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 EXPERIMENT 5 

MOLECULAR SYMMETRY, POINT GROUPS AND CHARACTER TABLES 

NOTE: lab write-up consists of submitting answers to the exercises embedded in handout. 
 

INTRODUCTION 

Finite symmetries are useful in the study of molecules. They are used in the 
classification of molecules, simplifying quantum mechanical calculations on molecules, 
determining the presence of certain molecular properties such as molecular polarity and 
chirality. It will become apparent how important symmetry considerations are for molecules 
and orbitals in physical processes such as NMR spectroscopy and x-ray crystallography in 
molecular structure determination. In this dry lab, we will focus on finite symmetries and 
groups of finite symmetry operators, using Chapter 11 of Atkins and de Paula[1] as a 
principle reference. Other books listed in the references are excellent source books as 
well.[2-4] 

The set of all symmetry operations for a molecule form a mathematical structure 
called a group. In this lab, we will look at group structure, classes of symmetry operations, 
naming of molecular point groups and physical implications. The latter will include how 
group structure can predict when a molecule is polar or chiral and how one can explain and 
understanding orbitals and nodes in a molecule.[5-7] 
 

SYMMETRY ELEMENTS AND OPERATIONS 

A symmetry operation transforms a molecule into itself so that the transformed 
molecule is indistinguishable from the original structure. Also, at least one point in the 
molecule is always left undisturbed by the transformation. This is the origin of the term, 
molecular point group. Often, two or more atoms are permuted during the course of the 
molecular transformation. Since atoms of the same type are indistinguishable, the 
transformed molecule is indistinguishable from the starting molecule. So, a molecular point 
group consists of all those symmetry operations that leave a point in the molecule invariant 
and permute identical atoms. 

Symmetry operations come in several flavors: 1) no operation, 2) rotation, 3) 
reflection, 4) inversion, 5) improper rotation. The operation is denoted by symbols in plain 
text (E, Cn, etc.), whereas the actual axis or plane referred to in a molecule is denoted by 
symbols in italics (E, Cn, etc.). 
 
1) E The identity transformation 

 
This operation does nothing and is a symmetry element of all molecules. The symbol 

E is used from the German Einheit, meaning unity. 
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2) Cn The rotation operation 

 
This takes place about a rotation axis. The molecule is rotated by an angle of 2π/n 

radians (n is an integer). For a water molecule the rotation is 2π/2 = π	
  radians or 180°: 

 
By convention, a rotation by a positive angle indicates a counterclockwise direction (as 
above) and a rotation through a negative angle is performed in a clockwise direction. Each 
rotation of the molecule into itself is an n-fold rotation along the axis.  

Some molecules have more than one axis, as in the example below (C4 and C2 axes 
exist): 

 
In these cases, the convention dictates that the axis with the higher value of n is called the 
principal axis (C4 above). 

Some molecules contain more than one operation along an axis. Consider the square 
planar structure XeF4 – it has a C4 axis through the Xe atom that is perpendicular to the plane 
of the molecule. Carrying out two consecutive 4-fold rotations, i.e. C4

2
 = C4C4, about a C4 

axis is equivalent to conducting a C2 rotation about the same axis. Therefore, the C2 axis is 
coincident with the C4 axis. In XeF4, the C4 axis is the principal axis of rotation with a C2 axis 
coincident to it. In H2O, the C2 axis is the principal axis of rotation with no other axes 
coincident to it. 

 
For a diatomic molecule (e.g., HCl), a rotation by any arbitrary angle can be 

performed about the internuclear axis. Such an axis is called a C∞	
  axis and is the principal 
axis of rotation.  It also has a coincident axis. 

 

 
3) σ	
  Reflection through a plane 

 
A reflection takes place in a plane of symmetry, sometimes called a mirror plane 

(speigal is German for mirror). Reflection planes can either contain rotation axes or be 



 3 

perpendicular to an axis of rotation. When a plane is perpendicular to a principal axis of 
rotation it is designated by the symbol σh and sometimes called the horizontal plane.1 When a 
plane contains a principal axis of rotation it is usually denoted by σv. That is to say the plane 
and axis are parallel to one another. This is usually called the vertical plane.1 

 
A special case of plane is the dihedral plane, denoted σd. In the BF3 molecule below 

there are three reflection planes, each containing BFn (only the plane through B-F2 is shown). 
Each of these planes bisects the angle between the remaining two fluorines in the rotation of 
the secondary C2 axis (the principal axis here is the C3 axis through the central boron with 
the fluorines perpendicular to that axis; only one of the C2 axes is shown – the one through B-
F2 permuting F1 and F3). 

 
Note that often other criteria are needed to distinguish between σv planes and σd 

planes. For example, water has two reflection planes, but both of them are σv planes—one as 
shown above, the other which is perpendicular to it. These σv planes are both parallel to the 
principal axis, which is C2. There are no other C2 axes perpendicular to this principal axis that 
can be bisected by a plane, so neither of these planes can be σd. In XeF4, the reflection plane 
perpendicular to the principal C4 axis is a σh plane. There are four planes that bisect the 
FnXeFm angles. There are also secondary and tertiary C2 axes lying along Fn-Xe-Fm and 
bisecting the FnXeFm angle respectively. Those planes corresponding to the bisecting C2 axis 
are those that are σd planes. 
 
4) i Inversion through the origin 
 

The inversion operation, denoted i or I, occurs through the centre of inversion, i. A 
point in the molecule (x, y, z) is taken and transformed to another point (-x, -y, -z). The 
chemical environments are identical. Water does not posses an inversion centre, whereas 
XeF4 does. 

