

Technical Reference Guide

HP Compaq 8200 Elite Series Business Desktop Computers

Document Part Number: 656770-001

March 2011

This document provides information on the design, architecture, function, and capabilities of the HP Compaq 8200 Elite Series Business Desktop Computers. This information may be used by engineers, technicians, administrators, or anyone needing detailed information on the products covered.

© Copyright 2011 Hewlett-Packard Development Company, L.P.

The information contained herein is subject to change without notice. HP is not responsible for any omissions or errors contained herein.

Microsoft, MS-DOS, Windows, Windows NT, Windows XP, Windows Vista, and Windows 7 are trademarks of Microsoft Corporation in the U.S. and other countries.

Intel, Intel Core i3/i5/i7, Pentium Dual-Core, Intel Celeron, Intel vPro, and Intel Inside are trademarks of Intel Corporation in the U.S. and in other countries.

Adobe, Acrobat, and Acrobat Reader are trademarks or registered trademarks of Adobe Systems Incorporated.

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

This document contains proprietary information that is protected by copyright. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company.

Technical Reference Guide

HP Compaq 8200 Elite Series Business Desktop Computers

First Edition (March 2011)

Document Part Number: 656770-001

Contents

1.1.1 Online Viewing 1.1.2 Hardcopy 1.2 Additional Information Sources 1.3 Serial Number 1.4 Notational Conventions 1.5.1 Special Notices 1.5.2 Values 1.5 Common Acronyms and Abbreviations 2 System Overview 2.1 Introduction 2.2 Features 2.3 System Architecture 2.3.1 Intel Processor Support 2.3.2 Chipset 2.3.3 Support Components 2.3.4 System Memory 2.3.5 Mass Storage Accomodations 2.3.6 Legacy Input/Output Interfaces 2.3.7 Universal Serial Bus Interface 2.3.8 Network Interface Controller 2.3.9 Graphics Subsystem 2.3.10 Audio Subsystem	1	Introduction	
2.1 Introduction . 2.2 Features . 2.3 System Architecture . 2.3.1 Intel Processor Support . 2.3.2 Chipset . 2.3.3 Support Components . 2.3.4 System Memory . 2.3.5 Mass Storage Accomodations . 2.3.6 Legacy Input/Output Interfaces . 2.3.7 Universal Serial Bus Interface . 2.3.8 Network Interface Controller . 2.3.9 Graphics Subsystem . 2.3.10 Audio Subsystem .		1.1 About this Guide 1.1.1 Online Viewing 1.1.2 Hardcopy 1.2 Additional Information Sources 1.3 Serial Number 1.4 Notational Conventions 1.5.1 Special Notices 1.5.2 Values 1.5 Common Acronyms and Abbreviations	1–1 1–1 1–2 1–2 1–2 1–2
2.2 Features 2.3 System Architecture 2.3.1 Intel Processor Support 2.3.2 Chipset 2.3.3 Support Components 2.3.4 System Memory 2.3.5 Mass Storage Accomodations 2.3.6 Legacy Input/Output Interfaces 2.3.7 Universal Serial Bus Interface 2.3.8 Network Interface Controller 2.3.9 Graphics Subsystem 2.3.10 Audio Subsystem	2	System Overview	
$oldsymbol{\dot{r}}$		2.1 Introduction 2.2 Features 2.3 System Architecture 2.3.1 Intel Processor Support 2.3.2 Chipset 2.3.3 Support Components 2.3.4 System Memory 2.3.5 Mass Storage Accomodations 2.3.6 Legacy Input/Output Interfaces 2.3.7 Universal Serial Bus Interface 2.3.8 Network Interface Controller 2.3.9 Graphics Subsystem 2.3.10 Audio Subsystem 2.3.11 HP ProtectTools Embedded Security 2.4 Specifications	2-2 2-4 2-6 2-7 2-7 2-8 2-8 2-8 2-8 2-9 2-9

3	Processor/Memory Subsystem	
	3.1 Introduction 3.2 Intel Processor 3.2.1 Intel Processor Features 3.2.2 Processor Changing/Upgrading 3.3 Memory Subsystem 3.3.1 Memory Upgrading 3.3.2 Memory Upgrading 3.3.2 Memory Mapping and Pre-allocation	3–2 3–2 3–3 3–4
4	System Support	
	4.1 Introduction	4–1
	4.2 PCI Bus Overview.	
	4.2.1 PCI 2.3 Bus Operation	
	4.2.2 PCI Express Bus Operation	
	4.2.3 Option ROM Mapping	
	4.2.4 PCI Interrupts	
	4.2.5 PCI Power Management Support	
	4.2.6 PCI Connectors.	
	4.3 System Resources	
	4.3.1 Interrupts	
	4.3.2 Direct Memory Access.	
	4.4 Real-Time Clock and Configuration Memory	
	4.4.1 Clearing CMOS	
	4.4.2 Standard CMOS Locations.	
	4.5 System Management	
	4.5.1 Security Functions	
	4.5.2 Power Management	
	4.5.3 System Status	
	4.5.4 Thermal Sensing and Cooling	
	4.6 Register Map and Miscellaneous Functions	
	4.6.1 System I/O Map	
	4.6.2 GPIO Functions	
5	Input/Output Interfaces	
•	• • •	<i>5</i> 1
	5.1 Introduction	
	5.2 SATA/eSATA Interface	
	5.2.1 SATA Interface	
	5.2.2 eSATA Interface	
	5.3 Serial Interface	
	5.4 Parallel Interface Support	
	5.4.1 Standard Parallel Port Mode.	
	5.4.2 Enhanced Parallel Port Mode	
	5.4.3 Extended Capabilities Port Mode	
	5.4.4 Parallel Interface Connector	
	5.5 Keyboard/Pointing Device Interface	
	5.5.1 Keyboard Interface Operation	
	J.J.Z FOIRING Device interface Oberation	

	5.5.3 Keyboard/Pointing Device Interface Connector	5–8
	5.6 Universal Serial Bus Interface	5–9
	5.6.1 USB Connector	5–9
	5.6.2 USB Cable Data	5–10
	5.7 Audio Subsystem	5–11
	5.7.1 HD Audio Controller	5–12
	5.7.2 HD Audio Link Bus	5–12
	5.7.3 Audio Multistreaming	5–12
	5.7.4 Audio Specifications	5–13
	5.8 Network Interface Controller	5–14
	5.8.1 Wake-On-LAN Support	5–15
	5.8.2 Alert Standard Format Support	5–15
	5.8.3 Power Management Support	5–15
	5.8.4 NIC Connector	5–15
	5.8.5 NIC Specifications	5–16
6	Integrated Graphics Subsystem	
	6.1 Introduction	6–1
	6.2 Functional Description	
	6.3 Upgrading	
	6.4 Monitor Connectors.	
	6.5.1 Analog Monitor Connector	
	6.5.2 DisplayPort Connector	
	0.0.2 2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	
7	Power and Signal Distribution	
•	Power and Signal Distribution	
	7.1 Introduction	7–1
	7.2 Power Distribution	7–1
	7.2.1 USDT Power Distribution	7–2
	7.2.2 SFF/MT/CMT Power Distribution	7–2
	7.3 Power Control	7–5
	7.3.1 Power Button	7–5
	7.3.2 Wake Up Events	7–7
	7.4 Power Management	
	7.5 Signal Distribution	7–9

SYSTEM BIOS 8.6 USB Legacy Support.......8–7 A Error Messages and Codes

Index

Introduction

1.1 About this Guide

This guide provides technical information about HP Compaq 8200 Elite Business PC personal computers that feature the Intel® Q67 Express chipset and support select Intel Celeron®, Pentium®, CoreTM i3, Core i5, and Core i7 processors. This document describes in detail the system's design and operation for programmers, engineers, technicians, and system administrators, as well as end-users wanting detailed information.

This guide primarily describes the hardware and firmware elements and primarily deal with the system board and the power supply assembly. This guide can be used either as an online document or in hardcopy form.

1.1.1 Online Viewing

Online viewing allows for quick navigating and convenient searching through the document. A color monitor will also allow the user to view the color shading used to highlight differential data. A softcopy of the latest edition of this guide is available for downloading in .pdf file format at the following URL: www.hp.com

Viewing the file requires a copy of Adobe Acrobat Reader available at no charge from Adobe Systems, Inc. at the following URL: www.adobe.com

1.1.2 Hardcopy

A hardcopy of this guide may be obtained by printing from the .pdf file. The document is designed for printing in an $8 \frac{1}{2} \times 11$ -inch format.

1.2 Additional Information Sources

For more information on components mentioned in this guide refer to the indicated manufacturers' documentation, which may be available at the following online sources:

- HP Corporation: www.hp.com
- Intel Corporation: www.intel.com
- Serial ATA International Organization (SATA-IO): www.serialATA.org.
- USB user group: www.usb.org

1.3 Serial Number

The serial number is located on a sticker placed on the exterior cabinet. The serial number is also written into firmware and may be read with HP Diagnostics or Insight Manager utilities.

1.4 Notational Conventions

The notational guidelines used in this guide are described in the following subsections.

1.4.1 Special Notices

The usage of warnings, cautions, and notes is described as follows:

WARNING: Text set off in this manner indicates that failure to follow directions could result in bodily harm or loss of life.

CAUTION: Text set off in this manner indicates that failure to follow directions could result in damage to equipment or loss of information.

Text set off in this manner provides information that may be helpful.

1.4.2 Values

Differences between bytes and bits are indicated as follows:

MB = megabytes

Mb = megabits

1.5 Common Acronyms and Abbreviations

Table 1-1 lists the acronyms and abbreviations used in this guide.

Table 1-1 Acronyms and Abbreviations

Acronym or Abbreviation	Description
A	ampere
AC	alternating current
ACPI	Advanced Configuration and Power Interface
A/D	analog-to-digital
ADC	Analog-to-digital converter
ADD or ADD2	Advanced digital display (card)
AHCI	SATA Advanced Host controller Interface
AMT	Active Management Technology
API	application programming interface
APIC	Advanced Programmable Interrupt Controller
APM	advanced power management
AOL	Alert-On-LAN™
ASIC	application-specific integrated circuit
ASF	Alert Standard Format
AT	1. attention (modem commands) 2. 286-based PC architecture
ATA	AT attachment (IDE protocol)
ATAPI	ATA w/packet interface extensions
AVI	audio-video interleaved
AVGA	Advanced VGA
AWG	American Wire Gauge (specification)
BAT	Basic assurance test
BCD	binary-coded decimal
BIOS	basic input/output system
bis	second/new revision
BNC	Bayonet Neill-Concelman (connector type)
bps or b/s	bits per second
BSP	Bootstrap processor
BTO	Built to order
CAS	column address strobe
CD	compact disk
CD-ROM	compact disk read-only memory
CDS	compact disk system

Acronym or Abbreviation	Description			
CGA	color graphics adapter			
Ch	Channel, chapter			
cm	centimeter			
CMC	cache/memory controller			
CMOS	complimentary metal-oxide semiconductor (configuration memory)			
Cntlr	controller			
Cntrl	control			
codec	1. coder/decoder 2. compressor/decompressor			
CPQ	Compaq			
CPU	central processing unit			
CRIMM	Continuity (blank) RIMM			
CRT	cathode ray tube			
CSM	1. Compaq system management 2. Compaq server management			
DAC	digital-to-analog converter			
DC	direct current			
DCH	DOS compatibility hole			
DDC	Display Data Channel			
DDR	Double data rate (memory)			
DIMM	dual inline memory module			
DIN	Deutche IndustriNorm (connector type)			
DIP	dual inline package			
DMA	direct memory access			
DMI	Direct Media Interface			
DP	DisplayPort			
dpi	dots per inch			
DRAM	dynamic random access memory			
DRQ	data request			
DVI	Digital video interface			
dword	Double word (32 bits)			
EDID	extended display identification data			
EDO	extended data out (RAM type)			
EEPROM	electrically erasable PROM			
EIA	Electronic Industry Association			
EPP	enhanced parallel port			

Acronym or Abbreviation	Description			
EIDE	enhanced IDE			
eSATA	external SATA			
ESCD	Extended System Configuration Data (format)			
EV	Environmental Variable (data)			
ExCA	Exchangeable Card Architecture			
FDI	Flexible Display Interface			
FIFO	first in/first out			
FL	flag (register)			
FM	frequency modulation			
FPM	fast page mode (RAM type)			
FPU	Floating point unit (numeric or math coprocessor)			
FPS	Frames per second			
ft	Foot/feet			
GB	gigabyte			
GMCH	Graphics/memory controller hub			
GND	ground			
GPIO	general purpose I/O			
GPOC	general purpose open-collector			
GART	Graphics address re-mapping table			
GUI	graphic user interface			
h	hexadecimal			
HDD	hard disk drive			
HW	hardware			
hex	hexadecimal			
Hz	Hertz (cycles-per-second)			
ICH	I/O controller hub			
IDE	integrated drive element			
IEEE	Institute of Electrical and Electronic Engineers			
IF	interrupt flag			
I/F	interface			
IGC	integrated graphics controller			
in	inch			
INT	interrupt			
I/O	input/output			
IOPS	Input/output Operations Per Second			

Acronym or Abbreviation	Description			
IrDA	Infrared Data Association			
IRQ	interrupt request			
ISA	industry standard architecture			
Kb/KB	kilobits/kilobytes (x 1024 bits/x 1024 bytes)			
Kb/s	kilobits per second			
kg	kilogram			
KHz	kilohertz			
kV	kilovolt			
lb	pound			
LAN	local area network			
LCD	liquid crystal display			
LED	light-emitting diode			
LGA	land grid array			
LPC	Low pin count			
LSI	large scale integration			
LSb/LSB	least significant bit/least significant byte			
LUN	logical unit (SCSI)			
m	Meter			
MMX	multimedia extensions			
MPEG	Motion Picture Experts Group			
MXM	Mobile PCI eXpress Module			
ms	millisecond			
MSb/MSB	most significant bit/most significant byte			
mux	multiplex			
MVA	motion video acceleration			
MVW	motion video window			
n	variable parameter/value			
NIC	network interface card/controller			
NiMH	nickel-metal hydride			
NMI	non-maskable interrupt			
NRZI	Non-return-to-zero inverted			
ns	nanosecond			
NT	nested task flag			
NTSC	National Television Standards Committee			

Acronym or Abbreviation	Description			
NVRAM	non-volatile random access memory			
ODD	optical disk drive			
OS	operating system			
PAL	1. programmable array logic 2. phase alternating line			
PATA	Parallel ATA			
PC	Personal computer			
PCA	Printed circuit assembly			
PCI	peripheral component interconnect			
PCI-E	PCI Express			
PCM	pulse code modulation			
PCMCIA	Personal Computer Memory Card International Association			
PCH	Platform Controller Hub			
PEG	PCI express graphics			
PFC	Power factor correction			
PIN	personal identification number			
PIO	Programmed I/O			
PN	Part number			
POST	power-on self test			
PROM	programmable read-only memory			
PTR	pointer			
RAID	Redundant array of inexpensive disks (drives)			
RAM	random access memory			
RAS	row address strobe			
rcvr	receiver			
RDRAM	(Direct) Rambus DRAM			
RGB	red/green/blue (monitor input)			
RH	Relative humidity			
RMS	root mean square			
ROM	read-only memory			
RPM	revolutions per minute			
RTC	real time clock			
R/W	Read/Write			
SATA	Serial ATA			
SCSI	small computer system interface			

Acronym or Abbreviation	Description
SDR	Singles data rate (memory)
SDRAM	Synchronous Dynamic RAM
SDVO	Serial digital video output
SEC	Single Edge-Connector
SECAM	sequential colour avec memoire (sequential color with memory)
SF	sign flag
SGRAM	Synchronous Graphics RAM
SIMD	Single instruction multiple data
SIMM	single in-line memory module
SMART	Self Monitor Analysis Report Technology
SMI	system management interrupt
SMM	system management mode
SMRAM	system management RAM
SODIMM	small outline DIMM
SPD	serial presence detect
SPDIF	Sony/Philips Digital Interface (IEC-958 specification)
SPN	Spare part number
SPP	standard parallel port
SRAM	static RAM
SSD	solid state disk (drive)
SSE	Streaming SIMD extensions
STN	super twist pneumatic
SVGA	super VGA
SW	software
TAD	telephone answering device
TAFI	Temperature-sensing And Fan control Integrated circuit
TCP	tape carrier package, transmission control protocol
TF	trap flag
TFT	thin-film transistor
TIA	Telecommunications Information Administration
TPE	twisted pair ethernet
TPI	track per inch
TPM	Trusted Platform Module
TTL	transistor-transistor logic

Acronym or Abbreviation	Description
TV	television
TX	transmit
UART	universal asynchronous receiver/transmitter
UDMA	Ultra DMA
UDIMM	unbuffered/unregistered DIMM
UEFI	Unified Extensible Firmware Interface
URL	Uniform resource locator
us/μs	microsecond
USB	Universal Serial Bus
UTP	unshielded twisted pair
V	volt
VAC	Volts alternating current
VDC	Volts direct current
VESA	Video Electronic Standards Association
VGA	video graphics adapter
VLSI	very large scale integration
VRAM	Video RAM
W	watt
WOL	Wake-On-LAN
WRAM	Windows RAM
ZF	zero flag
ZIF	zero insertion force (socket)

System Overview

2.1 Introduction

The HP Compaq 8200 Elite Business PC personal computers (Figure 2-1) deliver an outstanding combination of manageability, serviceability, and compatibility for enterprise environments. Based on the the Intel Q67 Express chipset and supporting select Intel Celeron®, Pentium®, CoreTM i3, Core i5, and Core i7 processors, these systems emphasize performance along with industry compatibility. All models feature a similar architecture incorporating both PCI 2.3 and PCIe 2.0 buses. All models are easily upgradeable and expandable to keep pace with the needs of the office enterprise.

