � � , we specify two morphisms in ' � � � ��� ��
 + :
��� ��� � � � � � � � � �
 � � � � � � � ��� (� � � � � � ��� ��� (
� ����� � � � � � � � � �
 � � � � � � � � � (� � � � � � � (� � � � � � � � (#

$ We define � � � ��� (� � (� � � � � � � (for
 � � � � � � � � � � (. The following steps

show how � � ��� forms the result.

 � 	 � � � ��(� � � � �
� � �
 � 	 � � � � � � � �

� � � � �!� (�
 � 	 � � � � � � � �

$ We define � � ����� (� � � � (� � �� � � � for
 � � � � ��� � � � � (and � � � � � ��� � (,

where
�
 � � � (� � � � � (� � � ��(� � � � � (is the evaluation map in � . The

following step shows how � ����� forms the result.

 � 	 � � � � � � � � �
 � 	 � � � �� � � � �
 � 	 � � � � � #

These morphisms plus #
 ����� � � � determine a
� �

-algebra structure over � � .

From initiality, there exists a unique
� �

-algebra morphism � ' ' � + + �
 � � � � � � . Thus

we obtain a categorical interpretation � � � � ' ' � + + � ((� ' ' � + + � for short). By expanding

the definitions, � ' ' � + + � coincides with the standard interpretation of the lambda terms

in � defined by induction on the derivation:

� ' ' � + + � � ��� � � �
� ' ' � � # � + + � � � � � ' ' �!+ + � � � � � (
� ' ' � � + + � � � � � ' ' �!+ + � � � ' ' � + + � � # �

Other Interpretations of Terms

Not all interpretations of terms arise from initiality. Let
� � � ����� ��� � be typed binding

signatures having the same set of types, � ' ' � + + � be an interpretation of
� � and suppose

3.5. Predicates: Subscone 55

that each � � ��� ! � + , . , 0 � + (has a
� * -algebra structure. From initiality of � � � , we

have a series of morphisms:

� � !
� ! // ����� � % � ! // � � %

� � � � ��� // � � #

This situation happens when we give the semantics of a source language � � ! by multi-

stage translation through intermediate languages � � � � ����� � � � % . Now � � � � ' ' � + + � � � � �
�

����� � � � (gives a categorical interpretation of
� � , but generally the above composite is

not a
� � -algebra morphism. 3 In section 4.2, we see an example of an interpretation

of the simply typed lambda calculus within combinatory algebra through a compila-

tion to combinatory logic terms, and compare the pre-logical relations defined over the

lambda calculus and the combinatory logic.

3.5 Predicates: Subscone

We introduce the notion of predicate over a categorical interpretation of types. When

types are interpreted as carrier sets, the natural notion of predicate is simply a subset

of each carrier set. In categorical settings, carrier sets are replaced by objects in a

category, and the notion of predicates is more subtle.

First we recall injective scones in [MS93]. An injective scone is the category ob-

tained by pulling back the forgetful functor ������	
 ��� � � ���	��
 (� ���	��

along the

global section functor � � + � � ([Jac99]. In this approach, the notion of predicates over

an object � in � is represented as subsets of the global elements of � .

. � � � � (//

��

_
�

��� � � ���	��
 (

��
� � � � � �

// ���	��

We use the subscone approach [MR92, Laf88, MS93, PPST00], which is a mild

generalisation of injective scones. We replace
��� ��

with a category � with finite limits

and global section functor with finite-product preserving functor.

3The possibility of such interpretations seems not to be discussed in [FPT99, MS03]. Definition
3.4.1 is intended to include both initial algebra semantics and non-algebraic semantics.

56 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

Definition 3.5.1 ([MR92, PPST00]) Let � be a category with finite products, � be a

category with finite limits and �
 � � � be a functor preserving finite products.

From proposition 2.3.10, ��
 ��� � � � (� � is a partially ordered fibration. The

category
������� � � (of � -predicates is the total category obtained by the following

change-of-base of �� along � (see the left diagram):

������� � � (//

�
	

��

_
�

��� � � � (
	��

��

� � � � � � (//

� %	
��

_
�

��� � � � (
	��

��
� � // � �

�
� �� // �

Similarly, the category � � � ��� � (of 0 -ary � -relations in the above right diagram is

obtained by the change-of-base of �� along the functor � � � , where � is the 0 -ary

product functor. An explicit description of
��� ��� � � (is the following.

An object in
��� ��� � � (is a pair � � � � (where

�
is a subobject of � � in � . Using the

internal logic of �� ,
�

can be identified with a predicate judgement �
 � � �
� � � (.

A morphism in
��� ��� � � (from � � � � (to � � � � � � (is a morphism

 � � � � in
� such that �
 � � � � . In other words,

is a morphism such that �

� � � � � � (�� � � � � � � ((holds in the internal logic of �� .

From theorem 2.3.5, � � (�
�
�) is a partially ordered fibration and is faithful. �

Proposition 3.5.2 Category
������� � � ((resp. � � � � � � () has finite products which are

strictly preserved by � � (resp. �
�
�). �

PROOF Recall that �� has fibred finite products (proposition 2.3.10) . Thus � � (resp.
� ��) also has fibred finite products (proposition 2.4.3). This implies the condition de-

scribed in proposition 2.4.6. Therefore
������� � � ((resp.

������� � � () has finite products.

�

Definition 3.5.3 In the situation of definition 3.5.1, let
�
 � � � be an interpre-

tation of types. A � -predicate (or simply a predicate)
�

over
�

(written
� � � �)

3.6. Pre-logical Predicates 57

is an interpretation of types
�
 � � ������� � � (making the following left diagram

commute:
������� � � (

� 	

��

� ��� � � � (
� %	

��� � //

�
::uuuuuuuuuu � �

� � � 	 %��� !
//

�
::vvvvvvvvv �
�

Similarly an 0 -ary � -relation (or simply a relation)
�

between
� * � +�, . , 0 (is just

a predicate
� � � � � %

 � * � �* � , see the right diagram. �

Example 3.5.4 We consider the simplest case of � � � � ���	��

and � � � � �����
	

in definition 3.5.1. In this case the square in definition 3.5.1 collapses into ������	�

��� � � ��� ��
 (� ���	��

.

Let � be a set of types and
� be a � -indexed family of sets. We can identify

this family of sets with an interpretation of types
�
 � � ���	��

. Now we consider a

predicate
� ��� �����	��
 � . Recall that an object in

��� � � ���	��
 (is a pair of sets � � � � (such

that � � � (see example 2.3.11). Therefore for each type � � � ,
� � specifies such a

pair, and the condition �����
	 � � � � asserts that the second component of
� � is

� � .

Therefore
�

can be identified with a � -indexed family of subsets
��� � � � � �� � . �

Proposition 3.5.5 Let �
 � � � be a functor preserving finite products and
�

� � � be an interpretation of types. For any predicate
� � � � , � � 	
 � � � � � is

a monomorphism. �

PROOF Immediate from the fact that � � (�
�
�) is faithful and preserves finite products

strictly. �

3.6 Pre-logical Predicates

In this section, we fix a Cartesian category � , a category � with finite limits, a finite

product preserving functor �
 ��� � , a typed binding signature
� � � � ��� (, a

categorical interpretation � ' ' � + + � of
�

in � and a predicate
� � � � .

58 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

Predicates Satisfying the Basic Lemma

The predicate
�

is often chosen by specifying a “good part” of the interpretation
�

of

types. We are then interested in seeing that the good part
�

is large enough to interpret

a typed formal system. In other words, we would like to show the following statement:

� � ��� �
� # � ' ' � + + � !
 � 	 � � � � # (3.2)

(see definition 2.3.3 and example 2.3.11 for the meaning of
� 	 � � � � .) This entails

that all closed terms
	 �����
	� are included in

� � , that is, all closed terms satisfy

the good property specified by
�

.

Example 3.6.1 (Continued from 3.4.3) In the study of the simply typed lambda calcu-

lus, we often take a good part
� 	 for each base type 	�� � , then lift it up by induction

to all types using the following scheme:

� � � � � � (� �! � � � � � ��� (��� ��
 � � # � � � � � � $ � � � ��� #

The predicate
�

constructed in this way is called a logical predicate. After establish-

ing a logical predicate, we show (3.2) referred to as the basic lemma or fundamen-

tal lemma, to conclude that the good property holds for all closed terms. This proof

technique is useful and can be applied to show various good properties of the simply

typed lambda calculus, such as strong normalisation [Tai67], computational adequacy

[Plo76], representation independence [Mit91], etc. See also section 1.1. �

We formulate (3.2) in
���

.

Definition 3.6.2 Let � ' ' � + + � be a categorical interpretation of
�

. We say that a predi-

cate
� � � � satisfies the basic lemma for

�
along � ' ' � + + � if there exists a (necessarily

unique) morphism
 � � � � � making the following left diagram commute.

� �
�� ���

	

��
� �

	 77ppppppppppppp � � � � ���
// � �

� �
�� � � %	
��

� �

	
55jjjjjjjjjjjjjjjjjjjjj

�
� � � � ��� � 	 %� � !

// �
�* � � � �

3.6. Pre-logical Predicates 59

For the case of 0 -ary relations between � ' ' � + + � � � + , . , 0 (, see the above right dia-

gram. For a predicate
� � � � satisfying the basic lemma, we denote the unique mor-

phism which exists according to the above definition by the small letter corresponding

to the predicate. �
Example 3.6.3 (Continued from example 3.4.3) A predicate

� � � �����	�
 �
satisfying

the basic lemma for
���

along � ' ' � + + is a ����� � � � (-indexed family of subsets
��� � �

� � ���	�
������� � such that for every well-formed term
� � � ���
 � and � � � 	 �

,

� ' ' � + + � � � � holds. �

Example 3.6.4 (Continued from example 3.4.4) Let �
 � � � be a functor pre-

serving finite products. A predicate
� � � � satisfying the basic lemma for

� �
along

� ' ' � + + � is a ����� � ��� (-indexed family of objects
��� � ���	�
�"������� such that for every

well-formed term
� ����� �
� , � ' ' �!+ + �
 � 	 � � � � holds. �

Pre-Logical Predicates

It is often hard to directly prove (3.2) for a predicate
�

. Therefore it is desirable to

have an equivalent characterisation of the basic lemma.

We say that a well-formed term
� � � �
 � is invariant under

�
if � ' ' �!+ + �

� 	 � � � � holds. The basic lemma is then saying that all well-formed terms are

invariant under
�

.

Consider the pullback of � � 	
along � ' ' � + + � in

� �
:

� �� //
��*
��

_
� � �

�� � �
	

��
� � � � � � ���

// � �
(3.3)

The vertex � �� of the above pullback in
���

can be given by the following set for an

object � ��� ��(in � � � � :

� �� � ��� � (� � � � � ��� �
� � � ' ' �!+ + �
 � 	 � � � � #
For this vertex, . � �!� �
 � �� � ��� � (� � � � ��� � (is the inclusion function. We notice that

� �� � � � � (is the set of all the invariant terms under
�

(having a type � under a context�
). We look at the syntactic structure of � �� and obtain the following observation.

60 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

Suppose that the set of invariant terms � �� is closed under all operators in
�

. This

is equivalent to the following two conditions:

1. For every context
�

and variable � such that
� � � (� � , we have � � � �� � ��� � (.

2. For each operator � � �
of arity � �� ��� � � � (� ����� � � �� � � � � �(� � ,

��� � � �� � � � � ����� ��	�
��� (� � � (����� ���&� � �� � � ��� ����� � �����
���(� � �(

implies
� � � �� "!� # � � � ����� � � �� %� # ��� (� � �� � ��� ��(

We can then prove by induction that all the well-formed terms
� � � �
 � are

included in � �� � ��� ��(, that is, the basic lemma holds.

Conversely if
�

satisfies the basic lemma, then � �� trivially satisfies the above

conditions.

This can be formulated by the existence of morphisms � � in
� �

and � � in ' � � � ���	��
 +
for each operator � � �

of arity � �� ��� � � � (� ����� � � �� ��� � � � (� � making the following

diagrams commute:

����� ���
// � ��

� _*
������� � � // � �

� � �� � � � �� ��* � � * (
���

//
� _

 * � � � � � ��� �
��

� �� � � � ��(
� _*

��
� � � � � � �� � * � � *�(� � // � � � � � ��(

where � � � � � are morphisms defined in the proof of theorem 3.3.5. From lemma 3.3.3,

� � and � � specifies a
�

-algebra � � �� � �
 � � �� � � �� (and . is a
�

-algebra morphism.

Now we reach the following formulation of pre-logical predicates:

Definition 3.6.5 Let � ' ' � + + � be a categorical interpretation of
�

. We call a predicate
� � � � pre-logical for

�
along � ' ' � + + � if in diagram (3.3), there exists a (necessarily

unique)
�

-algebra � � �� � � (such that the projection . induced by the pullback is a
�

-

algebra morphism to the initial
�

-algebra � � � � � � (. �

Example 3.6.6 (Continued from example 3.4.3) We consider a pre-logical predicate
� ��� � � � ��
 �

for � ' ' � + + along
���

. It is the family of subsets
��� � � � � ���	�
������� �

satisfying the following conditions.

3.6. Pre-logical Predicates 61

1. For any context
�

, type � , variable � such that
� � � (� � and � � � 	 � , � ' ' � + + � �

� � holds.

2. For any well-formed term
��� �
� ��� � �
� � , we have:

� � � � � 	 � � � ��
� (# � ' ' � + + � � � ��� (
� � � � � � 	 � # � ' ' � � # � + + � � � � � � ��� (

3. For any well-formed terms
� � � � �
� � � � and

� ��� ���
� , we have

� � � � � 	 � # � ' ' � + + � � � � � � � � ((-� � � � � � 	 � # � ' ' � + + � � � ��(
� � � � � � � 	 � # � ' ' � + + � $ � ' ' � + + � � � ��� (#

We compare these conditions with the original pre-logical predicates [HS02] defined

with respect to a lambda applicative structure � (see example 3.4.3). There, a family

of subsets
� � � � � was said to be pre-logical if the following holds:

$ For any well-formed term
��� ��
�&��� � �
� � and � � � 	 � , we have

� �$#�� � � # � ' ' � + + � � � � � � � #�((� � � � (� � � ' ' � � # � + + � � � � � � � � ((3.4)

$ For any types � and � � in ����� � ��� (, we have

� ��� � � ��� ��� (� � � � � # � $ � � � � � (3.5)

Condition 1 always holds by the definition of meaning function. Thus we ignore it.

A calculation shows that condition (3.5) is equivalent to condition 3. To show that

condition 3 implies condition (3.5), we instantiate condition 3 with a well-formed term
��
� � � � � �
 �&� � �
� � . The converse is immediate.

It is easy to see that (3.4) implies condition 2 by distributing the universal quantifier

at the head, while condition 2 itself does not imply (3.4). However, we show below

that conditions 1–3 are equivalent to
�

satisfying the basic lemma (example 3.6.3),

which immediately implies (3.4).

62 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

At this moment we do not know the right setting which precisely yields the original

definition of pre-logical predicates. However, the point of pre-logical predicates is

to give a syntactic characterisation of the basic lemma, which is the most important

aspect, and our generalisation shares this with the original pre-logical predicates. Thus

despite a minor difference of presentation, our pre-logical predicates and the original

pre-logical predicates are equal. �

Example 3.6.7 (Continued from example 3.4.4) The predicate
� � � � for

� �
along

� ' ' � + + � is pre-logical if the following three conditions hold.

1. For any � ��� ��(and ��� ����� � ��� ��(, � ' ' � + + �
 � 	 � � � � .

2. For any well-formed term
��� �'
)� � ��� �
)� � , if � ' ' �!+ + �
 � 	 � ��� �'
 � (� � � �

then � ' ' � � # � + + �
 � 	 � � � � � � � � (.
3. For any well-formed terms

� ��� � �
 � � � � and
� ��� �%�
 � , if � ' ' �!+ + �

� 	 � � � � � � � � (and � ' ' � + + �
 � 	 � � � � then � ' ' � � + + �
 � 	 � � � � � .
The first condition trivially holds, as variables are interpreted by projections. Condition

3 is equivalent to:
�
 � � � � � � (� � � � � ��� #

as we discussed in the previous example. �

Theorem 3.6.8 Let � ' ' � + + � be a categorical interpretation of
�

. A predicate
� � � �

is pre-logical if and only if
�

satisfies the basic lemma. �

PROOF (if) If
�

satisfies the basic lemma, we have an isomorphism

 � �� � � � � .

Then

 � � �� � � � � � � � �� ((� � � � � � � (is a

�
-algebra morphism. Therefore

�
is

pre-logical.

(only if) Suppose there exists a
�

-algebra � � �� � � (. Now we show that the following

diagram commutes in the category
� ��

of
�

-algebras:

� � �� � � (// * //

*��
++� � � � � � (� //

*�� 33
� � �� � � (//

*
// � � � � � �	(

3.6. Pre-logical Predicates 63

From the universal property of the initial
�

-algebra, we have . � � � . � . Now we have

. � � � . � . � . � . � , and since . is mono,
� � . � . � . Therefore � � �� � � (and � � � � � � (

are isomorphic, thus � � and � �� are so. �

This proof is a categorical re-formulation of the inductive proof of the basic lemma for

pre-logical relations in [HS02]. From now on we identify pre-logical predicates and

predicates satisfying the basic lemma.

Lifted Endofunctor and Pre-Logical Predicates

In this section we present a sufficient condition for a predicate
� � � � being pre-

logical using Hermida and Jacobs’ formulation of induction principles in a fibred

setting[HJ95, Jac99]. First, we recall that the subobject fibration ����
 ��� � � � � (� � �

has fibred terminal objects �
 ��� � ��� � � � � ((example 2.4.5) and subset types� �
 ��� � � � � (� � �
(proposition 2.4.23). They form the following adjunctions

(proposition 2.4.4, definition 2.4.22):

���� � � � � � #

We recall the definition of the lifting of an endofunctor (definition 2.4.25). We say

that an endofunctor �� over
��� � � ��� (is a lifting of an endofunctor

�
over

���
if the

following diagram commutes:

��� � � � � (�� //

	�� �

��

��� � � � � (
	�� �

��� �
� // � �

Proposition 3.6.9 Let
�

be a typed binding signature. Then the corresponding endo-

functor
�

over
� �

has a lifting �� over
��� � � � � (. �

PROOF First, endofunctors � � (�!� � and � � (�� preserve pullbacks from proposition 3.2.5.

Therefore from example 2.4.26, they have liftings, which we write by � � (�� � � and
� � (� � respectively. Next from proposition 2.4.6 and proposition 2.4.8, we have small

products and coproducts in
��� � � ��� (which are strictly preserved by �� � . With these,

64 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

we define a lifting �� of
�

as follows.

�� � � � ����� �� ����� � �� ! � � ! � � � � � � � � �� % � � % � � � � �

�
!
��#)*�#)� � �� � � ��� $'&&&&& &&&&&

Proposition 3.6.10 There is a natural isomorphism .
 �� � � � �
. �

PROOF From adjunctions � � � � � � � , the fibred terminal object functor � pre-

serves both limits and colimits. Thus we have natural isomorphisms �� * �
	 � � � * (� �
� � � * �
	 � * (and �� * ��	 � ��� * (�� � � � * ��	 � * (.

Next from the definition of the lifting of � � (� � , we have:

� � � (
�� � � �#' � � � +� � (

��!� � ' � � � � (� � + � � ' � � � � � � +� � � � � � � � (#
Similarly we have � � � (� � � � � � � (. Therefore all constructs in functor �� commutes

with � , thus �� � � � � �
. �

Proposition 3.6.11 Let
� � � � be a predicate and assume that the subobject � � 	

� � � � � has a �� -algebra structure (thus � � has a
�

-algebra structure). Then
�

is pre-logical for
�

along the
�

-algebra morphism
�
 � � � � � induced by initiality

of the initial algebra � � � � � �	((see theorem 3.3.5). �

PROOF By applying proposition 2.4.27, we can lift the initial
�

-algebra � � � � � � (to

an initial �� -algebra � ��� � � � � � � . ��� (. Thus we have the unique �� -algebra morphism

��
 ��� � � � � 	
which is above the unique

�
-algebra morphism

�
 � � � � � . The

following diagram describes this situation:

� �
� ���

� �
// � �

�� ���
	

��
� � � // � �

This implies that there exists a morphism �
 � � � � � such that � � 	 � � �
. There-

fore
�

is a pre-logical predicate. �

We expand the condition that � � 	
has a �� -algebra structure. This implies the

existence of morphisms � � � � � in
� �

and �
�

� � � in ' � � � ���	��
 + for each operator � �

3.7. Relational Composition of Binary Pre-Logical Relations 65

�
of arity � �� ��� � � � (� ����� � � �� � � � � �(� � , such that they make the following diagrams

commute:

����� ���
// � �

�� ���
	

������� � // � �

�
�* � � � � � � �� ��* � � * (

�� � � 	 � � � � � ��� �
��

���
// � � � � � ��(

�� � �
	

��
�
�* � � � � � � �� ��* � � *�(� � // � � � � � ��(

The above left diagram commutes when � � is the standard interpretation by projec-

tions. So we only need a morphism � � for each operator � � �
making the above right

diagram commute. This requirement is expressed as follows:

� *
 � 	 � � � �� ��*�(� � � * # � � � � � ����� � �(�
 � 	 � � � � #

Example 3.6.12 (Continued from example 3.6.7) Let
� � � � be a predicate satisfy-

ing the following conditions:

1. For any

 � 	 � � � ��(� � � � , � � � � �!� (
 � 	 � � � � � � � � (.

2. For any

 � 	 � � � � � � � � (and �
 � 	 � � � � ,

� � � � � � � 	 � � � � � .

This implies that � � 	
has a ���� algebra structure, and from proposition 3.6.11,

�
is pre-

logical. One can also directly conclude that
�

satisfies the basic lemma by induction

on the derivation of well-formed terms. The above conditions are reminiscent of a

characterisation of lax logical predicates for the simply typed lambda calculus in terms

of categorical combinators [PPST00]. �

3.7 Relational Composition of Binary Pre-Logical

Relations

We move to showing that binary pre-logical relations are closed under relational com-

position. The goal of this section is to adapt the composability result [HS02] to our

framework. Composability is one distinguishing property of binary pre-logical rela-

tions, since this result does not hold for binary logical relations in general.

66 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

In set theory, the composition � � � � � (of binary relations
� � � � � and � �

� � � is defined by:

� � � � � (� � � � � � (� � � � � � 	 � � # � ��� 	�(� � �/��	 � � (� � # (3.6)

We first recall the composability result in [HS02].

Theorem 3.7.1 ([HS02], proposition 5.6) Let � � � ��� be lambda applicative struc-

tures (c.f. example 3.4.3) and
� � � � � and � � � � �

be binary pre-logical

relations. Then the relational composition � � � � � ((the same notation as the composi-

tion of binary relations) defined by:

� � � � � ("� � � � � � � � ��((3.7)

is a binary pre-logical relation. 4 �

To adapt the above result to our framework, we need to formulate the composition

of binary relations categorically. We do this without getting involved with morphisms

and objects; we define the composition and show the above result within the internal

logic of fibrations.

In subsconing, � -predicates and relations correspond to judgments in the internal

logic of a subobject fibration ��
 ��� � � � (� � (definition 3.5.1). In order to use (3.6)

to define the composition of binary relations, we need an existential quantifier to hide

the mediating element of a pair in each relation. We therefore take a regular category

� (hence �� supports ���), a Cartesian category � and a functor �
 � � � preserving

finite products. We write ����� � �����
 � � � � � for the first and second projections.

We take objects of � � � ��� � (as a categorical formulation of binary relations (see

definition 3.5.1). An explicit description of � � � ��� � (is the following:

An object in � ��� ��� � (is a triple � � � � � � � (where � � � � are objects in � and
�

is an

object in
��� � � � (� � � � � � . Using the internal logic of �� ,

�
can be identified

with a predicate judgement ��
 ��� � �
 ��� � � � � � � � (.
4The reason why the composition of binary logical relations is not logical is because we merely have

the following inclusion:

�
	��	 '�� '�������� 	 '�� '�������� ��	�� ����� 	 '�� '������ �
	�� '�� ��'!�"� �
	#� '��#� ��'����%$
A concrete example is shown in [HS02], example 5.4.

3.7. Relational Composition of Binary Pre-Logical Relations 67

A morphism in � � � ��� � (from � � � � � � � (to � ����� � � � (is a pair of morphisms

� � ��� �
 � � � � � in � such that ��
 � � � �
 � � � � � � � � � (� � � � � � (� � � � � ((
holds in the internal logic of �� .

We then formulate the composition of binary relations in the following way. Given

objects � � � � � � � (and � � � � � � � � � � (in � ��� ��� � (, we define their relational composition

� � � � � � � � � � ��� ��� � (by:

� � � � � � � � � � ��� ��� � (� � � � � � � � ��
 � � ���
 � � � � ��� �
 � � � # � � � � � (� � � � �
��� ((

where �
 ��� ���
 � � � � � � �
 � � � # � � � � � (�� � � � �
��� (is the predicate judgement

derived in the internal logic of �� . This is just a re-interpretation of (3.6) in the internal

logic. By letting � � � � ���	��
 and � � � � ������	 , the above composition coincides

with the set-theoretic composition of binary relations given by (3.6).

We notice that relational composition is defined over binary relations � � � � � � � � (
and � ����� � � � � (such that � � � �

. In other words, the relational composition is a

mapping of objects �
 ����� � � � ��� � � ((� ��� � � � � � ��� � ((, where � � ��� � � (is the cate-

gory of composable pairs of relations. Formally, � � ��� � � (is obtained by the following

change-of-base:

� � ��� � � (//

��

_
� � � � ��� � (

� �
��

� � � ��� � (� ! // �
where

� � � ����� � � � � � � and
� � � � ��� � � � � � � . The category � � ��� � � (can be described

as follows:

An object in � � ��� � � (is a tuple � � � � � � � � � ��� ��� � (such that � � � � � � � (and � � � � � � � � � � (
are objects in � � � ��� � (.

A morphism in � � ��� � � (from � � � � � � � � � � � � � � (to � � ��� � �� � � � � � � � (in � � ��� � � (is

a triple �
 � � ��� �
 � � � � � � �
 � � � � � � � (such that � � � (�
 � � � � � � � (�
� ����� � � � (and � � � � (�
�� � � � � � � � � � (� � � � ��� � � � � � (are morphisms in � � � ��� � (.

We then extend � to a functor �
 � ����� � � (� � � � ��� � (by specifying the way � acts

on morphisms in � � ��� � � (.

68 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

Definition 3.7.2 We define a functor �
 � � � � � � (� � � � ��� � (as follows:

� � � � � � � � � � ��� ��� � (� � � � � � � � ��
 � � ���
 � � � � � � �
 ��� � # � � � � � (� � � � �
��� ((

� � � � � � (� � � � (# �

We state the main theorem of this section.

Theorem 3.7.3 Let
� � � � � �

 � � � � � � and � � � � � �
 � � � � � � be binary pre-logical

relations for
�

along � ' ' � + + � ! � � ' ' � + + ��� and � ' ' � + + ��� � � ' ' � + + ��� respectively. We define

the relational composition � � � � � (of
�

and � as follows:

� � � � � ("� � � � � � � � ��(

which specifies a binary relation � � � � � (� � � � �
 � � � � � � . Then � � � � � (is a binary

pre-logical relation for
�

along � ' ' � + + � ! � � ' ' � + + ��� . �

PROOF We show that � � � � � (satisfies the basic lemma. We find a morphism
�

making

the following diagram commute:

�
�
� � � � �
� �
	

��
� �

� 44

�
� � � � ��� ! � � � � � ��� � 	

// � � ! � � ���

provided that
� � � are binary pre-logical relations. Since binary pre-logical relations

and binary relations satisfying the basic lemma are equivalent, we have morphisms

�
 � � � �
�

and �
 � � � �
�

in
� �

. Then we define
�
 � � � �

�
� � � � � for a

well-formed terms
� ��� �
� as follows:

�
��� � � � � (� � � � ��� � � � � (� � � � � � � � ((#

In chapter 6, we introduce pre-logical data refinement of typed formal systems.