 

 

                                                
1 Keep in mind that not all σh  planes are ‘horizontal,’ nor are all σv  planes ‘vertical.’ 
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5) Sn Improper rotation 
 

Improper rotation is composed of two successive transformations: 1) an n-fold 
rotation about an axis (using S notation instead of C notation to denote the axis—Sn); 2) a 
reflection in a plane that is perpendicular to that Sn axis. The n-fold rotation does not need to 
match an actual nfold rotation axis in the molecule, as seen in allene below.  Here, the n-fold 
rotation is by 90° whereas a rotation axis should be 180° for complete symmetry.  

 
This particular rotation through the three-carbon chain (step 1) yields a representation of the 
structure that is distinguishable from the original molecule. A reflection through a plane 
containing the central carbon (step 2) must be carried out to make the two indistinguishable.  

By the same reasoning, the reflection plane perpendicular to the Sn axis need not be an 
actual reflection plane. In the complex ion [Co(NCS)4]+2, the reflection plane that is being 
considered for step 2 (after the rotation of step 1) is not a true mirror plane. However, upon 
the reflection step we see the original structure. 

 
Water does not possess an improper axis of rotation because it does not have a plane 

of symmetry that is perpendicular to the axis of rotation (it does have vertical reflection 
planes, but these have no bearing on the Sn operation). The CH4 molecule, however, has four 
S4 axes (one through each CH bond), but no C4 axis. 

 
Improper rotation is typically denoted as Sn, as shown below, but it is easier to write out both 
the rotation and reflection steps as we have done above. 

 
We can know the n value for the Sn operation by the angle used for the rotation step. 

In CH4 this is 90°, which is rotation by 2π/n or 360º/4, so n = 4 and the molecule has S4 

improper rotation. This is also true for [Co(NCS)4]+2
 which requires a 90° rotation, so it also 

has an improper rotation S4. If a molecule had a 60° rotation this would mean it had S6 

improper rotation (360º/6 = 60°). 
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A convenient way to determine point groups for molecules is to use a flow chart 
(Figure 1). Consider ammonia as an example. Is the molecule linear? The answer is no. It has 
only one axis of rotation, a C3 axis that is the principle axis of rotation. Are there any C2 axes 
perpendicular to the principal axis? The answer is no. Is there a reflection plane 
perpendicular to the principal axis? Again, the answer is no. Does it contain three σv planes 
containing the C3 axis? The answer is yes. Therefore NH3 must have C3v symmetry. 
 

SYMMETRY GROUPS 
 

We use the phrases symmetry groups and molecular point groups synonymously. 
 

A mathematical group, G = {G,·}, consists of a set of elements2
 G = {E, A,B,C,D, ...} 

and a binary relation, called group multiplication or group product or simply multiplication 
or product, denoted by ‘·’, which satisfies the following properties: 

a. The product of any two elements A and B in the group is another element in the 
group, i.e., we write A·B ∈	
  G. 

b. If A, B, C are any three elements in the group then (A·B)·C = A·(B·C). Therefore, 
group multiplication is associative, and frequently, we omit the brackets. 

c. There is a unique element E in G such that E·A=A·E=A, for every element A in G. 
The element E is called the identity element. 

d. For every element A in G, there is a unique element X in G, such that X·A = A·X = 
E. The element X is referred to as the inverse of A and is denoted A−1. The identity is 
its own inverse.  

 
The number of elements in a group is called the order of the group. Frequently, this is 

denoted by the symbol h. It is common to omit the symbol ‘·’ when no confusion will arise. 
Also, when there can be no confusion, we will use the symbol G for the group rather than G. 
 

We can think of the group elements as symmetry operations of a molecule. This 
means that we can “translate” A·B to: “first we perform the symmetry operation B on the 
molecule followed by symmetry operation A.” The net result of such consecutive action on a 
molecule is another symmetry operation. Take dichloromethane as an example. The 
molecular structure and Cartesian axis system are shown below. In this figure, you can think 
 

 
of the origin of the Cartesian axes as centered on the C atom with the z-axis bisecting the 
HCH and the ClCCl angles. The x-axis lies in the HCH plane, while the y-axis is in the  
                                                
2 Do not confuse symmetry elements discussed in section 2 with group elements. The set of symmetry elements 
does not form a group, only the symmetry operations form a group. The term element used in this definition is 
standard usage in set theory. 
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Figure 1: Schoenflies flow chart for determining point groups of molecules  
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ClCCl plane. 
 

The identity operation, E, leaves the molecule unchanged. The C2 axis lies along the 
z-axis.  The C2 operation transforms the dichloromethane molecule as so.	
  
	
  

	
  
Carrying out two consecutive C2 operations is equivalent to the identity 

transformation. There are two reflection planes in the molecule; both contain the rotation 
axis. One plane is the plane of the page containing the ClCCl plane. We will label this plane 
σ′(yz). The second plane is perpendicular to the plane of the page; we will label it σ(xz).  The 
action of σ′(yz) is to give the arrangement of atoms shown, where the two hydrogen atoms 
have been interchanged, while the two chlorine atoms and carbon are unchanged.	
  σ(xz) 
 

 
permutes the chlorine atoms, but leaves carbon and the two hydrogen atoms fixed. 

 

 

Applying the plane σ(yz) twice, i.e., (σ′(yz))2
 = σ′(yz)σ	
  ′(yz) = E, we get the identity. 

This means that σ′(yz) is its own inverse (see (d) above). Similarly, we find that (σ(xz))2
 = 

σ(xz)σ(xz) = E, and σ(xz) is its own inverse.  Now, if we carry out a σ(xz) reflection first and 
follow it by a σ′(yz) reflection, we get the following. 
 

 
Comparing this diagram to that of a C2 rotation we see that the result is identical. 

Therefore, we say that σ′	
   (yz)σ(xz) = C2. You can show that performing the reflections in 
reverse order yields the same result. Note that the symmetry elements remain fixed and are 
not transformed to new positions when the atoms in the molecule move to new positions.  
What about carrying out a C2 rotation followed by the reflection σ′(yz)? Performing these 
symmetry operations yields the following. 
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This is equivalent to a σ(xz) operation. You can show that carrying out these 

operations in reverse order affords the same result. Next, we compute the product σ(xz)C2. 
 