Figure 2-1. HP Compaq 8200 Elite Business PCs

This chapter includes the following topics:

- \blacksquare Features (2.2)
- System architecture (2.3)
- \blacksquare Specifications (2.4)

2.2 Features

The following standard features are included on all models unless otherwise indicated:

- Intel Celeron, Intel Pentium, or Intel Core i3/i5/i7 processor (LGA1155 socket)
- Independent dual monitor support:
 - One VGA connector
 - ☐ One DisplayPort (DP) connector with Multimode support
- PC3-10600 and PC3-8500 DDR3 memorysupport

CAUTION: These products do not support Ultra Low voltage (1.25V) DIMM/SODIMM. Installation of ultra low voltage memory can cause damage to the system and/or memory.

- Hard drive fault prediction
- Ten externally-accessible USB 2.0-compliant ports (four front, six rear)
- High definition (HD) audio processor with one headphone output, at least one microphone input, one line output, and one line input
- Network interface controller providing 10/100/1000Base T support
- Plug 'n Play compatible (with ESCD support)
- PS/2 keyboard
- PS/2 optical scroll mouse
- HP UEFI BIOS
- Management/security features including:
 - ☐ Flash ROM Boot Block
 - ☐ Diskette drive disable, boot disable, write protect
 - ☐ Power-on password
 - ☐ Administrator password
 - ☐ Serial port disable
 - ☐ Smart Cover (hood) Lock (CMT, MT, SFF only)
 - ☐ Smart Cover (hood) Sense
 - □ USB port disable
 - ☐ Intel Standard Manageability support
 - ☐ Intel vPro Technology support (with selected processors)
 - ☐ HP Virtual Safe Browser
 - □ HP ProtectTools Embedded Security

Table 2-1 shows the differences in features between the different PC series based on form factor.

Table 2-1				
Feature Differences	by	Form	Factor	

	USDT	SFF	MT	CMT
Thermal Design Power (TPD) (processor)	65 W	95 W	95 W	95 W
# and type of memory sockets	2 DDR3 SODIMMs	4 DDR3 UDIMMs	4 DDR3 UDIMMs	4 DDR3 UDIMMs
Serial ports	0	1 std., 1 opt. [1]	1 std., 1 opt. [1]	1 std., 1 opt. [1]
Parallel ports	0	optional	optional	optional
Drive bays: Externally accessible	1 [9]	1 - 5.25" 1 - 3.50"	2 - 5.25" [7] 1 - 3.50"	3 - 5.25" [7]
Internal	1- 2.50"	1 - 3.50"	2 - 3.50" [8]	3 - 3.50" [8]
# of SATA/eSATA drives supported:	2	3/1	4	5
MXM 3.0 slot?	Yes	No	No	No
PCle slots: 2.0 x16 (graphics) 2.0 x4 (x16 connector) 2.0 x1 connector 1.2 Mini Card	1	(all low profile) 1 [2] 1 [2] 1 [3] 0	(all full height) 1 [4] 1 [5] 1 [6] 0	(all full height) 1 [4] 1 [5] 1 [6] 0
PCI 2.3 32-bit 5-V slot, 25-watt maximum		1	1 full-height	3 full-height
Power Supply Unit: Module type Power rating	external 135- or180-watt	internal 240-watt	internal 320-watt	internal 320-watt

NOTES:

- [1] 2nd serial port requires optional cable/bracket assembly.
- [2] Low-profile, 25 W maximum.
- [3] Low profile, 10-watt maximum
- [4] Full-length;
 - 75-watt maximum if PCle x4 slot is not populated,
 - 35-watt maximum if PCle x4 slot is populated
- [5] 35-watt maximum
- [6] Half-height, half-length, 10-watt maximum
- [7] 3.5" devices supported with adapters
- [8] 2.5" solid state drives supprted with adapter brackets
- [9] Slimline bay

2.3 System Architecture

The systems covered in this guide feature an architecture based on the Intel Celeron, Pentium and Intel Core i3/i5/17 processors and the Intel Q67 Express Platform Controller Hub (PCH) shown in Figure 2-2. All systems covered in this guide include the following key components:

- Intel Pentium processor or Intel Core i3/i5/i7 processor
- Intel Q67 Express PCH-DO chipset
- Super I/O (SIO) controller supporting PS/2 keyboard and mouse peripherals
- ALC261 audio controller supporting line in, line out, microphone in, and headphones out
- Intel 82579LM GbE network interface controller
- HP ProtectTools Embedded Security

The Q67 Express PCH provides a major portion of system functionality. Designed to complement 2nd generation Intel Core processors, the Q67 Express PCH communicates with the processor through the Flexible Display Interface (FDI) and the Direct Media Interface (DMI). All systems include a serial ATA (SATA) hard drive in the standard configuration.

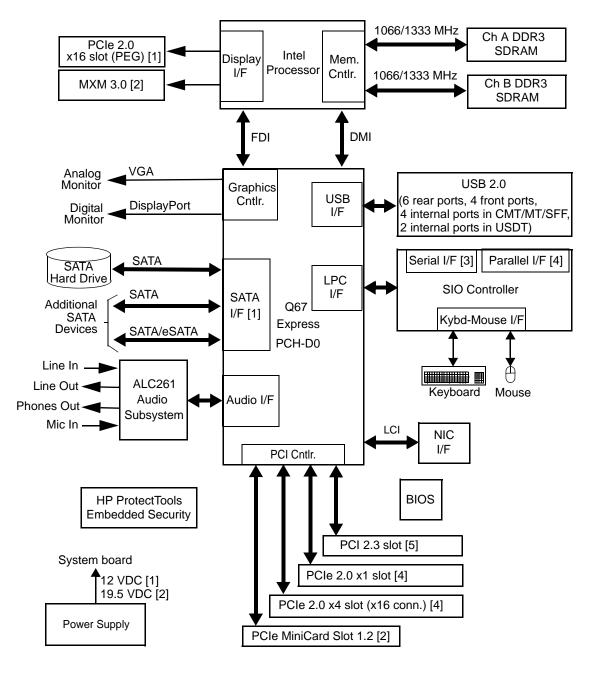

Table 2.2

Table 2-2 lists the differences between models by form factor.

Table 2-2. Architectural Differences by Form Factor					
Function	USDT	SFF	MT	CMT	
# and type of memory sockets	2 SODIMMs	4 UDIMMs	4 UDIMMs	4 UDIMMs	
Maximum amount of memory supported	8 GB	16 GB	16 GB	16 GB	
MXM 3.0 slot	1	0	0	0	
PCle 2.0 x16 graphics slot	0	1 [1]	1	1	
PCle 2.0 x4 slot (x16 connector)	0	1	1	1	
PCle 2.0 x1 slot	0	1 [1]	1	1	
PCle Mini Card 1.2 slot	1	0	0	0	
PCI 2.3 slot	0	1 [1]	1	3	
SATA interface: SATA 3.0 SATA 2.0 eSATA [2]	2 0 0	2 1 1	2 1 1	2 2 1	

Notes:

- [1] Low-profile slot.
- [2] Operates as SATA 2.0 internally, SATA 1.0 as eSATA

Notes:

- [1] CMT, MT, SFF only
- [2] USDT only
- [3] 2 in CMT, MT, and SFF
- [4] 1 in CMT, MT, and SFF only
- [5] 3 in CMT, 1 in MT and SFF

Figure 2-2. HP Compaq 8200 Elite Business PC Architecture, Block diagram

2.3.1 Intel Processor Support

The models covered in this guide can each support an Intel Celeron, Pentium, Core i3, Core i5, or Core i7 processor. These processors are backward-compatible with software written for earlier x86 microprocessors and include streaming SIMD extensions (SSE, SSE2, and SSE3) for enhancing 3D graphics and speech processing performance. Intel processors with vPro Technology include hardware-based tools that allow corporate IT organizations to remotely manage and protect systems.

The system board includes a zero-insertion-force (ZIF) H2 socket (LGA1155) designed for mounting an LGA1155-type processor package.

CAUTION: The CMT, MT, and SFF form factors can support a processor with a TPD rating of up to 95 watts. The USDT form factor can support a processor rated up to 65 watts. Exceeding these limits can result in system damage and loss of data.

These systems use processor sockets that support 2nd generation Intel Core i3, Core i5, and Core i7 processors and are not compatible with earlier generations of those processors.

The processor heatsink/fan assembly mounting differs between form factors. Always use the same assembly or one of the same type when replacing the processor. Refer to the applicable Maintenance & Service Guide for detailed removal and replacement procedures of the heatsink/fan assembly and the processor.

2.3.2 Chipset

The Intel Q67 Express PCH-D0 is a single component that provides the following functions:

- PCI 2.3 bus controller
- PCIe bus controller
- LPC bus controller
- SMBus interface
- SATA interface
- HD audio interface
- RTC/CMOS function
- IRQ controller
- Serial Peripheral Device
- Power management logic
- USB 1.1/2.0 controllers supporting 14 ports
- Gigabit Ethernet controller

2.3.3 Support Components

Input/output functions not provided by the chipset are handled by other support components. Some of these components also provide "housekeeping" and various other functions as well. Table 2-3 shows the functions provided by the support components.

Table 2-3 Support Component Functions			
Component Name	Function		
Nuvoton SIO11 Controller	Keyboard and pointing device I/F Serial I/F (COM1 and COM2) [1] Parallel I/F (LPT1, LPT2, or LPT3) [2] PCI reset generation Interrupt (IRQ) serializer Power button and front panel LED logic GPIO ports Processor over temperature monitoring Fan control and monitoring Power supply voltage monitoring SMBus and Low Pin Count (LPC) bus I/F		
Intel 82579 LOM Network Interface Controller	10/100/1000 Fast Ethernet network interface controller.		
ALC261 HD Audio Codec	Audio mixer Two digital-to-analog stereo converters Two analog-to-digital stereo converters Analog I/O Supports stereo (two-channel) audio streams		

[1] COM2 requires external bracket/cable assembly. [2] Requires external bracket/cable assembly.

2.3.4 System Memory

These systems implement a dual-channel Double Data Rate (DDR3) memory architecture. All models support DDR3 1333-MHz (PC3-10600) and 1066-MHz (PC3-8500) memory modules. The CMT, MT, and SFF form factors provide four UDIMM sockets and support a maximum of 16 gigabytes of memory. The USDT form factor provides two SODIMM sockets and supports up to eight gigabytes of memory.

2.3.5 Mass Storage Accommodations

All models support at least two mass storage devices, with one being externally accessible for removable media. The storage device accommodations are as follows:

CMT: six bays total; three 5.25-inch externally accessible, three 3.5-inch internal

MT: five bays total; two 5.25-inch externally accessible, one 3.5-inch externally accessible, two 3.5-inch internal

SFF: three bays total; one 5.25-inch externally accessible, one 3.5-inch externally accessible, one 3.5-inch internal

USDT: two bays total; one 5.25-inch externally accessible (for slimline optical disk drive), one 2.5-inch internal

These systems may be preconfigured or upgraded with a SATA hard drive and one removable media drive such as a CD-ROM drive.

2.3.6 Legacy Input/Output Interfaces

PS/2 Port

All systems provide two PS/2 ports at the rear of the chassis for connection of a keyboard and mouse.

Serial port

The CMT, MT, and SFF form factors provide a serial port at the rear of the chassis and support a second serial port option. The serial interface is RS-232-C/16550-compatible and supports standard baud rates up to 115,200 as well as two high-speed baud rates of 230K and 460K.

Parallel port

The CMT, MT, and SFF form factors support a parallel port option.

2.3.7 Universal Serial Bus Interface

All models provide ten externally accessible Universal Serial Bus (USB) ports. Four ports are provided at the front of the unit, six ports are provided on the rear panel. Accessible through a header on the system board are two USB ports in the USDT form factor and four USB ports in the CMT, MT, and SFF form factors. These systems support a media card reader module that connects to the internal header. USB 1.1 and 2.0 functionality is available on all ports.

BIOS Setup allows for the disabling of USB ports individually or in groups. In order to secure the system against a physical attack, ports may be disabled even if there is nothing physically connected to them, such as the two front ports for the media card reader module when the module is not present.

2.3.8 Network Interface Controller

All models feature an Intel 82579 gigabit (GbE) Network Interface Controller (NIC) integrated on the system board. The controller provides automatic selection of 10BASE-T, 100BASE-TX, or 1000BASE-T operation with a local area network and includes power-down, wake-up, Alert-On-LAN (AOL), and AMT features. An RJ-45 connector with status LEDs is provided on the rear panel.

2.3.9 Graphics Subsystem

In the standard configuration, these systems use the integrated graphics controller (IGC) of the Intel processor. Intel Celeron, Pentium, Core i3, and most Core i5 and Core i7 processors feature the HD Graphics 2000 IGC while select Core i5 and Core i7 processor feature the HD Graphics 3000 IGC.

The Intel HD Graphics 2000 uses six execution units providing high-performance 2D and casual 3D capabilities. The Intel HD Graphics 3000 uses 12 execution units providing high-performance 3D capabilities without the need for a separate graphics card.

All systems include a legacy analog video (VGA) connector and a DisplayPort connector and support dual monitor operation. The DisplayPort includes a multimode feature that allows a VGA, DVI, or HDMI adapter to be connected to the DisplayPort.

For upgrading the graphics controller, the CMT, MT, and SFF form factors provide a PCIe 2.0 x16 graphics slot while the USDT form factor provides an MXM 3.0 slot.

2.3.10 Audio Subsystem

These systems use the integrated High Definition audio controller of the chipset and the Realtek ADL261 High Definition audio codec. HD audio provides enhanced audio performance with higher sampling rates, refined signal interfaces, and audio processors with increased signal-to-noise ratio. The audio line input jack can be re-configured as a microphone input, and multi-streaming is supported. These systems include a 1.5-watt output amplifier driving an internal speaker, which can be muted with the F10 BIOS control. All models include a front panel accessible stereo microphone input jack (re-taskable as a Line-In input) and a headphone output audio jack.

2.3.11 HP ProtectTools Embedded Security

HP ProtectTools Embedded Security is a hardware/software solution providing file and folder encrypytion service that integrates with the operating system. The software component—the HP ProtectTools Embedded Security Manager (preinstalled), controls the basic operation of the hardware component—the Trusted Platform Module (TPM) security chip. These components are compliant with the Trusted Computing Group (TCG) security standards organization.

HP ProtectTools Embedded Security includes the following features:

- Enhanced Windows operating system files and folder encryption
- Enhanced email encryption—built-in authentication for Outlook, Outlook Express, Lotus Notes, Eudora
- Strengthens defense against hacking, system attacks, denial of service and network attacks
- "Embedded smart card" functionality
- Strengthens authentication with LANs, WANs.
- Works with/enhances third-party security solutions

HP ProtectTools Embedded Security Manager is accessed through a Windows Control Panel applet. The management functions are accessible through established protocols such as DMI, SNMP, or WEBEM.

2.4 Specifications

This section includes the environmental, electrical, and physical specifications for the systems covered in this guide. Where provided, metric statistics are given in parenthesis. Specifications are subject to change without notice.

Table 2-4
Environmental Specifications (Factory Configuration)

Parameter	Operating	Non-operating		
Ambient Air Temperature	50° to 95° F (10° to 35° C, max. rate of change ≤ 10°C/Hr)	-22° to 140° F (-30° to 60° C, max. rate of change ≤ 20°C/Hr)		
Shock (w/o damage)	5 Gs [1]	20 Gs [1]		
Vibration	0.000215 G ² /Hz, 10-300 Hz	0.0005 G ² /Hz, 10-500 Hz		
Humidity	10-90% Rh @ 28° C max. wet bulb temperature	5-95% Rh @ 38.7° C max. wet bulb temperature		
Maximum Altitude	10,000 ft (3048 m) [2]) [2] 30,000 ft (9144 m) [2]		

NOTE:

Table 2-5 Power Supply Electrical Specifications

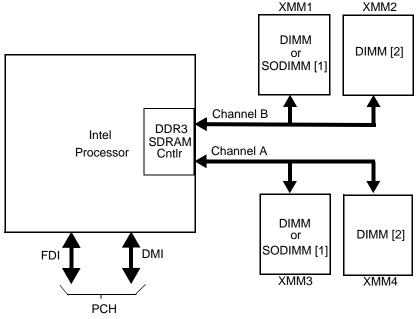
Value	
100-240 VAC	
90-264 VAC	
50–60 Hz	
47-63 Hz	
135 / 180 W	
240 W	
320 W	
320 W	

^{1]} Peak input acceleration during an 11 ms half-sine shock pulse.

^[2] Maximum rate of change: 1500 ft/min.

Ta	ble	2-6	
Physical	Spe	cificatio	ns

Parameter	USDT	SFF [2]	MT	CMT [3]
Height	2.60 in	3.95 in	14.5 in	17.63 in
	(6.60 cm)	(10.03 cm)	(36.8 cm)	(44.8 cm)
Width	9.90 in	13.3 in	6.88 in	7.0 in
	(25.15 cm)	(33.78 cm)	(17.5 cm)	(17.8 cm)
Depth	10.0 in	14.9 in	16.31 in	17.5 in
	(25.40 cm)	(37.85 cm)	(41.1)	(44.5 cm)
Weight [1]	7.0 lb	16.72 lb	23.8 lb	26.2 lb
	(3.18 kg)	(7.6 kg)	(10.8 kg	(11.5 kg)


NOTES:

- [1] System configured with 1 hard drive, 1 optical media drive, and no PCI cards.
- [2] Desktop (horizontal) configuration.
- [3] Minitower configuration. For desktop configuration, swap Height and Width dimensions.

Processor/Memory Subsystem

3.1 Introduction

This systems provide an LGA 1155 (H2) socket supporting an Intel Celeron, Pentium Dual-Core, Core i3, Core i5, or Core i7 processor. These processors include an integrated dual-channel DDR3 memory controller (Figure 3-1) and support PC3-8500 and PC3-10600 memory modules. This chapter describes the processor/memory subsystem.

NOTES:

- [1] USDT uses SODIMM sockets
- [2] CMT, MT, and SFF only

Figure 3-1. Processor/Memory Subsystem Architecture

This chapter includes the following topics:

- \blacksquare Intel processor(3.2)
- Memory subsystem (3.3)

3.2 Intel Processor

These systems support an Intel Celeron, Pentium Dual-Core, Core i3, Core i5, or Core i7 processor that mounts in a zero-insertion force LGA1155 (H2) socket.

