

Pressure Gradients

GEOG/ENST 2331 – Lecture 7 Ahrens: Chapter 8

Lab 2

Mechanics: F = ma

What exerts force in the atmosphere?

- Pressure gradients
- Gravity
- Coriolis effect
- Friction

Review: Pressure

- Atmospheric pressure is force per unit area exerted by atmospheric gases (all directions)
- Commonly expressed in *millibars* or *hectopascals* 1 hPa = 100 Pa = 1 mb
- Surface pressure is close to 1000 hPa
 - Varies with time and place

A&B: Figure 4-1

Ideal Gas Law

Pressure, density and temperature of air are related by the Ideal Gas Law:

$$P = \rho TC$$

- C is the gas constant
- For air, $C = 287 [J/kg \cdot K]$
- See Ahrens pp. 228-229

Partial Pressures

- In a mixture of gases, each individual gas exerts its own partial pressure
 - E.g. pCO₂ or pH₂O
- Dalton's Law: the sum of the partial pressures equals the total pressure

- Isobars lines of constant pressure
- Pressure Gradient the change in pressure over distance
 - Zonal
 - Meridional
 - or Vertical
 - Blocking situations

Ahrens: Figure 8.10

Pressure gradient force

 Tendency for fluids to flow from high pressure to low pressure

Horizontal pressure gradient force

Horizontal pressure differences are usually slight.

Strong pressure gradients indicate strong winds and storms.

$$PGF = -\frac{1}{\rho} \frac{\Delta P}{\Delta x}$$

PGF

PGF is always perpendicular to isobars

Closely spaced isobars indicate stronger PGF

Vertical Changes in Pressure

- Pressure decreases with height
- Exponential: roughly 50% every 5.5 km

A&B: Figures 4-2 and 4-3

Coordinate system

Cartesian system (x,y)

- x zonal (East/West) direction East is positive
- y meridional (North/South) direction North is positive
- z vertical up is positive
- u velocity in the x direction
- v velocity in the y direction

Gravitational force

Force of attraction between two masses

Earth approximation:

GF =
$$mg$$
, $g = 9.8 \text{ N/kg}$

Vertical force (always pulls 'down')

Hydrostatic Balance

A vertical balance of forces

- Pressure gradient force and gravity are equal
- No net vertical acceleration

$$\Delta P = -\rho g \Delta z$$

Ahrens: Fig. 7, p. 250

Vertical pressure gradients

Pressure always decreases with height Vertical pressure gradients are balanced by gravity

$$P = \rho CT$$
$$\Delta P = -\rho g \Delta z$$

Scale height, *H*, is a vertical distance over which the pressure drops by a constant factor

$$H = \frac{CT}{g}$$

T is the average temperature in the column of height H

- If T is large, then H is large and the pressure reduces more slowly with height.
 - If T is small the opposite is true.
- For example, the tropopause occurs at 250 hPa. The height of the tropopause is 8 km at the poles and 13 km at the equator.
 - This is consistent with the scale height analysis $H = \frac{CT}{T}$

Temperature and scale height

A&B: Figure 4-7

Upper air

Height of constant pressure decreases with temperature

Ahrens: Figure 8.13

Altimeters

Ahrens: Fig. 2, p. 237

Ahrens: Figure 8.14

Isobaric charts

Pressure (in hPa)

500 hPa height contours (in m).

Ahrens: Figure 8.16b

Elongated zones of high and low pressure are called ridges (a) and troughs (b), respectively.

A&B: Figure 4-20

Atmospheric Pressure Examples

Ahrens: Figure 8.15

Put the air in motion

- Horizontal pressure gradients cause the air to move
- The Earth's surface is a spinning frame of reference
- Push an object within that reference and it will not appear to travel in a straight line

The Coriolis Effect

Next lecture

- Coriolis "force"
- Geostrophic winds
- Cyclones and anticyclones
- More of Ahrens et al., Chapter 8