 
This is identical with a σ′(yz) operation. Again, check that the reverse sequence of 

operations yields the same result.  Using the definition of the group and the products of 
symmetry operations that we have just uncovered, we can construct a group multiplication 
table: 

 
This table contains all the information about the group and its structure. The name of this 
molecular point group is C2v. There are some observations to make about this table. 

a. Notice the inner four-by-four box. In each row and each column, each operation 
appears once and only once. In other words, each row and each column is a 
permutation of the others. This is a feature possessed by all group multiplication 
tables. 

b. We can identify smaller groups within the larger one. For example, {E,C2} is a group. 
There are two others; what are they? These smaller groups are called subgroups of 
C2v. 

c. In this particular table, we observe that the group product is commutative. This is not 
necessarily true for other groups. 

 
In the ammonia molecule, the nitrogen atom is the fixed point. The molecule has a C3 

axis of rotation. Note that the both the C3 and C3
2

 operations occur about the same C3 axis. 

 
There are three reflection planes; each plane contains an NH bond and bisects the opposing 
HNH angle. Each plane can be labeled by the number on the hydrogen atom it contains, thus 
σ1 is the plane containing HA

1. This reflection interchanges atoms HB and HC, leaving HA 

fixed. Note that the numbers remain fixed to their original positions. The symmetry elements 

 
must not shift with the atoms when they are transformed to new positions. In the previous 
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example, we used labels for the reflection planes that were expressed in terms of the fixed 
axes external to the molecule. In this example, it is not obvious how to do that. So keep in 
mind here that the numbers stay fixed and the letters move. You will want to use the double 
labels whenever it is inconvenient to label axes with references outside the molecule. It is 
irrelevant whether the numbers stay fixed and the letters move or vice versa. Just be 
consistent within a given application. 

Since σ1
2 = σ2

2
 = σ3

2
 = E, each reflection is its own inverse. Since C3

3
 = C3

2C3 = C3C3
2

 

= E, C3
2

 is the inverse of a C3 rotation (or C3 is the inverse of C3
2). Recall that a C3 rotation is 

a 120°	
  rotation in the counterclockwise direction about the rotation axis, while C3
2

 is a 240° 

counterclockwise rotation. Also, we can interpret a C3
2

 rotation as a -120°	
   rotation 

(clockwise). 
Example A: rotation, C3 x C3 = C3

2, for ammonia: 

 
Example B: reflection, σ3 x σ2 = C3, for ammonia 

 
Example C: both operations combined, C3 x σ1 = σ2, for ammonia 
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Remember that: 
i. the C3 axis rotates counterclockwise 
ii. in a multiplication the row across is the first term and the column down is the second 

term 
iii. each row (column) is a permutation of another row (column) 
iv. no symmetry element can occur more than once in a row or column 
v. labels for reflection planes always correspond to those in the original molecule, 

despite the numbering system after an operation (see examples B and C) 
Given these definitions and considerations, here is the complete group multiplication table: 

 
 
Exercise 1: The point group of the BrF5 molecule is C4v. There are eight symmetry 
operations in the group. Construct the group multiplication table using the template below. 
You may use the textbook, models, or other resources to help you. Use the given molecule 
and numbering system as well as the rules from Exercise 1 and the following hints. Draw out 
your results as you did before.         (16 marks) 
 
Hints for constructing the table: 

1. start with the identity row and column 
2. do the rotational axes times rotational axes 
3. remember σ	
  planes times themselves = E 
4. look for patterns in the table and confirm these by drawing out structures 

 
rotations for BF5 

 
reflection planes for BF5 
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Happily it is not necessary to derive a group multiplication table each time you want 

to find the point group of a molecule or molecular ion. It is sufficient to determine the 
presence of only a particular subset of symmetry elements (Cn or σx). Once you have 
discovered the molecular point group, the character table for the point group will give you 
the remaining group operations. See Atkins and de Paula, Resource Section Part 3 for 
printed character tables. 
 
Exercise 2: Determine the molecular point groups for the following species. Use the flow 
chart. It may also help to use a molecular model kit.     (10 marks) 
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PHYSICAL IMPLICATIONS OF SYMMETRY 
 

Chemists use symmetry in a wide variety of ways. In quantum chemistry, symmetry 
allows us to classify molecular orbitals and state wave functions.[5-7] With this 
classification, we can simplify calculations of certain matrix elements or expectation values. 
Often, it is possible to decide when matrix elements or expectation values are zero just on the 
basis or symmetry alone. In vibrational spectroscopy, frequently, the vibrational modes of a 
molecule are classified according to their behavior under the symmetry operations of the 
molecular point group. You are already familiar with polarity and chirality from earlier 
chemistry courses. Now we will examine these concepts in greater depth with respect to the 
specific symmetry of a molecule. Relating these concepts to symmetry will help in future 
chemistry courses. 
 
Polarity: The idea is very simple; a polar molecule has a permanent electric dipole moment, 
μ, which is a vector quantity. The dipole moment has a specific orientation in the molecule. 
If a molecule has a rotation axis, then the dipole moment must lie along the rotation axis, 
since no dipole moment can change under a rotation. Consider water, its dipole moment lies 
along its C2 axis: 
 

 
If a molecule possesses a secondary axis or a plane of symmetry perpendicular to the axis of 
rotation, then it can have no dipole moment. This would mean that μ	
  would have to lie along 
all such rotation axes (both principal and secondary) and all mirror planes. This cannot 
happen and for such molecules μ	
  = 0. 

Look at the example of XeF4, it has both principal and secondary axes which are 
perpendicular to each other. The individual dipole moments along each Xe-F bond cancel 
each other out and the result is no dipole moment, μ	
  = 0. 