3.2.1 Intel Processor Features

Table 3-1 provides the specifications of processors supported by these systems.

Table 3-1						
Specifications of Supported Intel Processors						
Intel Series	Model	# Cores / Threads	CPU Clock Rate Base / Turbo	L3 Cache Size	Graphics Controller	TDP
Core i7	2600K 2600	4/8	3.4 / 3.8 GHz	8 MB	HD 3000 HD 2000	95 W
	2600S		2.8 / 3.8 GHz			65 W
Core i5	2500K	4 / 4	3.3 / 3.7 GHz	6 MB	HD 3000	95 W
	2500		3.3 / 3.7 GHz		HD 2000	
	2500S		2.7 / 3.7 GHz			65 W
	2500T		2.3 / 3.3 GHz	_		45 W
	2400	-	3.1 / 3.4 GHz	=		95 W
	2400S		2.5 / 3.3 GHz	_		65 W
	2300	-	2.8 / 3.1 GHz	=		95 W
	2390T	2/4	2.7 / 3.5 GHz	3 MB	_	35 W
Core i3	2120	2/4	3.3 / na GHz	3 MB	HD 2000	65 W
	2105	-	3.1 / na GHz			
	2100	-	3.1 / na GHz			
	2100T	-	2.5 / na GHz			35 W
Pentium	G850	2/2	2.9 / na GHz			65 W
	G840		2.8 / na GHz			=
	G620		2.6 / na GHz			=
	G620T	-	2.2 / na GHz			35 W

These processors include an integrated memory controller that supports 1333-MHz dual-channel DDR3 memory.

3.2.2 Processor Changing/Upgrading

These systems use the LGA1155 ZIF (H2) mounting socket and require that the processor use an integrated heatsink/fan assembly. A replacement processor must use the same type heatsink/fan assembly as the original to ensure proper cooling. The heatsink and attachment mechanism are designed to provide maximum heat transfer from the processor component.

CAUTION: Attachment of the heatsink to the processor is critical on these systems. Improper attachment of the heatsink will likely result in a thermal condition. Although the system is designed to detect thermal conditions and automatically shut down, such a condition could still result in damage to the processor component. Refer to the applicable Maintenance and Service Guide for processor installation instructions.

CAUTION: The CMT, MT, and SFF form factors can support a processor with a thermal design point (TDP) of up to 95 watts. The USDT form factor can support a processor with a TDP of up to 65 watts. Exceeding these limits can result in system damage and lost data.

3.3 Memory Subsystem

All models support non-ECC DDR3-1066 (PC3-8500) and DDR3-1333 (PC3-10600) memory modules. CMT, MT, and SFF form factors support up to 16 gigabytes of memory while the USDT form factor supports up to 8 gigabytes of memory.

DDR2 memory modules used on previous systems are not compatible with these systems. DDR3 Ultra Low Voltage (DDR3U) memory modules are also not compatible with these systems and can be damaged if installed.

- DIMM1, channel B (black socket)
- DIMM2, channel B (white socket)
- DIMM3, channel A (black socket)
- DIMM4, channel A (white socket)

Memory modules do not need to be installed in pairs although installation of pairs (especially matched sets) provides the best performance. Black sockets must be populated first. The BIOS will detect the module population and set the system accordingly as follows:

- Single-channel mode memory installed for one channel only
- Dual-channel asymetric mode memory installed for both channels but of unequal channel capacities.
- Dual-channel interleaved mode (recommended) memory installed for both channels and offering equal channel capacities, proving the highest performance.

These systems support memory modules with the following parameters:

- 1.5 volt SDRAM DIMMs
- Unbuffered, compatible with SPD rev. 1.0
- 512-Mb, 1-Gb, and 2-Gb memory technologies using x8 or x16 devices
- CAS latency (CL) of 7 for 1066-MHz memory and CL of 9 for 1333-MHz memory
- Single or double-sided DIMMs
- Non-ECC memory only

The SPD format supported by these systems complies with the JEDEC specification for 128-byte EEPROMs. This system also provides support for 256-byte EEPROMs to include additional HP-added features such as part number and serial number.

If BIOS detects an unsupported memory module, a "memory incompatible" message will be displayed and the system will halt. These systems are shipped with non-ECC modules only.

An installed mix of memory module types is acceptable but operation will be constrained to the level of the module with the lowest (slowest) performance.

If an incompatible memory module is detected the NUM LOCK will blink for a short period of time during POST and an error message may or may not be displayed before the system hangs.

3.3.1 Memory Upgrading

Table 3-2 shows suggested memory configurations for these systems.

Table 3-2 does <u>not</u> list all possible configurations.

Tab	le 3-2	2.
Memory S	ocket	Loading

Char	nnel B Channel A			
Socket 1	Socket 2	Socket 3	Socket 4	Total
1 GB	none	none	none	1 GB
1 GB	none	1 GB	none	2 GB [1]
1 GB	1 GB	1 GB	1 GB	4 GB [1]
2 GB	2 GB	2 GB	2 GB	8 GB [1]
4 GB	4 GB	4 GB	4 GB	16 GB [1]

NOTE:

[1] Dual-channel symetrical.

HP recommends using symmetrical loading (same-capacity, same-speed modules across both channels) to achieve optimum performance.

CAUTION: Always power down the system and disconnect the power cord from the AC outlet before adding or replacing memory modules. Changing memory modules while the unit is plugged into an active AC outlet could result in equipment damage.

Memory amounts over 3 GB may not be fully accessible with 32-bit operating systems due to system resource requirements. Addressing memory above 4 GB requires a 64-bit operating system.

3.3.2 Memory Mapping and Pre-allocation

Figure 3-2 shows the system memory map. The Q67 Express PCH-D0 includes a Management Engine that pre-allocates a portion of system memory (16 MB for one module, 32 MB for two modules) for management functions. In addition, the internal graphics controller pre-allocates a portion of system memory for video use (refer to chapter 6). Pre-allocated memory is not available to the operating system. The amount of system memory reported by the OS will be the total amount installed <u>less</u> the pre-allocated amount.

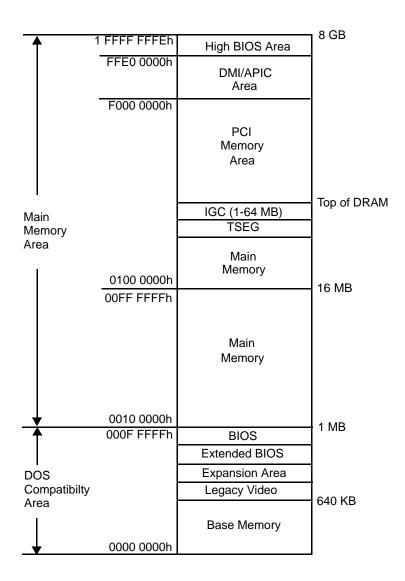


Figure 3-2. System Memory Map (for maximum of 8 gigabytes)

All locations in memory are cacheable. Base memory is always mapped to DRAM or to PCI space. Graphics RAM area is mapped All locations in memory are cacheable. Base memory is always mapped to DRAM. The next 128 to PCI locations.

System Support

4.1 Introduction

This chapter covers subjects dealing with basic system architecture and covers the following topics:

- PCI bus overview (4.2)
- System resources (4.3)
- Real-time clock and configuration memory (4.4)
- System management (4.5)
- Register map and miscellaneous functions (4.6)

This chapter covers functions provided by off-the-shelf chipsets and therefore describes only basic aspects of these functions as well as information unique to the systems covered in this guide. For detailed information on specific components, refer to the applicable manufacturer's documentation.

4.2 PCI Bus Overview

This section describes the PCI bus in general and highlights bus implementation for systems covered in this guide. For detailed information regarding PCI bus operation, refer to the appropriate PCI specification or the PCI web site: www.pcisig.com.

These systems implement the following types of PCI buses:

- PCI 2.3 Legacy parallel interface operating at 33-MHz
- PCI Express High-performance interface capable of using multiple TX/RX high-speed lanes of serial data streams

4.2.1 PCI 2.3 Bus Operation

The PCI 2.3 bus consists of a 32-bit path (AD31-00 lines) that uses a multiplexed scheme for handling both address and data transfers. A bus transaction consists of an address cycle and one or more data cycles, with each cycle requiring a clock (PCICLK) cycle. High performance is achieved during burst modes in which a transaction with contiguous memory locations requires that only one address cycle be conducted and subsequent data cycles are completed using auto-incremented addressing.

Devices on the PCI bus must comply with PCI protocol that allows configuration of that device by software. In this system, configuration mechanism #1 (as described in the PCI Local Bus specification Rev. 2.3) is employed.

The PCI bus supports a bus master/target arbitration scheme. A bus master is a device that has been granted control of the bus for the purpose of initiating a transaction. A target is a device that is the recipient of a transaction. The Request (REQ), Grant (GNT), and FRAME signals are used by PCI bus masters for gaining access to the PCI bus. When a PCI device needs access to the PCI bus (and does not already own it), the PCI device asserts its REQn signal to the PCI bus arbiter (a function of the system controller component). If the bus is available, the arbiter asserts the GNTn signal to the requesting device, which then asserts FRAME and conducts the address phase of the transaction with a target. If the PCI device already owns the bus, a request is not needed and the device can simply assert FRAME and conduct the transaction. Table 4-1 shows the grant and request signals assignments for the devices on the PCI bus.

Table 4-1. PCI Request/Grant Signals				
Device REQ/GNT Line Notes				
PCI Connector Slot 1 (J20)	REQ0/GNT0	[1]		
PCI Connector Slot 2 (J21)	REQ1/GNT1	[2]		
PCI Connector Slot 3 (J22)	REQ2/GNT2	[2]		

NOTE:

- [1] CMT, MT, and SFF form factors only
- [2] CMT form factor only

PCI bus arbitration is based on a round-robin scheme that complies with the fairness algorithm specified by the PCI specification. The bus parking policy allows for the current PCI bus owner (excepting the PCI/ISA bridge) to maintain ownership of the bus as long as no request is asserted by another agent. Note that most CPU-to-DRAM accesses can occur concurrently with PCI traffic, therefore reducing the need for the Host/PCI bridge to compete for PCI bus ownership.

4.2.2 PCI Express Bus Operation

The PCI Express (PCIe) 2.0 bus is a high-performace extension of the legacy (PCI 2.3) bus specification. The PCIe bus uses the following layers:

- Software/driver layer
- Transaction protocol layer
- Link layer
- Physical layer

Software/Driver Layer

The PCIe bus maintains software compatibility with PCI 2.3 and earlier versions so that there is no impact on existing operating systems and drivers. During system intialization, the PCIe bus uses the same methods of device discovery and resource allocation that legacy PCI-based operating systems and drivers are designed to use.

Transaction Protocol Layer

The transaction protocol layer processes read and write requests from the software/driver layer and generates request packets for the link layer. Each packet includes an identifier allowing any required response packets to be directed to the originator.

Link Layer

The link layer provides data integrity by adding a sequence information prefix and a CRC suffix to the packet created by the transaction layer. Flow-control methods ensure that a packet will only be transferred if the receiving device is ready to accommodate it. A corrupted packet will be automatically re-sent.

Physical Layer

The PCIe bus uses a point-to-point, high-speed TX/RX serial lane topology. One or more full-duplex lanes transfer data serially, and the design allows for scalability depending on end-point capabilities. Each lane consists of two differential pairs of signal paths; one for transmit, one for receive (Figure 4-1).

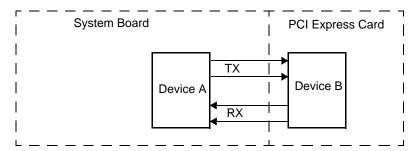


Figure 4-1. PCle Bus Lane

Each byte is transferred using 8b/10b encoding, which embeds the clock signal with the data. Operating at a 2.5 Gigabit transfer rate, a single lane can provide a data flow of 200 MBps. The bandwidth is increased if additional lanes are available for use. During the initialization process, two PCIe devices will negotiate for the number of lanes available and the speed the link can operate at. In a x1 (single lane) interface, all data bytes are transferred serially over the lane. In a multi-lane interface, data bytes are distributed across the lanes using a multiplex scheme.

4.2.3 Option ROM Mapping

During POST, the PCI bus is scanned for devices that contain their own specific firmware in ROM. Such option ROM data, if detected, is loaded into system memory's DOS compatibility area (refer to the system memory map shown in chapter 3).

4.2.4 PCI Interrupts

Eight interrupt signals (INTA- thru INTH-) are available for use by PCI devices. These signals may be generated by on-board PCI devices or by devices installed in the PCI slots. For more information on interrupts including PCI interrupt mapping refer to the "System Resources" section 4.3.

4.2.5 PCI Power Management Support

This system complies with the PCI Power Management Interface Specification (rev 1.0). The PCI Power Management Enable (PME-) signal is supported by the chipset and allows compliant PCI peripherals to initiate the power management routine.

4.2.6 PCI Connectors

PCI 2.3 Connector

Figure 4-2. 32-bit, 5.0-volt PCI 2.3 Bus Connector

Table 4-2. PCI 2.3 Bus Connector Pinout

Pin	B Signal	A Signal	Pin	B Signal	A Signal	Pin	B Signal	A Signal
01	-12 VDC	TRST-	22	GND	AD28	43	+3.3 VDC	PAR
02	TCK	+12 VDC	23	AD27	AD26	44	C/BE1-	AD15
03	GND	TMS	24	AD25	GND	45	AD14	+3.3 VDC
04	TDO	TDI	25	+3.3 VDC	AD24	46	GND	AD13
05	+5 VDC	+5 VDC	26	C/BE3-	IDSEL	47	AD12	AD11
06	+5 VDC	INTA-	27	AD23	+3.3 VDC	48	AD10	GND
07	INTB-	INTC-	28	GND	AD22	49	GND	AD09
08	INTD-	+5 VDC	29	AD21	AD20	50	Key	Key
09	PRSNT1-	Reserved	30	AD19	GND	51	Key	Key
10	RSVD	+5 VDC	31	+3.3 VDC	AD18	52	AD08	C/BEO-
11	PRSNT2-	Reserved	32	AD17	AD16	53	AD07	+3.3 VDC
12	GND	GND	33	C/BE2-	+3.3 VDC	54	+3.3 VDC	AD06
13	GND	GND	34	GND	FRAME-	55	AD05	AD04
14	RSVD	+3.3 AUX	35	IRDY-	GND	56	AD03	GND
15	GND	RST-	36	+3.3 VDC	TRDY-	57	GND	AD02
16	CLK	+5 VDC	37	DEVSEL-	GND	58	AD01	AD00
17	GND	GNT-	38	GND	STOP-	59	+5 VDC	+5 VDC
18	REQ-	GND	39	LOCK-	+3.3 VDC	60	ACK64-	REQ64-
19	+5 VDC	PME-	40	PERR-	SDONE n	61	+5 VDC	+5 VDC
20	AD31	AD30	41	+3.3 VDC	SBO-	62	+5 VDC	+5 VDC
21	AD29	+3.3 VDC	42	SERR-	GND			

PCIe Connectors

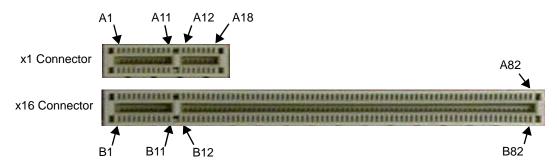


Figure 4-3. PCle Bus Connectors

Pin	B Signal	A Signal	Pin	B Signal	A Signal	Pin	B Signal	A Signal
01	+12 VDC	PRSNT1#	29	GND	PERp3	57	GND	PERn9
02	+12 VDC	+12 VDC	30	RSVD	PERn3	58	PETp10	GND
03	RSVD	+12 VDC	31	PRSNT2#	GND	59	PETn10	GND
04	GND	GND	32	GND	RSVD	60	GND	PERp10
05	SMCLK	+5 VDC	33	РЕТр4	RSVD	61	GND	PERn10
06	+5 VDC	JTAG2	34	PETn4	GND	62	PETp11	GND
07	GND	JTAG4	35	GND	PERp4	63	PETn11	GND
08	+3.3 VDC	JTAG5	36	GND	PERn4	64	GND	PERp11
09	JTAG1	+3.3 VDC	37	РЕТр5	GND	65	GND	PERn11
10	3.3 Vaux	+3.3 VDC	38	PETn5	GND	66	PETp12	GND
11	WAKE	PERST#	39	GND	PERp5	67	PETn12	GND
12	RSVD	GND	40	GND	PERn5	68	GND	PERp12
13	GND	REFCLK+	41	РЕТр6	GND	69	GND	PERn12
14	РЕТрО	REFCLK-	42	PETn6	GND	70	PETp13	GND
15	PETnO	GND	43	GND	PERp6	71	PETn13	GND
16	GND	PERpO	44	GND	PERn6	72	GND	PERp13
17	PRSNT2#	PERnO	45	РЕТр7	GND	73	GND	PERn13
18	GND	GND	46	PETn7	GND	74	PETp14	GND
19	РЕТр1	RSVD	47	GND	PERp7	75	PETn14	GND
20	PETn1	GND	48	PRSNT2#	PERn7	76	GND	PERp14
21	GND	PERp1	49	GND	GND	77	GND	PERn14
22	GND	PERn1	50	РЕТр8	RSVD	78	PETp15	GND
23	РЕТр2	GND	51	PETn8	GND	79	PETn15	GND
24	PETn2	GND	52	GND	PERp8	80	GND	PERp15
25	GND	PERp2	53	GND	PERn8	81	PRSNT2#	PERn15
26	GND	PERn2	54	РЕТр9	GND	82	RSVD	GND
27	РЕТр3	GND	55	PETn9	GND			
28	PETn3	GND	56	GND	PERp9	†		

4.3 System Resources

This section describes the availability and basic control of major subsystems, otherwise known as resource allocation or simply "system resources." System resources are provided on a priority basis through hardware interrupts and DMA requests and grants.

