Pressure Gradients

GEOG/ENST 2331 - Lecture 7 Ahrens: Chapter 8
Lab 2

Mechanics: $F=m a$

What exerts force in the atmosphere?
s Pressure gradients
m Gravity
: Coriolis effect
a Friction

Review: Pressure
*) Atmospheric pressure is force per unit area exerted by atmospheric gases (all directions)

- Commonly expressed in millibars or hectopascals
s. $1 \mathbf{h P a}=100 \mathrm{~Pa}=1 \mathrm{mb}$

3 Surface pressure is close to 1000 hPa
${ }_{4}$ Varies with time and place

Ideal Gas Law

- Pressure, density and temperature of air are related by the Ideal Gas Law:
: $P=\rho T C$
: C is the gas constant
\& For air, $C=287[\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}]$
- See Ahrens pp. 228-229

A\&B: Figure 4-1

Partial Pressures

- In a mixture of gases, each individual gas exerts its own partial pressure
as. E.g. pCO_{2} or $\mathrm{pH}_{2} \mathrm{O}$
* Dalton's Law: the sum of the partial pressures equals the total pressure

Charting pressure

* Isobars - lines of constant pressure
* Pressure Gradient - the change in pressure over distance
s Zonal
Meridional
sor Vertical
al Blocking situations

Ahrens: Figure 8.10

Pressure gradient force

TANK A

- Tendency for fluids to flow from high pressure to low pressure

Ahrens: Fig. 8.17

Horizontal pressure gradient force

Horizontal pressure differences are usually slight.

Strong pressure gradients indicate strong winds and storms.

Ahrens: Fig. 8.18

$$
\mathrm{PGF}=-\frac{1}{\rho} \frac{\Delta P}{\Delta x}
$$

PGF

PGF is always perpendicular to isobars

Closely spaced isobars indicate stronger PGF

Ahrens: Fig. 8.19

Vertical Changes in Pressure

- Pressure decreases with height
- Exponential: roughly 50% every 5.5 km

A\&B: Figures 4-2 and 4-3

Coordinate system

Cartesian system (x, y)
x - zonal (East/West) direction - East is positive y - meridional (North/South) direction - North is positive z - vertical - up is positive
u - velocity in the x direction
v - velocity in the y direction

Gravitational force
人) Force of attraction between two masses

- Earth approximation:
: GF $=m g, g=9.8 \mathrm{~N} / \mathrm{kg}$
* Vertical force (always pulls 'down')

Hydrostatic Balance

A vertical balance of forces

- Pressure gradient force and gravity are equal
- No net vertical acceleration

$$
\Delta P=-\rho g \Delta z
$$

Higher pressure

Ahrens: Fig. 7, p. 250

Vertical pressure gradients

Pressure always decreases with height
Vertical pressure gradients are balanced by gravity

Scale height, H, is a vertical distance over which the pressure drops by a constant factor

$$
\begin{aligned}
& P=\rho C T \\
& \Delta P=-\rho g \Delta z
\end{aligned}
$$

$$
H=\underline{C T}
$$

g
T is the average temperature in the column of height H

Scale Height

3) If T is large, then H is large and the pressure reduces more slowly with height.
s If T is small the opposite is true.
(2) For example, the tropopause occurs at 250 hPa . The height of the tropopause is 8 km at the poles and 13 km at the equator.
m This is consistent with the scale height analysis

$$
H=\frac{C T}{g}
$$

Temperature and scale height

A\&B: Figure 4-7

Upper air

Height of constant pressure decreases with temperature

Ahrens: Figure 8.13

Altimeters

Ahrens: Fig. 2, p. 237

Constant altitude surfaces

Ahrens: Figure 8.14

Isobaric charts

(a) Surface map

Pressure (in hPa)

(b) Upper-air map (500 hPa)

500 hPa height contours (in m).

Ahrens: Figure 8.16b

Elongated zones of high and low pressure are called ridges (a) and troughs (b), respectively.

A\&B: Figure 4-20

Atmospheric Pressure Examples

mm Hg in Hg $832.6-32.78$
825.1-32.48
817.6-32.19
810.1-31.89
802.6-31.60
95.1-31.30
787.6-31.00
780.1-30.71
772.6-30.42
765.1 - 30.12
757.6-29.82
50.1-29.53
742.6-29.24
735.1-28.94
727.6-28.64
720.1-28.35
712.6-28.05
705.1-27.76
697.6-27.46
690.1-27.17
682.6-26.87
675.1-26.58
667.6-26.28
660.1-25.99
652.6-25.69
645.1-25.40
637.6-25.10

-1083.8 hPa: Highest recorded sea-level pressure: Agata, Siberia, associated with the Siberian High that forms over northern continental Siberia during dark, frigid winters. December 31, 1968.
-1079.6 hPa: Highest recorded Canadian sea-level pressure: Dawson, Yukon Territory. February 2, 1989.
« Strong high-pressure system
1013.25 hPa Standard sea-level pressure

Deep low-pressure system
970
960
950
$940 \sim 940.2 \mathrm{hPa}$ Lowest recorded Canadian sea-level pressure:
930
920
910
900
890
880
870
860
850
1100
1090
1080
1070
1060
1050

- 1040

1030
1020
1010
1000
990
980

\leftarrow St. Anthony, Newfoundland. January 20,1977.
920 hPa: Hurricane Katrina during landfall. Buras, Louisiana, USA. August 28, 2005.

882 hPa (26.04 in.) Hurricane Wilma (October, 2005)
870.0 hPa: Lowest recorded sea-level pressure: In eye of Super Typhoon Tip, Pacific Ocean, $17^{\circ} \mathrm{N}, 138^{\circ} \mathrm{E}$ (between Guam and the Philippines). October 12, 1979.
hPa
1110

Ahrens: Figure 8.15

Put the air in motion

- Horizontal pressure gradients cause the air to move
- The Earth's surface is a spinning frame of reference
- Push an object within that reference and it will not appear to travel in a straight line

The Coriolis Effect

Ahrens: Fig. 8.21

Next lecture

- Coriolis "force"
- Geostrophic winds
- Cyclones and anticyclones
- More of Ahrens et al., Chapter 8