 
Along similar lines of reasoning, if a molecule has a centre of inversion, then it can 

have no permanent dipole moment. A dipole moment would change sign under inversion and 
that is not physically possible. Another way of looking at this is that with a centre of 
inversion, the dipole moment would have to be a point, and that is not possible for a vector 
quantity. Note that molecules from the point groups Td, Oh, and Ih will not have dipoles. 

 
Chirality: If a molecule is chiral, it is optically active. A molecule is chiral when mirror 
images of the molecule cannot be superposed (to place one geometric figure over another so 
that all like parts coincide.). For a molecule to exhibit chirality, it must have no improper 
axes of rotation. Note that S2 = i (an inversion) and S1 = σ	
  (a reflection). Thus, if a molecule 
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possesses reflection planes or an inversion centre, it cannot be chiral. Molecules from the 
point groups Dnd, Dnh, Td, and Oh are not chiral. 
 
Exercise 3: From the set of molecules given for Exercise 2, use symmetry to identify the 
molecules (1) with permanent electric dipole moments and (2) that are chiral. (10 marks) 
 

Symmetry operations have many implications where orbitals in a molecule are 
concerned and can be approached in the same way as atoms in a molecule. For example, 
atomic orbitals move with the operations in the same way as atoms: 

 
Note the sign changes for the different orbitals under the C2 operation; the s orbital does not 
change whereas the p orbital does. 

Bonding can be described in terms of electron distribution within an orbital of a 
molecule. This is represented with molecular orbitals (MO) that are the result of a linear 
combination of atomic orbitals (LCAO). An energy diagram of this is drawn as shown: 

 
Notice the differences in the MO diagrams for the diatomic molecule H2 and its molecular 
ion, H2

+. The electron density for each of these is described by writing the wave equation as a 
linear combination of two 1s atomic orbitals, one on each of the two hydrogen atoms. 
Labeling the hydrogen atoms as HA and HB, the bonding σ	
  combination can be written as 

� 

ψb =
1

2 1+ S( )
1SA +1SB( )  

while the anti-bonding σ* combination can be expressed as 

� 

ψa =
1

2 1− S( )
1SA −1SB( )  

where the 1SA and 1SB orbitals are centred on hydrogen atoms A and B, respectively, and S is 
the overlap integral between 1SA and 1SB. In the bonding molecular orbital, σ, electron 
density is built up in the inter-nuclear region (as seen in the diagram where the electrons have 
been placed). In the anti-bonding orbital, σ*, electron density is removed from the inter-
nuclear region. 

This approach to describing the electron distribution in molecules is called molecular 
orbital (MO) theory. Expressing the MO as a linear combination of atomic orbitals is called 
the LCAO-MO method. For all complex molecules or molecular ions, LCAO-MO theory 
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provides a good model for understanding bonding. 
 

TRANSFORMATIONS 
 

As seen, the atoms in a molecule were permuted when the molecule was subjected to 
symmetry operations. Now, we shall associate with each atom some object or collection of 
objects and see what happens to these objects under a symmetry transformation. Examples of 
these objects include coordinate systems and atomic orbitals. These are the most common 
objects to be associated with atoms in molecules. Our approach will differ slightly from that 
given in Atkins and de Paula.[1] 

Let us attach a coordinate system to each atom in SO2 as shown, 

 
where xS is the x-axis associated with sulfur, xA the x-axis associated with oxygen atom A, 
and xB is the x-axis associated with oxygen atom B and similarly for the y-axes and z-axes. 
The entire molecule lies in the yz-plane. 

Like H2O, the SO2 molecule belongs to the C2v molecular point group and the 
symmetry operations are, E, C2, σv, σv′: 

E identity operation 
C2  180° rotation along z-axis, in this case, through the centre of the S atom 

bisecting the O-S-O angle 
σv  reflection plane along the C2 axis in the xy plane 
σv′	
  	
   reflection plane perpendicular to the C2 axis in the yz plane 

 
Consider what happens to the axes attached to each atom under each of the group 

operations. Of course, the identity operation E leaves each axis system unchanged. Observe 
the axes on each atom through the σv′(yz) operation (we start with this operation rather than 
C2 for simplicity as we will see later on): 

 
x axis  changes sign for any atom through this reflection plane; this is because the 

plane bisects the axis (think of a traditional Cartesian coordinate system with 
zero at the centre of each atom and positive and negative values on each side 
of the axis) 

y axis  does NOT change sign 
z axis  does NOT change sign 

 
These observations can be written out as such: 
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We could represent all the coordinates as a 9-component vector and each 

transformation as a 9×9 matrix. That is cumbersome and by noticing that x-axes always 
transform into x-axes, y-axes into y-axes, and z-axes into z-axes, it is possible to represent 
the transformation as the matrix product of the x, y, z row vector times three 3×3 matrices. 
Thus we write for the σv′(yz) reflection: 

 
Each line in the matrix represents the value of the sign as well as the position in space of the 
axis. Consider the C2 rotation operation: 

 
x axis  changes sign for any atom through this rotation because the axis now points in 

the opposite direction relative to the C2 axis 
y axis  also changes sign because the axis points in the opposite direction relative to 

the C2 axis 
z axis  does NOT change sign; axis on any atom is unchanged by this operation 

 
Results of the C2 operation on all the axes is written out as such: 

 
Results for the matrices corresponding to these axes: 
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All lines of the matrix show negative values for the x- and y-axes through the 

rotation; however, the second and third lines show that xA and xB change positions. The 
oxygen A atom rotates into the position of the oxygen B atom and vice versa. Thus the values 
in a line of the matrix show the position (+ or -) of the axis as well as the position of the atom 
in space (A or B).  We can write out the results for the other reflection plane, σv(xz) in the 
same way: 