4.3.1 Interrupts

The processor uses two types of hardware interrupts; maskable and nonmaskable. A maskable interrupt can be enabled or disabled within the processor by the use of the STI and CLI instructions. A nonmaskable interrupt cannot be masked off within the processor, but may be inhibited by legacy hardware or software means external to the microprocessor.

The maskable interrupt is a hardware-generated signal used by peripheral functions within the system to get the attention of the processor. Peripheral functions produce a unique INTA-H (PCI) or IRQ0-15 (ISA) signal that is routed to interrupt processing logic that asserts the interrupt (INTR-) input to the processor. The processor halts execution to determine the source of the interrupt and then services the peripheral as appropriate.

Most IRQs are routed through the I/O controller of the super I/O component, which provides the serializing function. A serialized interrupt stream is then routed to the ICH component.

Interrupts may be processed in one of two modes (selectable through the F10 Setup utility):

- 8259 mode
- APIC mode

These modes are described in the following subsections.

8259 Mode

The 8259 mode handles interrupts IRQ0-IRQ15 in the legacy (AT-system) method using 8259-equivalent logic. If more than one interrupt is pending, the highest priority (lowest number) is processed first.

APIC Mode

The Advanced Programmable Interrupt Controller (APIC) mode provides enhanced interrupt processing with the following advantages:

- Eliminates the processor's interrupt acknowledge cycle by using a separate (APIC) bus
- Programmable interrupt priority
- Additional interrupts (total of 24)

The APIC mode accommodates eight PCI interrupt signals (PIRQA-..PIRQH-) for use by PCI devices. The PCI interrupts are evenly distributed to minimize latency and wired as shown in Table 4-5.

Table 4-4. PCI Interrupt Distribution

System Board	System Interrupts (PIRQ)								
Connector	Α	В	С	D	E	F	G	Н	IDSEL
PCI slot 1 (J20)				-	Α	В	С	D	AD16
PCI slot 2 (J21) [1]				-	D	Α	В	С	AD17
PCI slot 3 (J22) [1]	-	-	-	-	С	D	Α	В	AD18

NOTES:

[1] CMT only

The PCI interrupts can be configured by PCI Configuration Registers 60h..63h to share the standard ISA interrupts (IRQn).

The APIC mode is supported by Windows NT, Windows 2000, and Windows XP, Windows Vista, and Windows 7 operating systems. Systems running the Windows 95 or 98 operating system will need to run in 8259 mode.

4.3.2 Direct Memory Access

Direct Memory Access (DMA) is a method by which a device accesses system memory without involving the microprocessor. Although the DMA method has been traditionally used to transfer blocks of data to or from an ISA I/O device, PCI devices may also use DMA operation as well. The DMA method reduces the amount of CPU interactions with memory, freeing the CPU for other processing tasks. For detailed information regarding DMA operation, refer to the data manual for the Intel 82801 PCH I/O Controller Hub.

4.4 Real-Time Clock and Configuration Memory

The Real-time clock (RTC) and configuration memory (also referred to as "CMOS") functions are provided by the 82801 component and is MC146818-compatible. As shown in the following figure, the 82801 PCH component provides 256 bytes of battery-backed RAM divided into two 128-byte configuration memory areas. The RTC uses the first 14 bytes (00-0Dh) of the standard memory area. All locations of the standard memory area (00-7Fh) can be directly accessed using conventional OUT and IN assembly language instructions through I/O ports 70h/71h, although the suggested method is to use the INT15 AX=E823h BIOS call.

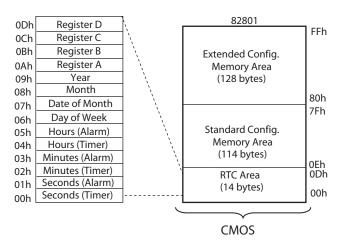


Figure 4-4. Configuration Memory Map

A lithium 3-VDC battery is used for maintaining the RTC and configuration memory while the system is powered down. During system operation a wire-Ored circuit allows the RTC and configuration memory to draw power from the power supply. The battery is located in a battery holder (XBT1) on the system board and has a life expectancy of three or more years. When the battery has expired it is replaced with a CR2032 or equivalent 3-VDC lithium battery.

4.4.1 Clearing CMOS

The contents of configuration memory can be cleared by the following procedure:

- 1. Turn off the unit.
- 2. Disconnect the AC power cord from the outlet and/or system unit.
- 3. Remove the chassis hood (cover) and insure that no LEDs on the system board are illuminated.
- 4. On the system board, press and hold the CMOS clear button (switch SW50, colored yellow) for at least 5 seconds.
- 5. Replace the chassis hood (cover).
- 6. Reconnect the AC power cord to the outlet and/or system unit.
- 7. Turn the unit on.

The above procedure does not clear the Power On Password. To clear the Power-On Password refer to section 4.5.1.

4.4.2 Standard CMOS Locations

Table 4-5 describes standard configuration memory locations 0Ah-3Fh. These locations are accessible through using OUT/IN assembly language instructions using port 70/71h or BIOS function INT15, AX=E823h.

Location	Function	Location	Function
00-0Dh	Real-time clock	24h	System board ID
0Eh	Diagnostic status	25h	System architecture data
OFh	System reset code	26h	Auxiliary peripheral configuration
10h	Diskette drive type	27h	Speed control external drive
11h	Reserved	28h	Expanded/base mem. size, IRQ12
12h	Hard drive type	29h	Miscellaneous configuration
13h	Security functions	2Ah	Hard drive timeout
14h	Equipment installed	2Bh	System inactivity timeout
15h	Base memory size, low byte/KB	2Ch	Monitor timeout, Num Lock Cntrl
16h	Base memory size, high byte/KB	2Dh	Additional flags
17h	Extended memory, low byte/KB	2Eh-2Fh	Checksum of locations 10h-2Dh
18h	Extended memory, high byte/KB	30h-31h	Total extended memory tested
19h	Hard drive 1, primary controller	32h	Century
1Ah	Hard drive 2, primary controller	33h	Miscellaneous flags set by BIOS
1Bh	Hard drive 1, secondary controller	34h	International language
1Ch	Hard drive 2, secondary controller	35h	APM status flags
1Dh	Enhanced hard drive support	36h	ECC POST test single bit
1Eh	Reserved	37h-3Fh	Power-on password
1Fh	Power management functions	40-FFh	Feature Control/Status (see note)

NOTES:

Assume unmarked gaps are reserved.

Higher locations (>3Fh) contain information that should be accessed using the INT15, AX=E845h BIOS function (refer to Chapter 8 for BIOS function descriptions).

Locations 40-FFh changeable by UEFU modules.

4.5 System Management

This section describes functions having to do with security, power management, temperature, and overall status. These functions are handled by hardware and firmware (BIOS) and generally configured through the Setup utility.

4.5.1 Security Functions

These systems include various features that provide different levels of security. Note that this subsection describes only the hardware functionality (including that supported by Setup) and does not describe security features that may be provided by the operating system and application software.

Power-On / Setup Password

These systems include a power-on and setup passwords, which may be enabled or disabled (cleared) through a jumper on the system board. The jumper controls a GPIO input to the 82801 PCH that is checked during POST. The password is stored in configuration memory (CMOS) and if enabled and then forgotten by the user will require that either the password be cleared (preferable solution and described below) or the entire CMOS be cleared (refer to section 4.4.1).

To clear the password, use the following procedure:

- 1. Turn off the system and disconnect the AC power cord from the outlet and/or system unit.
- 2. Remove the cover (hood) as described in the appropriate User Guide or Maintainance And Service Guide. Insure that all system board LEDs are off (not illuminated).
- 3. Locate the password clear jumper (header is colored green and labeled E49 on these systems) and move the jumper from pins 1 and 2 and place on (just) pin 2 (for safekeeping).
- 4. Replace the cover.
- 5. Re-connect the AC power cord to the AC outlet and/or system unit.
- 6. Turn on the system. The POST routine will clear and disable the password.
- 7. To re-enable the password feature, repeat steps 1-6, replacing the jumper on pins 1 and 2 of header E49.

Setup Password

The Setup utility may be configured to be always changeable or changeable only by entering a password. Refer to the previous procedure (Power On / Setup Password) for clearing the Setup password.

Cable Lock Provision

These systems include a chassis cutout on the rear panel for the attachment of a cable lock mechanism.

I/O Interface Security

The SATA, serial, parallel, USB, and diskette interfaces may be disabled individually through the Setup utility to guard against unauthorized access to a system. In addition, the ability to write to or boot from a removable media drive (such as the diskette drive) may be enabled through the Setup utility. The disabling of the serial, parallel, and diskette interfaces are a function of the SIO controller. The USB ports are controlled through the 82801.

Chassis Security

Some systems feature Smart Cover (hood) Sensor and Smart Cover (hood) Lock mechanisms to inhibit unauthorized tampering of the system unit.

Smart Cover Sensor

These systems support an optional plunger switch assembly that, when the cover (hood) is removed, closes and grounds an input of the 82801 component. The battery-backed logic will record this "intrusion" event by setting a specific bit. This bit will remain set (even if the cover is replaced) until the system is powered up and the user completes the boot sequence successfully, at which time the bit will be cleared. Through Setup, the user can set this function to be used by Alert-On-LAN and or one of three levels of support for a "cover removed" condition:

Level 0—Cover removal indication is essentially disabled at this level. During POST, status bit is cleared and no other action is taken by BIOS.

Level 1—During POST the message "The computer's cover has been removed since the last system start up" is displayed and time stamp in CMOS is updated.

Level 2—During POST the "The computer's cover has been removed since the last system start up" message is displayed, time stamp in CMOS is updated, and the user is prompted for the administrator password. (A Setup password must be enabled in order to see this option).

Smart Cover Lock (Optional)

These systems support an optional solenoid-operated locking bar that, when activated, prevents the cover (hood) from being removed. The GPIO ports 44 and 45 of the SIO controller provide the lock and unlock signals to the solenoid. A locked hood may be bypassed by removing special screws that hold the locking mechanism in place. The special screws are removed with the Smart Cover Lock Failsafe Key.

4.5.2 Power Management

These systems provide baseline hardware support of ACPI- and APM-compliant firmware and software. Key power-consuming components (processor, chipset, I/O controller, and fan) can be placed into a reduced power mode either automatically or by user control. The system can then be brought back up ("wake-up") by events defined by the ACPI 2.0 specification. The ACPI wake-up events supported by this system are listed as follows:

Table 4-6. ACPI Wake-Up Events					
ACPI Wake-Up Event	System Wakes From				
Power Button	Suspend or soft-off				
RTC Alarm	Suspend or soft-off				
Wake On LAN (w/NIC)	Suspend or soft-off				
PME	Suspend or soft-off				
Serial Port Ring	Suspend or soft-off				
USB	Suspend only				
Keyboard	Suspend only				
Mouse	Suspend only				

4.5.3 System Status

These systems provide a visual indication of system boot, ROM flash, and operational status through the power LED and internal speaker, as described in Table 4-7.

.

Table 4-7.						
System	Operational	Status LED	Indications			

System Status	PowerLED	Beeps [3]	Action Required
SO: System on (normal	Steady green	None	None
operation)			
S1: Suspend	Blinks green @ .5 Hz	None	None
S3: Suspend to RAM	Blinks green @ .5 Hz	None	None
S4: Suspend to disk	Off – clear [1]	None	None
S5: Soft off	Off – clear	None	None
Processor thermal shutdown	Blinks red 2 times @ 1 Hz [2]	2	Check air flow, fans, heatsink
Processor not seated / installed	Blinks red 3 times @ 1 Hz [2]	3	Check processor
			presence/seating
Power supply overload failure	Blinks red 4 times @ 1 Hz [2]	4	Check system board problem [4],
Memory error (pre-video)	Blinks red 5 times @ 1 Hz [2]	5	Check DIMMs, system board
Video error	Blinks red 6 times @ 1 Hz [2]	6	Check graphics card or system board
PCA failure detected by BIOS (pre-video)	Blinks red 7 times @ 1 Hz [2]	7	Replace system board
Invalid ROM checksum error	Blinks red 8 times @ 1 Hz [2]	8	Reflash BIOS ROM
Boot failure (after power on)	Blinks red 9 times @ 1 Hz [2]	9	Check power supply,
			processor, sys. bd
Bad option card	Blinks red 10 times @ 1 Hz [2]	10	Replace option card
Enabled feature not supported by processor	Blinks red 11 times @ 1 Hz [2]	11	Disable feature

NOTES:

Beeps are repeated for 5 cycles, after which only blinking LED indication continues.

- [1] If "Unique Sleep State Blink Rate" is enable in F10 Setup then blinks 4 times @ .5 Hz
- [2] Repeated after 2 second pause.
- [3] Beeps are produced by the internal chassis speaker.
- [4] Check that CPU power connector P3 is plugged in.

4.5.4 Thermal Sensing and Cooling

All systems feature a variable-speed fan mounted as part of the processor heatsink assembly. All systems also provide or support an auxiliary chassis fan. All fans are controlled through temperature sensing logic on the system board and/or in the power supply. There are some electrical differences between form factors and between some models, although the overall functionality is the same. Typical cooling conditions include the following:

- 1. Normal—Low fan speed.
- 2. Hot processor—ASIC directs Speed Control logic to increase speed of fan(s).
- 3. Hot power supply—Power supply increases speed of fan(s).
- 4. Sleep state—Fan(s) turned off. Hot processor or power supply will result in starting fan(s).

The RPM (speed) of all fans is the result of the temperature of the CPU as sensed by speed control circuitry. The fans are controlled to run at the slowest (quietest) speed that will maintain proper cooling.

Units using chassis and CPU fans must have both fans connected to their corresponding headers to ensure proper cooling of the system.

4.6 Register Map and Miscellaneous Functions

This section contains the system I/O map and information on general-purpose functions of the PCH and I/O controller.

4.6.1 System I/O Map

Table 4-9 lists the fixed addresses of the input/output (I/O) ports for a system booting 16-bit legacy OS..

Table 4-8 System I/O Map

I/O Port	Function
0000001Fh	DMA Controller 1
0020002Dh	Interrupt Controller 1
002E, 002Fh	Index, Data Ports to SIO Controller (primary)
0030003Dh	Interrupt Controller
00400042h	Timer 1
004E, 004Fh	Index, Data Ports to SIO Controller (secondary)
00500052h	Timer / Counter
00600067h	Microcontroller, NMI Controller (alternating addresses)
00700077h	RTC Controller
00800091h	DMA Controller
0092h	Port A, Fast A20/Reset Generator
0093009Fh	DMA Controller
00A000B1h	Interrupt Controller 2
00B2h, 00B3h	APM Control/Status Ports
00B400BDh	Interrupt Controller
00C000DFh	DMA Controller 2
00F0h	Coprocessor error register
01700177h	IDE Controller 2 (active only if standard I/O space is enabled for secondary controller)
01F001F7h	IDE Controller 1 (active only if standard I/O space is enabled for primary controller)
0278027Fh	Parallel Port (LPT2)
02E802EFh	Serial Port (COM4)
02F802FFh	Serial Port (COM2)
03700377h	Diskette Drive Controller Secondary Address
0376h	IDE Controller 2 (active only if standard I/O space is enabled for primary drive)
0378037Fh	Parallel Port (LPT1)
03B003DFh	Graphics Controller
03BC03BEh	Parallel Port (LPT3)
03E803EFh	Serial Port (COM3)
03F003F5h	Diskette Drive Controller Primary Addresses
03F6h	IDE Controller 1 (active only if standard I/O space is enabled for sec. drive)
03F803FFh	Serial Port (COM1)
04D0, 04D1h	Interrupt Controller
0678067Fh	Parallel Port (LPT2)
0778077Fh	Parallel Port (LPT1)
07BC07BEh	Parallel Port (LPT3)
OCF8h	PCI Configuration Address (dword access only)
OCF9h	Reset Control Register
0CFCh	PCI Configuration Data (byte, word, or dword access)

NOTE:

Assume unmarked gaps are unused, reserved, or used by functions that employ variable I/O address mapping. Some ranges may include reserved addresses.

4.6.2 GPIO Functions

PCH-DO Functions

The PCH-D0 provides various functions through the use of programmable general purpose input/output (GPIO) ports. These systems use GPIO ports and associate registers of the PCH for the following functions:

- PCI interrupt request control
- Chassis and board ID
- Hood (cover) sensor and lock detect
- Media card reader detect
- S4 state indicator
- USB port over-current detect
- Flash security override
- Serial port detect
- REQn#/GNTn# sigal control
- Password enable
- Boot block enable

SIO Controller Functions

In addition to the serial and parallel port functions, the SIO controller provides the following specialized functions through GPIO ports:

- Power/Hard drive LED control for indicating system events (refer to Table 4-8)
- Hood lock/unlock controls the lock bar mechanism
- Thermal shutdown control turns off the CPU when temperature reaches certain level
- Processor present/speed detection detects if the processor has been removed. The occurrence of this event will, during the next boot sequence, initiate the speed selection routine for the processor.
- Legacy/ACPI power button mode control uses the pulse signal from the system's power button and produces the PS On signal according to the mode (legacy or ACPI) selected. Refer to chapter 7 for more information regarding power management.

Input/Output Interfaces

5.1 Introduction

This chapter describes the standard interfaces that provide input and output (I/O) porting of data and that are controlled through I/O-mapped registers. The following I/O interfaces are covered in this chapter:

- SATA/eSATA interfaces (5.2)
- Serial interfaces (5.3)
- Parallel interface support (5.4)
- Keyboard/pointing device interface (5.5)
- Universal serial bus interface (5.6)
- Audio subsystem (5.7)
- Network interface controller (5.8)

5.2 SATA/eSATA Interfaces

These systems provide up to four serial ATA (SATA) interfaces that support transfer rates up to 6.0 Gb/s (for ports 0 and 1, 3 Gb/s on all others) and RAID data protection functionality. These systems can also support an external SATA (eSATA) device through an optional bracket/cable assembly.