The closure property under the relational composition of binary pre-logical relations

will be used to show that data refinement composes.

3.8. The Least Pre-Logical Extension 69

3.8 The Least Pre-Logical Extension

Given a predicate for a subset of the set of types, we can extend it to a pre-logical

predicate. This extension is the least one among all possible pre-logical extensions of

the given predicate. This is suggested in [HS02], and we examine this statement in the

context of our generalised pre-logical predicates.

Let
� � � � ��� (be a typed binding signature, � be a Cartesian category, � ' ' � + + �

be a categorical semantics of
�

satisfying the semantic substitution lemma, � be a

regular category such that ��
 ��� � � � (� � has fibred small coproducts and �

� � � be a functor preserving finite products. The subobject fibration � supports

��� � � � ��� � � ��� .

Definition 3.8.1 Let
� � � be a subset. We write �
 � � � � for the inclusion

function. For a � -predicate
� � � � � � , we define the least pre-logical extension � �

of
�

by the following � -predicate � � � � � in the internal logic of �� :

��
 � � � � � � � � ("�
� �

� ������� �	��
�� � ������
� �
 � � � (� # � � 	 � (� � � � � � � ' ' �!+ + � (� �

Theorem 3.8.2 1. � � � � � is a pre-logical predicate for
�

along � ' ' � + + � that

includes
�

, that is, the following holds in the internal logic:

��
 � � � �)� � � (� �/� � � � ("� � � � � (#

2. Any pre-logical predicate � � � � for
�

along � ' ' � + + � includes � � , that is,

��
 � � � � � � � � ("� ����� � ��(�

holds for each type � � � in the internal logic.

Therefore � � is the least pre-logical predicate that includes
�

. �

PROOF We first show that � � satisfies the basic lemma for
�

along � ' ' � + + � . Let
� �

� � �
 ��� � ����� ��� ��
 � � be a context (for simplicity we assume that
� � ,
 ����� ,
 � �),� ��� �
 � be a well-formed term, �
 � � � (� and assume � � 	� � (� . We find an

�
-

context
�

, a well-formed term
� ��� �
� and �
 � � � (� such that � � � ' ' � + + � (� �

� � � ' ' �!+ + � (� .

70 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

We explicitly write down � by a tuple � � � � ����� � ���(with ��*
 � � ��* . From the

assumption � � � ��*�("��* for each + , . , 0 , there exists a
�

-context
� * , a well-formed

term
� * ��� �'*�
 � * and � *
 � � � (� * such that � � 	 � *�(� * and ��* � � � � ' ' ��* + + � (� *

holds. Now

� � � ' ' � + + � (� � � � � ' ' � + + � (� � � ' ' � ��+ + � (� � � ����� � � � � ' ' �/� + + � (� � �
� � � � ' ' � ' � � ��� !) � � � ����� � ��� ��� %) � �,+ + + � (� � �� ! �	�	�	� � � % � � � ����� � � � �

where �
� �� ! �	�	�	� � � % is the canonical isomorphism (see definition 3.4.1) and � *
 � * �

� �� � � � is the . -th injection. Thus we take � �� � � � � � ' ����) � � � ����� � ���) � �,+ and

�
� �� ! �	�	�	� � � % � � � ����� � � � � for

� � � and � .

We next show �
 � � � � � � � (����� � � � � (� for each type � � �
. Let �
 � � �

and assume � � � ("� . By letting
� �(� �
 � � � � �

and �
� � in the definition of � �

(definition 3.8.1), we have � � � � (� .

To show that � � is included in any pre-logical predicate including
�

, let � � � �

be a pre-logical predicate satisfying �'
 � � � ��� � � (��� � � � � (� for each type � � �
(we name this assumption (*)). We show �
 � � � � � � � � ("� ��� � � � ("� for each type
� � � . Let �
 � � � and assume � � � ��(� . From this assumption, there exists an

�
-

context
�

, a well-formed term
� � � �
 � and �
�� � � (� such that � � 	 � (� and

� � � � � ' ' � + + (� holds. From assumption (*), we have � � 	 � (� . Since � is pre-logical,

we have � � � (� . �

Example 3.8.3 (Continued from example 3.4.3) In definition 3.8.1, we let
� � 	

and�
be the empty predicate. We furthermore assume that � ' ' � + + satisfies the semantic

substitution lemma. Then � � is the pre-logical predicate consisting of values definable

by closed lambda terms, that is,

� � � � � � ' ' � + + � 	 ��� � �
� #

Related Work

For the history and applications of logical predicates, which is the precursor of pre-

logical predicates, see section 1.1. This thesis adopts the subscone approach in [MR92].

3.8. The Least Pre-Logical Extension 71

Besides pre-logical predicates, we mention two other generalisations of logical

predicates. Lax logical predicates [PPST00] are functors from the free CCC to the

category
������� � � (which preserve finite products. Thus they are a weakening of Ma

and Reynolds’ formulation of logical predicates, which also require preservation of

exponentials, but the basic lemma still holds for lax logical predicates, and furthermore

the converse holds as with theorem 3.6.8 above. In this sense lax logical predicates and

pre-logical predicates are the same. In [PPST00], lax logical predicates are extended

to other Cartesian categories equipped with a discrete algebraic structure over ��� � ,
which includes finite coproducts, monoidal structures, etc. Lax logical predicates are

considered in the computational lambda calculus [KP99] and Moggi’s computational

metalanguage [GLLNZ04]. A formal relationship between lax logical predicates and

pre-logical predicates is shown in section 4.3.

In [KOPT97], Kinoshita et al. introduced L-predicates, which is another weak-

ening and generalisation of Ma and Reynolds’ formulation of logical predicates. L-

predicates are closed under relational composition in more abstract sense. They ab-

stracted the situation that a category is equipped with a category of binary relations

and relational composition in terms of a category object in ��� � . They then showed

that L-predicates are closed under the composition of category objects. It is possible

to adopt their approach in our framework and show the closure property.

In [Lei01], Leiss extended pre-logical predicates to System
� �

, and characterised

observational equivalence in terms of the existence of a binary pre-logical relation of a

certain kind. System
� �

is beyond the expressive power of simply typed formal sys-

tems due to type variables and two-layered structure of the lambda calculus. Therefore

the generalisation of pre-logical predicates in this thesis is not applicable to system
� �

. One interesting phenomenon is that binary pre-logical relations for system
� �

are not closed under relational composition. The same problem occurs in the much

weaker calculus
���

(see appendix A). From the counterexample constructed in
���

,

the problem seems to arise from unrestricted relations between types rather than from

polymorphism. Leiss pointed out that binary pre-logical relations for
� �

are closed

under relational composition if the relations between types are restricted to functional

relations. We do not know if this restriction can be relaxed.

72 Chapter 3. Pre-Logical Predicates for Simply Typed Formal Systems

This work refers to the framework by Miculan and Scagnetto [MS03] on a cate-

gorical model of typed higher-order abstract syntax. This category is considered in a

different form in [Fio02], and is a natural extension of the presheaf category considered

in [FPT99, Hof99] to take types into account.

3.9 Conclusion

We have given a generalisation of pre-logical predicates to arbitrary simply typed for-

mal systems, and shown that they are equivalent to predicates satisfying the basic

lemma, and that binary pre-logical relations are closed under composition. We rep-

resent three underlying components of pre-logical predicates — syntax, semantics and

predicates — in a presheaf category. Then we formulate pre-logical predicates and

predicates satisfying the basic lemma, and show their equivalence.

It is interesting to extend our framework for defining formal systems. One direction

is to allow type variables so that we can cover type systems such as System F or FPC

[FP94]. The other direction is to modify the notion of contexts from the Cartesian one

to the linear one to cover linear logic [Gir87]. In both cases we also have to switch

the notion of models from Cartesian categories to more elaborate categorical structures

such as symmetric monoidal categories and polymorphic fibrations [Jac99], etc.

Chapter 4

Examples of Pre-logical Predicates

In the previous chapter, we generalised pre-logical predicates for typed formal sys-

tems. To test the adequacy of this generalisation, we derive pre-logical predicates for

various existing calculi which fit within the scheme of typed formal systems and their

categorical models. The examples we consider in this chapter are the following. First

we consider the simple case of many-sorted algebras. It turns out that pre-logical pred-

icates for many-sorted algebras coincide with the notion of subalgebras. This fact is

used in the next example to investigate the relationship between pre-logical predicates

for the simply typed lambda calculus and those for combinatory algebras. Next we es-

tablish a formal relationship between pre-logical predicates and lax logical predicates

[PPST00] for the simply typed lambda calculus. To demonstrate that the generalisation

works for extensions of lambda calculi, we derive pre-logical predicates for Moggi’s

computational metalanguage [Mog91] and give a concrete example inspired by Stark

and Lindley’s leapfrog method [Lin04, LS05]. Furthermore, we consider pre-logical

predicates for first-order logic and see that the notion of elementary submodel (see e.g.

[Doe96]) can be characterised in terms of pre-logical relations.

73

74 Chapter 4. Examples of Pre-logical Predicates

4.1 Pre-Logical Predicates for First-order Typed

Signatures

Let

� � � � ��� � (be a many-sorted signature, that is, a typed first-order signature

(definition 3.3.1). This determines a typed formal system deriving well-formed terms� ��� �
� .

A many-sorted
 -algebra � consists of a � � -indexed family of sets
��� �� � �

(equivalently an interpretation of types
�
 � � � ��� ��

) together with an assign-

ment of a function ���
 � ��� � ����� � � ��� � � � to each operator � � � � of arity
��� � ����� � ��� � � . 1 We distinguish the term “many-sorted
 -algebra” in this classical

sense from the term “
 -algebra”, which means an algebra of the endofunctor
 over
� �

assigned to
 . A subalgebra of a
 -algebra � is a � � -indexed family of subsets��� � � � � �� � � such that for each operator �%� � � of arity ��� � ����� � � � � � , we have
���
 � ��� � ����� � � ��� � � � .

For a well-formed term
� ��� �
 � , we assign its denotation � ' ' � + +
 � 	 � � � �

by induction on the structure of � :

� ' ' � + + � ��� � � �
� ' ' ��� ��� � ����� � ���(+ + � ��� � � ' ' ��� + + � ����� � � ' ' ��� + + �

(see section 2.1 for the meaning of ! � � ().
In order to apply the general theory of pre-logical predicates, we explain this se-

mantics within our ambient category
� �

. For each operator � � � � of arity ��� � ����� � � � �
� , we define a morphism �

�

 �

�* � � � � � � � * (� � � � � � ��(in ' � � � ���	��
 + by

� �
�
(� � � � ����� � �(� ��� � � � ����� � � �

where
 *
 � 	 � � � ��* . Together with the standard interpretation of variables #

� �
� � � � by projections, we have a
 -algebra structure over � � by lemma 3.3.3.

From initiality of � � , there exists a unique
 -algebra morphism in
� �

, namely � ' ' � + +

1The development of this section is carried out in 	�
��� for compatibility with the classical theory

of many-sorted algebras. However, this does not mean that the development is specialised to 	�
��� ; one
can replace 	�
��� with some Cartesian category � .

4.1. Pre-Logical Predicates for First-order Typed Signatures 75

� � � � � . This overloaded notation is justified since this coincides with the above

assignment of denotation. We call this the standard interpretation of
 -terms in � .

We discuss pre-logical predicates for
 along the standard interpretation. First

let
� � � �����	�
 �

be a predicate over
�

. This is just a � � -indexed family of subsets��� � � � � � � � (see example 3.5.4).

Proposition 4.1.1 A predicate
� � � � � � ��
 �

is pre-logical for
 along the standard

interpretation � ' ' � + + if and only if for each operator ��� � � of arity ��� � ����� � ��� � � ,

we have ���
 � ��� � ����� � � ��� � � � , that is,
�

is a subalgebra of � . �

PROOF As we have seen in chapter 3,
�

is pre-logical if

1. For each object � ��� ��(in � � � � and � � � �
� � ��� � (, � ' ' � + +
 � 	 � � � � .

2. For each object � � � � (in � � � � and � "! �	�	�	� � �% � � � � and well-formed terms� ���&��*
� * , � ' ' ��* + +
 � 	 � � � ��* implies � ' ' ��� ��� � ����� � ���(+ +
 � 	 � � � � .

The first condition automatically holds: for a variable � � � �
� � ��� ��(, we have

� ' ' � + + � � � � ! � � �
 � 	 � � ��� � ! � ! � � � (((� � � .

So we show that the second condition is equivalent to � �
 � ��� � ����� � � � � � � �
for each operator � of arity � � � ����� � � � � � � �

� .

Suppose that the second condition holds. We have well-formed terms
�� � ��� � �*

��* , and the first condition implies � ' ' � �* + +�
 � 	 �� � � � ��* . From the the second condi-

tion, we have � ' ' ��� � � � ����� � � � (+ +
 � 	 �� � � � � . In fact:

� ' ' � � � !� � ����� � � %� (+ + � � �
�
(� � � � � ����� � � � (� ��� � � � � ����� � � � � � ���

thus we conclude ���
 � 	 �� � � � � .

Conversely suppose that � �
 � 	 �� � � � � . Let
� � ��*
 � * � + , .&, 0 (be

well-formed terms and assume that � ' ' �/* + +
 � 	 � � � ��* . Then

� ' ' � � ��� � ����� � ��� (+ + � � �
�
(� � � ' ' � � + + � ����� � � ' ' ���,+ + (� ��� � � ' ' � � + + � ����� � � ' ' �'� + + �
 � 	 � � � � # �

76 Chapter 4. Examples of Pre-logical Predicates

To summarise, the notion of pre-logical predicate along the standard interpretation

coincides with the notion of subalgebra.

We instantiate the above discussion with combinatory logic. Combinatory logic is

just a many-sorted algebra of the following signature:

 � � � � ����� � � � (� � $ � #� � � �� � � �� �� � � � � �� �� � �� � � � � �� �� � � �� �� � (

where � � � � � � � range over ����� � ��� (. We may omit type annotations for readability, and

denote $ as an infix left-associative operator. The typed formal system of this signature

can be regarded as a term assignment system for a Hilbert style formulation of minimal

propositional logic [TS96]. A typed combinatory algebra (combinatory algebra for

short)
�

is just a many-sorted
 � � -algebra satisfying the following equations:

��� $ � �&$ � �
� �

��� $ � � $ � � $ � � � � $
�
� $
�
� � $ � � (

(type annotations for variables and application operators are omitted for readability).

An algebraic predicate [Mit90, HS02] over a combinatory algebra
�

is a ����� � � � (-
indexed family of subsets

��� � � � � ���	�
��������� satisfying the following conditions:

� �� �� � �
� � � � � � � � � (

� � �� � � � � � ��� � � � � � �� � � ��
� � � � � � � � � ��� � (� � ��� ��� (� � � � ��� � ((

� � � � � � � � � (� � � � � # � $ �� �� � � ��� � � � � �

where � � � � � � � range over ����� � � � (. This exactly says that
�

is a submodel of
�

.

From proposition 4.1.1, we conclude the following corollary.

Corollary 4.1.2 Algebraic predicates over a combinatory algebra
�

are exactly pre-

logical predicates for
 � � along the standard interpretation
� ' ' � + + . �

Another example is correspondences by Schoett [Sch90]. Let
 � � � � ��� � (be

a many-sorted signature,
� � � � � � be a set of types called observable types and

� � � be
 -algebras 2. A correspondence is a � � -indexed family of binary relations

2Schoett originally considered partial algebras, but for simplicity here we just discuss correspon-
dences for total algebras.

4.2. Interpretation of Lambda Terms via Combinatory Logic 77

�,� � � � � � � � �� � � such that
� � is total bijective for each � � � � � , and for each

operator � � � � of arity ��� � ����� � � � � � ,

� � � � � 	 � (� � ��� � ����� � � � � � 	 �(� � � � # ������� � � � ����� ��� �(� ��� � 	 � � ����� � 	 �((� � �

holds. The latter condition says that
�

is just a subalgebra of the product
 -algebra

� � � . From proposition 4.1.1,
�

is a binary pre-logical relation for
 along � ' ' � + + �
� ' ' � + + . Correspondences are the basis of a characterisation of behavioural inclusion

and behavioural equivalence, which will be seen in the next chapter.

4.2 Interpretation of Lambda Terms via Combina-

tory Logic

In this example, we examine the relationship between pre-logical predicates for com-

binatory algebras and pre-logical predicates for the simply typed lambda calculus in

our framework. This revisits proposition 3.3 in [HS02].

The standard abstraction mechanism in the combinatory logic is defined as follows

(see definition 7.1.5 in [Bar84], types are omitted for readability):

� 	 � # � � � � �
� 	 � # � � � � � � �������� � ((

� 	 � # � � � � � � 	 � # � (� � 	 � # � (

This induces a
���

-algebra structure (see example 3.3.2) over � ���	� . By initiality, there

exists a unique
� �

-algebra morphism � � (� �
 � ��� � � �
��� , which coincides with the

standard lambda-to-CL translation (see definition 7.3.1, [Bar84]). Then for a combina-

tory algebra
�

, the composition
� ' ' � � (� � + + gives an interpretation of the simply typed

lambda calculus in
�

.

Conversely, representing � and � combinators by lambda terms equips � � � with

a
 � � algebra structure. By initiality, there exists a unique
 � � -algebra morphism,

namely � � (�
 � ��� � � �
��� .

We note that the above is not the unique translation between lambda terms and

78 Chapter 4. Examples of Pre-logical Predicates

combinatory terms; both � � � and � ����� may have other algebra structures depending

on the choice of an abstraction mechanism and a representation of � and � .

We now relate algebraic predicates over a combinatory algebra (that is, pre-logical

predicates for the combinatory logic along
� ' ' � + +) and those for the lambda calculus

along
� ' ' � � (
� � + + .

Proposition 4.2.1 (“if” part of [HS02], proposition 3.3) Let
�

be a combinatory al-

gebra. If
� � 	 � ���	�
 �

is a pre-logical predicate for
 � � along
� ' ' � + + , then

�
is

pre-logical for
� �

along
� ' ' � � (
� � + + . �

PROOF Let
� � 	 � � � ��
 �

be a pre-logical predicate for
 � � along
� ' ' � + + . From the-

orem 3.6.8, we have a morphism
 � ���	� � � � such that � � 	 � � � ' ' � + + . By

precomposing � � (
� � with , we obtain a morphism � � � (� �
 � � � � � � making

the outer triangle in the following diagram commute:

� �
�� � �

	

��
� ��� � � ���

//

	 � � � ��� 00

� ���	�

	 <<xxxxxxxx

�
� � � �

// ���

This means that
�

satisfies the basic lemma for
� �

along
� ' ' � � (
� � + + , that is,

�
is

pre-logical by theorem 3.6.8. �

What about the converse? The “only if” part of [HS02], proposition 3.3 claims

that any pre-logical predicate for the lambda calculus along
� ' ' � � (� � + + is an algebraic

predicate. In our framework, this claim is reformulated as follows:

(“only if” part of [HS02], proposition 3.3) Let
�

be a combinatory algebra.
If
� � 	 � ���	�
 �

is a pre-logical predicate for
� �

along
� ' ' � � (
� � + + , then

�

is pre-logical for
 � � along
� ' ' � + + .

However, the above claim is not true in general. Below we construct a counterexample

to their claim.

Proposition 4.2.2 There exists a combinatory algebra
� � and a pre-logical predicate

� � � � ���	�
 � � for
���

along
� �,' ' � � (
� � + + which is not pre-logical for
 � � along

� �,' ' � + + .
�

4.2. Interpretation of Lambda Terms via Combinatory Logic 79

PROOF The proof uses the fact that the image of the standard lambda-to-CL translation

does not cover the entire set of combinatory logic terms. In particular the terms � and

� themselves are not in the image of this translation. To exploit this fact, we take
� � to be the closed term algebra, and show that the predicate consisting of the values

definable by
� �,' ' � � (� � + + , which is pre-logical for

� �
, is not pre-logical for
 � � along

� �,' ' � + + .
We recall that weak reduction (written � � , see [Bar84], definition 7.2.1) is the

least compatible relation generated from the following relation:

� � � � � � � (� � ������� � � � � �
�
� � � � � � � � � � � � ��(� � �����	� � � � � � � � � �!��($
� #

We write � � � for the transitive reflexive closure of � � , and
�

� for the symmetric

closure of � � � . We assume the Church-Rosser theorem and strong normalisation

theorem of weak reduction [HS86].

We define the closed term combinatory algebra
� � as follows.

$ The carrier set
� � is defined by:

� � � � � ' � +
�
��� � 	 �����	� �
�

where ' � + � is the equivalence class of combinatory terms by
�

� .

$ To each operator in
 � � , we assign the following constants and functions.

� � � � � �
� ' � �� � � + �

� � �� � � � � � ��� �� � � ��� �� � � �� �
� ' � � �� � � � � � ��� �� � � ��� � � � � + �

' � +
�
$ �� �� � � ��
� � ' � +

�
� ' � $ � +

�

It is easy to see that the above choice of combinators satisfies the axioms of combina-

tory algebra. As we have seen in section 4.1, we obtain an interpretation function of

combinatory logic terms in
� � , namely

� �,' ' � + + . Routine calculation shows that

� �,' ' � + + � �	��%� ' ��� + � � ����� � ���&%� ' ����+ � � ' � ' ����)��	� � ����� � ���)���� + + � #

Lambda terms are interpreted by
� �,' ' � � (� � + + .

80 Chapter 4. Examples of Pre-logical Predicates

Now we define the definability predicate
� � � � � � by

� � � � � �,' ' � � � + + � � � � � 	 ��� � �
� #

Proposition 4.2.3
�

is a pre-logical predicate for
� �

along
� �,' ' � � (
� � + + . �

PROOF We directly prove the basic lemma. Let
� � � � �
�� be a well-formed term

and � � � 	 �
. From the definition of

�
, for each � � ��� � � � (, there exists a term � �

such that � � � (� ' � � + � . Therefore we have

� � ' ' � + + � � � �,' ' � + + ' ' � � + �)�� + � ������� ����� � ' � ' � �)�� + � � ����� � ��� + � � � � #

However, as we show below,
� � ��� � � � � (does not include ' � �� �� � + � for any

type � and � � ! Therefore
�

is not a pre-logical predicate for
 � � along
� ��' ' � + + . To see

this, we first prove the following lemmas. We omit typings for readability.

Lemma 4.2.4 There exists no closed term � such that � � � � � . �

PROOF Easy induction on the structure of � . �

Lemma 4.2.5 For any closed lambda term � and any combinatory term � , � � � � � �
�

implies that there exists a closed lambda term � � such that � � � �� � . �

PROOF When � begins with a lambda abstraction, � � � is always a normal form.

Thus the claim clearly holds by taking � � � � . We do not consider the case where
� is a variable, since we assume that � is closed. So we think of the case where
� � � ����� with two closed lambda terms � � and ��� . There are several possible

causes of � � � � � �
� .

$ � � � � � . We just take � � � � .

$ There exists a combinatory term � such that � � � (� � � � � � and � � � �
� . From

IH, there exists a combinatory term � � such that � � � � � � . Again from IH, there

exists a combinatory term � � such that � � � �� � .

$ � � ��(
� � � � �
� � and � � � ��� ��� (� � . From IH, there exists a closed lambda

term � �� such that � � �� (
� � � � � . Thus � � � � �� (
� � � ��� (� � � � � �� ��� (� � .

4.2. Interpretation of Lambda Terms via Combinatory Logic 81

$ � ��� (
� � � � �
��� and � � � � � (� � � � . The proof is similar to the above case.

$ � � ��(
� � � � � � with a combinatory term � � and � � � � . From the definition

of lambda-to-CL translation, � � should be equal to
� � # � �� where � �� is a closed

lambda term. Thus � � � � � �� (� � .

$ � � ��(
� � � � � � ��� with combinatory terms � � � ��� and � � � ��� ��� (
� � ��� � � ��� (
� � (.
From the definition of lambda-to-CL translation, we have � � � � � # ��� �� � �� (� � � �
� � �� (� � and ��� � � � �� (� � . Thus we take � � � � �� ��� � � �� ��� (. �

Proposition 4.2.6 For all types � and � � , the following holds.

1. For any well-formed term
� � � � �
�� � � � � � and � � � 	 �

,
� �,' ' � � � + + � ��

' � �� �� � + � .

2. ' � �� �� � + � �� � � � � � � � ��(. �
PROOF 1. By definition, for each � � ��� � � � (, there exists a closed lambda term

� � such that � � � (� � � ' ' � � � (
� � + + . Thus
� �,' ' � � � + + � � ' � � � ' � � � ! (
� �)��	� � ����� � � � � % (
� �)���� + + �� ' � � ' � � !)��	� � ����� � � � %)���� + (
� � + � #

From the Church-Rosser property,
� � ' ' � � � + + � � ' � + � implies

� � ' � � !)��	� � ����� � � � %)����,+ (� � � � � � �

but this contradicts lemma 4.2.5.

2. By letting
� � 	

in the above case. �

Two Corrections to [HS02], Proposition 3.3

Now the question is to seek a condition under which pre-logical predicates for combi-

natory algebras and those for the lambda calculus coincide. We try to repair [HS02],

proposition 3.3 formulated as follows:

([HS02], proposition 3.3) Let
�

be a combinatory algebra and
� � 	 � � � ��
 �

be a predicate. Then
�

is pre-logical for
� �

along
� ' ' � � (
� � + + if and only

if
�

is pre-logical for
 � � along
� ' ' � + + .

Here we provide two answers.

82 Chapter 4. Examples of Pre-logical Predicates

Answer One: Restricting the Class of Combinatory Algebras

From easy diagram chasing, we obtain the following lemma.

Lemma 4.2.7 Let
�

be a combinatory algebra. If
� � 	 � ���	�
 � is a pre-logical predi-

cate for
���

along
� ' ' � � (
� � + + , then

�
is pre-logical for
 � � along

� ' ' � � � (� (
� � + + . �

Only the difference between the above proposition and “only if” part of [HS02], propo-

sition 3.3 is the interpretation of combinatory logic terms:
� ' ' � � � (� (
� � + + and

� ' ' � + + .
From this observation, we obtain the first answer:

Proposition 4.2.8 Let
�

be a combinatory algebra satisfying
� ' ' � � � (� (� � + + � � ' ' � + + .

Then for any predicate
� � 	 � � � ��
 �

,
�

is pre-logical for
� �

along
� ' ' � � (
� � + + if and

only if
�

is pre-logical for
 � � along
� ' ' � + + . �

An example of the class of the combinatory algebras satisfying
� ' ' � � � (� (
� � + + �

� ' ' � + + is the class of the typed version of lambda algebras (definition 5.2.2, [Bar84]).

A lambda algebra
�

is a combinatory algebra satisfying the following set of axioms

(see definition 7.3.6, [Bar84]):

��� � � ' ' � 	 � � # � � � + + � � ' ' � 	 � � # � + +
��� � � ' ' � 	 � �

� # � � �
� + + � � ' ' � 	 � �

� # � � � �
� (+ +

� ' ' � 	 � � # � � � � (� � � (+ + � � ' ' � 	 � � # � � � � (+ +
� ' ' � 	 � � # � � � � � � ("� (� + + � � ' ' � 	 � �

� # � � + +
� ' ' � 	 � �

� # � � � � � � � � (� (� (� + + � � ' ' � 	 � �
� # � � � � � (� � �

� (+ +

The first and second line guarantees that we have

� � � � ' ' � � � � # � (
� � + + � ��� � � ' ' � � � �
� # � � � �

� ((
� � + + #

By easy induction we have
� ' ' � � � (� (
� � + + � � ' ' � + + . We summarise this example as a

corollary of proposition 4.2.8:

Corollary 4.2.9 Let
�

be a lambda algebra. Then for any predicate
� � � � ���	��
 � ,

�
is

pre-logical for
 � � along
� ' ' � + + if and only if

�
is pre-logical for

� �
along

� ' ' � � (
� � + + .
�

4.2. Interpretation of Lambda Terms via Combinatory Logic 83

Lambda algebras include many model classes for the lambda calculus, such as the

typed version of lambda models, Henkin models and full type hierarchies. Therefore

[HS02], proposition 3.3 still holds for these classes of models, and the value of the

characterisation of pre-logical predicates remains.