 
The exchange of position of the oxygen atoms occurs for the reflection operation 

through this plane as it did under the C2 operation. The identity transformation, E, is simply 
represented by the identity matrix for each axis (we will not write this out). Considering all 
the transformations from the symmetry operations for the x-axis (xS, xA, xB), we have the 
four matrices representing all four operations, which are written out as follows: 

 
These four distinct matrices are said to form a (reducible) representation of the group 

C2v. In fact, the matrices mimic the group operations; taking products of these matrices 
would allow us to reconstruct the group multiplication table (as seen earlier). The four 
matrices representing the transformations of the y-axis (yS, yA, yB) and the z-axis (zS, zA, zB) 
also form (reducible) representations. For (yS, yA, yB), we have 

 
In this case, notice that not all of the matrices are distinct compared to the matrices 

for the x-axis. D(E) is the same as D(σv’(yz)) and D(C2) is the same as D(σv(xz)) for the x-
axis. The x-axis representation is said to be faithful, but the y-axis is not. Observe that the 
representation constructed from (zS, zA, zB) is not faithful either: 

 
The dimensions of these representations are equal to the dimension of the matrices (3×3) and 
also to the number of objects that are used to construct the representation (three axes: x, y, 
and z). 

Every set of objects on the atoms (coordinate system or orbital) produces a matrix 
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representation. If we were to place atomic p orbital functions on each atom, we would 
construct a set of matrices like those computed in Atkins and de Paula (Chapter 11), with σv 

(A&dP) = σv(xz) (ours). Their matrix for the transformation of the three px orbitals is the 
same as our matrix for the transformation of (xS, xA, xB). Think about why this is the case. 
 
Exercise 4: Find the matrix representations for the py and pz orbitals on SO2. Write these as 
shown in the example above for the x-, y-, and z-axes (the results above are the matrix 
representations for the px orbital on SO2). You will have 12 matrices for each orbital (py, pz) 
with x-, y-, and z-axes for a total of 24 matrices. Label the sets of matrices as faithful or not 
faithful.          (12 marks) 

 
It is possible to have many different matrix representations; the larger the group the 

larger the number of matrices in each representation. It is often easier to work with a more 
invariant quantity—the trace of the matrix. The trace is the sum of the diagonal elements of 
a matrix, D: 

� 

χ R( ) =TrD R( ) = Djj R( )
j=1

d

∑     (3.1) 

where d is the dimension of the representation and Djj(R) is the jj-th diagonal element of the 
matrix D(R). The symbol χ	
   is frequently used in two senses. First, when written as χ(R), it 
means the trace of the matrix representing the transformation corresponding to the symmetry 
operation R (χ(C2) for example). Secondly, when it is written alone as χ, it means the set of 
all traces for all symmetry operations in the group. It is often called the character of the 
representation when used in the latter sense. Even so, people will speak of χ(R) as the 
character of the individual operation R. For example, for the representation defined by (xS, 
xA, xB), we have 
 

 
 
where Γ	
   is a symbol denoting the (reducible) representation. It is represented by the set of 
traces for each symmetry operation, i.e., the character. So, we would write: 

 
Another advantage of working with characters is that the traces of matrices 

representing elements in the same class are identical. This is no advantage here since each 
element is in a class by itself (each symmetry operation is distinct). However, for larger 
groups, this can simplify calculations to a considerable extent. Consider ammonia from 
earlier, which included symmetry operations include C3 and C3

2. These are considered to 
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belong to the same class and the same applies to all three σ	
  operations as well. We need only 
to find the trace for one element of each of these classes—two traces total as opposed to five. 

Looking again at the matrix representation for (xS, xA, xB), we observe that there is 
still some structure that we have not made use of. The matrices are of block diagonal form: 

 
Since no transformation in the group interchanges xS with either xA or xB, we can actually 
look at xS separately (the upper left hand box). The matrix representation for xS is a 1×1 
matrix representation: 

D(E) = 1, D(C2) = -1, D(σv(xz)) = 1, D(σv′(yz)) = -1 
This is labeled Γ1 and leaves us with xA and xB, the matrices for which can be written in 2×2 
form (lower right hand box): 

 
These are the traces for xA and xB and are called Γ2. We say that we have reduced the 3×3 
matrix representation to a 1-dimensional representation and a 2-dimensional matrix 
representation. We refer to the 3×3 matrix representation as a reducible representation. The 
1-dimensional representation cannot be reduced further and it is said to be an irreducible 
representation. Note that the traces for the 2×2 matrices can be further reduced; this is then a 
reducible representation for xA and xB. 
 
The original 3×3 matrix can be reduced down or decomposed into 1×1 and 2×2 matrices. 
 

 
 
Exercise 5: The above example just showed a decomposition of the matrices to obtain the 
representations for the x-axis. Using the templates below, repeat this analysis for the 
representations based on (yS, yA, yB) and (zS, zA, zB) to obtain the “character tables” 
analogous to Tables 1 and 2 (hint – use your results for the py and pz orbitals from Exercise 4 
and start by finding the trace of each matrix and work from there). You will need to write out 
the 2×2 matrices and traces on a separate sheet of paper.    (12 Marks) 
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We can find all the irreducible representations of a point group in this way. The 
number of irreducible representations is equal to the number of classes. For C2v, there are 
four classes, one for each symmetry operation, so there must be four irreducible 
representations. The characters for each of these irreducible representations can also be 
determined. These have been found for all molecular point groups and have been compiled 
into tables called character tables. 
 

CHARACTER TABLES 
 

Atkins and de Paula provide the character tables for most of the important molecular 
point groups in Resource Section Part 3. The five tables for the point groups Cn (n = 2, 3, 4, 
5, 6) are listed there and in many other texts (see references). We shall examine the character 
tables for the two point groups C2v and C3v and our comments easily generalize to other point 
groups. 