5.2.1 SATA interface

The SATA interface duplicates most of the functionality of the EIDE interface through a register interface that is equivalent to that of the legacy IDE host adapter. The PCH DO component includes Intel RAID migration technology that simplifies the migration from a single hard drive to a RAID0 or RAID1 dual hard drive array without requiring OS reinstallation. Intel Matrix RAID provides exceptional storage performance with increased data protection for configurations using dual drive arrays. A software solution is included that provides full management and status reporting of the RAID array, and the BIOS ROM also supports RAID creation, naming, and deletion of RAID arrays.

The standard 7-pin SATA connector is shown in the figure below.

Figure 5-1. 7-Pin SATA Connector (P60-P63 on system board).

Table 5-1.	
7-Pin SATA Connector Pinout	

Pin	Description	Pin	Description
1	Ground	6	RX positive
2	TX positive	7	Ground
3	TX negative	А	Holding clip
4	Ground	В	Holding clip
5	RX negative		-

5.2.2 eSATA interface

These systems provide a SATA/eSATA port (connector P64 on the system board) that can support an external SATA (eSATA) storage device. The eSATA interface provides higher bandwidth than USB 2.0 and Firewire (1394) interfaces.

An optional bracket/cable assembly (Figure 5-2) is required to attach an eSATA device to the system.

Figure 5-2. Optional eSATA Bracket/Cable Assembly.

The following operating parameters of the eSATA interface can be set in the ROM-based Setup utility:

- Transfer speed: 1.5 or 3 Gbps (default set to 1.5 Gbps for reliability)
- Emulation mode: IDE, AHCI, or RAID (default set to AHCI)
- Port availability: Available or Hidden (default set to Available)

In the IDE or AHCI modes, the system BIOS ROM controls the hard drives and Removeable Media Boot setting applies. In the RAID mode, the RAID option ROM controls the hard drives and the Removeable Media Boot setting does *not* apply.

For hot-plug functionality, the eSATA port must be set to the AHCI or RAID mode and an AHCI driver with hot-plug support must be loaded onto the system. This driver is pre-loaded on systems as shipped from the factory. If the system is wiped clean or the Windows OS is re-installed, the AHCI driver can be loaded by installing the OS while the eSATA emulation mode is set to AHCI.

5.3 Serial Interface

The CMT, MT, and SFF form factors include one RS-232-C type serial interface to transmit and receive asynchronous serial data with external devices. These systems allow the installation of a second serial interface through an optional bracket/cable assembly that attaches to header P52 on the system board. The serial interface function is provided by the super I/O controller component that includes two NS16C550-compatible UARTs.

The UART supports the standard baud rates up through 115200, and also special high speed rates of 239400 and 460800 baud. The baud rate of the UART is typically set to match the capability of the connected device. While most baud rates may be set at runtime, baud rates 230400 and 460800 must be set during the configuration phase.

The serial interface uses a DB-9 connector as shown in the following figure with the pinout listed in Table 5-2.

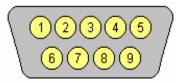


Figure 5-3. DB-9 Serial Interface Connector (male, as viewed from rear of chassis)

Table 5-2. DB-9 Serial Connector Pinout

Pin	Signal	Description	Pin	Signal	Description
1	CD	Carrier Detect	6	DSR	Data Set Ready
2	RX Data	Receive Data	7	RTS	Request To Send
3	TX Data	Transmit Data	8	CTS	Clear To Send
4	DTR	Data Terminal Ready	9	RI	Ring Indicator
5	GND	Ground			

The standard RS-232-C limitation of 50 feet (or less) of cable between the DTE (computer) and DCE (modem) should be followed to minimize transmission errors. Higher baud rates may require shorter cables.

5.4 Parallel Interface Support

The CMT, MT, and SFF form factors include a system board header (J50) that supports an optional parallel bracket/cable assembly that provides a parallel interface for a peripheral device such as a printer. The parallel interface supports bi-directional 8-bit parallel data transfers with a peripheral device. The parallel interface supports three main modes of operation:

- Standard Parallel Port (SPP) mode
- Enhanced Parallel Port (EPP) mode
- Extended Capabilities Port (ECP) mode

These three modes (and their submodes) provide complete support as specified for an IEEE 1284 parallel port.

5.4.1 Standard Parallel Port Mode

The Standard Parallel Port (SPP) mode uses software-based protocol and includes two sub-modes of operation, compatible and extended, both of which can provide data transfers up to 150 KB/s. In the compatible mode, CPU write data is simply presented on the eight data lines. A CPU read of the parallel port yields the last data byte that was written.

5.4.2 Enhanced Parallel Port Mode

In Enhanced Parallel Port (EPP) mode, increased data transfers are possible (up to 2 MB/s) due to a hardware protocol that provides automatic address and strobe generation. EPP revisions 1.7 and 1.9 are both supported. For the parallel interface to be initialized for EPP mode, a negotiation phase is entered to detect whether or not the connected peripheral is compatible with EPP mode. If compatible, then EPP mode can be used. In EPP mode, system timing is closely coupled to EPP timing. A watchdog timer is used to prevent system lockup.

5.4.3 Extended Capabilities Port Mode

The Extended Capabilities Port (ECP) mode, like EPP, also uses a hardware protocol-based design that supports transfers up to 2 MB/s. Automatic generation of addresses and strobes as well as Run Length Encoding (RLE) decompression is supported by ECP mode. The ECP mode includes a bi-directional FIFO buffer that can be accessed by the CPU using DMA or programmed I/O. For the parallel interface to be initialized for ECP mode, a negotiation phase is entered to detect whether or not the connected peripheral is compatible with ECP mode. If compatible, then ECP mode can be used.

The ECP mode includes several sub-modes as determined by the Extended Control register. Two submodes of ECP allow the parallel port to be controlled by software. In these modes, the FIFO is cleared and not used, and DMA and RLE are inhibited.

5.4.4 Parallel Interface Connector

Figure 5-4 and Table 5-3 show the connector and pinout of the parallel connector provided on the optional parallel bracket/cable assembly. Note that some signals are redefined depending on the port's operational mode.

Figure 5-4. DB-25 Parallel Interface Connector (female, as viewed from rear of chassis)

Table 5-3. DB-25 Parallel Connector Pinout

Pin	Signal	Function	Pin	Signal	Function
1	STB-	Strobe / Write [1]	14	LF-	Line Feed [2]
2	D0	Data 0	15	ERR-	Error [3]
3	D1	Data 1	16	INIT-	Initialize Paper [4]
4	D2	Data 2	17	SLCTIN-	Select In / Address. Strobe [1]
5	D3	Data 3	18	GND	Ground
6	D4	Data 4	19	GND	Ground
7	D5	Data 5	20	GND	Ground
8	D6	Data 6	21	GND	Ground
9	D7	Data 7	22	GND	Ground
10	ACK-	Acknowledge / Interrupt [1]	23	GND	Ground
11	BSY	Busy / Wait [1]	24	GND	Ground
12	PE	Paper End / User defined [1]	25	GND	Ground
13	SLCT	Select / User defined [1]		-	-

NOTES:

- [1] Standard and ECP mode function / EPP mode function
- [2] EPP mode function: Data Strobe

ECP modes: Auto Feed or Host Acknowledge

- [3] EPP mode: user defined
 - ECP modes:Fault or Peripheral Req.
- [4] EPP mode: Reset
 - ECP modes: Initialize or Reverse Req.

5.5 Keyboard/Pointing Device Interface

The keyboard/pointing device interface function is provided by the SIO controller component, which integrates 8042-compatible keyboard controller logic (hereafter referred to as simply the "8042") to communicate with the keyboard and pointing device using bi-directional serial data transfers. The 8042 handles scan code translation and password lock protection for the keyboard as well as communications with the pointing device.

5.5.1 Keyboard Interface Operation

The data/clock link between the 8042 and the keyboard is uni-directional for Keyboard Mode 1 and bi-directional for Keyboard Modes 2 and 3. (These modes are discussed in detail in Appendix C). This section describes Mode 2 (the default) mode of operation.

Communication between the keyboard and the 8042 consists of commands (originated by either the keyboard or the 8042) and scan codes from the keyboard. A command can request an action or indicate status. The keyboard interface uses IRQ1 to get the attention of the CPU.

The 8042 can send a command to the keyboard at any time. When the 8042 wants to send a command, the 8042 clamps the clock signal from the keyboard for a minimum of 60 us. If the keyboard is transmitting data at that time, the transmission is allowed to finish. When the 8042 is ready to transmit to the keyboard, the 8042 pulls the data line low, causing the keyboard to respond by pulling the clock line low as well, allowing the start bit to be clocked out of the 8042. The data is then transferred serially, LSb first, to the keyboard (Figure 5-5). An odd parity bit is sent following the eighth data bit. After the parity bit is received, the keyboard pulls the data line low and clocks this condition to the 8042. When the keyboard receives the stop bit, the clock line is pulled low to inhibit the keyboard and allow it to process the data.

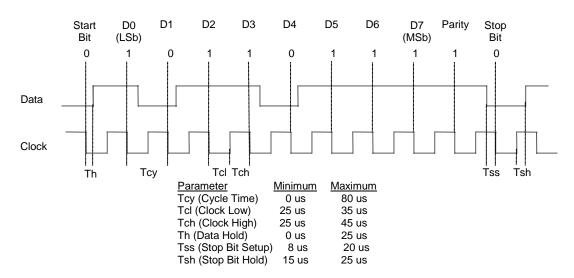


Figure 5-5. 8042-To-Keyboard Transmission of Code EDh, Timing Diagram

Control of the data and clock signals is shared by the 8042 and the keyboard depending on the originator of the transferred data. Note that the clock signal is always generated by the keyboard.

After the keyboard receives a command from the 8042, the keyboard returns an ACK code. If a parity error or timeout occurs, a Resend command is sent to the 8042.

5.5.2 Pointing Device Interface Operation

The pointing device (typically a mouse) connects to a 6-pin DIN-type connector that is identical to the keyboard connector both physically and electrically. The operation of the interface (clock and data signal control) is the same as for the keyboard. The pointing device interface uses the IRQ12 interrupt.

5.5.3 Keyboard/Pointing Device Interface Connectors

These systems provide separate PS/2 connectors for the keyboard and pointing device. Both connectors are identical both physically and electrically. Figure 5-6 and Table 5-4 show the connector and pinout of the keyboard/pointing device interface connectors.

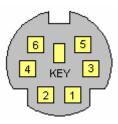


Figure 5-6. PS/2 Keyboard or Pointing Device Interface Connector (as viewed from rear of chassis)

Table 5-4.	
Keyboard/Pointing Device Connector Pinout	

Pin	Signal	Description	Pin	Signal	Description
1	DATA	Data	4	+ 5 VDC	Power
2	NC	Not Connected	5	CLK	Clock
3	GND	Ground	6	NC	Not Connected

5.6 Universal Serial Bus Interface

The Universal Serial Bus (USB) interface provides asynchronous/isochronous data transfers with compatible peripherals such as keyboards, printers, or modems. This high-speed interface supports hot-plugging of compatible devices, making possible system configuration changes without powering down or even rebooting systems.

These systems provide ten externally-accessible USB ports; four front panel USB ports (which may be disabled) and six USB ports on the rear panel. These systems include an internal header connections for USB option modules. The USB 2.0 controller provides a maximum transfer rate of 480 Mb/s. Table 5-5 shows the mapping of the USB ports.

Table 5-5.
PCH USB Port Mapping

LICD C:	HCD Commenter Leading (see material below)
USB Signals	USB Connector Location (see note below)
Data OP, ON	System board header
Data 1P, 1N	System board header
Data 2P, 2N	System board header
Data 3P, 3N	System board header
Data 4P, 4N	Front panel
Data 5P, 5N	Front panel
Data 6P, 6N	Front panel
Data 7P, 7N	Front panel
Data 8P, 8N	Rear panel
Data 9P, 9N	Rear panel
Data 10P, 10N	Rear panel
Data 11P, 11N	Rear panel
Data 12P, 12N	Rear panel
Data 13P, 13N	Rear panel

NOTE: Actual mapping between each USB port pair and a particular header or external panel connector can be random. USDT form factors support only two USB ports internally.

5.6.1 USB Connector

These systems provide type-A USB ports as shown in Figure 5-7.

Figure 5-7. Universal Serial Bus Connector (as viewed from rear of chassis)

	Table 5-6.	
USB	Connector Pinou	t

Pin	Signal	Description	Pin	Signal	Description
1	Vcc	+5 VDC	3	USB+	Data (plus)
2	USB-	Data (minus)	4	GND	Ground

5.6.2 USB Cable Data

The recommended cable length between the host and the USB device should be no longer than sixteen feet for full-channel (12 MB/s) operation, depending on cable specification (see following table).

Table 5-7.
USB Cable Length Data

Conductor Size	Resistance	Maximum Length
20 AWG	$0.036~\Omega$	16.4 ft (5.00 m)
22 AWG	0.057 Ω	9.94 ft (3.03 m)
24 AWG	0.091 Ω	6.82 ft (2.08 m)
26 AWG	0.145 Ω	4.30 ft (1.31 m)
28 AWG	0.232 Ω	2.66 ft (0.81 m)

NOTE: For sub-channel (1.5 MB/s) operation and/or when using sub-standard cable shorter lengths may be allowable and/or necessary.

The shield, chassis ground, and power ground should be tied together at the host end but left unconnected at the device end to avoid ground loops.

Table 5-8. USB Color Code

Signal	Insulation color	Signal	Insulation Color
Data +	Green	Vcc	Red
Data -	White	Ground	Black

5.7 Audio Subsystem

These systems use the HD audio controller of the 82801 component to access and control a Realtek ALC261 HD Audio Codec, which provides 2-channel high definition analog-to-digital (ADC) and digital-to-analog (DAC) conversions. A block diagram of the audio subsystem is shown in Figure 5-8. All control functions such as volume, audio source selection, and sampling rate are controlled through software through the HD Audio Interface of the 82801 ICH component. Control data and digital audio streams (record and playback) are transferred between the ICH and the Audio Codec over the HD Audio Interface. The codec's speaker output is applied to a 1.5-watt amplifier that drives the internal speaker. A device plugged into the Headphone jack or the line input jack is sensed by the system, which will inhibit the Speaker Audio signal.

These systems provide the following analog interfaces for external audio devices:

Microphone In—This input uses a three-conductor 1/8-inch mini-jack that accepts a stereo microphone. This input can be retasked to a headphones out or line in function.

Line In—This input uses a three-conductor (stereo) 1/8-inch mini-jack designed for connection of a high-impedance audio source such as a tape deck. This jack can be re-tasked to a Microphone In function.

Headphones Out—This input uses a three-conductor (stereo) 1/8-inch mini-jack that is designed for connecting a set of 32-ohm (nom.) stereo headphones. Plugging into the Headphones jack mutes the signal to the internal speaker and the Line Out jack as well.

Line Out—This output uses a three-conductor (stereo) 1/8-inch mini-jack for connecting left and right channel line-level signals. Typical connections include a tape recorder's Line In (Record In) jacks, an amplifier's Line In jacks, or to powered speakers that contain amplifiers.

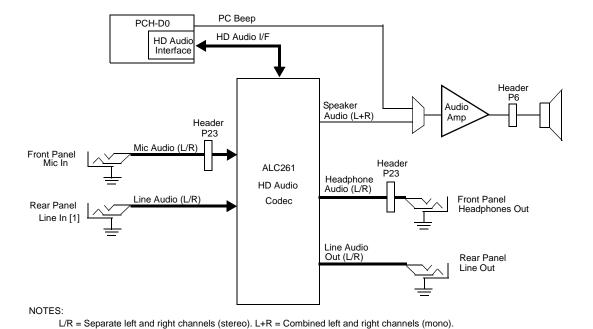
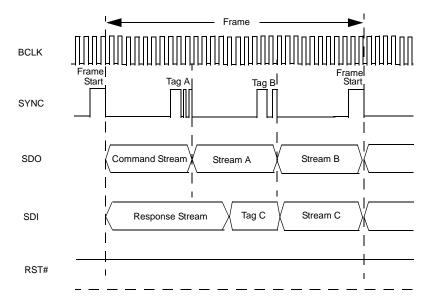


Figure 5-8. Audio Subsystem Functional Block Diagram

[1] Can be re-configured as Microphone In


5.7.1 HD Audio Controller

The HD Audio Controller is a PCI Express device that is integrated into the Q67 Express PCH component and supports the following functions:

- Read/write access to audio codec registers
- Support for greater than 48-KHz sampling
- HD audio interface

5.7.2 HD Audio Link Bus

The HD audio controller and the HD audio codec communicate over a five-signal HD Audio Link Bus (Figure 5-9). The HD Audio Interface includes two serial data lines; serial data out (SDO, from the controller) and serial data in (SDI, from the audio codec) that transfer control and PCM audio data serially to and from the audio codec using a time-division multiplexed (TDM) protocol. The data lines are qualified by the 24-MHz BCLK signal driven by the audio controller. Data is transferred in frames synchronized by the 48-KHz SYNC signal, which is derived from the clock signal and driven by the audio controller. When asserted (typically during a power cycle), the RESET- signal (not shown) will reset all audio registers to their default values.

NOTE: Clock not drawn to scale.

Figure 5-9. HD Audio Link Bus Protocol

5.7.3 Audio Multistreaming

The audio subsystem can be configured (through the ADI control panel) for processing audio for multiple applications (multi-tasking). The Headphone Out jack can provide audio for one application while the Line Out jack can provide external speaker audio from another application.

5.7.4 Audio Specifications

The specifications for the HD Audio subsystem are listed in Table 5-9.