Answer Two: Changing Lambda-to-CL Translation

Another answer is to replace the lambda-to-CL translation � � (� � . In the proof of

proposition 4.2.2, we use the fact that � � (� � is not surjective. So what if we use

another translation which is surjective? The following lemma supports this idea.

Lemma 4.2.10 Let � ' ' � + + � be an interpretation of
�

and
� � � � be a pre-logical

predicate for
�

along � ' ' � + + � . Suppose � ' ' � + + � factors to an epi

 � � � � followed

by �
 � � � � . Then there exists a unique morphism
�
 � � � � making the

following triangles commute:

� �
�� � �

	

��
� �

	 33

� // // � � //

�
==

� �

PROOF Recall that
���

is a topos. Thus all epimorphisms are orthogonal to monomor-

phisms, that is, in the given situation there exists a unique morphism
�
 � � � �

making the above triangles commute (see e.g. [Bor94]). �

We let � � � ���	� , � � � ' ' � + + and find an epimorphism � � (� � �
 � � � � � ����� . Then

from the above lemma, we obtain a morphism
�
 � ���	� � � � such that

� � � �
	 �
� ' ' � + + , which implies that

�
is pre-logical for

� ����� along
� ' ' � + + .

We construct � � (
� � � by finding another
���

algebra structure over � � �	� which is

different from the one obtained by the standard abstraction mechanism. We consider

84 Chapter 4. Examples of Pre-logical Predicates

the following modified abstraction mechanism which can yield bare � and � :

� � � # � � ��� �
� � � # � � � � � � �������� � ((
� � � # � � � �
� � � # � � � � � � � � � � (� ��� � ((((� � � � � � � (� � � � � (� ��� � (((� � � ��� � (((� �
� � � # �!� � � � � � � # � (� � � � # ��(� otherwise (#

The third and fourth lines are actually the expansion of the following definition:

� � � # � 	 � # � � �
� � � # � 	 � # � 	 � # � � � �

� (� � #

Intuitively,
� � � # � behaves almost the same as

� 	 � # � except that when it recognises

that the input is
� � �

� # � � � �
� (or

� � � # � , it produces � and � respectively. The lambda-

to-CL translation constructed from this abstraction mechanism satisfies the following

property.

Proposition 4.2.11 For all combinatory logic term � , � � � (
� � � � � . �

PROOF We prove this by induction on the structure of � .

$ Case � � � . Clearly � � � (
� � � � � .

$ Case � � � . Note that
� � � # � � � � � � 	

� # � . Thus

� � � � (
� � � (� � � � � # � (
� � � � � � � # � � � � # � (� � � � # � � 	 � # � (� � #

$ Case � � � . Note that
� � � � # � � � �

� (� � 	
�
� # � � � �

� (. Thus

� � � � (
� � � (� � � � �
� # � � � �

� ((� � � � � � � # � � � � � # � � � �
� ((� � � � # � � 	 �

� # � � � �
� ((� � #

$ Case � � � ��� � . We have

� � � ����� (� (
� � � � � � � ��(� (
� � � � � ��� (� (� � � � � ����� #

4.3. Lax Logical Predicates and Pre-Logical Predicates 85

We write � � (
� � � for the lambda-to-CL translation using
� � � # � . The above proposition

implies that � � (
� � � considered as an interpretation of
� �

is an epimorphism.

Proposition 4.2.12 Let
�

be a combinatory algebra. Then for any predicate
� � � �����	�
�

,
�

is pre-logical for
 � � along
� ' ' � + + if and only if

�
is pre-logical for

� �
along

� ' ' � � (� � � + + . �

4.3 Lax Logical Predicates and Pre-Logical Pred-

icates

Lax logical predicates [PPST00] are a weakening of categorical formulations of logical

predicates [MR92, MS93], and are closely related to pre-logical predicates.

We first recall a categorical formulation of logical predicates in the functorial se-

mantics of the lambda calculus [MR92]. We write � for the CCC generated from the

lambda calculus (see definition 4.3.1). The categorical semantics of the lambda calcu-

lus is given by a CCC � and a functor ' ' � + +
 � � � which strictly preserves the Carte-

sian closed structure. Now suppose that we have another CCC � with pullbacks and a

functor �
 � � � preserving finite products. It is well-known that
������� � � (has a

CCC structure which is strictly preserved by the forgetful functor � �
 ��� ��� � � (� �
(see e.g. [MR92]). In this situation, to give a logical predicate over ' ' � + + is equivalent

to giving a functor
�
 � � ������� � � (which strictly preserves the Cartesian closed

structure and satisfies � � � � � ' ' � + + .
In [PPST00], Plotkin et al. discovered that the basic lemma still holds without

the condition that
�

preserves exponentials, and its converse also holds. They called

such functors lax logical predicates. That is, a lax logical predicate is a functor
�

� � ������� � � (which strictly preserves finite products (but may not exponentials) and

satisfies � � � � � ' ' � + + . Furthermore, binary lax logical predicates are closed under

composition.

The major differences between lax logical predicates and the original pre-logical

predicates [HS02] are threefold.

$ Lax logical predicates are for the lambda calculus with finite products, while

86 Chapter 4. Examples of Pre-logical Predicates

pre-logical predicates are for the minimal lambda calculus.

$ Lax logical predicates are defined with respect to the functorial semantics, while

the original pre-logical predicates are defined with respect to interpretations in

lambda applicative structures (example 3.4.3).

$ Lax logical predicates are defined as � -predicates (definition 3.5.1), while the

original pre-logical predicates are defined as subsets.

Despite these differences, both lax logical predicates and the original pre-logical pred-

icates serve to give a characterisaion of the basic lemma. We can resolve these differ-

ences with our generalised framework of pre-logical predicates, and establish a formal

relationship between them. In this section, we show that lax logical predicates are

equivalent to pre-logical predicates for the lambda calculus with finite products along

the standard interpretation in � .

We define the syntax of the lambda calculus with finite products. We fix a set of

base types � and define the set of types including finite products by the BNF:

����� ��� � � (���

 � 	 �
�!
* � ��* � ��� �

where 	 � 0 range over � � � respectively. The calculus extends the typing rules of the

lambda calculus in example 3.3.2 with the following rules for finite products.

� ����*
� * +�, . , 0� � ��� � ����� � ��� �
 �
�* � ��*

� ���
 �
�* � � *

� � � * � � (
 � *

The typing rules fit within the scheme of simply typed formal systems. We define the

typed binding signature
� � � for the lambda calculus with finite products by

��� � � � ����� ��� ��� (�
� � ��� � �� � � � �� � � ����� �� � � � � ����� � � � ! �	�	�	� � �% � %� � ! � � � ����� %��� ! � � � (

where � � � � � ��� � ����� and 0 range over ����� ��� ��� (and � respectively.

The semantics of the lambda calculus with finite products in a CCC � is fairly

standard. An interpretation of types
�
 ����� ��� � � (� � is standard if it satisfies

4.3. Lax Logical Predicates and Pre-Logical Predicates 87

� � � � � � (� � � � � � � and
� � �

�* � � * (� �
�* � � ��* . For a standard interpretation

of types
�

, � � has the following
� � � -algebra structure (c.f. example 3.4.4):

� � � ��� � � � � � � � � � � � (� � (� � � � � �!� (
� � ����� � � � � � � � � � (� � � � (� � � � � �

� � � ��� � � !�� � � � � � % ��� %� � ! � � (� � � � ����� � �(� � � ����� � � �
� � ������� � %� � ! � � � � � (� � (� � * �

From initiality, we obtain a morphism � ' ' � + + �
 � � � � � � . We call this the standard

interpretation of the lambda calculus with finite products in � .

Definition 4.3.1 We define the term category � by the following data.

An object in � is a type � � ����� ��� � � (.
A morphism from � to � � in � is the ��� -equivalence class of a well-formed term

��
� �����
	 �
 � � .
We write �
 ����� ��� � � (� � for the evident inclusion functor. �

Proposition 4.3.2 1. Category � is a CCC.

2. For each well-formed term
� � � �
	 �
� , we have

� ' ' � + + 	 � ' � ' � � ��� � � � () � + � � � ��� � �"� + �� #

3. Let � be a CCC. For any standard interpretation of types
�
 ����� ��� ��� (�

� , there exists a unique functor
�
 � � � preserving the Cartesian closed

structure strictly such that
� � � ��� and � � � � ' ' � + + 	 � � ' ' � + + � . �

PROOF 1. See e.g. [Cro94].

2. Easy induction on the structure of � .

3. We write .��
 � � � � 	 � �
 � for the canonical isomorphism. We note

that .
�

� � � ' ' � + + � . We define
�
 � � � by

� � � � � for an object
� in � , and

� �#' � + �� (� � ' ' �!+ + � � . � for a morphism ' � + �

 � � � �

88 Chapter 4. Examples of Pre-logical Predicates

in � . It is easy to check that
�

is a functor and satisfies
� � � � � . We

check that
�

strictly preserves Cartesian closed structure. For each projection
�
 �

�* � � *	��� � 	 � *"� � (
� * , we have:

� � ' � *"� � (+ �� (� � ' ' � *�� � (+ + � � . � � � * � � ' ' � + + � .�� � � * � . �� � .�� � � * #

Therefore he comparison map
 � �#' � � � � (+ �
 (� ����� � � �#' � � � � (+ �� (� is equal to � � ,

that is,
�

strictly preserves finite products.

To see that
�

strictly preserves exponentials, we show
� � � �#' � � � � (� ��� � (+ �
 ((�

� � where ' � � � � (� ��� � (+ ��
 � � � � � (� � � � � is an evaluation morphism in � .

� � � �#' � � � � (� ��� � (+ �� ((
� � � � ' ' � �� � (� ��� � (+ + � � .�� (� � � � � � ' ' � � � � (+ + � � � ' ' � ��� � (+ + � � � . � (� � � � � � � � .

�
� � � � � .

�
� � � . � (� � � � (� � �

Now we check for each well-formed term
� ���
� ,

��� � ' ' � + + 	 � � ' ' � + + � .

� � � ' ' � + + 	 � � ' ' � ' ��� � ��� � � (#) � + � ������� ����� + + � � .�� � � ' ' �!+ + � � � ' ' � � � � (+ + � � ����� � � ' ' � � � � (+ + � � � � .�� � � ' ' �!+ + � � � � � . �� � ����� � � � � .
�

� � � . � � � ' ' �!+ + � �

Definition 4.3.3 ([PPST00]) Let � be a CCC, �
 � � � be a functor preserving

Cartesian closed structure strictly, � be a Cartesian closed category with pullbacks and

�
 � � � be a functor preserving finite products. A lax logical predicate over �
is a functor �
 � � ������� � � (which strictly preserves finite products and satisfies
� � � � � � . �

Proposition 4.3.4 (Basic Lemma[PPST00]) In the situation in definition 4.3.3, the

lax logical predicate � determines a pre-logical predicate � � � � � � � � for
��� �

along � ' ' � + + � � 	 . �

4.3. Lax Logical Predicates and Pre-Logical Predicates 89

PROOF From � � � � � � , we have a � -predicate � � � over the standard interpretation

of types � � � that makes the lower right triangle commute.

� � � 	
�� � �

	

��
� �

��� ��� � � � � �
22

� � � � � �
// � 	 ��� //

���

xxxx

<<xxxx

�
� � 	

Thus we have a morphism � � � � ' ' � + + 	 making the outer triangle commute. �

To show the converse, we first show that � ' ' � + + 	 is an epimorphism.

Lemma 4.3.5 The morphism � ' ' � + + 	
 � ���
	 � � 	 is an epimorphism. �

PROOF We show that � ' ' � + + 	 is an epimorphism at each object � � � � (in � � � � . We

take an equivalence class ' � + �� � � 	 � ��� � (with a representative well-formed term
��
 � 	 � ���
 � . We calculate � ' ' � ' ! � � + (� ����� � ! � � 0 (�)�� + + + 	 � ' � + �� as follows:

� ' ' � ' ! � � + (� ����� � ! � � 0 (�)�� + + + 	� ' � ' ! � � + (� ����� � ! � � 0 (�)�� + ' ��� � � � � � () � + � � � ��� � �"� + �� � proposition 4.3.2 (
� ' � ' � ��� � (� ����� � � � � � (�)�� + + �

� ' � + ��

Thus � ' ' � + + 	 is epi. �

Theorem 4.3.6 Let � be a CCC,
�
 ����� ��� � � (� � be a standard interpretation

of types and
� � � � be a pre-logical predicate for

� � � along � ' ' � + + � . Then there

exists a lax logical predicate �
 � � ������� � � (such that for each well-formed term� ��� � 	 �
� , � � � � ' ' � + + 	 � � ��� ��(� � (. �

PROOF The assumption says that there exists a morphism
 � � � 	 � � � such

that � � 	 � � � ' ' � + + � . From proposition 4.3.2, there exists a functor
�
 � � �

preserving Cartesian closed structure strictly such that
� � � � � and � � � � ' ' � + + 	 �

� ' ' � + + � . Morphism � ' ' � + + 	 is an epimorphism by corollary 4.3.5 and morphism � � 	
is

90 Chapter 4. Examples of Pre-logical Predicates

mono. From lemma 4.2.10, there exists a unique morphism
�
 � 	 � � � such that

� � 	 � � � � � and
� � � ' ' � + + 	 � .

� �
�� � �

	

��
� �

	 22

� � � � � �
// // � 	 �

�
//

�
==

� �

Now we define the functor �
 � � ������� � � (in question by � � � � � for an object
� in � and � � � � � � � � � � � .

�
	" (� . � for a morphism

 � � � � in � , where

. �	"
 � 	 � �
 � � � � and . �
 � � � � 	 � ��
 � � are isomorphisms. We first show

that � � � � � (� � .

� � � � � � � � � � � � .
�

	 (� . � (� � � � � � � � � � � � � .
�

	 ((� � � � . � (� � � � .
�

	" (� � � � . � (� � � � � �
	 � � (
� � � � � .

�
	" (� � � � . � (� � � .

�
	" (� .

�
� 	
� . �� � � � � . � (� . � 	 � � . � (� � #

We show that � is indeed a functor, that is, it preserves identity morphisms and com-

position of morphisms, using the faithfulness of � � .

� � � � � � � (� � � � � (� � � � � � � � � (
� � � � � � � (� � � � � � � � � � � � ((� � � � � � � � ((� � � � � � (� � � � ((

Since � � is faithful, we conclude that � is a functor. Next, we show that � strictly

preserves finite products. To see this, we show that the comparison map
 � � � � ����� � � � � �

is the identity morphism using the faithfulness of � � .

� � � � � � ����� � � � � �
� � � � � � � � (� ����� � � � � � � � �(� � � � strictly preserves finite products (
� � � � � ����� � � � � � � � � � � � � (
� � � � � ����� � � � � � � strictly preserves finite products (
� � � � � � � � � (

4.4. An Example from Moggi’s Computational Metalanguage 91

To show � � � � ' ' � + + 	 � , we calculate the following:

� � 	 � � � � � ' ' � + + 	 � � � � � ' ' � + + 	 � � � 	 �

Now � � 	
is mono, thus � � � � ' ' � + + 	 � . �

In the latter part of [PPST00], Plotkin et al. extend lax logical predicates to the

languages described by a descrete algebraic structure extending finite product struc-

ture. We do not know if their extension can also be characterised by means of our

generalised pre-logical predicates.

4.4 An Example from Moggi’s Computational Met-

alanguage

Moggi’s computational metalanguage [Mog91] is an extension of the simply typed

lambda calculus so that various computational effects, such as non-termination, excep-

tions, I/O, states, nondeterminism and jumps, can be handled explicitly. This language

is used as an intermediate platform of semantics, compilation and program transfor-

mation for call-by-value languages [Sta96, HD97, BKR99, BHM02].

The type system of the computational metalanguage fits within the scheme of a

typed formal system, and its semantics can be described as the initial algebra seman-

tics. As we have seen in chapter 3, we use this fact to derive pre-logical predicates for

the computational metalanguage. Then we give a concrete example of a pre-logical

predicate, inspired by Stark and Lindley’s leapfrog method [Lin04, LS05], which is

used to prove a strong normalisation theorem for the computational metalanguage.

Syntax of Computational Metalanguage

We begin with the syntax of the computational metalanguage. The language we con-

sider here is the minimal fragment having only base types, arrow types and computa-

tional types. Let � be the set of base types. We define the set of types ����� �
� � � (for

the computational metalanguage by the following BNF:

����� �
� � � (���

 � 	�� � � ��� � �

92 Chapter 4. Examples of Pre-logical Predicates

where 	 ranges over � . Compared to the simply typed lambda calculus, new types � �
called computational types are added to express the type of a program yielding a value

of � involving computational effects.

The computational metalanguage extends the simply typed lambda calculus (ex-

ample 3.3.2) with two new term constructs related to computational types: ' � + �
�

and “let � � � in � ”. Their typing rules are the following:

� ���
�� � ' � +
 � �
� ���
 � � ��� ��
�&� �
 � � �� � let � � � in �
 � � �

The term ' � + �
� casts the value � of type � into the computational type with a

trivial computational effect. The term “let � � � in � ” composes the computational

effect of � and that of � . The above rules fit within the scheme of simply typed

formal systems, and the type system can be described by the following typed binding

signature.

� � � � ����� �
� � � (� � � � � � �� ���� � �� �� � ����� �� �� � � �� � ' � + � � � � � � � �� � �� � �� � � � �� (

where � � � � range over ����� �
� � � (.

Semantics of Computational Metalanguage

Before we move to the semantics of the computational metalanguage, we recall the no-

tion of strong monad. A monad � � � � ��� (over a category � consists of an endofunctor

�
 � � � together with natural transformations �
 � � � � � and
�
 � � � � �

satisfying the following equations for all objects in
�

:

� � � � � � � � � � �
� � � � �	� � � � � �
� � ��� � � � �
� � � � �

4.4. An Example from Moggi’s Computational Metalanguage 93

A strength of a monad � � � � ��� (is given by a natural transformation �	� � �
 � � � � �
� � � � � (satisfying the following equations for all objects

� � � � � in � :

� � � � � � � � � �
� �

� � � � � � � � � � � � � � �
�
� � � � �

� � � � � � � ��� � � � � � � � �
� � � �

� � � � � � �
� � � � �

� � � � � � � � � �
� � � � � � � � � � �

� � � � � �

�

where � �
 + � � � �
and � � � � � �
 � � � � (� � � � � ��� � � (are natural

isomorphisms. A strong monad over � is just a pair of a monad and a strength over it.

For a morphism

 � � � � in � , we write

 � � � � �
 � � � � � . For details,

we refer to [Mac71, Mog91].

Moggi gave a semantics of the computational metalanguage in CCCs with strong

monads. This semantics can be understood in terms of our initial algebra semantics.

Let � be a CCC with a strong monad � � � � ��� � � � � � � (. First we fix an interpretation

of types
� �
 ����� �

� � � (� � satisfying
� � � � � � � (� � � � � � � � � and

� � � � � (� � � � � ��(. As usual, we specify morphisms corresponding to each operator:

� ��� ��� � � � � � � � � � � � (� � (� � � � � � � (
� � ����� � � � � � � � � � (� � � � (� � � � � �

� � � � � � � � (� � (� � ��� �
� ��� ��� � � � � � � � � � � � � � � (� � � � (� � � � � � � (

� � � � � � � � � � � � � �

The above choice of morphisms induces a
� � -algebra structure over � ��� . From ini-

tiality, we obtain an interpretation of terms � ' ' � + + ��� which coincides with the standard

interpretation of the computational metalanguage given by Moggi.

Pre-logical Predicates for Computational Metalanguage

We discuss pre-logical predicates over the computational metalanguage. To simplify

the discussion, we consider the standard interpretation of the computational metalan-

guage in
���	��

with a strong monad � � � � ��� � � (. Concrete examples of such monads

can be found in [Mog91] presented in great detail.

94 Chapter 4. Examples of Pre-logical Predicates

We derive conditions for a predicate
� � � �����	��
 � � to be pre-logical for

� � along
���	��
 ' ' � + + ��� . As we have discussed in chapter 3,

�
is pre-logical if the set of invariant

terms under
�

:

� �� � � � � � (� � � � � ��� � �
� � ���	��
 ' ' � + +
 � 	 � � � �

is closed under the syntactic constructs in
� � . This boils down to the following four

conditions corresponding to lambda abstraction, application, ' � + and let.

Proposition 4.4.1 A predicate
� � � � ���	�
 � � is pre-logical for

� � along
���	��
 ' ' � + + � �

if the following conditions are satisfied.

1. For all
��� ��
�&��� � �
 � � ,

� � � � 	 � ��� ��
 ��(# ���	��
 ' ' � + + ��� � � � � �
� � � � � ��� # ���	��
 ' ' � ��
� # � + + ��� � � � � � � � � (#

2. For all
 � � � � � � � (and � � � � ,

 � � (� � � � .
3. For all � � � � , � ��� � � (� � � � ��(.
4. For all

��� ��
�&��� � �
 � � � ,
� � � � � 	 � ��� ��
��(# ���	��
 ' ' � + + ��� � � � � � � � ((

� � � � � � � 	 � � � � � # � ���	��
 ' ' � + + ��� � � � � (� � � � � � � (� � � � � � ((#

�

PROOF The first and second rules are obtained in the same way as in example 3.6.7.

We show that condition 3 and 4 are equivalent to

� � � �� � � ��� � (� � ' � + � � �� � � ��� � � ((4.1)

and � � � �� � � � � � ��(-� � � � �� � � � ��� ��
��(� � � � (� � let � � � in �"� � �� � � ��� � � � (# (4.2)

respectively.

4.4. An Example from Moggi’s Computational Metalanguage 95

$ ((4.1)
� � 3) From � � � �� � � � �'
)� � � (, we have ' � + � � �� � � � �'
 � � � ��(, that

is,
���	��
 ' ' ' � + + + ��� � � ��� � �
 � 	 � �
 � � � � � , where �
 � 	 � �
�� � � �

is the isomorphism. Thus we have � ���
 � � � � � � .

(3
� � (4.1)) Let � � � �� � � ��� ��(, that is,

���	��
 ' ' � + + ���
 � 	 � � � � . Then

�	��� � ���	��
 ' ' � + + ��� � ��� ��
 ' ' ' � + + + ���
 � 	 � � � � � .

$ ((4.2)
� � 4) First we assume the premise of 4, which is equivalent to � �

� �� � � � ��� �
)� (� � � � (. We have � � � �� � � � ��� �
 � ��(� � ��(and �"� � �� � � � ��� �

� � �
 � � (� � � � (by weakening. From (4.2), we have let � � � in � � � �� � � � � � �

� � (� � � � (, that is,

� � � � 	 � � � �
 � � (# ���	��
 ' ' let � � � in � + + ��� � � � � � � � (#

An easy calculation shows that this is equivalent to the conclusion of 4.

(4
� � (4.2)) Let � � � �� � � ��� � � (and � � � �� � � � ��� �
�� (� � � � (, that is,

���	��
 ' ' � + + ���
 � 	 � � � � � and
���	��
 ' ' � + + ���
 � 	 � � � �
 � (� � � � � . From 4,

we have

���	��
 ' ' let � � � in � + + � �
� � ��� ��
 ' ' � + + � � � � � � (� � � �!� � � � � � � � ���	��
 ' ' � + + � � �
 � 	 � � � � � � � (# �

Moggi’s computational lambda calculus [Mog91] is closely related to the com-

putational metalanguage. It provides an adequate framework for modeling call-by-

value programming languages with side effects, such as partiality, nondeterminism,

etc. Typed partial combinatory algebras [Mit96] also provide a suitable setting for

modeling such languages. In [HS02], Honsell and Sannella discuss pre-logical predi-

cates for typed partial combinatory algebras. In [KP99], Kinoshita and Power demon-

strate that the concept of lax logical predicates is extensible to closed Freyd categories.

At this moment, our generalisation is not applicable to derive the concept of pre-logical

predicates for these settings. In the case of computational lambda calculus, this is be-

cause we interpret the calculus in the Kleisli category of a category with finite products

and a strong monad having Kleisli exponents, and that Kleisli category may have no

finite products.

96 Chapter 4. Examples of Pre-logical Predicates

An Example of a Pre-logical Predicate

We give an example of a pre-logical predicate for the computational metalanguage.

In [Lin04, LS05], Stark and Lindley developed leapfrog method to extend Tait’s

strong normalisation proof [Tai67] to Moggi’s computational metalanguage. They in-

troduced an operation called � � to calculate the predicate at a computational type � �
from the one at type � .

In this example, we propose a semantic formulation of the leapfrog method, and

show that the predicate
�

such that
� � � � (� � � � � satisfies the conditions of pre-

logical predicates related to computational types.

We first recall Lindley and Stark’s � � -operation.

Definition 4.4.2 ([Lin04, LS05]) 1. We define the set of raw continuations by the

following BNF:

�

 � � � � � � � � # ��(
where � ranges over the set of computational metalanguage terms. The notation
� # � denotes binding of a variable � in � . A judgement for a continuation is

a triple � � � � � � � (denoted by � � � � �
 � � � . We have the following rules to

derive well-formed continuations:

� � ��� � �
 � �
��
�&� �
 � � � � � � � � �
 � � � �

� �&��� � � � � # ��(
 � � � �

We write � � ��� � to mean that there exists a (unique) type � � � such that

� �&��� �
 � � � is a well-formed continuation.

2. We define application � � � of an open term � of type � � to a continuation

� �&��� � as follows:

� � � � � � � � � � � � # ��((� � � � � � let � � � in ��(#

3. Given a set � of open terms of type � , we define a set �
� �

of open terms of type

� � by

�
� � � � � ��� � ���	� � � # � � ' � + � � �

�
� � � � �
 � � ��� � � �

� # � � � � � � #

4.4. An Example from Moggi’s Computational Metalanguage 97

where � � is the set of strongly normalising terms. �

We propose a semantic formulation of the � � -operation. To do so, we need to find

semantic counterparts of continuations and applications. We fix a set � and define a

continuation to be a function

 � � � � � � . The inductive definition of application

above shows that a continuation
� � � � � �%� # ��� (� ����� � � � !� # ��� (can be regarded as a

context as expressed by the following sequence of lets:

let � !� � ' � + in let � �� � � � in ����� in ��� #

The essential information in the continuation is its body, which has the following type:

�	��
����� let �� �� � ��� in ����� in ����
 � � #

Our formalisation abstracts this information as a function of type
� � ��� � � � . The

syntax � � � � # ��(is then semantically translated to the following construction of a

morphism:
 � � � � � � � � � � (� � � � � � �
 � � � � � � �
�
� �
 � � � � � �

The definition of continuation relies on a fixed � . This is a compromise of our for-

mulation, while in definition 4.4.2 continuations can take any result type. On the other

hand, the � � -operation in definition 4.4.2 is designed only for the proof of strong nor-

malisation. We relax this by taking a subset � � � � , which plays the same role as

� � in the definition of � � (� and � � (� � . We define the application of a continuation

 � � � � � � to � � � � � � � (by

 � � .

Once continuation and application are defined, it is straightforward to define se-

mantic version of the � � -operation. The following definition summarises the above

discussion.