This is the character table for the C2v point group: 

 
 
The top row in the table gives the name of the point group, followed by the symmetry 
operations arranged according to classes. For C2v, each symmetry operation is in a class by 
itself. The next four rows and the first five columns give the name and character for the 
irreducible representations. There are four irreducible representations (equal to the number of 
classes of symmetry operations)—A1, A2, B1, B2. The A and B notation is used to signify the 
character under the principal rotation (in this case C2), A if the character is +1, B if it is –1. 



 20 

Each irreducible representation is 1-dimensional since the trace of the matrix for the identity 
operation is 1. (If the trace were 2, then the representation would be 2-dimensional, if 3, then 
the representation would be 3-dimensional; 2- and 3-dimensional representations are not 
irreducible.) The sum of the squares of the values of the irreducible representations for each 
class must be equal to the order of the group (h), in this case, 12+12+12+12

 = 4 for the class 
represented by E. In the last two columns, functions at the fixed point are listed according to 
which irreducible representation they transform. For example, x transforms as the B1 

irreducible representation, as does a px orbital. The product xy transforms as A2 and therefore 
so does a dxy orbital. The terms Rx, Ry, and Rz refer to operators such as angular momentum 
operators - think of 

� 

ˆ L x  as an example of Rx. 
If we compare Γ1 (also χ1) for the transformation of xS in Table 2 with the irreducible 

representations in the character table for C2v, we see that it corresponds to B1. That is because 
the S atom is at the fixed point of the point group. We say that xS forms a basis for the 
representation B1. The same is not true for xA and xB; they form a basis for a 2-dimensional 
reducible representation (recall the 2×2 matrices above). The character, Γ2 (or χ2), for this 
representation is given in Table 2 as well. 

Given the character of a reducible representation, there is a formula that connects the 
number of occurrences of an irreducible representation in the reducible representation. Let Γ 
denote a reducible representation and Γ′	
  an irreducible representation of a point group. If 

� 

c ′ Γ  
is the number of times the irreducible representation Γ′ appears in the reducible 
representation, Γ, then 

� 

c ′ Γ =
1
h

g C( )χ ′ Γ ( ) C( )χ C( )∑     (3.2) 

where h is the number of symmetry operations in the group (4 in this case), g(C) is the 
number of symmetry operations in the class of operations C (here this is 1, but for ammonia 
it would be either 2 or 3 because there are two symmetry operations in the C3 class and three 
in the class of σ). The term, χ(Г´)(C), is the character of the irreducible representation Γ′ (from 
the character table). Finally, χ(C) is the character for the reducible representation for the class 
of operations C (this is Γ2, the actual values in Table 2). Recall that all symmetry operations 
in a class (Cn or σ) have the same character. 

Considering the class of symmetry operations and referring to the character table for 
C2v for the character of each irreducible representation, and Table 2 for the character of each 
reducible representation, we can write out the equations: 

 
We have shown that the reducible representation Γ2 decomposes into the irreducible 
representations A2 and B1. Frequently, we denote this fact by writing, Γ2 = A2 ⊕B1. Also, we 
can decompose the original 3-dimensional reducible representation into, A2 ⊕2B1.  

We will use the character table for C3v as an example of how to determine the basis 

functions for these irreducible representations: 
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We can see upon examination of the character table that there are three irreducible 
representations and three classes. Two of the irreducible representations, A1 and A2, are 1- 
dimensional (both +1 as they do not change sign under the rotation operation) and the third, 
E, is 2-dimensional. (Do not confuse the identity operation, E, and the label, E, which 
designates 2-dimensional representations. Other dimensions can exist and are labeled T for 3-
dimensional and F for 4-dimensional, but we will not investigate these here.) The sum of the 
squares of the values (dimensions) of the three irreducible representations is 6 (E—[12

 +12
 + 

22], or 2 C3—2[12 + 12
 + (-1)2], or 3 σv—3[12

 + (-1)2
 + (0)2]). This is the order of the group, h. 

Suppose that we have been given the following reducible representation: 

 
Then, decomposing the reducible representation into irreducible representations according to 
Equation 2, we get: 

 
and so we would write Γ	
  =	
  A1 ⊕2A2 ⊕E for the decomposition. 
 
Exercise 6: Decompose the reducible representations for px and py obtained in Exercise 5 (Γ2 

from the Tables) into their irreducible components by using equation 2, as was shown in the 
above ammonia C3v decomposition. Filling out the templates given will help keep track of 
your values. From the decomposition determine the basis functions for these irreducible 

representations of C2v (i.e. A1, A2, B1, or B2) and then draw the py and pz orbitals on the 

oxygen atoms that correspond to these bases. (Note that we have ignored the s orbitals on 

both the S and the two O atoms. A full treatment would include them.)  (20 marks) 
 
py decomposition 
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pz decomposition 

 
 

MOLECULAR ORBITALS 
 

We want to be able to write down the basis for the reducible representations in terms 
of the basis for the irreducible representations. For example, in the C2v case, we have been 
working with the reducible representation Γ2, which has the basis (xA, xB). This representation 
decomposes into A2 ⊕ 	
  B1 as we have seen (Γ2 = A2 + B1). What are the bases for A2 and B1 in 
terms of xA and xB? Atkins and de Paula[1] gives a description of the procedure in Chapter11 
and we shall follow this method. The technique is called building symmetry-adapted linear 
combinations (SALC) of atomic orbitals. It works quite well for 1-dimensional 
representations but care must be exercised when applying it to 2- and 3-dimensional 
representations. (Atkins and de Paula illustrates this in their discussion) The steps given in 
the textbook are repeated here with corresponding results: 

1. Construct a table showing the effect of each symmetry operation on each orbital (or 
any function for that matter) of the original basis (see Table 3a below). 