Table 5-9. HD Audio Subsystem Specifications

Parameter	Measurement
Sampling Rates (DAC and ADC):	8 kHz to 192 kHz
Resolution:	
DAC	24-bit
ADC	24-bit
Nominal Input Voltage:	
Mic In (w/+20 db gain)	.283 Vp-p
Line In	2.83 Vp-p
Subsystem Impedance:	
Mic In	150K ohms
Line In	150K ohms
Line Out (minimum expected load)	10K ohms
Headphones Out (minimum expected load)	32 ohms
Signal-to-Noise Ratio	
Line out	90 db (nom)
Headphone out	90 db (nom)
Microphone / line in	85 db (nom)
Total Harmonic Distortion (THD)	
Line out	-84 db
Headphone out	-80 db
Microphone / line in	-78 db
Max. Subsystem Power Output to 4-ohm Internal Speaker (with 10% THD):	1.5 watts
Gain Step	1.5 db
Master Volume Range	-58.5 db
Frequency Response:	20 20000 11
ADC/DAC	20– 20000 Hz
Internal Speaker	450–20000 Hz

5.8 Network Interface Controller

These systems provide 10/100/1000 Mbps network support through an Intel 82579LM GbE network interface controller (NIC), a PHY component, and a RJ-45 jack with integral status LEDs (Figure 5-10). The support firmware is contained in the system (BIOS) ROM. The NIC can operate in half- or full-duplex modes, and provides auto-negotiation of both mode and speed. Half-duplex operation features an Intel-proprietary collision reduction mechanism while full-duplex operation follows the IEEE 802.3x flow control specification.

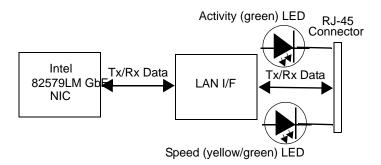


Figure 5-10. Network Interface Controller Block Diagram

Table 5-10. LAN LED Indications				
Function	Activity LED	Speed LED		
10 MB link	Green (steady)	Off		
100 MB link	Green (steady)	Yellow (steady)		
1000 MB link	Green (steady)	Green (steady)		
10 MB data transfer	Green (blinking)	Off		
100 MB data transfer	Green (blinking)	Yellow (steady)		
1000 MB data transfer	Green (blinking	Green (steady)		

The NIC includes the following features:

- VLAN tagging with Windows XP and Linux
- Multiple VLAN support with Windows XP (and later)
- Power management support for ACPI 1.1, PXE 2.0, WOL, ASF 1.0, and IPMI
- Adapter teaming including support for Cisco Etherchannel and open standard IEEE802.3ad
- Speed and Activity LED indicator drivers

The controller features high and low priority queues and provides priority-packet processing for networks that can support that feature. The controller's micro-machine processes transmit and receive frames independently and concurrently. Receive runt (under-sized) frames are not passed on as faulty data but discarded by the controller, which also directly handles such errors as collision detection or data under-run.

For the features in the following paragraphs to function as described, the system unit must be plugged into a live AC outlet. Controlling unit power through a switchable power strip will, with the strip turned off, disable any wake, alert, or power management functionality.

5.8.1 Wake-On-LAN Support

The NIC supports the Wired-for-Management (WfM) standard of Wake-On-LAN (WOL) that allows the system to be booted up from a powered-down or low-power condition upon the detection of special packets received over a network. The detection of a Magic Packet by the NIC results in the PME- signal on the PCI bus to be asserted, initiating system wake-up from an ACPI S1 or S3 state.

5.8.2 Power Management Support

The NIC supports WOL and ACPI power management environments. The controller receives 3.3 VDC (auxiliary) power as long as the system is plugged into a live AC receptacle, allowing support of wake-up events occurring over a network while the system is powered down or in a low-power state.

The Advanced Configuration and Power Interface (ACPI) functionality of system wake up is implemented through an ACPI-compliant OS and is the default power management mode. The following wakeup events may be individually enabled/disabled through the supplied software driver:

- Wake on Pattern Match (Windows 7)
- Wake on Directed Packets (Windows XP and Windows Vista)

The PROSet Application software (pre-installed and accessed through the NIC Properties (inside Device Manager) allows configuration of operational parameters such as WOL and duplex mode.

5.8.3 NIC Connector

Figure 5-11 shows the RJ-45 connector used for the NIC interface. This connector includes the two status LEDs as part of the connector assembly.

Figure 5-11. RJ-45 Ethernet TPE Connector and Pinout (as viewed from rear of chassis)

5.8.4 NIC Specifications

Ta	ble 5-11. NIC Specifications		
Parameter Compatibility standard orprotocol			
Modes Supported	10BASE-T half duplex @ 10 Mb/s 10Base-T full duplex @ 20 Mb/s 100BASE-TX half duplex @ 100 Mb/s 100Base-TX full duplex @ 200 Mb/s 1000BASE-T half duplex @ 1 Gb/s 1000BASE-TX full duplex @ 2 Gb/s		
Standards Compliance	IEEE 1588 IEEE 802.1ae IEEE 802.3, 802.3ab, 802.3af, 802.3i, 802.3u, 802.3x, 802.3z		
OS Driver Support	MS-DOS MS Windows XP Home/Pro, Vista Home/Pro, Windows 7 Novell Netware 3.x, 4.x, 5x Novell Netware/IntraNetWare SCO UnixWare 7 Linux 2.2, 2.4 PXE 2.0		
Boot ROM Support	Intel PRO/100 Boot Agent (PXE 3.0)		
F12 BIOS Support	Yes		
Bus Inteface	PCI Express x1		
Power Management Support	ACPI, PCI Power Management Spec.		

Integrated Graphics Subsystem

6.1 Introduction

This chapter describes the graphics subsystem that includes the integrated graphics controller of the Intel Celeron, Pentium or Core i3/i5/i7processor. The integrated graphics subsystem employs the use of system memory to provide efficient, economical 2D and 3D performance.

All systems provide dual-monitor support in the standard configuration. These systems can be upgraded by installing a PCIe x16 graphics card in the PCIe x16 graphics slot, which disables the integrated graphics controller

This chapter covers the following subjects:

- \blacksquare Functional description (6.2)
- Upgrading (6.3)
- Monitor connectors (6.4)

6.2 Functional Description

The integrated HD Graphics controller (hereafter referred to as an internal graphics controller or IGC) featured in the processors supported by these systems operates off the internal PCIe x16 bus of the processor and, through the Flexible Display Interface (FDI) and the PCH-DO component, can drive an external analog multi-scan monitor and/or a DisplayPort-compatible digital monitor. The IGC includes a memory management feature that allocates portions of system memory for use as the frame buffer and for storing textures and 3D effects.

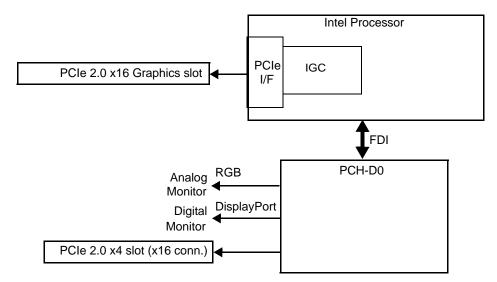


Figure 6-1. Integrated Graphics Subsystem, Block diagram

Each system implements one of two IGC types; the Intel HD Graphics 2000 or the Intel HD Graphics 3000, depending in the processor installed. Table 6-1 lists the type of IGC associated with the types of processor supported by these systems.

Table 6-1 Supported Intel Processor IGC Specifications						
Intel		Graphics Clock Rate			# of Graphics	
Series	Model	IGC Type	Standard	Turbo	Execution Units	
Core i7	2600K	HD 3000	850 MHz	1350 MHz	12	
	2600	HD 2000	850 MHz	1350 MHz	6	
	2600S	HD 2000	850 MHz	1350 MHz	6	
Core i5	2500K	HD 3000	850 MHz	1100 MHz	12	
	2500	HD 2000	850 MHz	1100 MHz	6	
	2500S	HD 2000	850 MHz	1100 MHz	6	
	2500T	HD 2000	650 MHz	1250 MHz	6	
	2400	HD 2000	850 MHz	1100 MHz	6	
	2400S	HD 2000	850 MHz	1100 MHz	6	
	2300	HD 2000	850 MHz	1100 MHz	6	
	2390T	HD 2000	650 MHz	1100 MHz	6	
Core i3	2120	HD 2000	850 MHz	1100 MHz	6	
	2105		850 MHz			
	2100		850 MHz			
	2100T		650 MHz			
Pentium	G850	HD 2000	850 MHz	1100 MHz	6	
	G840		850 MHz			
	G620		850 MHz			
	G620T		650 MHz			

The IGC uses a portion of system memory for instructions, textures, and frame (display) buffering. At boot time, 32 megabytes of system memory is pre-allocated for the graphics controller whether using Windows XP, Windows Vista, or Windows 7. Using a process called Dynamic Video Memory Technology (DVMT), the IGC dynamically allocates display and texture memory amounts according to the needs of the application running on the system.

The total memory allocation is determined by the amount of system memory installed in a system, along with the BIOS settings, operating system, and system load. Table 6-2 shows the pre-allocation memory amounts.

Table 6-2. IGC Memory Allocation with Windows XP				
System Memory Installed Pre-allocated DVMT				
0.5 GB	32 MB	128 MB		

 0.5 GB
 32 MB
 128 MB

 1.0 GB
 32 MB
 512 MB

 1.5 GB
 32 MB
 768 MB

 > 2GB
 32 MB
 1024 MB

System memory that has been pre-allocated is not seen by the operating system, which will report the total amount of memory installed **less** the amount of pre-allocated memory.

Systems running Windows Vista or Windows 7 use Protected Audio Video Path (PAVP) to ensure smooth playback of high-definition video by off-loading video decoding from the processor to the IGC. Table 6-3 shows the PAVP memory usage for Windows Vista and Windows 7.

Table 6-3. IGC Memory Allocation with Windows Vista or Windows 7				
System Memory Installed	Available System Memory	Total Available Graphics Memory [1]	Shared System Memory [2]	
1 GB	952 MB	252 MB	124 MB	
2 GB	1976 MB	764 MB	636 MB	
4 GB	4024 MB	1759 MB	1631 MB	
6 GB	6072 MB	1759 MB	1631 MB	
8 GB	8120 MB	1759 MB	1631 MB	

NOTES:

- [1] Total amount of memory available for graphics as reported by the OS.
- [2] Shared System Memory (memory dynamically allocated for graphics use).

Both the "Total Available... and "Shared System..." memory amounts will vary depending on each system's memory configuration.

The integrated graphics controller will use, in standard VGA/SVGA modes, pre-allocated memory as a true dedicated frame buffer. If the system boots with the OS loading the Extreme Graphics drivers, the pre-allocated memory will then be re-claimed by the drivers and may or may not be used in the "extended" graphic modes. However, it is important to note that pre-allocated memory is available only to the integrated graphics controller, not to the OS.

The DVMT function is an enhancement over the Unified Memory Architecture (UMA) of earlier systems. The DVMT of the Q67 Express selects, during the boot process, the maximum graphics memory allocation possible according on the amount of system memory installed:

The actual amount of system memory used in the "extended" or "extreme" modes will increase and decrease dynamically according to the needs of the application. The amount of memory used solely for graphics (video) may be reported in a message on the screen, depending on the operating system and/or applications running on the machine.

For viewing the maximum amount of frame buffer memory available go to the MS Windows Control Panel and select the Display icon, then > **Settings** > **Advanced** > **Adapter**.

The Microsoft Direct Diagnostic tool included in most versions of Windows may be used to check the amount of video memory being used. The Display tab of the utility the "Approx. Total Memory" label will indicate the amount of video memory. The value will vary according to OS.

Some applications, particularly games that require advanced 3D hardware acceleration, may not install or run correctly on systems using the integrated graphics controller.

Table 6-3 lists the resolutions supported by the integrated graphic controller. Other resolutions may be possible but have not been tested or qualified by HP.

Table 6-3. IGC Supported Resolutions				
	Maximum Refresh Rate			
Resolution	Analog	Digital (DisplayPort)		
640 x 480	85	60		
800 x 600	85	60		
1024 x 768	85	60		
1280 x 720	85	60		
1280 x 1024	85	60		
1440 x 900	75	60		
1600 x 1200	85	60		
1680 x 1050	75	60		
1920 x 1080	85	60		
1920 x 1200	85	60		
1920 x 1440	85	60		
2048 x 1536	75	60		
2560 x 1600	n/a	60		

6.3 **Upgrading**

These systems provide direct, dual-monitor support; a VGA monitor and a DisplayPort monitor can be connected and driven simultaneously. These systems also include a PCIe x16 graphics connector that specifically supports a PCIe x16 graphics card and a PCIe x16 connector that provides PCIe x4 operation for an x4 or x16 PCIe card.

The upgrade procedure is as follows:

- 1. Shut down the system through the operating system.
- 2. Unplug the power cord from the rear of the system unit.
- 3. Remove the chassis cover.
- 4. Install the graphics card into the PCIe x16 graphics slot or the PCIe x4/x16 slot.
- 5. Replace the chassis cover.
- 6. Reconnect the power cord to the system unit.
- 7. Power up the system unit:

If a PCIe graphics card is installed in the PCIe x4 /x16 slot, the integrated graphics controller of the processor will be disabled by default, but can be re-enabled through the BIOS settings to allow an alternate method of multi-monitor operation. Press the **F10** key during the boot process to enter the ROM-based Setup utility and re-enable the GMA for multi-monitor operation. A PCIe card installed in the PCIe x4 slot will be limited to x4 operation.

Two PCIe graphics can be installed simultaneously to provide an alternate method for multi-monitor support. In this configuration, the integrated graphics controller (if present) will be disabled.

The MXM interface and integrated graphics controller share the same VGA and DP output connectors. If an MXM solution is used in the USDT model, the integrated graphics controller cannot be enabled.

6.4 **Monitor Connectors**

All form factors provide an analog VGA connector and a DisplayPort connector, and can drive both types of monitors simultaneously. The following subsections describe these connectors.

6.4.1 Analog Monitor Connector

All form factors include a legacyVGA connector (Figure 6-2) for attaching an analog video monitor:

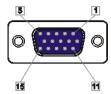


Figure 6-2. DB-15 Analog VGA Monitor Connector, (as viewed from rear of chassis).

Table 6-4. DB-15 Monitor Connector Pinout						
Pin	Signal	Description	Pin	Signal	Description	
1	R	Red Analog	9	PWR	+5 VDC (fused) [1]	
2	G	Blue Analog	10	GND	Ground	
3	В	Green Analog	11	NC	Not Connected	
4	NC	Not Connected	12	SDA	DDC Data	
5	GND	Ground	13	HSync	Horizontal Sync	
6	R GND	Red Analog Ground	14	VSync	Vertical Sync	
7	G GND	Blue Analog Ground	15	SCL	DDC Clock	
8	B GND	Green Analog Ground		-		

NOTE:

[1] Fuse automatically resets when excessive load is removed.

6.4.2 DisplayPort Connector

All systems include a DisplayPort connector (Figure 6-3) for attaching a digital monitor. This interface also supports the use of an optional adapter/dongle for converting the DisplayPort output to a DVI, HDMI, or analog VGA output.

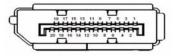


Figure 6-3. DisplayPort Connector, (as viewed from rear of chassis).

	Table 6-5. DB-15 Monitor Connector Pinout					
Pin	Signal	Pin	Signal			
1	ML Lane (p) 0	11	Ground			
2	Ground	12	ML Lane (n) 3			
3	ML Lane (n) 0	13	Ground			
4	ML Lane (p) 1	14	Ground			
5	Ground	15	AUX Ch (p)			
6	ML Lane (n) 1	16	Ground			
7	ML Lane (p) 2	17	AUX Ch (n)			
8	Ground	18	Hot Plug Detect			
9	ML Lane (n) 2	19	DP Power Return			
10	ML Lane (p) 3	20	DP Power			

Power and Signal Distribution

7.1 Introduction

This chapter describes the power supplies and discusses the methods of general power and signal distribution. Topics covered in this chapter include:

- \blacksquare Power distribution (7.2)
- \blacksquare Power control (7.3)
- Power management (7.4)
- \blacksquare Signal distribution (7.5)

7.2 Power Distribution

Two methods are used for power distribution in these systems. The USDT form factor employs a separate, external AC "brick" power supply while the SFF, MT, and CMT form factors use a power supply unit that mounts inside the chassis.

7.2.1 USDT Power Distribution

The USDT form factor uses an external ("brick") supply that connects to the chassis through a three-conductor cable (Figure 7-1). The USDT power supply is available in 135-watt and 180-watt versions. All voltages required by the processing circuits, peripherals, and storage devices are produced on the system board from the 19.5 VDC produced by the external power supply assembly. The external power supply always produces 19.5 VDC as long as it is connected to an active AC outlet.

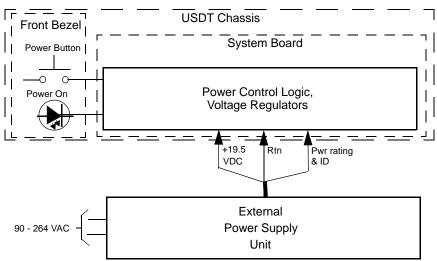
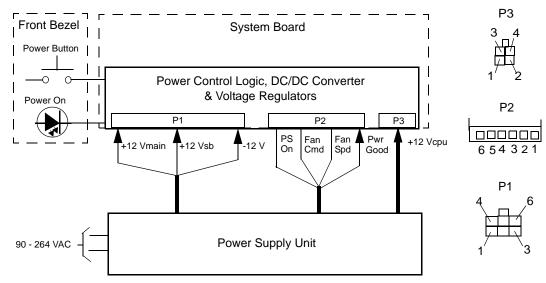


Figure 7-1. USDT Power Distribution, Block Diagram

Table 7-1 lists the specifications of the external supply.

Table 7-1. USDT Power Supply Specifications

Parameter	135-watt supply	180-watt supply
Input Line Voltage Range	90-265 VAC	90-265 VAC
Line Frequency	47–63 Hz	47-63 Hz
Input Current, Maximum load @ 90 VAC	2.4 A	2.9 A
Output Voltage	19.5 VDC	19.5 VDC
Output Current, nominal load	3.5 A	4.6 A
Output Current, maximum load	6.9 A	9.2 A
Output Current, peak load (300 ms max) [1]	9.0 A	11 A


NOTES

Total continuous power should not exceed power supply rating (i.e., 135 or 180 watts).