Definition 4.4.3 Let � and � � � � be sets.

1. A continuation is a function

 � � � � � � .

2. We define application of a continuation

 � � � � � � to � � � � � � � (to be

 � � .

98 Chapter 4. Examples of Pre-logical Predicates

3. Let � � � � � be a set. We define a set �
� � � � � � � � (by

�
� � �!
 � � � � � � � � � � � # � � (� �

�
� � � � ��� � � � � ��(��� � �

� # � � � (� � # �

To summarise, we have:

�
� � � � ��� � � � � � (�� �
 � � � � � � # � � ��� � # � � (� � (� � � � � (� �

Proposition 4.4.4 Let
� ��� � ���	�
 � � be a predicate satisfying

� � � � (� � � ��(� �
.

Then
�

satisfies the conditions of pre-logical predicates related to computational types,

i.e. conditions 3 and 4 in proposition 4.4.1. �

PROOF
$ (Condition 3) Let � � � � . We show for any continuation

 � � � �
� � , � ��� � � # � � (&� � implies

 � � � � � � � (%� � . This is trivial, as
 � �

�	� � � � (� � � (.
$ (Condition 4) Let

��� �
 �-��� � �
 � � � be a well-formed term and assume
���	��
 ' ' � + + ���
 � 	 � ��� �
 � (� � � � � � ((we call this assumption (*)). Let � �
� 	 �

, # � � � � � (and

 � � � � � � � . We assume

 � � � � � and show
 � � � ���	��
 ' ' � + + ��� � � � � (� � � � � � � � #�(� � .

First we have
 � � � ���	��
 ' ' � + + ��� � � � � (� � � � � ��� ��
 ' ' � + + ��� � � � � (� . We

define
 �
 � � � � � � by

 � � #�(� � � ���	��
 ' ' � + + ��� � � � � � � � #�(

then from assumption (*) and
� � � � � (� � � � � (� �

, we have
 �
 � � � � .

Next from # � � � � � (� � � ��(� �
, we have

 � � # � � , which is equal to
 � �

� ���	��
 ' ' � + + ��� � � � � (� � � � � � � � #�(, which proves the required result. �

The � � -operation can be extended to binary relations over
� � � in the following

way. Let � � � � � � � be a subset. A continuation is a pair � � � (of functions
 � �
 � � � � � � . An application of � � � � (
 � � � � � (� � � � � � (to a continuation
� � � (is � � � � � � � (. For a binary relation � � � � � � � � � , we define �

� �
as follows:

�
� � � � � � (� � � � � � � � � � � � � � � � (� � # � � � � � (� �

�
� � � � � � � � (��� � � � � � � � � (� � � � � (� �

� # � � � � � � � (� �

4.4. An Example from Moggi’s Computational Metalanguage 99

Example 4.4.5 We demonstrate a calculation of �
� �

for a binary relation � � � � � �
� � � with the following � � � and � .

$ We let � be the finite powerset monad:

� � * � � � ��� � � is a finite subset of � #

together with the following unit � , multiplication
�

and strength � :

� � � (� � � � � � � (���
� � �
�� � � ��� � (� � � ��� � (� � ��� #

$ We let � be a one-point set
��� . We have � � � � 	 � � .

$ We let � � � � � � � be
� � 	 � 	 (� � 	 � � (� � � � � (. In other words,

� � � � (� � � � � � � � � � �
� � (#

We identify a function

 � � � � � � and a subset (written with the capital letter

of the function)
� � � � � � � � � � � � . Under this identification, for each

��� � � � � ��(� � � � � � � � * � � � � � (, we have

 � � � � � � �
� � �

 �� � � � � � � ��� # � � � #

Therefore �
� �

is defined as:

�
� � � � � � � (� � � � � (� � � � � � � (� � # � � � � � � � �

�
� � � � � � � (��� � � � � ��((� �

� � � � � (� �
� # � � � � # � � � (� � ��� � ��� � # � � � � (

that is,

�
� � � � � � � (� � � � � � � � � # � � � � � � (� � # ��� � � � � � � (� �

� � � # � � � � � # � � � � � � � � �& #

This is still not intuitive, but interestingly we have the following simpler description

of �
� �

. This pattern appears in the definition of a pre-bisimulation relation in concur-

rency.

100 Chapter 4. Examples of Pre-logical Predicates

Proposition 4.4.6 �
� � � � � � � (� � � � # � 	�� � # � ��� 	�(� � . �

PROOF (�) Let � � � (� �
� �

and
� � . We show � 	 � � # � ��� 	�(� � . We supply

� �
and
� 	 �� ��� 	�(� � to

�
and � in the definition of � � � (� �

� �
. We obtain:

� � � � � � � � (� � # � � � �(� � � ��� � � (� �- (
� � � � � � # � � � � � # ��� � � � � ��� � � (� � (

whose premise part is trivially true. Thus

� � � # � � � � � # � �� � � (� �

holds. By letting
��� �

in the above, we have � � � � � # � � � � � (� � .

(�) We take � � � � � � � � (such that � � � # � 	�� � # � ��� 	�(&� � . Let
� � � �

� � � ,
� � and assume � � � � � (� � # � � � � � � � � (we call this assumption

(*)). We show � � � � � # � � � � � � � � � . Since
� � , there exists

� � � � such that
� �� � � (� � . This

� � is an answer, since from (*), we have
� � � � � � � � � . �

In [Aba00], Abadi introduced � � -operation in a slightly different way from our for-

mulation, inspired by [PS98] which is a precursor of the leapfrog method [Lin04,

LS05]. At this point it is not known if our semantic formulation of � � -operation

can explain the � � -operation in the sense of [Aba00].

4.5 An Example from First-Order Logic

In this example we see a characterisation of elementary submodels for a first-order

logic in terms of the existence of a binary pre-logical relation. We also have a closer

look at Tarski’s criterion, which is equivalent to a submodel being an elementary sub-

model.

For this example, we fix a typed first-order signature
 � � � � ��� � (. The typed

binding signature for first-order classical logic over
 is given as follows:

� �
-fol
� � � � � ��� �

� � � � ��� ��� � � � �� ��� � � � � � � � � � � � � � � � ��� ��� � � � (

4.5. An Example from First-Order Logic 101

If
� �����

-fol

�
� and � � � � , we can assert that � consists of only operators in
� � .

Let � be a many-sorted
 -algebra. We give an interpretation of
� �

-fol in
���	��

,

which coincides with the standard interpretation of first-order logic in the model con-

structed over � . The interpretation of types � �
 � � � ��� � ���	��

is given by

� � � �
� � � � � � �� � � � � � � � � � �

As usual, we specify morphisms corresponding to each operator.

� � � � ! � � � � � � % � � (� � �	� � ����� � ���(� � (� � � � �	� � � ����� � ��� � (� � "! �	�	�	� � �% � � � � (
� � ��� � � ��� � % � ��� � � (� � (� � (� �

� � � 0 � � # � � � 0 (� � �
� � otherwise

� �	� � � � � � (� � (� � (� �
� �

�
� � �

� � otherwise

� � � � � � � � � (� � � � (� � (� �
� �

�
� � � � � � � � �

� � otherwise

We write
 � ' ' � + + for the induced interpretation of terms by initiality of � � � -fol .

Let � be a sub-
 algebra of � . For any � � -context
�

and any well-formed term� ��� �
-fol

�
 �
which does not include the existential quantifier, an easy induction

shows that for any � � � 	 �
,
 � ' ' � + + � �
 � ' ' � + + � . When � has an existential

quantifier, this does not hold in general because there might be a formula ��� # �
which holds in
 � by a witness that is only included in � . However, if
 � ' ' � + + � �

 � ' ' � + + � still holds for any � � � 	 � , we say that � is an elementary submodel of �
(see e.g. [Doe96], 2.8). In other words, first-order logic can not distinguish the two

algebras.

Definition 4.5.1 We say that � is an elementary submodel of � if the following holds

for each � � -context
�

:

� � �����
-fol

�
 � # � � � � 	 � #
 � ' ' � + + � �
 ��' ' � + + � #

When is a subalgebra an elementary submodel? One characterisation is given by the

following condition which is called Tarski’s criterion (see e.g. [Doe96], 2.10).

102 Chapter 4. Examples of Pre-logical Predicates

Definition 4.5.2 (Tarski’s Criterion) We say Tarski’s criterion holds for a submodel

� of � if for each � � -context
�

and � � � � ,
� ��� ��
�&��� �

-fol

�
 � # � � � � 	 � #
 � ' ' ��� # � + + � � � �
� � � # � � � #
 ��' ' � + + � � � %� # � � �

holds. �
Tarski’s criterion plays an important role in showing that the inclusion relation � � � � � � � � � is a binary pre-logical relation between
 � ' ' � + + and
 � ' ' � + + . In this proof,

Tarski’s criterion is used when we show that the condition related to existential quan-

tification, which is derived from the goal that � is pre-logical, holds. Thus we could

think of Tarski’s criterion as an essential condition for � being pre-logical. When � is

pre-logical, one can easily show that � is an elementary submodel of � (which implies

Tarski’s criterion). We summarise this discussion with the following proposition.

Proposition 4.5.3 The following are equivalent:

1. � is an elementary submodel of � .

2. Tarski’s criterion holds for a submodel � of � .

3. The inclusion relation
� � � � � � � � , that is,

� � � � � � and
� � �

� � � � � (����� � � , is pre-logical for
� �

-fol along
 � ' ' � + + �
 � ' ' � + + . �
PROOF $ (+ � � �

) Let
�

be a � � -context, � � � � , ��� �
 � �����
-fol

�
 �
be

a well-formed term and � � � 	 �
. Since � is an elementary submodel of � ,

 � ' ' ��� # � + + � � � � �
 � ' ' ��� # � + + � . Thus there exists an element #�� � �
such that
 � ' ' � + + � � � %� # � � � , which implies
 ��' ' � + + � � � %� # � � � .

$ (
� � � �

) We show that the inclusion relation
�

is pre-logical. We obtain three

subgoals to be proved by expanding the definition of
�

being pre-logical:

1. We show that for each first-order operator �%� � � of arity ��� � ����� � � � � �
and well-formed terms

� �����
-fol

��*
��* � + , . , 0 (, we have
� � �'� 	

�
� #

�
�
* �
 � ' ' ��* + + � �
 �-' ' ��* + + � $ � �

� � � �'� 	
�
� #
 � ' ' � � ��� � ����� � ��� (+ + � �
 � ' ' ��� ��� � ����� � ���(+ + � (#

4.5. An Example from First-Order Logic 103

This is equivalent to

�$# � ��� � ��� � ����� � #�� � � � ��� # ��� � #)� � ����� � #�� (� � �	� # � � ����� � #��(

and clearly this holds since � is a subalgebra of � , and all the operators

behave in the same way in � and � .

2. Similarly, we can show that for any well-formed terms
� � � �

-fol

� � �
 �
and � ��� 	

�
�

,
 � ' ' � + + � �
 �-' ' � + + � and
 � ' ' � + + � �
 � ' ' � + + � implies

 � ' ' � � � � � � � (+ + � �
 �-' ' � � � � � � � (+ + � and
 � ' ' ��� ��� � � � � � � ��(+ + � �

 � ' ' � � � � � � � � � � ��(+ + � .

3. We show that for each well-formed term
��� �
 � � � �

-fol

�
 �
where

� � � � , we have

� � � � � 	 � � � ��
� (#
 � ' ' � + + � �
 � ' ' � + + � (� �
� � � � � 	 � #
 � ' ' ��� # � + + � �
 � ' ' ��� # � + + � (#

It is clear that
 ��' ' ��� # � + + � � � � implies
 � ' ' ��� # � + + � � � � . Thus we

reduce the above to the following goal (we name it � �):
� � � � � 	 � ��� ��
 � (#
 � ' ' � + + � �
 � ' ' � + + � (� �
� � � � � 	 � #
 ��' ' ��� # � + + � � � � � �
 � ' ' ��� # � + + � � � � (#

Now we assume � � � � 	 � ��� ��
��(#
 � ' ' � + + � �
 � ' ' � + + � , take � � � 	 �
and assume
 �-' ' ��� # � + + � � � � . In order to use Tarski’s criterion, we first

split the context
�

into two disjoint contexts, a � � -context
� � and a

��� -
context

� � such that
� � � � � � � . We then split � into two as well; we

take � � � � 	 � � and � � � � 	 � � such that �
�
� � � � � . We can denote � � � � �

by closed terms of type
�

, say ��� � and ��� � . Using these two terms, we

define a term � � by � ' ��� � � � ! �)��	� � ����� � ��� � � � % �)���� + . It is easy to see that

 � ' ' ��� # � + + � �
 �-' ' ��� # � � + + � � since

 � ' ' ��� # � ' ��� � � � ! �)��	� � ����� � ��� � � � %��)���� + + + � ��
 � ' ' ��� # � + + � � � �	� %�
 �-' ' ��� � � � ! � + + � � � ����� � ���&%�
 � ' ' ��� � � � %�� + + � � �
 � ' ' ��� # � + + � � � �	� %� � ��� �	� (� ����� � ���&%� � ��� ���(
�
 � ' ' ��� # � + + � � ��� � �
 � ' ' ��� # � + + �

104 Chapter 4. Examples of Pre-logical Predicates

We apply Tarski’s criterion and obtain # � � � such that
 �-' ' � � + + � � � � %�
� � � . We repeat the same argument as above and obtain
 ��' ' � � + + � � � � %�
�
 ��' ' � + + � � � %� # , which is equal to
 � ' ' � + + � � � %� # from the

assumption. Therefore
 � ' ' ��� # � + + � � � � .

$ (
� � � +) Let

�
be a � � -context, � � � 	 � and

� �����
-fol

�
 � be a well-formed

term. Since
�

is just an inclusion relation, we have � � � � (� � 	 � . Thus from the

basic lemma of pre-logical relations, we have �
 � ' ' � + + � �
 � ' ' � + + � (� � �
.

Since
� �

is the identity relation in
�

, we have
 � ' ' � + + � �
 ��' ' � + + � . �

4.6 Conclusion

We have seen examples of generalised pre-logical predicates for typed formal systems.

The examples we examined benefit the generalisation in several ways.

We applied our generalisation to many-sorted algebra, computational lambda cal-

culus and first-order logic, which are new to the original work [HS02]. In the case of

many-sorted algebra, we showed that pre-logical predicates and subalgebras coincide.

In first-order logic, we used pre-logical predicates to characterise elementary submod-

els. In fact this is a special case of observational equivalence, which we will see in the

next chapter. Our generalisation supports categorical semantics, which enables us to

discuss the relationship with lax logical predicates.

By working in the category
���

where syntax, semantics and predicates appear as

objects and morphisms, we could compare the notion of pre-logical predicates between

different languages in a diagrammatical way. The comparison showed that pre-logical

predicates for combinatory logic and those for the lambda calculus have a subtle dif-

ference.

Chapter 5

Behavioural Equivalence and

Indistinguishability

This work is a contribution to the understanding of the relationship between behavioural

equivalence and the indistinguishability relation. These notions arose from the study

of data abstraction in the context of algebraic specifications. Behavioural equivalence

identifies models which show the same behaviour for any program yielding an ob-

servable value. This formalises an intuitive equivalence between two programming

environments that show the same behaviour to programmers, regardless of differences

in the representation of non-observable data types. The indistinguishability relation is

a partial equivalence relation which identifies values in a model that are interchange-

able with each other in any program context. This provides an abstract view of the

programming environment based on behaviour, rather than denotation.

Their relationship has been studied in a series of papers beginning with [BHW95]

by Bidoit, Hennicker and Wirsing. They established the key idea of factorisability to

relate behavioural equivalence and the indistinguishability relation. Their framework

is infinitary first-order logic over many-sorted algebras. Their work has been extended

by [HS96] to higher-order logic, where the indistinguishability relation can be finitely

axiomatised when the underlying signature is finite.

We examine the situation for simply-typed formal systems and their categorical

models. We characterise behavioural equivalence in terms of binary pre-logical rela-

105

106 Chapter 5. Behavioural Equivalence and Indistinguishability

tions, and show factorisability. As an example of this, we see that behavioural satis-

faction and satisfaction over the quotient model are equivalent.

5.1 Behavioural Equivalence and Pre-Logical Re-

lations

Behavioural equivalence identifies two models showing the same behaviour in re-

sponse to all observations. Each observation examines the equality of two terms of

observable types, whose values are directly accessible to programmers. This defi-

nition of observation formalises an experiment to test for a difference of behaviour

of visible data types between two models. Thus, intuitively speaking, if two mod-

els are behaviourally equivalent, they provide the same programming environment to

programmers, even though they may have different implementation of non-observable

data types.

Schoett formulated behavioural equivalence for many-sorted partial algebras. He

introduced the notion of correspondence, and showed that two models are behaviourally

equivalent if and only if there exists a correspondence which is identity relation at ob-

servable types.

In the context of the lambda calculus, a restricted notion of behavioural equiva-

lence called closed observational equivalence was studied in [Mit91]. He showed a

representation independence theorem: if there exists a binary logical relation between

two models such that the relation is partially bijective on any observable types, then

these two models are closed observationally equivalent. He showed that the converse

is also true when the underlying signature has only first-order constants. However this

is not satisfactory for two reasons; one is the above restriction to first-order constants,

and the other is that in general logical relations do not compose, despite the fact that

behavioural equivalence is a transitive relation. Honsell and Sannella [HS02] removed

the restriction on the constants by using pre-logical relations instead of logical rela-

tions.

In the following, we further generalise this result: two categorical semantics of a

simply typed formal system are behaviourally equivalent if and only if there exists an

5.1. Behavioural Equivalence and Pre-Logical Relations 107

observational pre-logical relation between them.

5.1.1 Formulation of Behavioural Equivalence

In this section we go back to the traditional theory of many-sorted algebras, and intro-

duce behavioural equivalence as in [HS96]. We first recall the environmental interpre-

tation of algebras, which is a slight modification of the standard semantics in section

4.1. In this section, we allow the domains of contexts to be countably infinite. Let

� � � � ��� � (be a many-sorted signature. For a � � -context

�
and � � -indexed family

of sets
��� � � � , we define the set

� � of
�

-environments by

� � � � � � ��� � � � (� �
 � � �

� � � � � �#� � � � (# � � � (� � � � � � #

We extend a � � -indexed family of functions
�!
 � � � �� � � to

 �
 � � � � �
by

 � � � (� � (� � � � � � � � � ((.
Let � be a many-sorted
 -algebra. The environmental interpretation � ' ' � + + 1 inter-

prets a well-formed term
� ��� �
� under an environment � � � � as follows:

� ' ' � + + � � � � � (
� ' ' � � ��� � ����� � ��� (+ + � � ��� � � ' ' � � + + � � ����� � � ' ' ���,+ + � (

We fix a many-sorted signature
 � � � � ��� � (, many-sorted
 -algebras � and �
and a set

����� � � � of observable types.

Definition 5.1.1 ([HS96]) An environment � over � is
�����

-surjective if for any type

� � ����� and
� � � �

, there exists a variable � � � ��� � � � (such that � � � � (� � .
We say that a
 -algebra � is

�����
-countable if � � �	��
�

� �
is countable. Note that

there exists an
�����

-surjective environment over � if and only if � is
�����

-countable.

�

Definition 5.1.2 ([HS96]) Two
 -algebras � and � are behaviourally equivalent with

respect to
�����

(written by � �
�
��
� �) if there exists an

�����
-context

�
,
�����

-

1We deliberately overload this notation with the one for the standard interpretation of in � that is
introduced in section 4.1 because the only difference is the way that variables are handled.

108 Chapter 5. Behavioural Equivalence and Indistinguishability

surjective environments � � � �
and � � � � �

such that for any � � ����� and well-

formed terms
� � � � �
 � , we have � ' ' � + + � � � ' ' � + + � � � � ' ' � + + � � � � ' ' � + + � � .

�

There are other possibilities for the treatment of free variables, and we leave this point

to [HS96].

This formulation restricts the cardinality of the carrier sets of observable types to

the cardinality of the set of variables. The surjective environment plays a role to adding

constants for each element in the carrier set of an observable type. However, this is not

an essential point when formulating behavioural equivalence. We introduce a slightly

different, but equivalent formulation of behavioural equivalence from the above.

Definition 5.1.3 We write � � ��
� � if there exists an
�����

-indexed family of re-

lations
�,� � � � � � � � � �	��
� such that for any

�����
-context

�
whose domain is

finite, type � � ����� , well-formed terms
� � ��� � �
 � , environments � � � �

and

� � � � �
,

� � � � ��� � � � (# � � � � (� � � � � ((� � � � � � (((
� � � � ' ' � + + � � � ' ' � + + � � � � ' ' � + + � � � � ' ' � + + � � (# �

Proposition 5.1.4 Suppose � is
�����

-countable. Then � �
�
��
� � � � � � ��
� � .

�

PROOF (
� �) Suppose � �

�
��
� � . Let

� �
�
�
� � be a context and environments which

exist by definition 5.1.2. We define a relation
� � � � � � � � for each � � ����� by

� � � � � � � � (� � ��� � ((��� � �#� � � � (� � � � (� � #

We show that
� �

is total bijective for each � � ����� . Totality is obvious as � and � � are
�����

-surjective. Suppose � � � (� � � � (, which is equivalent to � ' ' � + + � � � ' ' � + + � . Since

� �
�
��
� � , we have � ' ' � + + � � � � ' ' � + + � � , which is equivalent to � � � � (� � � � � (. Similarly,

� � � � (� � � � � (implies � � � (� � � � (. Therefore
� �

is total bijective.

Below for a type � � ����� and an element
� � � �

, we write � � for a variable

� � �#� � � � (such that � � � (� �
. From this definition, � � � � � � � �

((� � � .

5.1. Behavioural Equivalence and Pre-Logical Relations 109

Let
�

be an
�����

-context whose domain is finite, � � ����� ,
� � � � � �
 � ,

� � � �
and � � � � �

. Suppose � � � � (� � � � � ((� � � for each � � �#� � � � (. Suppose

� ' ' � + + � � � ' ' � + + � . Then we have:

� ' ' � + + � � � ' ' � + + � ��%� � ' ' � � � � + + � � ������� � � � � ' ' � ' � � � �)�� + � ������� � � + + �

and � ' ' � + + � � � ' ' � ' � � � �)�� + � � � ��� � � + + � . From � �
�
��
� � , we have

� ' ' � ' � � � �)�� + � ������� � � + + � � � � ' ' � ' � � � �)�� + � � ����� � � + + � � #

Then

� ' ' � ' � � � �)�� + � ������� � � + + � � � � ' ' � + + � � %� � ' ' � � � � + + � � � � ����� � � � � ' ' � + + � � #

Similarly, we have � ' ' � ' � � � �)�� + � � ����� � � + + � � � � ' ' � + + � � . Therefore we have � ' ' � + + � � �
� ' ' � + + � � . The converse is by symmetry.

(� �) Suppose � � ��
� � . Let
� � � � � � � � be the relation which exists by

definition 5.1.3 for each � � �����
. Since � and � are

�����
-countable, for each

� � ����� and � ��� 	�(%� � � , we can assign a variable � �� � � . With this assignment, we

define an
�����

-context
�

and
�����

-surjective environments � � � �
and � � � � �

as

follows:
� � � �

� � � (� � � � � � �� � � (� ���
� � � � �� � � (� 	 #

Let � � ����� be a type and
� ����� � �
 � be well-formed terms. Then there

exists a finite context
� � � �

such that we can still assert that
� � ����� � �
 � is a

well-formed term: such
� � can be given by restricting the domain of

�
to ����� � (�

��� � ��(.
We write � and � � for the restriction of the domain of � and � � to ��� � � � ��(re-

spectively. They satisfy � � � � (� � � � � ((� � � � ��� � ((for each � � ��� � � � � (. Then easy

induction shows that � ' ' � + + � � � ' ' � + + � and � ' ' � + + � � � � ' ' � + + � � (the same for �).

Now we assume � ' ' � + + � � � ' ' � + + � . Then � ' ' � + + � � � ' ' � + + � , and from � � ��
� � ,

we have � ' ' � + + � � � � ' ' � + + � � � � ' ' � + + � � � � ' ' � + + � � . The converse is by symmetry.

Therefore � �
�
��
� � . �

110 Chapter 5. Behavioural Equivalence and Indistinguishability

5.1.2 A Characterisation of Behavioural Equivalence

We extend the notion of behavioural equivalence to typed formal systems and their

categorical models, then characterise it in terms of the existence of an observational

pre-logical relation.

We introduce an additional notation for the internal logic of fibrations. For � �

� 	 � � � ����� � ����
 � 	 � � , by � � � � ����� � ���)(� ! �	�	�	� � ��%� we mean the term � �� ! �	�	�	� � � % � �	� � ����� � ��� (,
where � �� ! �	�	�	� � � % is the canonical isomorphism (see definition 3.4.1).

We fix a typed binding signature
� � � � ��� (and a set

����� � � of observable

types. Let � be a regular category and � ' ' � + + � ! and � ' ' � + + � � be categorical interpreta-

tions for
�

in � .

We formulate definition 5.1.3 in the internal logic of ��
 ��� � � � (� � .

Definition 5.1.5 We write � ' ' � + + � ! � ��
� � ' ' � + + ��� if there exists an
�����

-indexed fam-

ily of total bijective relations
� �
 � � � � �
 � � � � � � � � � � (� � ��
� such that for any

�����
-context

�
, type � � ����� and well-formed terms

� � � � � �
 � , we have

�
 � 	� � � � �
 � 	� � � � 	 � � � � � � (� � ' ' �!+ + � ! � � � ' ' � + + � ! � � � ' ' �!+ + � � � � � � ' ' � + + � � � �
�
 � 	� � � � �
 � 	� � � � 	 � � � � � � (� � ' ' �!+ + � � � � � � ' ' � + + � � � � � � ' ' �!+ + � ! � � � ' ' � + + � ! �

�

Definition 5.1.6 An observational pre-logical relation for
�

between � ' ' � + + � ! and

� ' ' � + + � � with respect to
�����

is a pre-logical relation
� � �

 � � � � � � for
�

along

� ' ' � + + � ! � � ' ' � + + � � such that
� � is a total bijective relation for each type � � ����� . The

existence of such an observational pre-logical relation will be written � ' ' � + + � ! � ��
�
� ' ' � + + � � . �

Theorem 5.1.7 � ' ' � + + � ! � ��
� � ' ' � + + ��� implies � ' ' � + + � ! � ��
� � ' ' � + + ��� . �

PROOF Let
�

be the observational pre-logical relation which exists by � ' ' � + + � ! � ��
�
� ' ' � + + ��� . By definition,

� � is total bijective for each � � ����� . Let
�

be an
�����

-

context, � � �����
,
� � � � �
 � be well-formed terms, �
 � 	� � � � �
 � 	� � and

assume � � � � � (� � 	 � . From the basic lemma of pre-logical predicates, we have� � � � ' ' �!+ + � ! � � � ' ' �!+ + ��� � � (and
� � � � ' ' � + + � ! � � � ' ' � + + ���� � (. Since

� � is total bijective,

5.2. Indistinguishability Relations 111

� ' ' �!+ + � ! � � � ' ' � + + � ! � if and only if � ' ' �!+ + ���� � � � ' ' � + + ����� � . Hence � ' ' � + + � ! � ��
�
� ' ' � + + ��� .
To show the converse, we further assume that the subobject fibration ��
 ��� � � � (�
� has fibred small coproducts, and � ' ' � + + � ! and � ' ' � + + ��� both satisfy the semantic sub-

stitution lemma. The assumption on � implies that �� supports � � � � � ��� � � ��� . This

comes from the requirement in theorem 3.8.2 which will be used to construct an actual

pre-logical predicate from behavioural equivalence.