2. To generate the combination of a specified symmetry species, take each column in 
turn and: 

i. Multiply each member of the column by the character of the corresponding 
operation (Table 3b, 3c). 

ii. Add together all orbitals in each column with the factors as determined in (i) 
iii. Divide the sum by the order of the group (total number of symmetry 

operations, h) 
 
Atkins and de Paula use ammonia (C3v) as an example. Here, we shall work with Γ2 for a C2v 

molecule, where we work with px orbitals rather than the x-axis (recall that these transform 

equivalently). Following the instructions in step 1, we set up the table: 

 
Notice the operation of C2 on pxA yields -pxB and the same is true for this operation on pxB (the 
result is -pxA) because the atoms in these points swap positions. 



 23 

 
Step 2 follows by using the A2 irreducible representation (1, 1, -1, -1) to obtain results 

for the first column, pxA (2(i) through 2(iii)): 

 
	
  

	
  
The process is repeated for the second column (pxB) still using A2 irreducible representation, 

 
These two functions differ by a minus sign, which is unimportant. If we apply each operation 
in turn to this linear combination, we generate the character for the A2 irreducible 
representation. 

The same process can be applied to B1 for each column resulting in the following, 

 
For pxA,  

 
For pxB,  

 
These results are identical. Again, applying each symmetry operation in turn to this function, 
we obtain the character for the B1 irreducible representation. 

The significance of this process is founded on the following principle: Only linear 
combinations of atomic orbitals transforming according to the same irreducible 
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representation can have nonzero overlap. In the above example, only pxS and  

orbitals transform according to B1. They can be combined in two possible ways 
    (3.3) 

    (3.4) 
where a and b are constants. Absolute magnitudes are shown so that the signs may be 
indicated explicitly. The first combination represents a bonding π molecular orbital, the 
second, an anti-bonding π* molecular orbital. The bonding orbital combination in Equation 3 
is shown in Figure 2a. There is one nodal plane, the plane of the molecule (yz), and 
delocalization of electrons is possible throughout the π-network. The entire molecular orbital 
will transform as the B1 representation. The anti-bonding combination in Equation 4 is 
portrayed in Figure 2b. There are now three nodal planes, one in the molecular plane (yz) and 
one between each SO bond.  This orbital also transforms according to the B1 representation. 

 
   (a)       (b) 

Figure 2:  The (a) bonding and (b) anti-bonding π-molecular orbitals of SO2. 
 

In the SO2 molecule, all molecular orbitals can be classified in terms of the irreducible 
representations of the point group C2v. We have discovered the symmetry of the π	
  MO and 
π* MO only. The actual numerical values of the coefficients, a and b (from Equations 3 and 
4), must be determined by solving the Schrodinger equation within some approximate 
scheme. 

Once the MOs have been obtained, an energy diagram can be constructed and 
electrons placed in each MO according to the Pauli exclusion principle. Not all of the MOs 
are used in this process. The last MO to be filled is called the highest occupied MO or 
HOMO. The next orbital in the energy sequence, which is left unfilled, is called the lowest 
unoccupied MO or LUMO. Usually, in simple molecules, if a π-orbital is present, it 
corresponds to the HOMO and the π* to the LUMO. 
 
Exercise 7: The point group of ethene, C2H4, is D2h. The coordinate axes and the molecular 
structure are shown in Figure 3. Assume all bond angles are 120°. We intend to construct 
symmetry adapted linear combinations (SALCs) of atomic valence orbitals to describe the 
bonding in ethene. NOTE: there are three parts to this exercise, a, b, and c.  (30 marks) 
 

 
Figure 3: Molecular structure and coordinate system for ethene, C2H4. 
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The point group D2h consists of eight symmetry operations: the identity operation, E, a 2-fold 
rotation about the z-axis, C2(z), a 2-fold rotation about the y-axis, C2(y), a 2-fold rotation 
about the x-axis, C2(x), a centre of inversion, i, a reflection in the xy plane, σ(xy), a reflection 
in the xz plane, σ(xz), and a reflection in the yz plane, σ(yz). The basis on each hydrogen is a 
1s orbital and these are denoted (sA, sB, sC, sD). On each carbon there is one 2s and three 2p 
orbitals denoted (s1, s2) and (px1, px2), (py1, py2), and (pz1, pz2), respectively. 
 
(a) Calculate the character for the reducible representations for each type of orbital on 
ethene (remember that reducible representations will have values greater than 1), then 
decompose these reducible representations into their irreducible components. To do this 
apply each operation to the orbital listed (HsA for example) and fill in the template below. 
Then use Equation 2, as you did in Exercise 3 for SO2, to obtain the irreducible 
representations. This method of determining reducible representations differs from the 
previous method as it does not involve matrices. Use the labeling system in Figure 3! Other 
labeling systems will give different (but not necessarily incorrect) results. 
Hint—look at the number of atoms for a particular orbital. For example, there are four H 
atoms in total, so perform the operation on one and then multipy by 4 (ΓHs for the operation 
E is 1×4 = 4, so place the value 4 in the table). Also, there are two C atoms and so the 
character for these orbitals is multiplied by 2 (Γ2sC for the operation E is 1×2 = 2). The same 
strategy is used for the 2 p orbitals for coordinates x, y, and z. 

 
Use the following set up for all basis sets from the character table for determining irreducible 
representations: 
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(b) Building SALCs: step 1 from Atkins rules above has been done for you in Tables 6 
through 10. 

 

 

 



 27 

 

 
Using these tables choose the one which corresponds to a particular set of orbitals and 
determine the bases for each irreducible representation for that set of orbitals. For example, 
in part (a) you found ГHs had a certain number of irreducible representations; one of the 
tables corresponds to the Hs orbitals. Apply the characters from the D2h character table that 
correspond to the irreducible components you obtained in (a) and follow step 2 from the 
Atkins and de Paula rules. This will show the orbital symmetry for each basis set. Draw out 
the orbital symmetries that match the irreducible representations. 
 