[1] Using 100 VAC input. The output voltage is allowed to drop to a minimum of 15 VDC during the transient period.

7.2.2 SFF/MT/CMT Power Distribution

The SFF, MT, and CMT systems use a common power source power supply unit contained within the system chassis. Figure 7-2 shows the block diagram for power distribution for SFF/MT/CMT form factors.

NOTE: Return (RTN or ground) not shown.

Conn	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6
P1	RTN	RTN	-12 V	+12 Vmain	+12 Vmain	+12 Vsb
P2	FANcmd	Fan Speed	PS On	Pwr Good	Rsvd	Rsvd
P3	RTN	RTN	+12 Vcpu	+12 Vcpu		

NOTES:

Connectors not shown to scale. All + and - values are VDC.

Rsvd= Reserved

RTN = Return (signal ground)

Figure 7-2. SFF/MT/CMT Power Distribution and Cabling, Block Diagram

The +12Vsb (auxilary) voltage is always produced by the power supply unit as long as the system is connected to a live AC source. When the PS On signal is asserted, the power supply unit produces the +12 Vmain, +12 Vcpu, and -12 V outputs.

The standard 240-watt and 320-watt power supplies have a 70% minimum efficiency rating at 100% of the rated load, measured while operating from 100 VAC @60 Hz and 230 VAC @ 50 Hz.

The optional 80Plus Gold-rated high-efficiency 240-watt and 320-watt power supplies operate at the following efficiencies while operating from 100 VAC @60 Hz and 230 VAC @ 50 Hz :

100% of rated load: 87% efficient 50% of rated load: 90% efficient 20% of rated load: 87% efficient

Table 7-1 lists the specifications of the 240-watt power supply used in the SFF unit.

Table 7-2.
SFF 240-Watt Power Supply Unit Specifications

			•		
	AC Range or DC Regulation	Min. Current Loading [1]	Max. Current	Surge Current [2]	Max. Ripple
Input voltage:					
115 VAC	90-140 VAC	-			
230 VAC	180-264 VAC				
Line Frequency	47-63 Hz	-	-		-
Input (AC) Current Requirement (100 VAC rms @ 60 Hz)		-	4 A rms		-
Output voltage (VDC):					
+12 Vmain	11.62 to 12.57	0.5 A	16 A	18 A	120 mV
+12 Vcpu	11.62 to 12.57	1 A	16 A	18 A	120 mV
+12 Vsb (aux)	11.06 to 11.74	0.1 A	1.3 A	1.5 A	120 mV
–12 V	-10.8 to -13.2	0 A	0.15 A	0.5 A	120 mV

NOTES:

Total continuous power should not exceed 240 watts. Total surge power (<10 seconds w/duty cycle <5 %) should not exceed 265 watts.

Table 7-2 lists the specifications for the 320-watt power supply used in the MT and CMT form factors.

Table 7-3. MT/CMT 320-Watt Power Supply Unit Specifications					
	AC Range or DC Regulation	Min. Current Loading [1]	Max.	Surge Current [2]	Max. Ripple
Input voltage:					
115 VAC	90-140 VAC		-	-	-
230 VAC	180-264 VAC				
Line Frequency	47-63 Hz		-	_	-
Input (AC) Current Requirement (100 VAC rms @ 60 Hz)			5.5 A rms		
Output voltage (VDC):					
+12 Vmain	11.62 to 12.57	0.5 A	16 A	18 A	120 mV
+12 Vcpu	11.62 to 12.57	1 A	16 A	18 A	120 mV
+12 Vsb (aux)	11.06 to 11.74	0.1 A	1.3 A	1.5 A	120 mV
–12 V	-10.8 to -13.2	0 A	0.15 A	0.5 A	120 mV

NOTES:

Total continuous output power should not exceed 320 watts.

^[1] The minimum current loading figures apply to a PS On start up only.

^[2] Maximum surge duration for +12Vcpu is 1 second with 12-volt tolerance +/-10%.

^[1] Minimum loading requirements must be met at all times to ensure normal operation and specification compliance.

^[2] Maximum surge duration for +12Vcpu is 1 second with 12-volt tolerance +/-10%.

7.3 Power Control

System power is controlled through the power button and external events.

7.3.1 Power Button

Pressing and releasing the power button applies a negative (grounding) pulse to the power control logic on the system board. The resultant action of pressing the power button depends on the state and mode of the system at that time and is described as follows:

	Table 7-4. Power Button Actions
System State	Pressed Power Button Results In:
Off	Negative pulse, of which the falling edge results in power control logic asserting PS On signal to Power Supply Assembly, which then initializes. ACP four-second counter is not active.
On, ACPI Disabled	Negative pulse, of which the falling edge causes power control logic to de-assert the PS On signal. ACPI four-second counter is not active.
On, ACPI Enabled	Pressed and Released Under Four Seconds:
	Negative pulse, of which the falling edge causes power control logic to generate SMI-, set a bit in the SMI source register, set a bit for button status, and start four-second counter. Software should clear the button status bit within four seconds and the Suspend state is entered. If the status bit is not cleared b software in four seconds PS On is de-asserted and the power supply assembly shuts down (this operation is meant as a guard if the OS is hung).
	Pressed and Held At least Four Seconds Before Release:
	If the button is held in for at least four seconds and then released, PS On is negated, de-activating the power supply.

A dual-color LED located on the front panel (bezel) is used to indicate system power status. The front panel power LED provides a visual indication of key system conditions listed as follows:

Table 7-5. Power LED Indications			
Power LED	Condition		
Steady green	Normal full-on operation		
Blinks green @ 0.5 Hz	Suspend state (S1) or suspend to RAM (S3)		
Blinks red 2 times @ 1 Hz [1]	Processor thermal shut down. Check air flow, fan operation, and CPU heat sink.		
Blinks red 3 times @ 1 Hz [1]	Processor not installed. Install or reseat CPU.		
Blinks red 4 times @ 1 Hz [1]	Power failure (power supply is overloaded). Check storage devices, expansion cards and/or system board (CPU power connector P3).		
Blinks red 5 times @ 1 Hz [1]	Pre-video memory error. Incompatible or incorrectly seated DIMM.		
Blinks red 6 times @ 1 Hz [1]	Pre-video graphics error. On system with integrated graphics, check/replace system board. On system with graphics card, check/replace graphics card.		
Blinks red 7 times @ 1 Hz [1]	PCA failure. Check/replace system board.		
Blinks red 8 times @ 1 Hz [1]	Invalid ROM (checksum error). Reflash ROM using CD or replace system board.		
Blinks red 9 times @ 1 Hz [1]	System powers on but fails to boot. Check power supply, CPU, system board.		
Blinks red 10 times @ 1 Hz [1]	Bad option card.		
Blinks red 11 times @ 1 Hz [1]	Processor does not support previously enabled feature.		
No light	System dead. Press and hold power button for less than 4 seconds. If HD LED turns green then check voltage select switch setting or expansion cards. If no LED light then check power button/power supply cables to system board or system board.		

NOTE:

[1] Will be accompanied by the same number of beeps, with 2-second pause between cycles. Beeps stop after 5 cycles.

7.3.2 Wake Up Events

The system can be activated with a power "wake-up" of the system due to the occurrence of a magic packet, serial port ring, or PCI power management event (PME). These events can be individually enabled through the Setup utility to wake up the system from a sleep (low power) state.

Wake-up functionality requires that certain circuits receive auxiliary power while the system is turned off. The system unit must be plugged into a live AC outlet for wake up events to function. Using an AC power strip to control system unit power will disable wake-up event functionality.

The wake up sequence for each event occurs as follows:

Wake-On-LAN

The network interface controller (NIC) can be configured for detection of a "Magic Packet" and wake the system up from sleep mode through the assertion of the PME- signal on the PCI bus. Refer to Chapter 5, "Network Support" for more information.

Modem Ring

A ring condition on a serial port can be detected by the power control logic and, if so configured, cause the power control logic to wake up the system.

Power Management Event

A power management event that asserts the PME- signal on the PCI bus can be enabled to cause the power control logic to wake up the system. Note that the PCI card must be PCI ver. 2.2 (or later) compliant to support this function.

7.4 Power Management

These systems include power management functions that conserve energy by turning off or inhibiting power to various subsystems and components. These functions are provided by a combination of hardware, firmware (BIOS) and software. These systems provide the following power management support:

- ACPI v2.0 compliant (ACPI modes C1, S1, and S3-S5)
- APM 1.2 compliant
- U.S. EPA Energy Star 3.0 and 4.0 compliant

Table 7-6 shows the comparison in power states.

Table 7-6. System Power States

Power State	System Condition	Power Consumption	Transition To S0 by [2]	OS Restart Required
G0, S0, C0, D0	System fully on. OS and application is running, all components.	Maximum	N/A	No
G1, S1, C1, D1	System on, CPU is executing and data is held in memory. Some peripheral subsystems may be on low power. Monitor is blanked.	Low	< 2 sec after keyboard or pointing device action	No
G1, S2/3, C2, D2 (Standby/or suspend)		Low	< 5 sec. after keyboard, pointing device, or power button action	No
S4, D3 (Hibernation)	System off. CPU, memory, and most subsystems shut down. Memory image saved to disk for recall on power up.	Low	<25 sec. after power button action	Yes
G2, S5, D3 _{cold}	System off. All components either completely shut down or receiving minimum power to perform system wake-up. PCI and PCIe 3.3V slot power (for wake-up events) can be selectively disabled in BIOS configuration.	Minimum	<35 sec. after power button action	Yes
G3	System off (mechanical). No power to any internal components except RTC circuit. [1]	None	_	_

NOTES:

Gn = Global state.

Sn = Sleep state.

Cn = ACPI state.

Dn = PCI state.

- [1] Power cord is disconnected for this condition.
- [2] Actual transition time dependent on OS and/or application software.

7.5 Signal Distribution

Table 7-7 lists the reference designators for LEDs, connectors, indicators, and switches used on the system boards. *Not all components will be present on all system boards*.

		•	Table 7-7.		
System	Board	Connector,	Indicator,	and Switch	Designations

Designator	Component function
CR1	+5 VDC LED
E1	Descriptor table override header
E14	SPI ROM boot block header
E49 / JP49	Password clear header / jumper
J9	Stacked RJ-45 & dual USB connectors
J10	Stacked quad USB connectors
J20	PCI 2.3 connector
J21	PCI 2.3 connector
J22	PCI 2.3 connector
J31	PCle x1 connector
J32	PCle x1 connector
J41	PCle x16 graphics connector or MXM graphics slot
J42	PCle x4 graphics (x16) connector
J50	Parallel port
J64	DisplayPort connector
J65	DVI connector
J66	Keyboard connector
J67	Mouse connector
J68	Stacked keyboard, mouse PS/2 connectors
J69	VGA monitor DB-15 connector
J70	Primary single USB
J71	Secondary single USB
J72	Microphone jack
J73	Line-In audio jack
J74	Line-out audio jack
J75	Headphone jack
J77	Double-stacked headphone/microphone audio jacks
J78	Double-stacked line-in, headphone/line-out audio jacks
J80	Stacked serial / audio
J81	Primary double USB
J82	Secondary double USB
J83	Triple-stacked audio
J103	DC input power
J105-107	PCle Mini-Card
J151	Powered USB +12V
J152	Powered USB +24V
J200	Cash drawer connector
P1	Power supply header
P2	Power supply command/status header
P3	Power supply Vccp 12V header
P5	Control panel (power button, power LED) header

	System Board Connector, Indicator, and Switch Designations
P6	Internal speaker header
P8	CPU fan header
P9	Chassis fan, primary, header
P10	Floppy drive header
P11	Power supply or rear chassis fan header
P20	Primary IDE header
P21	Secondary IDE header
P23	Front panel audio header
P24/P25	Front panel USB header
P52	Serial port, secondary, header
P53	Serial port, primary connector
P54	Serial port, primary header
P60	SATAO (controller 1, primary master) connector (dark blue)
P61	SATA1 (controller 1, secondary master) connector (white)
P62	SATA2 (controller 1, primary slave) connector (light blue)
P63	SATA3 (controller 1, secondary slave) connector (orange)
P64	SATA4 / eSATA (controller 2, primary master) connector (black)
P124	Hood lock header
P125	Hood sense header
P126	Parallel port header
P128	Thermal sensor header

Table 7-7. (Continued)

P150

P151

P160

P161

P165

P200

SW1

SW50

XMM1

XMM2

XMM3

XMM4

XU1

XBT1

SATA power headers P160 and P161 are meant to provide power for internal SATA drives only. The current limits for these connctors are:

6A/pin for CMT, MT, and SFF form factors 3A/pin for USDT the form facto

Internal USB header

Internal USB header

Clear CMOS switch

Processor socket

Battery socket

Power button

SATA drive power (see note below)

SATA drive power (see note below)

Alternate system control panel header

Memory slot (DIMM1 or SODIMM1)

Memory slot (DIMM2 or SODIMM2)

Memory slot (DIMM3 or SODIMM3)

Memory slot (DIMM4 or SODIMM4)

Powered serial port LPC header

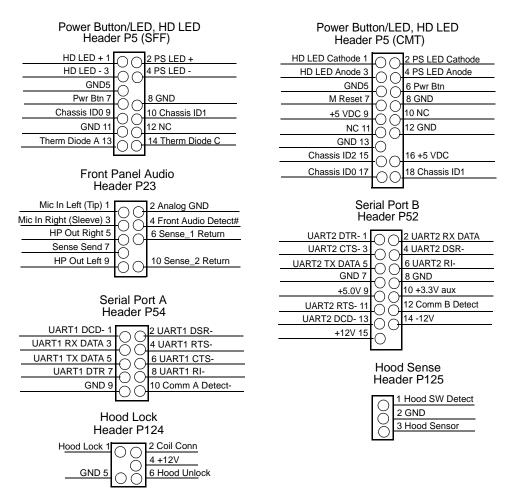


Figure 7-2 shows pinouts of headers used on the system boards.

NOTE:

No polarity consideration required for connection to speaker header P6. NC = Not connected

Figure 7-3. System Board Header Pinouts

System BIOS

8.1 Introduction

The Basic Input/Output System (BIOS) is firmware contained in Read Only Memory (ROM) and includes such functions as Power-On Self Test (POST), PCI device initialization, Plug 'n Play support, power management activities, and the Setup utility. The firmware contained in the system BIOS ROM supports the following operating systems and specifications:

- Windows XP (Home and Professional versions)
- Windows Vista Business 32-/64-Bit
- Windows Vista Enterprise 32-/64-bit
- Windows Vista Home Basic 32-/64-Bit
- Windows Vista Home Premium 32-/64-Bit
- Windows Vista Ultimate 32-/64-Bit
- Windows 7 32-Bit Enterprise/Home Basic/Home Premium/Professional/Ultimate
- Windows 7 64-Bit Enterprise/Home Basic/Home Premium/Professional/Ultimate
- SCO Unix
- Intel Wired for Management (WfM) ver. 2.2
- ACPI and OnNow
- SMBIOS 2.6
- Intel PXE boot ROM for the integrated LAN controller
- BIOS Boot Specification 1.01
- Enhanced Disk Drive Specification 3.0
- "El Torito" Bootable CD-ROM Format Specification 1.0
- ATAPI Removeable Media Device BIOS Specification 1.0
- Serial ATA Advanced Host Controller Interface (AHCI) 1.2
- ATA with Packet Interface (ATA/ATAPI-7)

The BIOS used in these systems supports the Unified Extensible Firmware Interface (UEFI) environment, which allows access to technical information about the computer and includes diagonostic and repair tools.

8.2 ROM Flashing

The system BIOS firmware is contained in a flash ROM device that can be re-written with new BIOS code using a flash utility locally (with F10 setup), with the HPQFlash program in a Windows environment, or with the DOSFlash.EXE utility in a DOS or DOS-like environment.

8.2.1 Upgrading

Upgrading the BIOS is not normally required but may be necessary if changes are made to the unit's operating system, hard drive, or processor. All System BIOS upgrades are available directly from HP. Flashing is done either locally through F10 setup, the HPQFlash program in a Windows environment, or with the DOSFlash.EXE utility in a DOS or DOS-like environment. Flashing may also be done by deploying either HPQFlash or DOSFlash.EXE through the network boot function. This system includes 64 KB of write-protected boot block ROM that provides a way to recover from a failed flashing of the system BIOS ROM. If the system BIOS ROM fails the flash check, the boot block code provides the minimum amount of support necessary to allow booting the system and re-flashing the system BIOS ROM with a CD or USB disk/thumb drive.

8.2.2 Changeable Splash Screen

A corrupted splash screen may be restored by reflashing the BIOS image through F10 setup, running HPQFlash, or running DOSFlash.EXE. Depending on the system, changing (customizing) the splash screen may only be available with assistance from HP.

The splash screen (image displayed during POST) is stored in the system BIOS ROM and may be replaced with another image of choice by using the Image Flash utility (Flashi.exe). The Image Flash utility allows the user to browse directories for image searching and pre-viewing. Background and foreground colors can be chosen from the selected image's palette.

The splash screen image requirements are as follows:

- Format = Windows bitmap or JPEG
- Size = 1024(width) x 768(height) pixels
- \blacksquare Colors = 16 (4 bits per pixel)
- File Size = < 64 KB

The Image Flash utility can be invoked at a command line for quickly flashing a known image as follows:

>\Dosflash.exe [Image_Filename] [Background_Color] [Foreground_Color]

The utility checks to insure that the specified image meets the splash screen requirements listed above or it will not be loaded into the ROM.

8.3 Boot Functions

The BIOS supports various functions related to the boot process, including those that occur during the Power On Self-Test (POST) routine.