Theorem 5.1.8 � ' ' � + + � ! � ��
� � ' ' � + + ��� implies � ' ' � + + � ! � ��
� � ' ' � + + ��� . �

PROOF Let �
 � � � � �
 � � � � � � � � � � (be the total bijective relation which exists

by � ' ' � + + � ! � ��
� � ' ' � + + ��� . By applying theorem 3.8.2, we obtain the least binary pre-

logical relation � � � �
 � � � � � � for

�
along � ' ' � + + � ! � � ' ' � + + ��� such that ��
 � � � � �

� � � � � � � � � � (� � � � � � � � (holds for each � � ����� . Totality of � � comes from this

property. So we show bijectivity of � � . Let �	�
 � � � � ����
 � � � � � �
 � � � � � ��
 � � � and

assume � � � � �	� � � � (and � � � � ��� � � � (. By definition of � � , for each . � + � � , there exists

an
�����

-context
� * , well-formed term

� * ��� �'*
 � , � *
 � 	� � and � �*
 � 	� � such

that
� 	 � * � � * � � �* (� ��* � � ' ' ��* + + � ! � * and � * � � ' ' ��* + + ��� � �* hold. From the definition of

behavioural equivalence, � � � ��� if and only if � � � � � . Thus � � � is bijective.

We summarise the above theorems.

Corollary 5.1.9 Let � be a regular category such that �� has fibred small coproducts,
�

be a typed binding signature and � ' ' � + + � ! � � ' ' � + + ��� be categorical interpretations of
�

satisfying the semantic substitution lemma. Then we have the following equivalence:

� ' ' � + + � ! � ��
� � ' ' � + + ��� � � � ' ' � + + � ! � ��
� � ' ' � + + ��� #

We postpone an application of this characterisation theorem to section 5.4.

5.2 Indistinguishability Relations

We introduce an equivalence of values called indistinguishability based on their be-

haviour rather than their denotation. We regard two values in a model as “behaviourally”

112 Chapter 5. Behavioural Equivalence and Indistinguishability

indistinguishable if they are interchangeable in any program. This is shown by per-

forming a set of experiments; we fit one value into a program yielding a visible result,

and see whether any difference is detected when we exchange that value with the other.

If two values pass the above experiment over all possible programs, then we say that

they are indistinguishable. This identification of values is more suitable to provide an

abstract aspect of specifications. We express this idea in the internal logic of fibrations.

In this section we fix a typed binding signature
� � � � ��� (, a category � with finite

limits and a categorical interpretation � ' ' � + + � of
�

. We assume that ��
 ��� � � � (� �
has fibred small products, fibred small coproducts, simple products, simple coproducts

and quotient types. Thus �� supports � ��� � � � � �
� � � � � ��� � � � .

Definition 5.2.1 We define the
�����

-reachability predicate
� � ��� ��� � by the least

pre-logical extension of � � � � � ��� ��� � � � by theorem 3.8.2, where ��
 ����� � � �
is the inclusion and � is the truth functor (see proposition 2.4.4). Explicitly, for each

type � � � , the predicate ��
 � �&����� � � � (� is defined as follows:

� � � � ("� � �
� � � ������� � � � � � ���

� �
 � 	 � # � � � ' ' �!+ + � �

Definition 5.2.2 An observation for a type � � � is a well-formed term
� � �
 ���

�
 � where � � ����� is a type and
�

is an
�����

-context such that � �� ��� � � � (. �

Definition 5.2.3 For a categorical interpretation � ' ' � + + � of
�

satisfying the semantic

substitution lemma, we define indistinguishability relation ��
 � � � �
 � � �
	 � � � � � (
for each type � � � by the following formula:

� � � ��(� � � � � � (� � �
� � � � � � � �

� �
 � 	 � # � ' ' � + + � � � � � (� � � � � ��
� � ' ' � + + � � � � � (� �

� � � �� #

This specifies a predicate 	 � � �
 � � � � . �

The indistinguishability relation is defined on each categorical interpretation � ' ' � + + � of
�

. To show this dependency, we write the suffix of the interpretation of types used in

the categorical interpretation of
�

.

Theorem 5.2.4 The indistinguishability relation 	 � � �
 � � � � is pre-logical for

�
along � ' ' � + + � � � ' ' � + + � . Furthermore, 	 � is a PER for each type � � � . �

5.2. Indistinguishability Relations 113

PROOF Let
� � �
 � be a well-formed term where

� �"� � �
 ��� � ����� ��� ��
 � �
(without loss of generality we assume that

� � ,
 ����� ,
 � �), ��*
 � ��* � � *
 � ��*
(+ , .$, 0) and assume � * 	 �� � * for + , . , 0 . We show � ' ' �!+ + � � �	� � ����� � ��� (�
� ' ' �!+ + � � � � � ����� � � �(.

We first show � � � � (� ' ' � + + � � �	� � ����� � ��� (. For each + , . , 0 , � * 	 �� � * implies
� � � � * (��* , that is, there exists a well-formed term

� * ��� ��*$
	��* and � *$
 � 	 � * such

that ��* � � ' ' �'* + + � � * . Since � ' ' � + + � satisfies the semantic substitution lemma, we have

� ' ' �!+ + � � � ' ' � ��+ + � � � � ����� � � ' ' � ��+ + ��� � (
� � ' ' � ' ���) � � � ����� � ���*) � � + + + � � � � � ����� � � �(� ! �	�	�	� � � %�

Therefore we have � � � � (� ' ' �!+ + � � �	� � ����� � ��� (. We can similarly show that
� � � � (� ' ' �!+ + � � � � � ����� � � � (holds.

Let
� � ��
�&� �
 � be an observation and �
 � 	 � . We show

� ' ' � + + � � � � � ' ' �!+ + � � �	� � ����� � ��� ((� � � � � ��
� � ' ' � + + � � � � � ' ' � + + � � � � � ����� � � � ((� �

� � � �� #

First we have

� ' ' � + + � � � � � ' ' �!+ + � � �	� � ����� � ���((� � � � � ��
� � ' ' � + + � � � � � ' ' � ' � ��) � � � ����� � �'�*) � � + + + � � �	� � � � � ����� � � � (� � ! � "! � � � � �	�	�	� � � %� (� � � � � ��
� � ' ' � ' � ' � �,) � � � ����� � ���*) � � +)�� + + + � � � � �	� � � � � ����� � � � (� � � � ! � "! � � � � �	�	�	� � � %�

Since �	� 	 "!� � � , the above is equal to

� ' ' � ' � ' � �,) � � � ����� � �'�*) � �,+)�� + + + � � � � � � � � � � ����� � � �(� �
� � ! � ! � � � � �	�	�	� � � %�

and by the same discussion

� ' ' � ' � ' � �) � � � ����� � ���) � � +)�� + + + � � � � � � (� �
� � � ��

� � ' ' � + + � � � � � ' ' � + + � � � � � ��� � ����� � ��� ((� �
� � � �� #

By applying the same argument to � � � ����� � ��� , we can swap all � * to � * . Therefore we

have

� ' ' � + + � � � � � ' ' �!+ + � � �	� � ����� � ��� ((� � � � � ��
� � ' ' � + + � � � � � ' ' � + + � � � � � ����� � � � ((� �

� � � �� #

From the definition, it is easy to see that 	 � is a PER for each � � � . �

114 Chapter 5. Behavioural Equivalence and Indistinguishability

Proposition 5.2.5 For each type � � ����� , we have

��
 � � � �
 � � � � 	 �
� � � � � � (5.1)

��
 � � � �
 � � � � � � � � 	 �
� � # (5.2)

�
PROOF Let � � ����� be a type and ��
 � � and �
 � � .

(5.1) Assume � 	 �
� � . From the definition of � 	 �

� � , for each observation
� ���

� � �
 � , we have � �
 � 	 � # � ' ' � + + � � � � � (� � � � � ��
� � ' ' � + + � � � � � (� � � � � �� . In particu-

lar, this holds when
� � 	

and � � �
. Thus we have � ' ' � + + � � � (� � � �

� � ' ' � + + � � � (.
(5.2) It is sufficient to show that � 	 �

� � for any �
 � � . This holds since any

value ��
 � � is
�����

-reachable, that is, � � � ' ' � + + � � � (. �

Corollary 5.2.6 � � 	 � (� � � � � is a pre-logical predicate for
�

along � ' ' � + + � (see

definition 2.5.3 for the notation � � 	 � (). �

PROOF We show that for any well-formed term
� � � �
� and �
 � 	 � , � � � 	 � (� (�

implies � � 	 � (� ' ' �!+ + � � . First � � � 	 � (� (� implies that 	
	
�
� � � � � (. Since 	 � is pre-

logical, we have � ' ' � + + � � 	 � � ' ' �!+ + � � , that is, � � 	 � (� ' ' �!+ + � � . �

Definition 5.2.7 The quotient model � ' ' � + + � � � � of � ' ' � + + � by the indistinguishability

relation 	 � � �
 � � � � consists of:

$ the interpretation of types ' 	 � + defined by

' 	 � + � � ' 	 � +

for each type � � � , and

$ the interpretation of terms � ' ' � + + � � � � defined by

� � ' ' � + + � � � � (� � � ' � ' ' � + + � + ��� �
 ' 	 � + 	 � � ' 	 � + � � � ��� �
��(

where
� �
 ' 	 � + 	 � � ' 	 	� � + is an isomorphism (see lemma 2.5.7). �

Proposition 5.2.8 � ' ' � + + � � ��
� � ' ' � + + � � � � # �

5.3. Factorisability 115

PROOF Let � � � be a type. First we have a subset projection � � � � � � �
 � 	 � � � � �
and a canonical quotient map � � � � � � �
 � 	 � � � ' 	 � + in � . Thus

� � � � � � � � � � � � � � � �
� 	 � � � � � � ' 	 � + is a monomorphism and specifies a subobject for each type � � � .

Therefore we have a predicate � 	 � � � �
 � � ' 	 � + � . We next show that this is pre-

logical for
�

along � ' ' � + + � � � ' ' � + + � � � � .
From corollary 5.2.6 and theorem 3.6.8, we have a morphism �
 � � � �

� � � � � in
� �

such that � �����
�
� � � � ' ' � + + � . That is, for a well-formed term

� � � �
	� , we

have the following morphism in
��� � � � (:

� ��� � � � � (
 � � 	 � (� � � � 	 � ("�

such that �� � � � � � � � � ((� � ' ' �!+ + � . Below we fix a well-formed term
� � � �
� .

The subset type functor
� �
 ��� � � � (� � is a right adjoint to � (definition

2.4.22). Hence it preserves limits, and has the canonical isomorphism in � :

� �
 � 	 � � 	 ��� � � � 	 � (� � � � � 	 � (� #

These morphisms make the following diagram commute in � :

� 	 � � 	 � � � � � � ��� // � �

� 	 � � 	 �
OO

 �
OO

� �
//

 �

��

�
� � 	 � (�

OO
��� ��� � � � � OO

�
� ��� � � � �

��

� � � � � � � � � � � // � 	 � � �
OO
� � ��� � � �OO

�
� ��� � � �

��' 	 � + 	 � � �
// ' 	 	� � + � � � � � � ��� � // ' 	 � + �

where � � and � � are shorthand for the morphisms � � � ��� � �"�* � � � � � � � � � � ! * � and

� � � ��� � �"�* � � � � � � � � � � ! * � respectively. This implies that there exists a morphism in
��� � � � (

from � 	 � � 	 � to � 	 � � � above � ' ' �!+ + � � � ' ' �!+ + � � � � for any well-formed term � . Thus
� 	 � � is pre-logical. �

5.3 Factorisability

We have seen two approaches to obtain abstract models of specifications. The first

involves behavioural equivalence, whereby the models of a specification are taken to be

116 Chapter 5. Behavioural Equivalence and Indistinguishability

all those models that are behaviourally equivalent to models which satisfy the axioms

of the specification. The second involves indistinguishability, where equality in axioms

is taken to refer to indistinguishability rather than identity. Both of them naturally arise

from the motivation of reasoning about specification from a behavioural point of view.

We are interested in considering their relationship. The key idea is the notion of

factorisability [BHW95]. We go back to the traditional theory of many-sorted alge-

bras. Let
 be a many-sorted signature. We write
��� � �
 (for the collection of

 -algebras. We suppose that there exists an equivalence relation � over
��� � �
 (and

a
 -congruence 	 � for each � � ��� � �
 (. We say that � is left-factorisable by
	 if the existence of a
 -isomorphism �) 	 � � � �) 	 � implies � � � . The con-

verse of left-factorisability is called right-factorisablity. When � is both left and right

factorisable by 	 , we simply say that � is factorisable by 	 .

In example 5.4 of [BHW95], Bidoit, Hennicker and Wirsing show that behavioural

equivalence � ��
� is factorisable by indistinguishability. In this section, we show this

factorisability result in the context of simply typed formal systems and their categorical

models. To do so, we replace the semantics of the traditional many-sorted algebras by

categorical semantics and use internal logic to establish factorisability. We fix a typed

binding signature
� � � � ��� (, a set

����� � � of observable types, a category �
with finite limits such that �� supports � ��� � � � � �

� � ��� � ��� � � � and categorical

interpretations � ' ' � + + � ! and � ' ' � + + ��� for
�

satisfying the semantic substitution lemma.

First we prove left-factorisabilty. This is rather easy to prove, thanks to the char-

acterisation of behavioural equivalence and composability of pre-logical relations. In

the following formulation of left-factorisability, we replace isomorphism with a pre-

logical total bijective relation.

Theorem 5.3.1 Suppose there exists a pre-logical total bijective relation
� � � ' 	 � ! + � ' 	 ��� + � for

�
along � ' ' � + + � � � ! � � � ' ' � + + � � � � � . Then � ' ' � + + � ! � ��
� � ' ' � + + ��� . �

PROOF The existence of the above
�

implies that � ' ' � + + � � � ! � � ��
� � ' ' � + + � � � � � . Thus

from proposition 5.2.8 we have:

� ' ' � + + � ! � ��
� � ' ' � + + � � � ! � � ��
� � ' ' � + + � � � � � � ��
� � ' ' � + + ��� #

5.3. Factorisability 117

Theorem 5.3.2 Suppose � ' ' � + + � ! � ��
� � ' ' � + + ��� . Then there is a pre-logical total bi-

jective relation
� � �

 ' 	 � ! + � ' 	 ��� + � for
�

along � ' ' � + + � � � ! � � � ' ' � + + � � � � � . �

PROOF The proof takes few steps. First we define the following program equivalence

between terms having observable inputs:

Definition 5.3.3 Let
��� �

be
�����

-contexts, � � ����� ,
� � � � �'� � �
 � be well-

formed terms and �
 � 	� � . We write � ' ' � + + � ! � � � � � � � � � �
 � if for any

�
 � 	� � , we have � ' ' �!+ + � ! � � � � (� �
�

� ! � � ' ' � + + � ! � � � � (� �
�

� ! . �

From the assumption and theorem 5.1.8, there exists a pre-logical relation
�

between

� and � such that
� � is a total bijective relation for each � � ����� . Then we show a

couple of lemmas;

Lemma 5.3.4 Let
�

be an
�����

-context and assume
� 	 � � � � � � (. Then for any

�����
-

context
�

, � � ����� and well-formed terms
� � � � � � � �
 � , we have

� ' ' � + + � ! � � � � � � � � � �
 � � � � ' ' � + + ��� � � � � � � � � � � �
 � #

PROOF We prove
� � ; the converse is by symmetry. Let � �
 � 	� � . We have a unique

�
 � 	� � such that
� 	 � � � � � � (since

� � is total bijective for each type � � ����� . From

the basic lemma we have

� � � � ' ' �!+ + � ! � � � � (�!�
�

� ! � � ' ' � + + ��� � � � � � � (� �
�

� � (
� � � � ' ' � + + � ! � � � � (� �

�
� ! � � ' ' � + + ��� � � � � � � (� �

�
��� (#

Now we assumed that � ' ' �!+ + � ! � � � � (� �
�

� ! � � ' ' � + + � ! � � � � (�!�
�

� ! . Since
� � is total bijec-

tive, we have � ' ' �!+ + � � � � � � � � (� � ���� � � ' ' � + + � � � � � � � � (� �
�

��� . �

Lemma 5.3.5 Let
�

be an
�����

-context, � � � and
� � � � ���
 � be well-formed

terms.

1. Let �
 � 	� � . Then � ' ' � + + � ! � 	 � ! � ' ' � + + � ! � if and only if for any
�����

-context�
, � � ����� and observation

� � �
�� � ���
 � for type � , we have � ' ' � + + � ! � �� � � � � �(' �)�� + � � ' �)�� +
 � .

118 Chapter 5. Behavioural Equivalence and Indistinguishability

2. Let �
 � 	� � � � �
 � 	� � and assume
� 	 � � � � � � (. Then � ' ' � + + � ! � 	 � ! � ' ' � + + � ! � if

and only if � ' ' � + + ���� � 	 ��� � ' ' � + + ��� � � . �

PROOF 1. From the semantic substitution lemma, for any context
�

and �
 � 	� � ,

we have

� ' ' � ' �)�� + + + � ! � � � � (�!�
�

� ! � � ' ' �!+ + � ! � � � � ' ' � + + � ! � (� �
� � � �� !

� ' ' � ' �)�� + + + � ! � � � � (�!�
�

� ! � � ' ' �!+ + � ! � � � � ' ' � + + � � � (� �
� � � ����

Then for any �
 � 	� � , � ' ' � ' �)�� + + + � ! � � � � (� �
�

� ! � � ' ' � ' �)�� + + + � � � � (� �
�

� ! if and

only if � ' ' �!+ + � � � � ' ' � + + � ! � (� �
� � � �� ! � � ' ' �!+ +"� � � � ' ' � + + � (� � � � � �� ! , which implies the

lemma.

2. We use lemma 5.3.4 and the above lemma.

� ' ' � + + � ! � 	 � ! � ' ' � + + � ! �
� � � �
 ����� -context

� ��� ��
�&��� �
 � #
� ' ' � + + � ! � � � � � � � � ' �)�� + � � ' �)�� +
 �

� � � �
 ����� -context
� ��� ��
�&��� �
 � #

� ' ' � + + � � � � � � � � � � � ' �)�� + � �(' �)�� +
 �
� � � ' ' � + + � � � � 	 � � � ' ' � + + � ! � � # �

We return to the proof of right factorisability. We define a relation ��
 ' 	 � ! + � �
 ' 	 ��� + �
� � � � � (as follows:

� � � � � (� �
� � � ��� � � � � �� � ���

� �
 � 	� � � � �
 � 	� � #
� 	 � � � � � � (-� � � ' � ' ' �!+ + � ! � + � �

� ' � ' ' �!+ + ����� � +

From lemma 5.3.5(2),
�

is a bijective relation.

We next show that
� is a total relation for each � � � . Let ��
 ' 	 � ! + . By definition

2.5.3, there exists
�
 � � such that � � ' � + and � � 	 � ! (� , which is equivalent to � � � � (�

from indistinguishability. Thus there exists an
�����

-context
�

, �
 � 	� � and a well-

formed term
� ��� �
 � such that

� � � ' ' � + + � ! � . Since
� 	 �

is total, there exists

5.4. Standard Satisfaction and Behavioural Satisfaction of Higher-Order Logic119

� �
 � 	� � such that
� 	 � � � � � � (. By definition,

� � � � ' � ' ' �!+ + ���� � + (. We have shown that
��
 ' 	 � ! + � � � ��� �
 ' 	 � ! + # � � � � � (; the other direction can be shown similarly.

It is easy to see that
�

is a pre-logical total bijective relation. �

5.4 Standard Satisfaction and Behavioural Satis-

faction of Higher-Order Logic

We consider a higher-order logic to reason about a many-sorted algebra, then introduce

two models of the logic. One is the standard model, which is a natural interpretation

of the logic, and the other is the behavioural model, which reasons about a given

many-sorted algebra up to some pre-logical PER over the algebra. The behavioural

model arose in the study of the logic for specifications taking behaviour into account

[BHW95, HS96].

Intuitively speaking, to reason about an algebra up to some equivalence relation is

equivalent to reasoning about its quotient algebra. The goal of this section is to prove

this formally; we show that the standard model over the quotient algebra of an algebra

by a pre-logical PER over it is elementary equivalent to the behavioural model. The key

to prove this result is to show that these two models are behaviourally equivalent with

respect to the type of propositions; then elementary equivalence follows immediately.

The same idea has already appeared in section 4.5.

We do not claim that this is a completely new result; the original work goes back

to [BHW95] for the first-order case, and a similar result is shown in [HS96] for a

different form of higher-order logic. Instead, we emphasise that elementary equiva-

lence between models of a logic can be captured by behavioural equivalence between

them with respect to the type of proposition, thus the proof is reduced to finding an

observational pre-logical relation between them.

5.4.1 Syntax

The higher-order logic considered in this section is the fairly standard one over a first-

order signature
 � � � � ��� � (. The syntax of the higher-order logic can be formalised

120 Chapter 5. Behavioural Equivalence and Indistinguishability

in the framework of simply typed formal systems—in fact it is a simply typed lambda

calculus over
 extended with constants for logical connectives.

Definition 5.4.1 A higher-order logic to reason about
 has the following set of types

and raw terms:

�

 � � ��� � � ��� �
�

 � � ��� � ��� � ����� � �'� (� � � # � ��� � ��� � � ��� � � #

where � � ranges over � � and � ranges over
� � . The type system of the higher-order

logic has the following rules.
� � � (� �
� � ��
�

� �����
��� � ����� � � � ����
��� � � � � and has an arity ��� � ����� � ��� � �
� ����� ��� � ����� � ���(�
�

� � ��
�&���
� �� � � � # �
� � � �
� ���
 ��� � � � � �
 �� ��� �
� �

� � �
� � � �
�� ��� � �
 �
� ���
 � � � �
 �� ��� � �
 �

The above rules fit within the scheme of simply typed formal systems, thus can be

described by a typed binding signature. The corresponding typed binding signature
� �

-hol for this higher-order logic is defined by
� �

-hol
� � � � -hol

��� �
-hol
(:

� � -hol
�

����� � � � � � ��� (
� �

-hol
� � � � � � � � � �� � � � �� � � ����� �� � � � � ��� �� � � � � ��� � � � #

where � and � � range over � � -hol. We may omit types of constants in superscripts if

they are obvious from the context. The constants � ��� are used as infix operators. �

In the following discussion, we are mainly interested in the semantics of the logic

— thus we omit proof systems for the higher-order logic and its soundness and com-

pleteness in this thesis. For details see [Hen50]. Lambda abstraction plus logical

constants � and
�

are powerful enough to derive other familiar logical constants such

as
� � � � ��� ��� � � ��� � � ��� � �� and quantifiers � ��
 � # � and ���
 � # � [And86]. We call a

(possibly open) term of type
�

formula and a closed formula sentence.

5.4. Standard Satisfaction and Behavioural Satisfaction of Higher-Order Logic121

5.4.2 Standard Satisfaction and Behavioural Satisfaction

We introduce an interpretation of the higher-order logic in
���	��

. Below we fix a many-

sorted
 -algebra � in
���	��

. The standard model interprets the type of propositions
�

as the two-point set
� � � � � � � � , arrow types as function spaces, and the equality

predicate at type � as the characteristic function of the identity relation over the carrier

set of type � .

Definition 5.4.2 1. We extend the carrier sets
�
 � � � ���	��

of the many-sorted

 -algebra � to the interpretation of types
�
 � � -hol �

���	��

by induction:

� � � �
� � � � � � � � � � � � � (

� � � � � � (� � � � � � � #

In the third line, � on the left is an arrow type, while � on the right is a function

space.

2. We give a
� �

-hol-algebra structure � � over the presheaf � � in
� �

by specifying a

morphism � �� in ' � � � ��� ��
 + for each operator � � � �
-hol (variables are interpreted

by projections; c.f. example 3.4.4):

� � �� (� � � � ����� � �(� ��� � � � ����� � � � ��� � � � (
� � �� ��� � � � � � � � � � (� � (� � ��� � 	 � # � � � � � # � � � � � � � � (
� � ������ � � � � � � � � � (� � � � (� � � � � �
� � � � � � � � (� � � � (� � � � � � �
� � �� (� � � � (� . � � � � �

where . �
 � � � � �
is defined by

. � � � � � (� � � � � � � � � � � � �
� � � (#

We write � � ' ' � + +
 � � � -hol � � � for the interpretation of terms obtained by

initiality. We say that a sentence � is satisfiable (written � � � �) if � � ' ' � + + �
� � ' ' � � � � + + � � � . �

122 Chapter 5. Behavioural Equivalence and Indistinguishability

The other model is the behavioural model with respect to the indistinguishability

relation over � . The standard model is not appropriate when we reason about programs

up to their behaviour, since the equality predicate may distinguish two terms hav-

ing different denotations even though they have the same behaviour. The behavioural

model solves this problem by interpreting each type � as � 	 � where 	 is the exten-

sion of indistinguishability relation to all types using exponentiation, with the equality

predicate over � as the equivalence relation 	 over � 	�� .
For the sake of generality, in the following definition of the behavioural model, we

replace the indistinguishability relation with arbitrary pre-logical PER � for
 along

� ' ' � + + � � ' ' � + + (that is, a partial congruence for �).

We write
��� � for the category

��� � � �����
	 (and �
 ��� � � ��� ��

for the fibra-

tion � 	 � � ��
 in definition 2.5.3.

Definition 5.4.3 1. Let � � �
 ����� � be a pre-logical PER for
 along � ' ' � + + �

� ' ' � + + . This specifies an interpretation of types �
 � � � ��� � . We extend �
to the interpretation of types �
 � � -hol �

��� � by induction:

� � � � � � � ��� (
� � � � � � � � � � � � ��(

� � � � � � (� � � �� � � � #

In the third line, � on the left is an arrow type, while �� on the right is an

exponentiation in
��� � (see proposition 2.5.5).

We note that � � � � (� � � .

2. We define a function
� � �
 � � � � � � �

by

� � � � � � � (� � � � � � � � � (� � � #

We see the following facts hold in
��� � :

���
 � ��� �� ����� �� � � � � � � (5.3)
� � �
 � � �� � � � � �

(5.4)

. � �
 � � �� � � � � �
(5.5)

5.4. Standard Satisfaction and Behavioural Satisfaction of Higher-Order Logic123

where � � � � is an operator of arity � � � ����� � ��� � � . (5.3) is equivalent to that
��� � ���
 � ��� �� ����� �� � � � � � � holds in

��� � � ��� ��
 (. The latter is true, since

� � � � � for each ��� � � and ��� � � ' ' ��� � � � ����� � � �(+ + and � is pre-logical for

 along � ' ' � + + � � ' ' � + + . (5.4) follows from the transitivity of � � . (5.5) is clear.

We give a
� �

-hol-algebra structure over the presheaf �
�

in
� �

by specifying a

morphism � �� in ' � � � ���	��
 + for each operator � � � �
-hol (variables are interpreted

by projections; c.f. example 3.4.4):

� � �� (� � � � ����� � �(� ��� � � � ����� � � � � � � � � (
� � �� ��� � � � � � � � � � (� � (� � ��� � 	 � # � � � � � # � � � � � � � � (
� � ������ � � � � � � � � � (� � � � (� � � � � �
� � � � � � � � (� � � � (� � � � � � � �
� � �� (� � � � (� . � � � � � #

We write �
�� ' ' � + +
 � ��� -hol � �

�

for the interpretation of terms obtained by ini-

tiality. We say that a sentence � is behaviourally satisfiable (written by � � � � �
) if

�
�� ' ' � + + � � �� ' ' � � � � + + � � � . �

5.4.3 Equivalence of Standard Satisfaction and Behavioural

Satisfaction

For a pre-logical PER � for
 along � ' ' � + + � � ' ' � + + , we consider the quotient algebra

�) � defined as follows:
� � ' � + � �� � � � � � � � � � ��� � (

where for each operator � of arity � � � ����� � ��� � � , ��� � � is defined by:

��� � �
� ' ���-+ ��� "! �	�	�	� � % #

with the canonical isomorphism
� "! �	�	�	� � �%
 ' � + 	 � ��� � ����� � ��� (� ' � 	 � ��� � ����� � ��� (+ (see

lemma 2.5.7). Intuitively, reasoning about � modulo the PER � is equivalent to rea-

soning about �) � . The main result formulates this intuition. We show that the stan-

dard satisfaction �) � is equivalent to behavioural satisfaction over � with respect to

� .