(c) Create a table of symmetry types and their bases. Place the orbitals you drew out in (b) 
into the appropriate boxes of the table below. Label the drawings as σ, σ*, π, and π*. When 
appropriate calculations are performed, the π MO corresponds to the HOMO and the π* to 
the LUMO. Label the HOMO and LUMO of the π to π* transition. 
 
Ag 1sH orbital looks something like this: 
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Ag 2sC orbital looks something like this (σ): 

 
 
Note that not all the boxes will be filled. 
 

 
 

EXPECTATION VALUES AND MATRIX ELEMENTS 
 

One application of group theory that is important is in the calculation of matrix 
elements for selection rules and expectation values. 
 
Direct product representations 
 

We denote the direct product of two irreducible (reducible) representations by Γ	
  ×	
  Γ‘. 
The character of the direct product representation is obtained by multiplying the characters of 
each irreducible representation. For example, for the group C2v, if we take the direct product 
of the A2 and B1 representations we get the following: 
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Comparing the character of this 1-dimensional representation to the others in the C2v 

character table we see that A2 × B1 = B2. This is general; the direct product of two or more 1- 

dimensional representations always yields a 1-dimensional representation. The direct product 
of two or more 2- or 3-dimensional representations usually yields a reducible representation 
that can then be decomposed into a sum of irreducible representations according to methods 
we detailed above. 
 
Molecular states 
 

When we determine the molecular state for a system we take the direct product of the 
irreducible representations of each MO that each electron occupies. For closed shells (no 
unpaired electrons), the resulting state is usually the totally symmetric state, A1, in the case of 
C2v. The full designation is 1A1 since for a closed subshell, the ground state is always a spin 
singlet. 

Excited states are usually obtained by exciting one or more electrons into empty 
(virtual) orbitals. For example, in our SO2 example, suppose an electron is excited from the 
π-orbital (B1) to the π* orbital (B1). Then, the state of the molecule would be B1 ×	
  B1 = A1, 
the totally symmetric representation. Both the ground and excited states would then be A1. 
The resulting excited state may be either a singlet or triplet spin state, 1A1 or 3A1. 
 
Exercise 8: The ground state of ethene is 1Ag. Given the symmetries of the π	
  and π* orbitals 
of ethene in Exercise 7(c), find the symmetry species of the excited state formed by exciting 
an electron from the π	
  orbital to the π* orbital. Will the state be a singlet or a triplet or are 
both possible? (Hint—use direct product)      (5 marks) 
 

Note that the direct product of any representation with itself always contains the 
totally symmetric representation. As used here, the term “contains” means that the direct 
product is either equal to the totally symmetric representation or it decomposes into a sum of 
representations at least one of which is the totally symmetric representation. This property is 
important for what comes next. 
 
Matrix elements and expectation values 
 

Let O be some operator, then a matrix element involving the operator O is written 

� 

Ψ* ˆ O Φ∫ dτ       (3.5) 
Then, when Ψ = Φ, the matrix element is equivalent to an expectation value, if the state Ψ is 
normalized. Since they represent physically observable quantities, non-zero matrix elements 
must remain unchanged after any symmetry operation. Let Ψ transform as the irreducible 
representation ΓΨ, O as the ΓO irreducible representation, and Φ as the ΓΦ irreducible 
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representation. Now, compute the direct product representation 

� 

ΓΨΓOΓΦ      (3.6) 
If this new representation contains the totally symmetric representation, then the integral will 
be nonzero. 

As an example, we shall consider the dipole moment operator, written as   

� 

! µ = −e! r  
where   

� 

! r = x
! 
i + y
! 
j + z
! 
k .  This operator appears not only in expectation values but also in 

matrix elements that determine the probability of whether a particular transition between 
states will occur. 

Let us show that the dipole moment of SO2 can be nonzero. Let the ground state wave 
function be Ψ, and it transforms as A1 of C2v. We have 

� 

µ = −e Ψ*xΨdτ∫ + Ψ*yΨdτ∫ + Ψ*zΨdτ∫[ ]    (3.7) 
For the dipole moment to be nonzero, at least one of these integrals must be nonzero. 
Referring to the C2v character table, we see that x, y, and z, transform as B1, B2, and A1, 
respectively. Since ΓΨ = A1 (ΓΨ* = ΓΨ), we have for the first integral, 

� 

ΓΨΓxΓΨ = A1B1A1 = B1       (3.8) 
which is not the totally symmetric representation. Hence, the first integral must be zero. Also, 
we can show that the second integral is zero since it transforms as BB2, 

� 

ΓΨΓyΓΨ = A1B2A1 = B2      (3.9) 
For the third integral, we see that 

� 

ΓΨΓzΓΨ = A1A1A1 = A1      (3.10) 
and hence it may be nonzero. This is consistent with the dipole moment having to have a 
nonzero component in the z-direction since that corresponds to the C2 rotation axis. 

Let Ψ be the ground state function and Φ be the wave function for some excited state 
and suppose that the spin multiplicity of both the ground and excited states are the same 
(ΔS=0). Then, a transition between these states has nonzero probability if at least one of the 
matrix elements, 

� 

Ψ*xΦdτ∫ ; Ψ*yΦdτ∫ ; Ψ*zΦdτ∫    (3.11) 
is nonzero. This is because the band intensity is proportional to the square of the modulus of 
these three integrals. For the integrals to be nonzero, the direct product representation in 
Equation 6 must contain the totally symmetric representation. For SO2, we have already 
discussed the case of forming an excited state 1A1 from the π	
  and π* orbitals. Is a transition 
from the ground state to this excited state allowed? The answer is yes, since ΓΨΓzΓΦ	
  contains 
the A1 representation. 
 
Exercise 9: Using the result from Exercise 8, show whether a transition from the π	
   to π* 
orbital is allowed or forbidden in ethene. Set up a calculation according to Equation 6 and 
pay attention to x, y, and z components from the D2h character table.  (5 marks)
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