124 Chapter 5. Behavioural Equivalence and Indistinguishability

Theorem 5.4.4 For any sentence � , we have

�) � � � � � � � � � � � #

PROOF Our primary goal is to show the following behavioural equivalence with re-

spect to
��� :

� � �� ' ' � + + � � � � � � � � � � � ' ' � + + (5.6)

where
� �
 � � � 	 � � � �

	 � � is the canonical natural isomorphism (see lemma 2.5.7).

Suppose (5.6) is proved. It is easy to see that for any sentence � and � , we have

� � �� ' ' � + + � � ��� � � � �� ' ' � + + � � ��� � � �
�� ' ' � + + � � �� ' ' � + + #

Then for a sentence � , we have

�) � � � � � � � � � � ' ' � + + � � � � � ' ' � � � � + +
� � � � �� ' ' � + + � � ��� � � � �� ' ' � � � � + + � � ��� � from behavioural equivalence (
� � �

�� ' ' � + + � � �� ' ' � � � � + +
� � � � � � � #

Thus we aim to prove (5.6). From the characterisation theorem of behavioural

equivalence (theorem 5.1.7), it is sufficient to show

� � �� ' ' � + + � � � � � � � � � � � ' ' � + + #

We give the observational pre-logical relation in question by the following graph rela-

tion � 	 � :

� 	 � � � � � � � (� � � � � ' � + � �
� � � (

of a function , which is defined together with .
 � � � � � ' � + � so that they satisfy
 � . � � � � � � (in other words, . and gives a witness of ' � + � being a retract of
� � � �). Below we see the detail of the proof.

By .
 ��� �
 we mean .
 � � � and
 � � �
are functions such that

 � . � � � � . A simple calculation shows that

.
 ��� �
 � . �
 � � � � �
 ��
� � � � # . � � � (
 � � � � � � � � �
 � � � # � � � � . (# (5.7)

5.4. Standard Satisfaction and Behavioural Satisfaction of Higher-Order Logic125

Definition 5.4.5 We define a � � -hol-indexed family of functions .
 ' � + � � � � � �

satisfying

� ��� ' � + � # . ��� � � � � (5.8)

� � � � � (� � � # � � � (5.9)

� ��� � � � � # � . � � (� � (� � � (5.10)

by induction on types.

$ Case � � � � . We have ' � + � � ' � + � and � � � � � � � � � . We define � � ' � + �
and . � to be some element in � (we use the axiom of choice). The functions

. � satisfy (5.8),(5.9) and (5.10).

$ Case
�

. We have ' � + � � � � ' � + � . We define . � � � � � ��� . The functions

. � � � satisfy (5.8),(5.9) and (5.10).

$ Case � � � � . We define

. � � � . � � �
 � � � � � � � . #

From (5.7), we have

. �� ��
 ' � +"� � � � � (� � � � � � � � � ���
 � #� #

We check that for any
 � ' � +"� � � � � (, we have . �� �� � � � �� � � � .

Let � � � � (� � � . From (5.9), we have � � � . Therefore � . �� �� (� �
� . �� � (� � � � � � � . Thus . �� � � � � �� � � � holds. This also proves (5.8), that

is, . � �
 ' � + � � � � � (� � � � � � � � � (.
We show (5.9). Let � � � (%� � � � � � � (and � � ' � + � . We have . � � � � � �
from (5.8). Therefore � � . � (� � � . � ((�� � � � . From (5.9), we obtain �� �� �
 #� � � . � ((� �� � � � . � ((� �� �� .

We check (5.8). Let

 � � � � ��� � � (and � � � � (� � � . We show

� . �� � �� � � . � � ((((� � (� � ��� #

126 Chapter 5. Behavioural Equivalence and Indistinguishability

From (5.10), we have � . � � (� � (� � � by IH. Thus we have � . � � (� � (� � �
by transitivity. From the assumption on

, we have � � . � � ((� � (� � � � .

From (5.10), we have � . � � � � � . � � ((((� � . � � (((�� � � � . Therefore by

transitivity, we obtain � . � � � � � . � � ((((� � (� � � � . �
We write � 	 � � � � ��� 	�(�� � � (� 	 for the graph relation of . Clearly � 	 � � � � � � ' � + � is a binary relation and � 	 � is total bijective 2.

Lemma 5.4.6 The binary relation � 	 � �
 � � � � ' � + � is pre-logical for

� �
-hol along

� � �

� ' ' � + + � � � � � � � � ' ' � + + . �
PROOF We show for each binding operator � � � �

-hol of arity � �� ��� � � � (� ����� � � �� � � � � � (�
� and well-formed terms

����� ��� ���*
� * �����
-hol

��*
 � * � + , . , 0 (,
� � �

� ' ' ��* + + � � � � � � � � � ' ' ��* + +
 � 		 � � � �� ��*�(� � 	 � * � + , . , 0 (
implies

� � �

� ' ' ���
� �� !� # ��� � ����� � � �� �%� # ���(+ + � � � � � � � � � ' ' ��� � �� !� # ��� � ����� � � �� �%� # ��� (+ +
 � 		 � � � 	 � #

We note that for any well-formed term
� � � �

-hol

�
� ,

� � �

� ' ' � + + � � � � � � � � � ' ' � + +
 � 		 � � � 	 �
is equivalent to

 � � � �

� ' ' � + + � � � � � � � � � ' ' � + + � �
where � � � � ����� �����* � � � � � ! � * � � .
$ Case � � � � �� � � � �� � . Let

��� �
 �-��� �
-hol

�
 � � be a well-formed term. We

assume
� � �

� ' ' � + + � � � � �� � � � � � ' ' � + +
 � 		 � � � � (� � 	 ��� #
For any � � � � � 	 � and # � � � � � , we have

 �� �� � � � �

� ' ' � � # � + + � � � � � (# � � �� �� � � �

� ' ' � � # � + + � ((#
� �� � � � �

� ' ' � � # � + + � (� . #�((
� �� � � �

� ' ' � + + � �
� � �

� � � � � . #�((� � � � � ' ' � + + � � � � �

� � � � � � #�(� � � � � � ' ' � � # � + +"� � � ((# #
2 ��� ' is also total bijective for each type '������ , but we do not use this fact in this proof.

5.4. Standard Satisfaction and Behavioural Satisfaction of Higher-Order Logic127

This implies that � � �

� ' ' � � # � + + � � � � � � � � � ' ' � � # � + +
 � 		 � � � 	 � � � � � (.
$ Case � ��� �� �� � � �� . It suffices to show

� � � � � � � (� �
 � 	 � � � � � (� � 	 � � � 	 ��� �

which is equivalent to

 �� ��� � � � � � � � #�(((� � �� �� (� #�(

where
� �
 � � � � � � � � (� � � � � � � � � � � � � (�� � � is the canonical iso-

morphism. Let
 � � � � � � � � (� and # � � � � � . By definition, we have

� �� � (� # (� � � � . � � # (. From (5.10), we have � � . � � #�((� #�(�
� � � , and from (5.9), we obtain � � � . � � #�(((� � � # (� � ��� � � � � � � � #�((.
$ Case � � � � of arity ��� � ����� � ��� � � . It suffices to show

� ��� � � � "! �	�	�	� � �% � ' ��� + ��� "! �	�	�	� � �%
 � 	 ��� � ����� � � 	 � � � � 	 � #

Let
� * � � � ��*#� for + , . , 0 . We have

 � � ��� � � � ! �	�	�	� � % � � � � ����� � � �(� ' ��� � � � � ����� ��� � (+ � � ' ���-+ � � ! �	�	�	� � % �#' � � + � ! � ����� � ' � �,+ � % (� ' ���-+ � � ! �	�	�	� � % � ! � � � ����� � �% � � (#

$ Case
� �� � � and � ��� � � � . This case can be proved in the same way as the

previous case. �

Corollary 5.4.7 � � �

� ' ' � + + � � � � � � � � � � � ' ' � + + . �

PROOF By definition, � 	 � is total bijective. Thus � 	 is an observational pre-logical

relation. �

From theorem 5.1.7, (5.6) holds. The rest of proof is already discussed in the begin-

ning. �

128 Chapter 5. Behavioural Equivalence and Indistinguishability

One would like to generalise this result further by replacing
���	��

with a “
��� ��

-like”

category, i.e. a topos [MM92]. This is more natural setting, because topoi provide

a natural class of models for higher-order logic. This direction is also suggested in

[HS96]. There seems no technical difficulty in redoing the above proof in a topos

admitting the axiom of choice (which was used to construct . for � � � �). However

we do not know if the axiom of choice is essential in showing (5.6).

5.5 Conclusion

We have extended the study of the relationship between behavioural equivalence and

indistinguishability [BHW95, HS96] to simply typed formal systems. We charac-

terised behavioural equivalence between two typed formal systems by the existence

of a observational pre-logical relations, and showed that behavioural equivalence is

factorised by indistinguishability.

We applied this characterisation theorem to show that two models of a higher-order

logic for reasoning about a many-sorted algebra are elementary equivalent. The key ob-

servation is that elementary equivalence is a consequence of behavioural equivalence.

Thus we actually constructed an observational pre-logical relation between models of

a higher-order logic.

Related Work

The work by Bidoit, Hennicker and Wirsing [BHW95] established the key idea of fac-

torisability for relating behavioural equivalence and the indistinguishability relation,

and they used this to reason about the semantics of behavioural and abstractor spec-

ifications. In [BH96], Bidoit and Hennicker discussed a proof method for showing

behavioural equivalence in first order logic, and considered finitary axiomatisation of

behavioural equality. Hofmann and Sannella represented the indistinguishability rela-

tion and the “experiments” for behavioural equivalence in a higher-order logic, then

showed that the satisfiability of the experiments coincides in each model when quo-

tients of the two models are isomorphic [HS96].

5.5. Conclusion 129

In [BT96], Bidoit and Tarlecki gave a relationship between behavioural satisfac-

tion, behavioural equivalence, indistinguishability and correspondences in concrete

categories (a category which has a faithful functor to the category of (type-indexed)

sets) satisfying certain properties. The main difference is that the semantics category

in our framework need not be a concrete category. On the other hand, we examined the

structure necessary for formulating behavioural equivalence and establishing charac-

terisation results. The formal relationship between these two approaches is not clear.

Chapter 6

An Application of Pre-Logical

Predicates to Data Refinement

Data refinement is an activity of constructing high-level, user-oriented data structures

and accompanying operators by combining existing data structures provided by some

basic libraries and programming constructs. We say such a data refinement is correct

if the high-level data structures constructed over any implementation of the low-level

data structures conform to the specification of the high-level data structures.

We explain the idea of data refinement with the following analogy. Suppose there is

a library which provides a data type for files with flexible, useful operators on files. The

library is written in the C language and uses the UNIX environment, and realises the

data type for files and operators by means of the data types and system calls provided

by the C language and the UNIX environment. This library corresponds to a data

refinement, and the correctness of this data refinement corresponds to the fact that

the library compiled on any C language compiler and operating system providing the

environment shows the same expected behaviour to users.

Typically the target of a data refinement is abstract data types. The characteris-

tic property of abstract data types is that programmers can not know anything about

their internal representation, but can only create and inspect these values by means of

the accompanying operators. The opposite of abstract data types is observable types;

programmers can inspect their internal representation and check their equality.

131

132 Chapter 6. An Application of Pre-Logical Predicates to Data Refinement

This classification of types restricts programmers’ knowledge about a program-

ming environment to the values and programs over observable types. The behavioural

equivalence introduced in the previous chapter can be regarded as the equivalence be-

tween programming environments up to programmers’ knowledge.

Under this restricted knowledge, programmers may accept some implementations

which do not strictly conform to a specification, because they still show the same be-

haviour as an implementation conforming to a specification. Such an implementation

should be accepted as a possible realisation of the original specification.

The style of data refinement we consider in this chapter reflects this idea, but we

use observational pre-logical relations instead of behavioural equivalence. As we have

seen in chapter 5, the existence of the former relation implies the latter. The closure of

binary pre-logical relations under relational composition is then used to show that data

refinements compose.

6.1 Specification for Typed Formal Systems

We first clarify the notion of specification over typed formal systems. In the world of

algebraic specification, a specification � � over a many-sorted signature
 is a set of

formulae of some logic which describes desirable properties of the data types and rel-

evant operators defined by
 . Such a specification stands for the collection of all of its

possible realising
 -algebras. This is the so-called loose semantics of the specification.

Concretely speaking, the semantics of a
 -specification � � is given by the following

collection of all
 -algebras in which each formula in the specification is satisfied:

��� � � � � (� � � � � is a
 -algebra
� � � � � � # � � ��� #

In this thesis, to avoid a discussion of the logic for specifications and its semantics,

we just take what specifications stand for as the definition of specification.

Definition 6.1.1 A specification over a typed binding signature
�

in a Cartesian cate-

gory � is a collection of categorical interpretations of
�

in � . �

The followings are typical examples of specifications.

6.1. Specification for Typed Formal Systems 133

Definition 6.1.2 Let
�

be a typed binding signature and � be a Cartesian category.

1. We define the specification � � � � over
�

in � by the following collection of

categorical interpretations of
�

in � :

� ' ' � + + � � � � � � � � � � � � � � � � � (� ��� ��� � � � (# � ' ' � + + � � ��� � � �
� � ' ' � + + � satisfies the semantic substitution lemma #

2. An equational axiom over
�

is a tuple � ��� � � � � � (such that
� � � �
 � and� ��� �
� are well-formed terms. We write

� � � � � �
 � for such a tuple.

An equational specification � � � � � � � (in � given by a set of equational axioms

� over
�

is the collection of categorical interpretations of
�

in � such that for

each axiom
� ��� � � �
 � � � ,

� ' ' �!+ + � � � ' ' � + + �
holds.

When the category � is clear from the context, we simply write � � and � � � � � (
instead of � � � � and � � � � � � � (. �

Example 6.1.3 Let
 � � � � ��� � (be a typed first-order signature. We write
 - � ���
to

denote the collection of many-sorted
 -algebras in the traditional sense (see section

4.1). We show that � � characterises the class of many-sorted
 -algebras: that is, there

exists an isomorphism
� �

 - � ��� � � � � #

The function
� � sends a many-sorted
 -algebra � to its standard interpretation (see

section 4.1). It is easy to see that the standard interpretation satisfies the conditions

defining � � . The function
� �� sends an interpretation

��� ��
 ' ' � + + � � � � of
 to the

following many-sorted
 -algebra � :

� � � � � � �� � � � � ��� � � � � (
where for each operator � � � � of arity ��� � ����� � ��� � � , ��� is defined by

��� � ���	��
 ' ' ��� � � � ����� � � �(+ + �
 � ��� � ����� � � ��� � � � #

134 Chapter 6. An Application of Pre-Logical Predicates to Data Refinement

It is easy to see that
� �� � � � � � � � - ����� , so we show that

� � � � �� � � � � � .

Let
���	��
 ' ' � + + � � � � . We write � for the many-sorted
 -algebra

� �� � ���	��
 ' ' � + + � (as

defined above. We show by induction that the standard interpretation � ' ' � + + is equal to
���	��
 ' ' � + + � .

$ Case
� ��� �
 � . We have � ' ' � + + � ��� � � � � ���	��
 ' ' � + + � .

$ Case
� ��� ��� ��� � ����� � ���(
� where � � � � is an operator of arity � � � ����� � ��� �

� . We have

� ' ' ��� ��� � ����� � ��� (+ +
� ��� � � ' ' ��� + + � ����� � � ' ' ��� + + �
� ��� ��
 ' ' ��� � � � ����� � � �(+ + � � ���	��
 ' ' ��� + + � � ����� � ���	��
 ' ' ����+ + � �
� ��� ��
 ' ' ��� � � � ����� � ���(+ + � #

We used the semantic substitution lemma to derive the last line. Thus
� � � � �

� � � � is proved. �

Example 6.1.4 Recall that a combinatory algebra
�

is a many-sorted
 � � -algebra

satisfying the following equations (type annotations are omitted):

��� $ � � $ � �
� �

��� $ � � $ � � $ � � � �&$
�
� $
�
� � $ � � (#

where � � �
���

ranges over the carrier sets of appropriate types (see section 4.1).

The above two equations can equivalently be rewritten as the following two condi-

tions:

1. for all well-formed terms

� �� �� � �� �� ������� � $ � � $ � ��$ � � � � � �-$ � � (-$�� � ��$ � � (�
� � �

where
� �� �� � �� �� � � � ��
� � � � � � � � � � �$
� � � � � � �
� , we have

� ' ' � $ � � $ � ��$ � � + + � � ' ' � � � $ � � ($ � � ��$ � � (+ +

and

6.1. Specification for Typed Formal Systems 135

2. for all well-formed terms

� �� �� ������� � $ � �-$ � � � � ��
�

where
� �� ��
� � � ��
� � � �
� � , we have

� ' ' � $ � �-$ � �#+ + � � ' ' � � + + #

Furthermore, by using the function
� �����/

 � � � � �
��� defined in the previous

example, the above two conditions can be rephrased as

� ���	� � � (� � � �
��� � � � � (

where � � � is the following equational axiom over
 � � :

� � � � ��� �� � � � �� ������� � $ � �-$ � ��$ � � � � � �-$ � � (-$ � � � $ � � (
 � � � (�
� � � � � � � � � ����� � ��� (

� ��� �� ��� ������� � $ � � $ � � � � �
� � � � � � � ����� � ��� (�

Conversely, let
���	��
 ' ' � + + � � � ���	� �	� � ����� � � � � (be an interpretation of
 � � . This

means that
� ���	� � � �� ��� � ���	��
 ' ' � + + � ((� � � ���	� � � � � (. Therefore

� �� �	� � ���	��
 ' ' � + + � (is a

combinatory algebra. To summarise, the collection � � of combinatory algebras can

be characterised by the following isomorphism:

� ���	�&
 � � � � � ���	� � � � ����� � � � � (#

Example 6.1.5 We consider a specification over
� �

in
���	��

. A typical equational

axioms over
�

-terms is � -equality, which is an equivalence relation over the set of

well-formed lambda terms generated by the following schemes:

� � � � � � � � � �
� � � � � � � �

� � � �
� � # � � � � � # � � � � # � (� � � � ' �&)�� +

A natural specification over the lambda terms in
���	��

is then given as follows:

� � � � � � � �)� ��� ��� � �
����� � � � (#

136 Chapter 6. An Application of Pre-Logical Predicates to Data Refinement

6.2 Translation Between Simply Typed Formal Sys-

tems

Next we formulate the activity of implementing data types in a typed formal system in

terms of another typed formal system. This is given by a pair of a type translation and

a term translation which respects the type translation.

Let � and � � be two sets of types and �
 � � � � be a function. We extend � to a

functor ���
 � � � � � � in an obvious way. We then define a functor � � �
 � � � � � �

by
� � � � � � � ��� � � (. This preserves limits and colimits in

� � � . We note that

� � � � � � � � � .

Definition 6.2.1 A translation � � � � (from
� � � � ��� (to

� � � � � � ��� � ((we write
� � � � (
 � � � �) is a pair such that �
 � � � � is a function which translates types in �
to those in � � , and

�
 � � � � � � � � is a morphism in
���

which translates well-formed

terms of
�

to those of
� � . In other words, for each � -context

� � � � �
���� � ����� � ���

� � and type � ,

�
��� � � sends a well-formed term

�	�
 ��� � ����� � ����
� ����� �
�

to
�	�
 � � ��� (� ����� � ����
 � � ���)(���� � � � � � � � � (
 � � � (#

We define the composition of two translations � � � � (
 � � � � and � � � � � � (
 � � �
� � � by

� � � � � � (� � � � � (� � � � � � � � � � � � (� � (#
A translation � � � � (
 � � � � induces a mapping of categorical interpretations of

� �
to those of

�
. Let � ' ' � + + � be an interpretation of

� � in � . We have a new interpretation

of
�

given by the composition of the following morphisms:

� � � // � � � � �
� � � � ��� 	 � // � � � � � � � � �

We write � ' ' � � � (+ + � � � for this composite.

Example 6.2.2 We consider the traditional example of implementing the data type

for finite sets of elements by lists of elements. This implementation is an example

6.2. Translation Between Simply Typed Formal Systems 137

of translation from the signature of finite sets of elements to the signature of lists of

elements. The idea behind this implementation is to express a finite set by the list

which contains each element of the set regardless of duplication and order. In the

following we fix the finite set of elements � .

We first define the following basic signature
�� � ��� � � ��� � ��� ��� � � ��� (for truth values

and elements:

��� � ��� � ��� � ��� �
	 � 	 ��
� � � ��� � � � � � � ��� �
� � � ��� � ��� � � ����� � � ��� � � � ��� � ���� � � � � � � � � � � � ��� � � ��� � � � � � � �& #

This signature provides primitive data types (
� � ��� for truth values and

�
for elements)

and operators on them. We regard these data types as observable, that is, programmers

can directly compare their representations.

The typed first-order signature
�� � �
� � ��� � �

��� � � � (for finite sets of elements extends

�� � ��� as follows:

��� � �
� ��� � ��� � � � 	 �

� � � �
� � � � ��� � � 	 � �

� � � � � � � � � � � � � � � � � (� � � � � � � � � � � � � � � � (� � � � � � � � � � � ��� #

These operators are for the empty set, creating a singleton set, taking the union of two

sets and the membership predicate.

The typed binding signature for lists
� � � � � � � � � � � � ��� � � � � (extends
�� � ��� as follows:

� � � � � � ��� � ��� � ��	 � 	 � 	
� � � � � � � � � ��� � � �� � � � � � � �
� � � �� � � � � � � �� � � � � � � � � #

where � ranges over � � . The first two operators are familiar constructors for lists. The

third operator is the iterator of lists, which involves variable bindings in the second

position. In the framework of many-sorted algebras, the iterator on lists is usually

not available unless we do some kind of trick, such as extending the language with

higher-order types and combinators.

We give a translation � �� � �
� � � � �"(�

�� � � �

� � � � � . First the types in
�� � � are translated

to those in
� � � � � by the following ��� � � :

��� � �
� � � �������� � � � 	 � %� 	 � 	 � 	 #

138 Chapter 6. An Application of Pre-Logical Predicates to Data Refinement

This reflects the idea that the abstract data type for finite sets of elements is realised by

lists of elements. This implementation does not touch the data types for truth values

and elements.

Next, we specify a
�� � � -algebra structure � over � � � � ��� � ��� � � to obtain a mor-

phism
� � � �
 � � ����� � � � � � ��� � ��� � � in

� �
by initiality. Since

� � � � � is an extension

of
�� � ��� , � � � � ��� already has a
�� � ��� -algebra structure. Therefore for each operator
� of arity ��� � ����� � � � � � which is only included in
�� � � , we specify a morphism

� �
 �
�* � � � � � ��� � ��������� � � (� ��� � � � � * ((� � � � � ��� � ���	�
��� � � (� ��� � � � ��((in ' � � � ���	��
 + as follows

(type annotations are omitted):

�
� � �� �

� � �
� � � # � � � � � � �� � (

� �
� � � � � � (# � � � � � � � � � � � # � � � � � � � ((� � (

� �
� � � � � � (# � � � � � � � � � � � # � � � � � � � � � (� � ((� � (#

From this, � � � � ��� � ��� � � is equipped with a
�� � � -algebra structure. Concretely speaking,
� � � �
 � � �
��� � � � � � ��� � ��� � � is the following recursively defined function (in the following

type annotations for
� � � � are omitted for readability):

� � � � � � (
� � � � �

� � � � ��� � ���
� ����� � ��� ((� � � � � � � � ��� (

� ����� � � � � � � �'� ((� � � � � � ��� has arity ��� � ����� � ��� � ��(
� � � � �

	 (� �� �
� � � � �
� � (� � � � � � � � � � � (� �� � (

� � � � � � � ��(� � � � � � � � � � � � (� � � � � # � � � � � � � ((� � � � � � ��((
� � � � � � � ��(

� � � � � � � � � � � � # � � � � � � � � � � � � (� � (� � ((� � � � � ����((

From straightforward induction, for well-formed terms
� � � �
��� ��*�
 ��* � + , . , 0 (

and �	�
 ��� � ����� � ���
 � � ��� �
��� �
 � , this term translation satisfies the following

property:

� � � � � � (' � � � ��� ��� (#)��
� � ! �� � ����� � � � � � � ��� ()��

� � �%"�� + � � � � � � � ' ����)�� !�
� ����� � ���*)�� %� + (# �

6.3. Pre-Logical Data Refinement 139

Example 6.2.3 We have seen in section 4.2 that choosing a compilation method of

lambda abstraction using combinators equips � ���	� with a
���

-algebra structure, and

initiality yields a morphism � � (� �
 � ��� � � ���	� in
� �

. Therefore � � � 	�
� � ����� � � � (
� � (

��� �
 � � is a translation. �

6.3 Pre-Logical Data Refinement

We introduce the concept of pre-logical data refinement for typed formal systems. This

is a direct generalisation of [HLST00].

Definition 6.3.1 Let � � and � � � be specifications over
�

and
� � in a Cartesian cate-

gory � respectively. A translation � � � � (
 � � � � is a pre-logical data refinement from

� � to � � � with respect to
�����

if for any � ' ' � + + � � � � � , there exists � ' ' � + + � � � �
such that � ' ' � + + � � ��
� � ' ' � � � (+ + � � � . We sometimes write such a pre-logical refinement

in the following compact notation:

� �
� � � � �
��
� // � � �

In this definition, observational pre-logical relations play a role of giving a witness

for behavioural equivalence. From theorem 5.1.7, the existence of an observational

pre-logical relation implies

� ' ' � + + � � ��
� � ' ' � � � (+ + � � � #

This means that the realisation of
�

over � ' ' � + + � � � � � via translation � � � � (con-

forms to the specification � � up to behavioural equivalence, as we discussed in the

introduction of this chapter.

Example 6.3.2 We introduce specifications � � � � � and � � � � � � over
�� � � and
� � � � � re-

spectively, then show that the translation � � � � �
� � � � � (in example 6.2.2 is a pre-logical

data refinement from � � � � � to � � � � � � with respect to
��� � ��� � 	 � 	 �� :

� � � � �
� � �
��� � � �
��� �� � � ����� � � � � �

// � � � � � �

140 Chapter 6. An Application of Pre-Logical Predicates to Data Refinement

First, we give a specification � � � � ��� over
�� � ��� . This specification allows only

one concrete implementation of
�� � ��� , which is the standard semantics of � � ��� ��� in the

following many-sorted
�� � ��� -algebra � (type annotations are omitted):

� � � � ��� (� � � � � � � � � � 	 � 	 � (� �
� � � � � � � � � � � � � � �

�
� � � � � (�

��� �	� � � � (� � � � � � � � � � �
� � � �

�� � � � � � (� � � � � � � � #

We define � � � � ��� by the following singleton collection:

� � � � ��� � � � ' ' � + + #

Next we give a specification � � � � � � over
� � � � � . This specification also allows only

one concrete implementation of lists of elements by finite sequence of elements. In the

following, we denote the inclusion of terms by . � � � �
 � � ��� ��� � � � � � ��� (which is induced

by the signature inclusion
�� � ��� � � � � � � �).

��� ��
 ' ' � + + � � � � � � � � � ���	��
 ' ' � + + � � � � � � ���
� ���	��
 ' ' � + + � � . � � � � � � � � � ���
� � � 	 � 	 � 	 (� � 	
� ���	��
 ' ' �� � + + � � �

� ���	��
 ' ' � � � � � � � � � (+ + � � � � � (� � � � concatenation (
� ���	��
 ' ' � � � � � � � � � � � � # � (� �� � (+ + � � � � �� � (� �
� ���	��
 ' ' � � � � � � � � � � � � # � (� � � � � � � � � � ((+ + � � � � � � � � �� � (�

���	��
 ' ' � ' � �) � � � ��) � + + + � � � � # � �� � (
where # � ��� ��
 ' ' � � � � � � � � � � � � # � (� � ��(+ + � � � ����� �� � (

We give a specification � � � � � over
�� � � . We first define a set of the equational

6.3. Pre-Logical Data Refinement 141

axioms over
�� � � :

� � � �
� � ��
 	 � 	 � ��� ����� � � 	 � �
 � � ��� �

�
 	 � 	 � � �
 	 � 	 � ��� �
��� � � � � � � (� � � � �
 � � ��� �
�
 	 � 	 � � ��
 � 	 � � �
 � 	 � ��� �
��� � � � � � � ��� � � (� � ��� � � � (
 � � ���
�
 � 	 � ��� ����� � � 	 � ��
 � 	 �
�
 � 	 � ��� ����� � � � � ��
 � 	 �
�
 � 	 � � �
 � 	 � ��� �
��� � � �

�
� � �
 � 	 �

�
 � 	 � � �
 � 	 � ���
 � 	 � ��� �
��� � � � � (� � � � � � � � � (
 � 	 � #

We then define � � � � � by:

� � � � �
� � � �
��� � � � � �
��� � � � � �"(#

Like example 6.1.4, this specification is isomorphic to the class of many-sorted
 � � �
algebras satisfying equational axioms in � � � � .

We show that the transformation � �� � �
� � � � � (in example 6.2.2 is a pre-logical data

refinement from � � � � � to � � � � � � with respect to
��� � ��� � 	 � 	 �� .

We first define an equivalence relation 	 over � 	 by

� 	 � � � � � � � # � occurs in � � � �
occurs in � #

This equivalence relation identifies two list representations of sets when they contain

the same elements regardless of order and number of occurrences.

We then define a many-sorted
�� � � algebra
� � � � � � �� � ����� � � ��� � ��� �
��� (by

� � � 	 � (� �) 	 � � � 	 � 	 � (� � � � � � � ��� (� � � � � � �
� � � � � � � �
�� � ��� (
	 � � ' � + � � � � � � ' � + �
' � +
� � � ' � + � � ' � � + �

������' � + � � � � � � � occurs in � #

The well-definedness of ��� is clear by the definition of 	 . We check the well-definedness

142 Chapter 6. An Application of Pre-Logical Predicates to Data Refinement

of � � . Suppose � 	-� � and � 	 � � . Then

� � � occurs in � � � � � � occurs in � (� � � occurs in � (
� � � � occurs in � � (� � � occurs in � � (
� � �

occurs in � � � � #

Therefore � � 	 � � � � . The standard semantics
� ' ' � + + is included in the specification

� � � � � . We leave this to the exercise to the readers.

Let
���	��
 ' ' � + + � � � � � � � � . We establish an observational pre-logical relation between

���	��
 ' ' � � � � � � (+ + � � � �
��� and
� ' ' � + + . We define a relation

� � �
 � � ��� � �

� � � by

� � � 	 � (� � � � � � (� � 	 � �) 	 � � ��� � � � 	 � 	 � (� � � � � � � � � ��� (� � � � � � � � � � #

It is observational by definition of
� �

and
� � � ��� . We show that

�
is pre-logical for

�� � � along
���	��
 ' ' � � � ��� � (+ + � � �	�
��� �

� ' ' � + + .
In example 6.2.2, we checked that

� � � � � � (' � � � � � � � (#)��
�	�
��� � ! �� � ����� � � � � � � ���(#)��

�	�
��� � %��� + � � � � � � � ' ����)��� "!�
� ����� � �'�*)�� �%� + (#

This implies that for
���	��
 ' ' � + + � � � � � � � � , ���	��
 ' ' � � � � � � (+ + � � � ����� satisfies:

1.
���	��
 ' ' � � � � � � (+ + � � �	�
���

� ���	��
 ' ' � � �
��� � � + + � � ��� � � � and

2. the semantic substitution lemma, because

��� ��
 ' ' � � � ��� � (+ + � � � ����� � � ��� ����� ����� ��� ��� ����	��
 ' ' � � � � ����(+ + � � � �
��� �� � ���	��
 ' ' � � � � � � (+ + � � � ����� ����� ��� � ����	��
 ' ' � � � � ����(+ + � � (
� ��� � �� ��� ��
 ' ' � � � ��� � (' ����� ����� ����� � �� � � � � ��()��

� �
��� � � + + + �
� ��� ��
 ' ' � � � ��� �('

� ��� ��&)�� + (+ + � #

Thus
���	��
 ' ' � � � ��� � (+ + � � �	�
��� � � � �
��� , and from example 6.1.3 we have a many-sorted

�� � � -algebra � such that
���	��
 ' ' � � � ��� � (+ + � � �	�
���

� � ' ' � + + . As we have seen in section 4.1,

a pre-logical predicate for typed first-order signatures along the standard semantics (in

this context the standard semantics of the product algebra � � �
) are just subalgebras.

Thus it is sufficient to show that the following holds:

6.3. Pre-Logical Data Refinement 143

1. � ���	��
 ' ' � � � � �
	 (+ + � � � �
��� � � ' ' 	 + + (� � � 	 � ,

2. for any � � � ' � + � (� � � 	 � and � �
� ' � + � (� � � 	 � ,

� ���	��
 ' ' � � � � � � � � � � (+ + � � ������� � � � � (� � ' ' � � � � �#+ + �#' � + � � ' � + � ((� � � 	 � �

3. for any � � � and � �
� ' � + � (� � � 	 � ,

���	��
 ' ' � � � � � � � � � ��(+ + � � �	�
��� � �
�

� (� � ' ' � � � � ��+ + � � � ' � + � (�

4. for any � � � ,

� ��� ��
 ' ' � � � � �
� � � (+ + � � �	�
��� � � (� � ' ' � � � + +"� � ((� � � 	 � #

1 and 4 are clear. 2 and 3 follow from the fact that

��� ��
 ' ' � � � ��� � � � � ��(+ + � � � �
��� � � � � � (� ��� �
��� ��
 ' ' � � � ��� � � � � ��(+ + � � � ����� � �

��� (� � � � � � occurs in
� # �

Example 6.3.3 We show that the translation � � � 	�
� � ����� � � � (
� � (
 ��� �
 � � in ex-

ample 6.2.3 is a pre-logical data refinement from � �	� to � ���	� � � � �
��� � � � � (with

respect to � .

Recall that the specification � ����� � � � ����� � � � � (is isomorphic to the class of

combinatory algebras � � (see example 6.1.4). Thus we take a combinatory algebra
�

and consider its standard interpretation
� ' ' � + + of
 � � . We show that there exists an

interpretation
���	��
 ' ' � + + � of

���
in � � � such that

���	��
 ' ' � + + � � � � ' ' � � (
� � + + #

We note that
� ' ' � � (
� � + + �� � � � in general; when

�
is the term combinatory al-

gebra
� � (see section 4.2),

� � # � � � # � (� � � �
� # � but

� �,' ' � � # � � � # � (� + + �
' � � � � ��� � ((� ��� � (+ � �� ' ��� � + � � � ��' ' � � # � + + .

We construct an interpretation by the extensional collapse of
�

, taking the quotient

of the carrier set
� � for each type � � ����� � ��� (by the logical PER

�
constructed

144 Chapter 6. An Application of Pre-Logical Predicates to Data Refinement

over the identity relations for base types. Formally,
�

is a ����� � � � (-indexed family

of relations
� � �

 ��� � � defined by induction on types:

� 	 � � � � �� � � � ��� (� � � � � (��� � � ��� � � ((� � � � � � � (� � � # � $ � � � $ � (� � ��� #

It is routine to show that
�

is a pre-logical PER for
� �

along
� ' ' � � (
� � + + � � ' ' � � (
� � + +

(see e.g. exercise 4.5.6, [AC98]). For an element � � � � � � , we write ' � + � for the

equivalence class of � by
�

. That
�

is pre-logical implies that the following is a

well-defined function for each well-formed term
� � ��� �
� :

' � ' ' � � � + + + � �#' �	� + � � ����� � ' ��� + �	(� ' � ' ' � � � + +"� �	� � ����� � ���(+ � #

Thus we take �#' � + � ' � ' ' � � (
� � + + + � (for the interpretation of
� �

in question.

We show that ' � ' ' � � (
� � + + + � � � � � , that is, for each well-formed term � �
 ��� � ����� � ����

� ������� � � � � �$
 � , � � � � � � implies

� � �	� � � � (� � ��� � ����� � � ��� � � �(� � � � # � � ' ' � � ��(
� � + + �� � � � ' ' ��� ��(� � + + �� � (� � � #

We show this by induction on the derivation of � � � � � � . Let � �	� � � � (� � ��� � ����� � � ��� � � �(�� � � . The interesting cases are the following.

$ � � � � � # � � � � � � � # � and � � � � � � is derived by the following rule:

� � � �
� � # � � � � � # �

In combinatory logic, the following holds for any � � � � � :

� ' ' � � � + + � �� � � � � (� � � ' ' � � � # � (� � + + �� � (-$ � �

(see [Bar84]). Therefore from IH, we have

� � � � � � � (� � � # � � ' ' � � � + + � �� � � � � (� � ' ' � � � + +"� �� � � � � (� � ���
� � � � � � � � � (� � � # � � ' ' � � � # � (
� � + + �� �!$ � � � � ' ' � � � # ��(� � + + �� � $ � � (� � ���
� � � � ' ' � � � # � (
� � + + �� � � � ' ' � � � # ��(
� � + + �� � (� � � � � � � (#

6.4. Stability and Composition of Data Refinement 145

$ � � � � � � # � (� � � � � � ' �&)�� + and � � � � � � is derived by the following

axiom:
� � � # � (� � � �(' �&)�� +

This is clear since the weak equivalence always validates � � � � # � (��(� � � �

� � ' �&)�� + (� � . Therefore � � ' ' � � � � # � (��(� � + + �� � � � ' ' � � ' �&)�� + (
� � + + �� � (� � .

We show ' � ' ' � � (
� � + + + � � � � ' ' � � (� � + + . We give a witnessing observational pre-

logical relation � � ' � + � � � as a witness as follows:

� � � � � ��� 	�(� ' � ��+ � � � ����	�� � #

First � 	 is a total bijective relation for each 	 � � , as
� 	 is the identity relation over� 	 . Next we show that � satisfies the basic lemma. Let
� � � � �
� be a well-formed

term and � � � � � ����� ��� �(� � 	�� � ����� � 	 � ((� � 	 � . By definition of � , we have ' 	 * + � � � *
for + , . , 0 . Thus

�#' � ' ' � � (
� � + + + � � ' 	 � + � � ����� � ' 	 �,+ � (� � ' ' � � (� � + + ��	 � � ����� � 	 �((
� �#' � ' ' � � (
� � + +"� 	�� � ����� � 	 � (+ � � � ' ' � � (� � + + ��	 � � ����� � 	 �((� � � # �

6.4 Stability and Composition of Data Refinement

It is natural to expect that data refinements compose, that is, for two data refinements:

� �
� � � � �
��
� // � � � � � � � � � � � �����
� � // �

� � �

we would expect that the composition of the above translation yields a pre-logical data

refinement:

� �
� � � � � � � � � � � � �
��
� // � � � � #

To show this, it is sufficient to know that binary pre-logical relations are preserved by

translations. Schoett called this sufficient condition stability [Sch85, Sch90].

We impose a constraint on the sets of observable types: the translation never maps

observable types in the source specification to abstract types in the target specification.

146 Chapter 6. An Application of Pre-Logical Predicates to Data Refinement

Proposition 6.4.1 Let � � � � (be a translation from
� � � � ��� (to

� � � � � � ��� � (. Let
����� � � � ����� � � � � be sets of observable types and assume that � � � (� ����� � holds

for each � � ����� .

Then for any categorical interpretations � ' ' � + + � and � ' ' � + + � of
� � in a Cartesian

category � ,

� ' ' � + + � � ��
� � � ' ' � + + �

implies

� ' ' � � � (+ + � � � � ��
� � ' ' � � � (+ + � � � #

PROOF From theorem 3.6.8, the existence of an observational pre-logical relation, say�
, is equivalent to the existence of a morphism � making the following diagram in

� � �
commute:

�
�

� � 	 �
��

� � �

� 44iiiiiiiiiiiiiiiiiiiiii

�
� � � � ��� � � � � � � 	 	

// � � � �
�

The functor � � � sends this triangle to the following one in
� �

. The term translation

morphism
�
 � � � � � � � � is also added into the diagram.

�
� � �

� � 	 �
��

� � �
// � � � � �

� 	 � 44hhhhhhhhhhhhhhhhhhhhhh

�
� � � � ��� 	 � � � � � � � 	 	 � 	

// � � � � � �
� � �

This implies that
� � � � �

 � � � � � � � � is a binary pre-logical relation for
�

along
� � ' ' � � � (+ + � � � (� � � ' ' � � � (+ + � � � (. The assumption on � immediately implies that this bi-

nary pre-logical relation is total bijective for each � � ����� . Hence � ' ' � � � (+ + � � � � ��
�
� ' ' � � � (+ + � � � . �

Theorem 6.4.2 Let � � � � � � � � � � � be specifications of typed binding signatures
� �

� � ��� (��� � � � � � ��� � (��� � � � � � � � ��� � � (respectively. Suppose we have pre-logical data

refinements

� �
� � � � �
��
� // � � � � � � � � � � � �����
� � // �

� � �

6.5. Related Work 147

such that for any � � ����� , � � � (�� ����� � holds. Then we have the following pre-

logical data refinement:

� �
� � � � � � � � � � � � �
��
� // � � � � #

PROOF Let � ' ' � + + � � � � � � . Since � � � � � � (and � � � � (are pre-logical data refinements,

there exists interpretations � ' ' � + + � ! � � � � and � ' ' � + + � � � � � such that

� ' ' � + + � ! � ��
� � � ' ' � � � � (+ + � � � � (6.1)

� ' ' � + + � � � ��
� � ' ' � � � (+ + � ! � � #

We apply proposition 6.4.1 to equation 6.1 and obtain:

� ' ' � � � (+ + � ! � � � ��
� � ' ' � � � � (� � ��� � (+ + � � � � � � #

Since � ��
� is a transitive relation, we have

� ' ' � + + � � � ��
� � ' ' � � � � (� � � � � (+ + � � � � � � #

Hence � � � � � � (� � � � � (is a pre-logical data refinement from � � to � � � � with respect to
�����

.

6.5 Related Work

The study of data refinement emerged in the 1970s. The pioneering work of this

area is [Hoa72], where Hoare used “abstraction function” to relate abstract represen-

tations and concrete representations of data types. Later, Schoett and others noticed

that functions are not enough, and a certain kind of relations are more appropriate

([Sho83, Sch85, Nip86]; c.f. [Mil71]). Schoett considered such relations, called cor-

respondences, in partial algebras. When we restrict our attention to ordinary many-

sorted algebras, a correspondences is just an observational pre-logical relation between

the standard semantics of many-sorted algebras (see section 4.1). In this sense our

generalisation is a natural extension of correspondences. A similar approach is taken

in the simply typed lambda calculus to show the representation independence result

[Mit86, Ten94].

148 Chapter 6. An Application of Pre-Logical Predicates to Data Refinement

In the field of algebraic specifications, data refinements are decomposed into two

concepts: constructors on models (translations in this chapter is an example of con-

structors) and behavioural equivalence. In [ST88], Sannella and Tarlecki formulated

data refinements in this way, and called them abstractor implementations or behavioural

implementations. In this formulation, Schoett’s stability is a crucial property for data

refinements to compose. Another approach to achieve data abstraction, which is not

covered in this thesis, is to take the quotient of an interpretation by the indistinguisha-

bility relation. This approach is compared to the former one in [BHW95].

The concept of abstractor implementation is applied to data refinement in the sim-

ply typed lambda calculus. Honsell et al. considered data refinement for the simply

typed lambda calculus and its Henkin models in [HLST00], where they used binary

pre-logical relations instead of binary logical relations as in [Ten94]. The material of

this chapter is a direct adaptation of their work to simply typed formal systems and

their categorical models. This thesis combines their idea and our generalisation to

discuss pre-logical refinements in a wider context.

6.6 Conclusion

We have seen an application of binary pre-logical relations to data refinement. Pre-

logical relations are used to give witnesses for behavioural equivalence, which is the

key to achieving data abstraction. This idea is explained with two examples, one being

the classical example of a refinement of the abstract data type of finite sets of ele-

ments by means of lists of elements. The second is to represent the lambda calculus

by combinatory algebras through lambda-to-CL translations. In both cases type sys-

tems involving data refinements have variable bindings; iterators on lists in the former

case and lambda abstraction in the latter case involve variable bindings. This is not

covered in the traditional algebraic framework. We then showed that pre-logical data

refinements are closed under composition.

Chapter 7

Conclusions

A generalisation of pre-logical predicates and their applications have been presented.

Pre-logical predicates are reformulated in a categorical setting as a syntactic charac-

terisation of the basic lemma. Our generalisation is strictly wider than the original

formulation of pre-logical predicates [HS02] in the following sense:

1. The system is extended to simply typed formal systems, which includes the sim-

ply typed lambda calculus with various type constructors, many-sorted algebras

and first-order logics.

2. The semantics is extended to categorical interpretations, which subsume set-

theoretic interpretations of the lambda calculus.

To give a systematic explanation of our generalisation, we used the semantics of typed

formal systems in a presheaf category and the characterisation of the well-formed terms

as an initial algebra. Two desirable properties are preserved: one is the equivalence

with the basic lemma and the other is the composability of binary pre-logical relations.

To test this generalisation, we have instantiated it to various type systems. In the

case of many-sorted algebras, pre-logical predicates for the standard interpretations

coincide with subalgebras. We then compared pre-logical predicates for combinatory

algebras and the simply typed lambda calculus. In first-order logic, a well-known

condition called Tarski’s criterion turns out to be an essential condition of the inclusion

relation to be pre-logical.

149

150 Chapter 7. Conclusions

Pre-logical relations are then applied to characterise behavioural equivalence. We

show that the indistinguishability relation is a pre-logical partial equivalence relation,

and factorisability[BHW95] holds in this generalised setting. We then applied our

generalisation of pre-logical relations and the characterisation result of behavioural

equivalence to formulate data refinement in simply typed formal systems. By compos-

ability plus stability of observational pre-logical relations, pre-logical refinements are

closed under composition. We showed two examples of pre-logical refinements: one

is a traditional refinement of sets of alphabets by means of lists of alphabets, and the

other is a refinement of lambda calculus by means of combinatory algebras.

7.1 Future Directions

7.1.1 Beyond Simply Typed Formal Systems

So far we have seen pre-logical predicates for simply typed formal systems, whose

contexts are modeled by finite products.

One direction of extending our work is to consider type systems with more elabo-

rate structures, such as type dependency [ML75, Hof97], type variables and polymor-

phism [Gir72, Rey83], linear contexts [Gir87], etc.

Pre-logical predicates are the syntactic characterisation of the notion of submodels.

This is the right principle to derive pre-logical predicates for extended type systems

with preserving the equivalence to the basic lemma. To establish a formal statement of

this equivalence, it is desirable to have an initial algebra semantics for extended type

systems; here we used a presheaf category to obtain such a semantics. For the system

with linear contexts and bindings, see [Tan00].

The closure under composition of binary pre-logical relations for extended type

systems is not obvious. The author obtained a counterexample of the closure property

for Leiss’s notion of pre-logical predicates for System
���

, which is a weaker calculus

than
� �

(this example is in appendix A). This suggests that the problem arises due to

relations between types, rather than impredicativity. The same problem exists in
� �

too, as indicated by Leiss in [Lei01]. Leiss pointed out that binary pre-logical relations

for
� �

are closed under relational composition if relations between types are restricted

7.1. Future Directions 151

to functional relations. Our counterexample in appendix A violates this restriction. We

do not know if this restriction can be relaxed.

One interesting question is whether it is possible to formulate the concept of para-

metricity [MR92] using binary pre-logical relations instead of binary logical relations.

This question was addressed in [HKS03]. This is a potential application to resolving

the problem of expressing data refinement involving higher-order constants in the logic

of parametricity [Han01].

7.1.2 Applications of Pre-Logical Refinements

Applications to Program Transformations

A potential application of pre-logical refinements is the verification of program trans-

formations.

The aim of program transformations is to remove redundant computations and in-

termediate data structures by analysing and rewriting input programs [BD77, Wad90,

GLJ93]. An example of program transformation is deforestation [Wad90]. Defor-

estation is an algorithm which takes a program of the form
 � � � � ((and generates

an equivalent program
� � � (which does not construct the intermediate data structure

passed from � to

. We say such a transformation is correct if running a program with-

out transformation and with transformation show the same behaviour (we do not want

to use any optimiser which changes behaviour of programs).

One may notice that program transformation and data refinement are very similar.

Indeed, both are activities to implement a language via translations of types and terms

to another language 1. Their correctness is that the implemented language environment

shows the same behaviour as the ideal language environment.

However, there are two reasons why the traditional algebraic framework for data

refinement is not directly applicable to the field of program transformations. First,

program transformations concentrate on programs which have a particular shape (like
 � � � � ((for deforestation) and perform detailed analysis, while language translations

considered in the algebraic framework are modeled by signature morphisms or derived

1Of course there are cases in which the source and target of a translation are the same language.

152 Chapter 7. Conclusions

signature morphisms, which merely replace each operator in the source signature with

an operator or a term of the target signature. They induce a transformation between

languages, but do not perform any detailed analysis. Second, the target language of

program transformations usually involves variable bindings, which are missing in the

algebraic framework.

These two gaps naturally disappear in the framework of pre-logical refinements in

chapter 6. First, we discussed the most general form of translations between languages,

which are just mappings of well-formed terms respecting types. Program transfor-

mations are thus subsumed by translations. Second, our framework of simply typed

formal systems covers any languages with variable bindings.

Using the concept of behavioural equivalence, we could prove the correctness of

program transformations with respect to behaviour. This viewpoint is emerging for

the verification of program transformations [Nie00, Nis03], and we believe that pre-

logical refinements provide a bridge between the world of algebraic specifications and

the world of program transformations.

Applications to Process Calculi

Process calculi such as CCS and pi-calculus fit within the framework of simply typed

formal systems. This suggests another potential application area of pre-logical refine-

ments. When we regard process calculi as a foundation of programming languages,

it is natural to extend them with abstract data types and operators that satisfy specifi-

cations. Spi-calculus [AG99] is an example of such an extension; it is a pi-calculus

extended with encryption and decryption operators satisfying certain equations. We

can then think of implementing these operators with other basic operators and dis-

cuss the correctness of the implementation. We believe that pre-logical refinements

provides a right framework to discuss such a correctness.

Appendix A

A Counterexample of

Composability of Pre-logical

Relations in
���

A.1 Introduction

Pre-logical relations were first proposed by Honsell and Sannella [HS02], and are a

generalised notion of logical relations. In [HS02] various characterisation of pre-

logical relations are studied. They showed that pre-logical binary relations between

models of the lambda calculus are composable.

In [Lei01], Leiss extended the notion of pre-logical relations to system
� �

, the

omega-order polymorphic lambda calculus. He pointed out that pre-logical binary

relations between models of system
� �

are not composable, although the concrete

situation was not explained very well in [Lei01].

The aim of this appendix is to give a concrete counterexample of composability in

a
���

calculus, which is a subcalculus of
� �

[Bar91]. The counterexample relies on

a common definition of pre-logical relations over models of system
� �

and those of

system
���

, thus we can construct a similar counterexample in system
� �

.

153

154Appendix A. A Counterexample of Composability of Pre-logical Relations in
���

A.2 System ���
Roughly speaking, system

���
consists of two layers of the simply typed lambda cal-

culus, one for terms and the other for types. However, unlike
� �

, there is no type-

dependent terms. In this paper, we consider a system
���

with one base type 	 , no

term constants and a fixed set-theoretic semantics of the system. The counterexample

is built on this model in the next section.

A.2.1 The Syntax and Type System of ���
$ Raw kinds, types and terms are defined by the following BNF:

� ���

 � � �	�&� �
�
� ���

 � � � 	 � � � � ��� # � � ���
 �'�

 � � � � � # � ��� �

where �
� � ranges over the set of type variables and variables respectively. We

identify � -equivalent raw types and terms, and adopt Barendregt’s variable con-

vention [Bar84]. We write �(' �&)�� + and � ' � �) � + for the results of substituting �
(� �) for the free variable of � (�) in � (�) respectively. We treat � as an infix

operator.

$ A kind context (ranged by meta variable
�

) is a mapping from a subset of type

variables to
�

. Similarly, a type context (ranged by meta variable
�

) is a mapping

from a subset of term variables to � .

$ We say that
� � �
�� is a well-formed type if it is derived only from the

following rules:

� � ��� � � � (
� � �
 � � � (� � 	
 � � � �
 � � � � � � �
� �

�
�� � ��
�� �
� � �

� � # �
��&� �
� �
� � �
��&� �
� � � � � �
��

� � ��� �
�� �
We say that

��� �
is a well-formed context if

� � � � � (
 � for any ��� �#� � � � (.

A.2. System
���

155

$ We introduce an equality between types. Two types � � � � of kind � are equal

under a kind context
�

if
� � � � � �
 � is derived only from the following

rules:
� � �
��

� � � � �
��
� � � � � �
�� � � � � � � � �
��

� � � � � � �
��
� � � � � �
��
� � � � � �
��

� � � � � � # ��(� �
�� �
� � � � � � # � ("� � � �-' � �) � +
�� �

� � �
� � # � �
��%� � � �

� � �
� � # � � � �
��&� � � �

$ We say that
� � � � �
 � is a well-formed term if it is derived only from the

following rules:

��� � � �
 � � � � � � � �
 �
��� � ���
�

� � ��� � � � (��� �
well-formed

� � � � �
 � � � (
��� ��� ��
�&���
� �

��� � � � � # �
� � � �
��� � � �
� � � � ��� � ��� �
�

��� � ��� � �
� �

We note that if
��� � �'�
�� is a well-formed term, then

� � �
is a well-formed

context.

$ We introduce an equality between terms. Two terms � � � of type � are equal

under a kind context
�

and a type context
�

if
��� � � � � �
	� is derived

only from the following rules:

��� � ���
�
� � � ��� � �
�

��� � � � � � �
�
��� � � � � � �
�

��� � ��� � � �
� ��� � ��� � � � � �
�
��� � ��� � � � �
�

��� � � � � � # � (� �
 � �
� � � � � � � # � (� � � � ' � �) � +	
� �

� � � � � � # � �
� � � �
��� � � � � # � � � �
��� � �

A.2.2 A Set-Theoretic Semantics of � �
We introduce a set-theoretic model � of system

���
. We define the following set � � ,

which is a subset of � :

� � � �

 � 	�� � � �

156Appendix A. A Counterexample of Composability of Pre-logical Relations in
���

We define the following � � -indexed family of sets
�

:

� 	 � � � � � � � � � � � � � � � � (� � � � � (�

where � � is the set of all functions from
�

to � . We define a kind-indexed family of

sets � to give the semantic domain of types:

� � � ��� � � � � � � � � � �&� � ��� (� � � � � (� �
A

�
-environment is a mapping � satisfying ��� � � � (� ��� � � � (and � � � (�

� � � � � ((for all � � ��� � � � (. Each well-formed type
� � �
�� is then inter-

preted in � � under a
�

-environment � . We write the value of this interpretation by
' ' � � �
 ��+ + � . This interpretation is defined by induction on the derivation of the

well-formed type as follows:

' ' � � �
���+ + � � � � � (
' ' � � 	
 � + + � � � 	

' ' � � �
 � � � � � � � + + � � � � � � � # � � � � � � # � � �
' ' � � �

��� # �
��&� �
� � + + � � � � � � � # ' ' � � �
�� � �
���� + + � � �
 �
' ' � � �����
�� � + + � � �#' ' � � �
��&� � � � + + � (�#' ' � � ���
���+ + � (

Theorem A.2.1 For any well-formed type
� � ��
 � and

�
-environment � , we have

' ' � � �
�� + + � � � � . �

PROOF By induction on the derivation of
� � �
�� . �

Theorem A.2.2 (Soundness) For any equation
� � � � � �
 � and

�
-environment � ,

we have ' ' � � �
�� + + � � ' ' � � � �
���+ + � . �

PROOF By induction on the derivation of
� � � � � �
�� . �

We move to give the semantics of terms. For any well-formed context
��� �

, a
��� �

-environment is a pair of mappings �
� � where � is a

�
-environment and � is a

mapping satisfying ��� � � � (� �#� � � � (and � � � (� ' ' � � � � � (
 � + + � for any � �
��� � � � (. Each well-formed term

��� � � �
 � is interpreted in the semantic domain

A.3. Pre-logical Relations for
���

157

' ' � ����
 � + + � under a
��� �

-environment �
� � . We write the value of this interpretation

by ' ' ��� � ���
��+ + � � � . This interpretation is defined by induction on the derivation of

the well-formed term.

' ' ��� � � ��
��+ + � � � � � � � (
' ' ��� � ���
��+ + � � � � ' ' � � � ���
� � + + � � � � � � � � � �
 � (

' ' � � � � � � # �
 ��� � � + + � � � � � # � ' ' � � �
 � + + � # ' ' � � � � �
�&���
� � + + � � � � ��
 #
' ' ��� � ��� � �
� � + + � � � � �#' ' ��� � ���
� � � � + + � � � (�#' ' ��� � ��� �
��+ + � � � (

Theorem A.2.3 For any well-formed term
��� � � �
�� and

��� �
-environment �

� � ,
we have ' ' ��� � ���
 ��+ + � � � � ' ' � � �
 � + + � . �

PROOF By induction on the derivation of
��� � ���
�� . �

Theorem A.2.4 (Soundness) For any equation
��� � � � � � �
 � and

��� �
-

environment �
� � , we have ' ' ��� � � �
 � + + � � � � ' ' ��� � � � �
� + + � � � . �

PROOF By induction on the derivation of
��� � ��� � � �
�� . �

Notational convention Once we declare a well-formed type
� � �
 � and a well-

formed term
� � � ���
 � , we refer them by � and � .

A.3 Pre-logical Relations for � �
In this section we introduce the notion of pre-logical binary relations over � . We only

think of binary relations over � itself for the counterexample, although we can define

relations between arbitrary models of
���

calculus.

Definition A.3.1 A binary relation over � is a pair � � � � (such that
�

is a kind-

indexed family of sets satisfying
� � � � � � � � and � is an

� � -indexed family of

sets satisfying � � � � � � (� � � � � . �

Definition A.3.2 Let � � � � (and � � � � � � (be binary relations.

158Appendix A. A Counterexample of Composability of Pre-logical Relations in
���

$ The inverse of � � � � (, written by � � � � (� , is the following binary relation
� � � � � � � � (:

� � � � � � � � � � � (�� � � � � (� � �
� � � � � � � � (� � � � � � � (�� �� � � (� � � � � � � (

$ The composition of � � � � (and � � � � � � (, written by � � � � (� � � � � � � (, is the fol-

lowing binary relation � � � � � � � � (:
� � � � � � � � � � �

� � � � � � � � � (� �
� �

� � � � � � (� � � � � � � � � � (�

where � � � is ordinary composition of binary relations.

We define pre-logical relations in terms of the basic lemma. This way of defining

pre-logical relations is an adoption of Leiss’s definition of pre-logical binary relations

between models of
� �

[Lei01].

First, some notations. Let � � � � (be a binary relation. We write � � � � � (� � 	 � if

� and � � are mappings satisfying � � � � (� � � � � ((� � � � � � ((for any � � ��� � � � (. We

also write � � � � � � � � � � (� � � � 	 � ��� � (for a well-formed context
��� �

if � � � � � (� � 	 �
and � and � � are mappings satisfying � � � � (� � � � � ((� � �#' ' � � � (+ + � � ' ' � � � (+ + � � (for any
��� �#� � � � (.
Definition A.3.3 ([Lei01]) A binary relation � � � � (is pre-logical if it satisfies the fol-

lowing statements:

1. For any well-formed type
� � �
�� and � � � � � (� � 	 � , we have

�#' ' ��+ + � � ' ' ��+ + � � (� � � #

2. For any well-formed term
��� � � �
�� and � � � � � � � � � � (� � � � 	 � ��� � (, we

have
� ' ' � + + � � � � ' ' � + + � � � � � (� � � ' ' � + + � � ' ' ��+ + � � (#

It is clear that � � � � (� is a pre-logical binary relation if and only if � � � � (is so.

A.4. A Counterexample 159

A.4 A Counterexample

The goal of this section is to show that there are pre-logical binary relations whose

composition is not a pre-logical binary relation. The goal is achieved by showing the

following statement:

There exists pre-logical binary relations � � � � (and � � � � � � (such that the
composition � � � � � � � � (� � � � � (� � � � � � � (satisfies the following: there
exists a well-formed term

��� � ���
� and environments � � � � � � � � � � � � (�� � � � � � � 	 � ��� � (such that

�#' ' � + + � � � � ' ' � + + � � � � � � � (�� � � � �#' ' ��+ + � � ' ' � + + � � � (#
To simplify the situation, we presuppose that the above well-formed term � is the

following:

�
 � � �
 � � ��
 � � � � �
 � � � �
 � #

and rewrite the goal as follows.

Theorem A.4.1 There exists pre-logical binary relations � � � � (and � � � � � � (such that

the composition � � � � � � � � (� � � � � (� � � � � � � (satisfies the following: there exists
� � � � � � (� � � � � � � � � � � � (� � � � � � � �� � � � (� � � � � � � � � � � � � � (� � � � � (� � � � � � � � � � (such that

� � � (� � � � � � � ((�� � � � � � � � � � (#
PROOF We first define a pre-logical binary relation � � � � (and show that � � � � (and
� � � � (� satisfy the theorem A.4.1.

We define type substitutions � and � � to be ' 	 �) � + and ') � + , respectively. We

define the relation
�

for types as follows:

� � � � �#' ' 	 � � �
���+ + � ' ' 	 � � � �
���+ + (� �
 � � �
��
Note that

�
is not functional, since we have both �#' ' 	 � 	 + + � ' ' 	 � 	�+ + (� � � by letting

� � 	 � 	 and �#' ' 	 � 	 + + � ' ' 	�+ + (� � � by letting � � � .

Lemma A.4.2 The relation
�

satisfies the condition 1 in definition A.3.3. �

160Appendix A. A Counterexample of Composability of Pre-logical Relations in
���

PROOF Let
� � �
 � be a well-formed type and � � � � � (�� � 	 � . This means that

for each � � � ��� � � � (there exists a well-formed type �
 � � � �
 � � � � (such that

� � � � (� ' ' � � � + + and � � � � � (� ' ' � � � � + + . Then we have

' ' � + + � � ' ' �-' � � �) � � + � � � ����� � � � + + � ' ' � ' � �) � � + � � � � ��� � � � � + +
' ' ��+ + � � � ' ' �-' � � � �) � � + � � ������� � � � + + � ' ' �-' � �) � � + � � ������� � � � � � + + #

Therefore by the definition of
�

, the pair of the above two are included in
� � . �

Lemma A.4.3 We write � ��' � + for the set defined by the following BNF:

� �,' � +����

 � 	�� � � � � �

where � here is treated as a constant (not a metavariable ranging over the set of type

variables). Then we have

� � � � �#' ' 	 � � �
 � + + � ' ' 	 � � � �
 � + + � �
 � � �
 � � � � � � ' � + #

PROOF (�) Trivial. (�) We define the following logical relation
�

:

� � � � �#' ' � � + + � ' ' � � � + + (� �
 � � �
 � � � � � �,' � +
� � � � � ��� (� � � � � (� � � � � � (� � � # � � � (� � � � ((� � ���

It is easy to see � ' ' 	�+ + � ' ' 	�+ + (&� � � and �#' ' � + + � ' ' � + + (� � � � � � � � (. Therefore we

obtain the basic lemma: for any well-formed type
� � �
�� , we have

� � � � � � (� � � # �#' ' ��+ + � � ' ' ��+ + � � (� � � #

Particularly for any well-formed term �
 � � ��
 � and �#' ' 	 � 	�+ + � ' ' 	 + + (� � � , we have

� � � �#' ' ��+ + � �
 ' ' 	 � 	�+ + � ' ' � + + � �
 ' ' 	�+ + (
� �#' ' � � + + � ' ' � � � + + (# �

Now we construct an
� � -indexed family of relations � . This is constructed like logical

relations by induction on ��� � � ' � + . This induction covers all elements in
� � by the

A.4. A Counterexample 161

previous lemma.

� �#' ' 	 � + + � ' ' 	 � � + + (� � � � � � � � (� � � � � � � (
� � ' ' � � + + � ' ' � � � + + (� � � � ��� � 	 # � � � (

� �#' ' � � � � � (� + + � ' ' � � � ��� (� � + + (� � � � � (��� � � � � (� � �#' ' � � + + � ' ' � � � + + (#
� � � (� � � � ((� � � ' ' � � � + + � ' ' ��� � � + + (#

We show a graphical explanation of a part of � � � � (in figure A.1. The set
� � �

in the

figure represents the set of functions
 � � � 	�(� � such that for any � � � � � � � � � � � (�� � � � � � . Dashed bold lines connect related semantic domains by

�
, and bold normal

lines connect related values by � .

b

tt
ff

b

tt
ff

b->b

b

tt
ffλx.

others

b->b

2->2

others
2->2

Relation between types (R)
Relation between values (S)

2={tt,ff}

Figure A.1: Relation � � � � (

Lemma A.4.4 The relation � � � � (is pre-logical. �

PROOF We show � � � � (satisfies the condition 2 in definition A.3.3 by induction on

the derivation of
� � � � �
 � . Let � � � � � � � � � � (� � � � 	 � � � � (. We see interesting

cases; applications and lambda abstractions.

$ Case � � � � � � � . There exists � � and we have well-formed terms
� � � �

� �
 � � � � and
� � � � � � �
 � � . From IH, we have �#' ' � � + + � � � � ' ' � � + + � � � � � (�

� �#' ' � � � ��+ + � � ' ' � � � ��+ + � � (and �#' ' � � � + + � � � � ' ' � � � + + � � � � � (%� � �#' ' � � + + � � ' ' � � + + � � (. Then

from the lemma A.4.3, there exists � � � � �� � � �,' � + such that � ' ' � + + � � ' ' � + + � � (�

162Appendix A. A Counterexample of Composability of Pre-logical Relations in
���

� ' ' � � � + + � ' ' � � � � + + (and �#' ' � � + + � � ' ' � � + + � � (� �#' ' � �� � + + � ' ' � �� � � + + (. From definition of � , we

have

� ' ' � � � � � + + � � � � ' ' � � � � � + + � � � � � (� � � ' ' � � � + + � ' ' � � � � + + (� � � ' ' � + + � � ' ' ��+ + � � (#

$ Case � � � �
 � � # � � and � � � � � � � � for some
� � � � � � � �
 � . We have

a well-formed term
��� ��� �
 � � � � �
 � � � . From lemma A.4.3 there exists

� �� � � � �� � � � ' � + such that � ' ' � � + + � � ' ' � � + + � � (� �#' ' � �� � + + � ' ' � �� � � + + (and �#' ' � � � + + � � ' ' � � � + + � � (�
� ' ' � � �� � + + � ' ' � � �� � � + + (. From IH, for any � �� � � (&� � � ' ' � � + + � � ' ' � � + + � � (� � � ' ' � �� � + + � ' ' � �� � � + + (,
we have

� � ' ' � � � # � � + + � � � (� � (� � ' ' � � � # � � + + � � � � � (� � � ((
� �#' ' � � + + � � � � ��
 � � ' ' � � + + � � � � � � ��
 � � (
� � �#' ' ��� � + + � � ' ' ��� � + + � � (� � � ' ' � � �� � + + � ' ' ��� �� � � + + (

Then from the definition of � , we have

� ' ' � � � # � � + + � � � � ' ' � � � # � � + + � � � � � (
� � � ' ' � � �� � � � �� (� + + � ' ' � � �� � � � �� (� � + + (� � � ' ' � � � � � � + + � � ' ' � � � � � � + + � � (# �

We now consider the composition � � � � � � (� � � � � (� � � � � (� . Diagramatically,

we add the mirror image of figure A.1 to itself, and regard connected values in both

sides as a new binary relation (figure A.2).

We notice the following:

1. � � � � � 	 # � � � � � � 	 # � (� � � � � � � � � � ��� � � � � � � � � ,

2. � � � � � � (� � � � � � � � ��� � � � � � � and

3. � � � � (�� � � � � � � � ��� � � � � � � .
Now we prove the theorem A.4.1; take

� � � � � � � � � � � � � 	 � � � � � � � � � � � 	 # �
and

 � � � � � � . �

A.5. Discussion 163

b

tt
ff

b

tt
ff

b->b

b

tt
ffλx.

others

b->b

2->2

others
2->2

b->b

λx.

others

2->2

b

tt
ff

Figure A.2: Relation � � � � (� � � � � (�

A.5 Discussion

The above counterexample gives a detail of the failure of the closure property under

the composition of pre-logical binary relations between models of
���

. By constructing

a similar binary relation, it is highly probable that
� �

has the same problem, although

we have not checked it in detail.

In [Lei01], Leiss mentioned that the pre-logical binary relations between models of
� �

whose relations at types are functional are closed under composition. This seems

to be a sensible solution, because this restriction excludes the above counterexample.

There is also a room to reconsider the definition of the composition of binary re-

lations (definition A.3.2). For this, we speculate that it would be helpful to consider

examples of data refinements in
� �

(or
���

), and to examine desirable properties of

the composition of such refinements expressed by pre-logical relations.

Bibliography

[Aba00] M. Abadi. � � -closed relations and admissibility. MSCS, 10(3):313–320,

2000.

[AC98] R. Amadio and P.-L. Curien. Domains and Lambda-Calculi, volume 46

of Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-

versity Press, 1998.

[AG99] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The

spi calculus. Information and Computation, 148(1):1–70, 1999.

[And86] P. Andrews. An introduction to mathematical logic and type theory: to

truth through proof. Academic Press, 1986.

[Bar84] H. Barendregt. The Lambda Calculus-Its Syntax and Semantics. North

Holland, 1984.

[Bar91] H. Barendregt. Introduction to generalized type systems. J. Funct. Pro-

gram., 1(2):125–154, 1991.

[BD77] R. Burstall and J. Darlington. A transformation system for developing

recursive programs. ACM, 24(1):44–67, 1977.

[BH96] M. Bidoit and R. Hennicker. Behavioural theories and the proof of be-

havioural properties. Theoretical Computer Science, 165(1):3–55, 1996.

[BHM02] N. Benton, J. Hughes, and E. Moggi. Monads and effects. In Proc.

APPSEM 2000, volume 2395 of LNCS, pages 42–122. Springer, 2002.

165

166 Bibliography

[BHW95] M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and abstractor

specifications. Science of Computer Programming, 25(2–3):149–186,

1995.

[BKR99] N. Benton, A. Kennedy, and G. Russell. Compiling standard ML to Java

bytecodes. In Proc. ICFP 1998, volume 34(1) of SIGPLAN Notices,

pages 129–140. ACM, 1999.

[Bor94] F. Borceux. Handbook of Categorical Algebra 1, volume 50 of Encyclo-

pedia of Mathematics and Its Applications. Cambridge University Press,

1994.

[BT96] M. Bidoit and A. Tarlecki. Behavioural satisfaction and equivalence in

concrete model categories. In Proc. 21st Int. Coll. on Trees in Algebra

and Programming (CAAP ’96), volume 1059 of LNCS, pages 241–256.

Springer, 1996.

[Cro94] R. Crole. Categories for Types. Cambridge Mathematical Textbooks.

Cambridge, 1994.

[Doe96] K. Doets. Basic Model Theory. CSLI publications, 1996.

[Fio02] M. Fiore. Semantic analysis of normalisation by evaluation for typed

lambda calculus. In Proc. PPDP 2002, pages 26–37. ACM, 2002.

[FP94] M. Fiore and G. Plotkin. An axiomatization of computationally adequate

domain theoretic models of FPC. In Proc. LICS 1994, pages 92–102.

IEEE, 1994.

[FPT99] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable bind-

ing. In Proc. LICS 1999, pages 193–202. IEEE Computer Society Press,

1999.

[Fri73] H. Friedman. Equality between functionals. In Proc. Logic Colloquium,

volume 453 of LNM. Springer, 1973.

Bibliography 167

[FS99] M. Fiore and A. Simpson. Lambda definability with sums via

grothendieck logical relations. In Proc. TLCA 1999, volume 1581 of

LNCS, pages 147–161. Springer, 1999.

[Gir72] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans

l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

[Gir87] J.-Y. Girard. Linear logic. Theor. Comp. Sci., 50:1–102, 1987.

[GLJ93] A. Gill, J. Launchbury, and S. Jones. A short cut to deforestation. In

Proc. Functional Programming and Computer Architecture 1993, pages

223–232. ACM Press, 1993, 1993.

[GLLN02] J. G.-Larrecq, S. Lasota, and D. Nowak. Logical relations for monadic

types. In Proc. CSL, volume 2471 of LNCS, pages 553–568. Springer,

2002.

[GLLNZ04] J. G-Larrecq, S. Lasota, D. Nowak, and Y. Zhang. Complete lax logical

relations for cryptographic lambda-calculus. In Proc. CSL 2004, volume

3210 of LNCS, pages 400–414. Springer, 2004.

[GLT88] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of

Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-

sity Press, 1988.

[Han01] J. Hannay. Abstraction Barriers and Refinement in the Polymorphic

Lambda Calculus. PhD thesis, University of Edinburgh, 2001.

[HD97] J. Hatcliff and O. Danvy. A computational formalization for partial eval-

uation. MSCS, 7(5):507–541, 1997.

[Hen50] L. Henkin. Completeness in the theory of types. Journal of Symbolic

Logic, 15:81–91, 1950.

[Her93] C. Hermida. Fibrations, Logical Predicates and Indeterminants. PhD

thesis, University of Edinburgh, 1993.

168 Bibliography

[HJ95] C. Hermida and B. Jacobs. An algebraic view of structural induction. In

Proc. Computer Science Logic 1994, volume 933 of LNCS, pages 412–

426. Springer-Verlag, 1995.

[HKS03] J. Hannay, S. Katsumata, and D. Sannella. Semantic and syntactic ap-

proaches to simulation relations. In Proc. MFCS, volume 2747 of LNCS,

pages 68–91. Springer, 2003.

[HLST00] F. Honsell, J. Longley, D. Sannella, and A. Tarlecki. Constructive data

refinement in typed lambda calculus. In Proc. FoSSACS 2000, volume

1784 of LNCS, pages 161–176. Springer, 2000.

[Hoa72] C. Hoare. Proof of correctness of data representations. Acta Informatica,

1:271–281, 1972.

[Hof97] M. Hofmann. Semantics of Logics of Computation, chapter Syntax and

semantics of dependent types, pages 79–130. Cambridge Univ. Press,

1997.

[Hof99] M. Hofmann. Semantical analysis of higher-order abstract syntax. In

Proc. LICS, pages 204–213. IEEE, 1999.

[HS86] J. Hindley and J. Seldin. Introduction to Combinators and
�

-calculus.

Cambridge University Press, 1986.

[HS96] M. Hofmann and D. Sannella. On behavioural satisfaction and be-

havioural abstraction in higher-order logic. Theoretical Computer Sci-

ence, 167(1–2):3–45, 1996.

[HS02] F. Honsell and D. Sannella. Prelogical relations. Information and Com-

putation, 178(1):23–43, 2002.

[Jac99] B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.

[JT93] A. Jung and J. Tiuryn. A new characterization of lambda definability. In

Proc. TLCA, volume 664 of LNCS, pages 245–257. Springer, 1993.

Bibliography 169

[Kat04] S. Katsumata. A generalisation of pre-logical predicates to simply typed

formal systems. In Proc. ICALP ’04, volume 3142 of LNCS, pages 831–

845. Springer, 2004.

[KOPT97] Y. Kinoshita, P. O’Hearn, A. Power, and M. Takeyama. An axiomatic

approach to binary logical relations with applications to data refinement.

In Proc. TACS 1997, volume 1281 of LNCS, pages 191–212. Springer,

1997.

[KP99] Y. Kinoshita and J. Power. Data-refinement for call-by-value program-

ming languages. In Proc. CSL 1999, volume 1683 of LNCS, pages 562–

576. Springr, 1999.

[Laf88] Y. Lafont. Logiques, Categories et Machines. PhD thesis, Université de

Paris VII, 1988.

[Law70] F. Lawvere. Equality in hyperdoctrines and comprehension schema as

an adjoint functor. In Proc. AMS Symposium on Pure Mathematics XVII,

pages 1–14, 1970.

[Lei01] H. Leiss. Second-order pre-logical relations and representation indepen-

dence. In Proc. TLCA 2001, volume 2044 of LNCS, pages 298–314.

Springer, 2001.

[Lin04] S. Lindley. Normalisation by Evaluation in the Compilation of Typed

Functional Programming Languages. PhD thesis, University of Edin-

burgh, 2004.

[LS86] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical

Logic. Cambridge studies in advanced mathematics. CUP, 1986.

[LS05] S. Lindley and I. Stark. Reducibility and � � -lifting for computation

types. In TLCA, pages 262–277, 2005.

[Mac71] S. MacLane. Categories for the Working Mathematician, volume 5 of

Graduate Texts in Mathematics. Springer, 1971.

170 Bibliography

[Mil71] R. Milner. An algebraic definition of simulation between programs. In

Second International Joint Conference on Artificial Intelligence, pages

481–489. The British Computer Society, 1971.

[Mit86] J. Mitchell. Representation independence and data abstraction. In Proc.

POPL, pages 263–276, 1986.

[Mit90] J. Mitchell. Type systems for programming languages. In Handbook of

Theoretical Computer Science, Volume B: Formal Models and Sematics

(B), pages 365–458. Elsevier and MIT Press, 1990.

[Mit91] J. Mitchell. On the equivalence of data representations. In V. Lifschitz,

editor, Artificial Intelligence and Mathematical Theory of Computation:

Papers in Honor of John McCarthy, pages 305–330. Academic Press,

San Diego, 1991.

[Mit96] J. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[ML75] P. Martin-Löf. An intuitionistic theory of types: predicative part. In

Logic Colloquium ’73, pages 73–118. North-Holland, 1975.

[MM91] J. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus.

Annals of Pure and Applied Logic, 51:99–124, 1991.

[MM92] S. MacLane and I. Moerdijk. Sheaves in geometry and logic. LNMS.

Springer Verlag, 1992. biblio entry inserted by Steve Vickers; modified

by Simon Gay.

[Mog91] E. Moggi. Notions of computation and monads. Information and Com-

putation, 93(1):55–92, 1991.

[MR92] Q. Ma and J. Reynolds. Types, abstractions, and parametric polymor-

phism, part 2. In Proc. MFPS 1991, volume 598 of LNCS, pages 1–40.

Springer, 1992.

[MS93] J. Mitchell and A. Scedrov. Notes on sconing and relators. In Proc. CSL

1992, volume 702 of LNCS, pages 352–378. Springer, 1993.

Bibliography 171

[MS03] M. Miculan and I. Scagnetto. A framework for typed HOAS and seman-

tics. In Proc. PPDP 2003, pages 184–194. ACM, 2003.

[Nie00] L. Nielsen. A denotational investigation of defunctionalization. Techni-

cal Report RS-00-47, BRICS, 2000.

[Nip86] T. Nipkow. Non-deterministic data types: Models and implementations.

Acta Informatica 22, pages 629–661, 1986.

[Nis03] S. Nishimura. Correctness of a higher-order removal transformation

through a relational reasoning. In Proc. APLAS 2003, volume 2895 of

LNCS, pages 358–375, 2003.

[Plo76] G. Plotkin. A powerdomain construction. SIAM Journal of Computaing,

5:452–487, 1976.

[Plo77] G. Plotkin. LCF considered as a programming language. Theoretical

Computer Science, 5:223–255, 1977.

[Plo80] G. Plotkin. Lambda-definability in the full type hierarchy. In ”To H.B.

Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-

ism”, pages 367–373. Academic Press, San Diego, 1980.

[PPST00] G. Plotkin, J. Power, D. Sannella, and R. Tennent. Lax logical relations.

In Proc. ICALP 2000, volume 1853 of LNCS, pages 85–102. Springer,

2000.

[PR00] J. Power and E. Robinson. Logical relations and data abstraction. In

CSL, volume 1862 of LNCS, pages 497–511. Springer, 2000.

[PS98] A. Pitts and I. Stark. Operational reasoning for functions with local

state. In A. D. Gordon and A. M. Pitts, editors, Higher Order Oper-

ational Techniques in Semantics, Publications of the Newton Institute,

pages 227–273. Cambridge University Press, 1998.

172 Bibliography

[Rey83] J. Reynolds. Types, abstraction and parametric polymorphism. In Proc.

9th IFIP World Computer Congress, pages 513–523. North-Holland,

1983.

[Sch85] O. Schoett. Behavioural correctness of data representations. Techni-

cal Report CSR-185-85, Department of Computer Science, University of

Edinburgh, 1985.

[Sch90] O. Schoett. Behavioural correctness of data representations. Science of

Computer Programming, 14:43–57, 1990.

[Sho83] O. Shoett. A theory of program modules, their specification and imple-

mentation (extended abstract). Technical Report CSR-155-83, Depart-

ment of Computer Science, University of Edinburgh, 1983.

[Sie92] K. Sieber. Reasoning about sequential functions via logical relations. In

Proc. LMS Symposium on Applications of Categories in Computer Sci-

ence, LMS Lecture Note Series 177, pages 258–269. Cambridge Univer-

sity Press, 1992.

[ST87] D. Sannella and A. Tarlecki. On observational equivalence and algebraic

specification. Journal of Computer and System Sciences, 34:150–178,

1987.

[ST88] D. Sannella and A. Tarlecki. Essential concepts of algebraic specification

and program development: implementations revisited. Acta Informatica,

pages 233–281, 1988.

[Sta85] R. Statman. Logical relations and the typed lambda calculus. Information

and Control, 65:85–97, 1985.

[Sta96] I. Stark. Categorical models for local names. Lisp and Symbolic Compu-

tation, 9(1):77–107, February 1996.

[Tai67] W. Tait. Intensional interpretation of functionals of finite type i. Journal

of Symbolic Logic, 32, 1967.

Bibliography 173

[Tan00] M. Tanaka. Abstract syntax and variable binding for linear binders. In

Proc. MFCS, volume 1893 of LNCS, pages 670–679. Springer, 2000.

[Ten94] R. Tennent. Correctness of data representation in algol-like languages.

In A Classical Mind: Essays in Honour of C.A.R. Hoare. Prentice Hall,

1994.

[TS96] A. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of

Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-

sity Press, 1996.

[Wad90] P. Wadler. Deforestation: transforming programs to eliminate trees. The-

oretical Computer Science, 73:231–248, 1990.