8.3.1 Boot Device Order

The BIOS supports two boot mode; UEFI and legacy:

UEFI Boot Order:

- 1. USB floppy/CD
- 2. USB hard drive
- 3. CD/DVD drive
- 4. Hard drive
- 5. Network interface controller (NIC)

Legacy Boot Order:

- 1. CD/DVD drive
- 2. USB floppy/CD
- 3. Hard drive (C:)
- 4. Network controller

The above order assumes all devices are present in the initial configuration. If, for example, a diskette drive is not initially installed but added later, then drive A would be added to the end of the order (after the NIC).

The order can be changed in the ROM-based Setup utility (accessed by pressing F10 when so prompted during POST). The options are displayed only if the device is attached, except for USB devices. The USB option is displayed even if no USB storage devices are present. The hot IPL option is available through the F9 utility, which allows the user to select a hot IPL boot device.

8.3.2 Network Boot (F12) Support

The BIOS supports booting the system to a network server. The function is accessed by pressing the F12 key when prompted at the lower right hand corner of the display during POST. Booting to a network server allows for such functions as:

- Flashing a ROM on a system without a functional operating system (OS).
- Installing an OS.
- Installing an application.

These systems include an integrated NIC with Preboot Execution Environment (PXE) ROM and can boot with a NetPC-compliant server.

8.3.3 Memory Detection and Configuration

This system uses the Serial Presence Detect (SPD) method of determining the installed DIMM configuration. The BIOS communicates with an EEPROM on each DIMM through the SMBus to obtain data on the following DIMM parameters:

- Presence
- Size
- Type
- Timing/CAS latency

Refer to Chapter 3, "Processor/Memory Subsystem" for the SPD format and DIMM data specific to this system.

The BIOS performs memory detection and configuration with the following steps:

- 1. Program the buffer strength control registers based on SPD data and the DIMM slots that are populated.
- 2. Determine the common CAS latency that can be supported by the DIMMs.
- 3. Determine the memory size for each DIMM and program the GMCH accordingly.
- 4. Enable refresh.

8.3.4 Boot Error Codes

The BIOS provides visual and audible indications of a failed system boot by using the system's power LED and the system board speaker. The error conditions are listed in the following table.

Table 8-1 Boot Error Codes

Visual (power LED)	Audible (speaker)	Meaning
Blinks red 2 times @ 1 Hz	2 beeps	Processor thermal shut down. Check air flow, fan operation, and CPU heat sink.
Blinks red 3 times @ 1 Hz	3 beeps	Processor not installed. Install or reseat CPU.
Blinks red 4 times @ 1 Hz	None	Power failure (power supply is overloaded). Check storage devices, expansion cards and/or system board (CPU power connector P3).
Blinks red 5 times @ 1 Hz	5 beeps	Pre-video memory error. Incompatible or incorrectly seated DIMM.
Blinks red 6 times @ 1 Hz	6 beeps	Pre-video graphics error. On system with integrated graphics, check/replace system board. On system with graphics card, check/replace graphics card.
Blinks red 7 times @ 1 Hz	7 beeps	PCA failure. Check/replace system board.
Blinks red 8 times @ 1 Hz	8 beeps	Invalid ROM (checksum error). Reflash ROM using CD or replace system board.
Blinks red 9 times @ 1 Hz	9 beeps	System powers on but fails to boot. Check power supply, CPU, system board.
Blinks red 10 times @ 1 Hz	10 beeps	Bad option card.
Blinks red 10 times @ 1 Hz	11 beeps	Feature previously enabled is not supported by processor

NOTE: Audible indications occur only for the five cycles of the error indication. Visual indications occur indefinitely until power is removed or until error is corrected.

8.4 Client Management Functions

Table 8-2 provides a partial list of the client management BIOS functions supported by the systems covered in this guide. These functions, designed to support intelligent manageability applications, are HP-specific unless otherwise indicated.

Table 8-2. Client Management Functions (INT15)		
AX	Function	Mode
E800h	Get system ID	Real, 16-, & 32-bit Prot.
E814h	Get system revision	Real, 16-, & 32-bit Prot.
E816h	Get temperature status	Real, 16-, & 32-bit Prot.
E819h	Get chassis serial number	Real, 16-, & 32-bit Prot.
E820h [1]	Get system memory map	Real
E81Ah	Write chassis serial number	Real

NOTE:

[1] Industry standard function.

All 32-bit protected-mode functions are accessed by using the industry-standard BIOS32 Service Directory. Using the service directory involves three steps:

- 1. Locating the service directory.
- 2. Using the service directory to obtain the entry point for the client management functions.
- 3. Calling the client management service to perform the desired function.

The BIOS32 Service Directory is a 16-byte block that begins on a 16-byte boundary between the physical address range of 0E0000h-0FFFFh.

The following subsections provide a brief description of key Client Management functions.

8.4.1 System ID and ROM Type

Diagnostic applications can use the INT 15, AX=E800h BIOS function to identify the type of system. This function will return the system ID in the BX register. Systems have the following IDs and ROM family types:

Table 8-3	
System ID Numbers	

System (Form Factor)	System ID	BIOS Family
USDT	1496h	J01
SFF	1495h	J01
MT	1497h	J01
CMT	1494h	J01

The ROM family and version numbers can be verified with the Setup utility or the System Insight Manager or Diagnostics applications.

8.4.2 Temperature Status

The BIOS includes a function (INT15, AX=E816h) to retrieve the status of a system's interior temperature. This function allows an application to check whether the temperature situation is at a Normal, Caution, or Critical condition.

8.5 SMBIOS Support

These systems support SMBIOS version 2.6. and usethe table-based method of accessing SMBIOS data. SMBIOS structures can be located by looking in the EFI Configuration Table for SMBIOS_TABLE_GUID and using the associated pointer. Refer to the SMBIOS 2.6 specification for more information on accessing SMBIOS data.

System information on these systems is handled exclusively through the SMBIOS.

8.6 USB Legacy Support

The system BIOS ROM checks the USB port, during POST, for the presence of a USB keyboard. This allows a system with only a USB keyboard to be used during ROM-based setup and also on a system with an OS that does not include a USB driver.

On such a system a keystroke will generate an SMI and the SMI handler will retrieve the data from the device and convert it to PS/2 data. The data will be passed to the keyboard controller and processed as in the PS/2 interface. Changing the delay and/or typematic rate of a USB keyboard though BIOS function INT 16 is not supported.

8.7 Management Engine Functions

The management engine function of Intel AMT allows a system unit to be managed remotely over a network, whether or not the system is powered up or not. The system BIOS can request the management engine to generate the following alerts:

- Temperature alert
- Fan failure alert
- Chassis intrusion alert
- Watchdog timer alert
- No memory installed alert

^{1.} Assumes the unit is connected to an active AC outlet.

Error Messages and Codes

A.1 Introduction

This appendix lists the error codes and a brief description of the probable cause of the error.

Errors listed in this appendix are applicable only for systems running HP/Compaq BIOS. Not all errors listed in this appendix may be applicable to a particular system model and/or configuration.

A.2 Beep/Power LED Codes

Beep and Power LED indictions listed in Table A-1 apply only to HP-branded models.

Table A-1. Beep/Power LED Codes		
Beeps	Power LED	Probable Cause
2 beeps	Blinks red 2 times @ 1 Hz	Processor thermal shut down. Check air flow, fan operation, and CPU heatsink
3 beeps	Blinks red 3 times @ 1 Hz	Processor not installed. Install or reseat CPU.
4 beeps	Blinks red 4 times @ 1 Hz	Power failure (power supply is overloaded). Check storage devices, expansion cards and/or system board (CPU power connector P3).
5 beeps	Blinks red 5 times @ 1 Hz	Pre-video memory error. Incompatible or incorrectly seated DIMM.
6 beeps	Blinks red 6 times @ 1 Hz	Pre-video graphics error. On system with integrated graphics, check/replace system board. On system with graphics card, check/replace graphics card.
7 beeps	Blinks red 7 times @ 1 Hz	PCA failure. Check/replace system board.
8 beeps	Blinks red 8 times @ 1 Hz	Invalid ROM (checksum error). Reflash ROM using CD or replace system board.
9 beeps	Blinks red 9 times @ 1 Hz	System powers on but fails to boot. Check power supply, CPU, system board.
10 beeps	Blinks red 10 times @ 1 Hz	Bad option card.
11 beeps	Blinks red 11 times @ 1 Hz	Previously enabled feature not supported by processor

NOTE: Audible indications occur only for the first five cycles of the error indication. Visual indications occur indefinitely until power is removed or until error is corrected.

A.3 Power-On Self Test (POST) Messages

Table A-2. Power-On Self Test (POST) Messages

Error Message	Probable Cause
Invalid Electronic Serial Number	Chassis serial number is corrupt. Use Setup to enter a valid number.
Network Server Mode Active (w/o kybd)	System is in network mode.
101-Option ROM Checksum Error	A device's option ROM has failed/is bad. Possible causes: a: ME BIOS Extension module executiuon halted. Update BIOS or Managemenat Engine firmware if problem persists (MEBx executions failed for various reasons).
	b: USB Key Local Provisoning file being processed (USB key has beeen detected with provisioning file SETUP.BIN in root directory). Do not power down system until processing is complete .
	c: USB Key Local Provisoning file records are either invalid, corrupt, or consumed. Build a new provisioning file and retry.
110-Out of Memory Space for Option ROMs	Recently added PCI card contains and option ROM too large to download during POST.
102-system Board Failure	Failed ESCD write, A20, timer, or DMA controller.
150-Safe POST Active	An option ROM failed to execute on a previous boot.
162-System Options Not Set	Invalid checksum, RTC lost power, or invalid configuration.
163-Time & Date Not Set	Date and time information in CMOS is not valid.
164-Memory Size Error	Memory has been added or removed.
201-Memory Error	Memory test failed.
213-Incompatible Memory Module	BIOS detected installed DIMM(s) as being not compatible.
214-DIMM Configuration Warning	A specific error has occurred in a memory device installed in the identified socket.
216-Memory Size Exceeds Max	Installed memory exceeds the maximum supported by the system.
217-DIMM Configuration Warning	Unbalanced memory configuration.
219-ECC Memory Module Detected ECC Modules not supported on this platform	Recently added memory module(s) support ECC memory error correction.
301-Keyboard Error	Keyboard interface test failed (improper connection or stuck key).
303-Keyboard Controller Error	Keyboard buffer failed empty (8042 failure or stuck key).
304-Keyboard/System Unit Error	Keyboard controller failed self-test.

Table A-2. (Continued) Power-On Self Test (POST) Messages

Error Message	Probable Cause	
404-Parallel Port Address Conflict	Current parallel port address is conflicting with another device.	
417-Network Interface Card Failure	NIC BIOS could not read Device ID of embedded NIC.	
501-Display Adapter Failure	Graphics display controller.	
510-Splash Image Corrupt	Corrupted splash screen image. Restore default image w/flash utility.	
511-Fan Not Detected	Processor heat sink fan is not connected.	
512-Fan Not Detected	Rear chassis fan is not connected.	
513-Fan Not Detected	Front chassis fan is not connected.	
514-Fan not detected.	CPU fan is not connected or may have malfunctioned.	
515-Fan Not Detected	Power supply fan not deteted	
601-Diskette Controller Error	Diskette drive removed since previous boot.	
605-Diskette Drive Type Error	Mismatch in drive type.	
912-Computer Cover Removed Since Last System Start Up	Cover (hood) removal has been detected by the Smart Cover Sensor.	
914-Hood Lock Coil is not Connected	Smart Cover Lock mechanism is missing or not connected.	
916-Power Button Not Connected	Power button harness has been detached or unseated from the system board.	
917-Front Audio Not Connected	Front audio board not connected	
918-Front USB Not Connected	Front USB board not conencted	
919-Front Panel, MultiPort, and/or MultiBay Risers Not Detected	Riser card has been removed or has not been reinstalled properly in the system.	
1156-Serial Port A Cable Not Detected	Cable from serial port header to I/O connector is missing or not connected properly.	
1157-Front Cables Not Detected	Cable from front panel USB and audio connectors is missing or not connected properly.	
1720-SMART Hard Drive Detects Imminent Failure	SMART circuitry on an IDE drive has detected possible equipment failure.	
1721-SMART SCSI Hard Drive Detects Imminent Failure	SMART circuitry on a SCSI drive has detected possible equipment failure.	
1767-BIOS Update Incomplete	BIOS flashing did not complete	

Table A-2. (Continued) Power-On Self Test (POST) Messages

Error Message	Probable Cause
1785-MultiBay incorrectly installed	For integrated MultiBay/ USDT systems: MultiBay device not properly seated. or MultiBay riser not properly seated.
1794-Inaccessible device attached to SATA 1 (for systems with 2 SATA ports)	A device is attached to SATA 1. Any device attached to this connector will be inaccessible while "SATA Emulation" is set to "Combined IDE Controller" in Computer Setup.
1794-Inaccessible devices attached to SATA 1 and/or SATA 5 (for systems with 4 SATA ports)	A device is attached to SATA 1 and/or SATA 5. Devices attached to these connectors will be inaccessible while "SATA Emulation" is set to "Combined IDE Controller" in Computer Setup
1796-SATA Cabling Error	One or more SATA devices are improperly attached. For optimal performance, the SATA 0 and SATA 1 connectors must be used before SATA 2 and SATA 3.
1801-Microcode Patch Error	A processor is installed for which the BIOS ROM has no patch. Check for ROM update.
1803-Processor feature set is insufficient	Processor cannot support current systems settings (processor does not support TxT)
1804-Processor feature set and memory configuration are incompatible	Incompatible memory configuration (TxT enabled and systems has more than 4GB of memory)
2201-MEBx module did not checksum correctly	Corrupt MEBx
2203-Setup error during MEBx execution	Corrupt MEBx
2204-Inventory error during MEBx execution	AMT inventory failed
2205-Interface error during MEBx execution	HECI interface failed
2207-AMT connection error during MEBx execution	AMT settings
2208-Timeout Error	MEBx timed out
2209-USB Provisioning Error	MEBx provisioning failed
2210-Parameters Frame Error	MEBx parameters frame error

Table A-2. (Continued) Power-On Self Test (POST) Messages

Error Message	Probable Cause
2211-Memory not configured correctly for MEBx execution	Ensure a DIMM is installed in XMM1 (black DIMM socket)
2212-USB Key local provisioning failure	Fialed to opne provisioning file SETUP.BIN for writing.
2218-Upate ME Firmware	Current ME version is incompatible with BIOS.
2219-USB Key local provisioning file has invalid header file	Invalid UUID in the header.
2220-USB Key local provisioning file has mismatch version	Version mismatched in the header.
Invalid Electronic Serial Number	Electronic serial number has become corrupted.
Network Server Mode Active and No Keyboard Attached	Keyboard failure while Network Server Mode enabled.
Parity Check 2	Keyboard failure while Network Server Mode enabled.
ME BIOS Extension module executiuon halted	Update BIOS or Managemenat Engine firmware if problem persists (MEBx executions failed for various reasons).
USB Key Local Provisoning file being processed	USB key has beeen detected with provisioning file SETUP.BIN in root directory. Do not power down system until processing is complete .
USB Key Local Provisoning file records are either invalid, corrupt, or consumed.	Build a new provisioning file and retry.

A.4 System Error Messages (1xx-xx)

Table A-3. System Error Messages

Message	Probable Cause	Message	Probable Cause
101	Option ROM error	109-02	CMOS clock rollover test failed
102	System board failure [1]	109-03	CMOS not properly initialized (clk test)
103	System board failure	110-01	Programmable timer load data test failed
104-01	Master int. cntlr. test failed	110-02	Programmable timer dynamic test failed
104-02	Slave int. cntlr. test failed	110-03	Program timer 2 load data test failed
104-03	Int. cntlr. SW RTC inoperative	111-01	Refresh detect test failed
105-01	Port 61 bit <6> not at zero	112-01	Speed test Slow mode out of range
105-02	Port 61 bit <5> not at zero	112-02	Speed test Mixed mode out of range
105-03	Port 61 bit <3> not at zero	112-03	Speed test Fast mode out of range
105-04	Port 61 bit <1> not at zero	112-04	Speed test unable to enter Slow mode
105-05	Port 61 bit <0> not at zero	112-05	Speed test unable to enter Mixed mode
105-06	Port 61 bit <5> not at one	112-06	Speed test unable to enter Fast mode
105-07	Port 61 bit <3> not at one	112-07	Speed test system error
105-08	Port 61 bit <1> not at one	112-08	Unable to enter Auto mode in speed test
105-09	Port 61 bit <0> not at one	112-09	Unable to enter High mode in speed test
105-10	Port 61 I/O test failed	112-10	Speed test High mode out of range
105-11	Port 61 bit <7> not at zero	112-11	Speed test Auto mode out of range
105-12	Port 61 bit <2> not at zero	112-12	Speed test variable speed mode inop.
105-13	No int. generated by failsafe timer	113-01	Protected mode test failed
105-14	NMI not triggered by timer	114-01	Speaker test failed
106-01	Keyboard controller test failed	116-xx	Way 0 read/write test failed
107-01	CMOS RAM test failed	162-xx	Options failed (mismatch in drive type)
108-02	CMOS interrupt test failed	163-xx	Time and date not set
108-03	CMOS not properly initialized	164-xx	Memory size
109-01	CMOS clock load data test failed	199-00	Installed devices test failed

NOTES

[1] 102 message code may be caused by one of a variety of processor-related problems that may be solved by replacing the processor, although system board replacement may be needed.

A.5 Memory Error Messages (2xx-xx)

Table A-4. Memory Error Messages

Message	Probable Cause
200-04	Real memory size changed
200-05	Extended memory size changed
200-06	Invalid memory configuration
200-07	Extended memory size changed
200-08	CLIM memory size changed
201-01	Memory machine ID test failed
202-01	Memory system ROM checksum failed
202-02	Failed RAM/ROM map test
202-03	Failed RAM/ROM protect test
203-01	Memory read/write test failed
203-02	Error while saving block in read/write test
203-03	Error while restoring block in read/write test
204-01	Memory address test failed
204-02	Error while saving block in address test
204-03	Error while restoring block in address test
204-04	A20 address test failed
204-05	Page hit address test failed
205-01	Walking I/O test failed
205-02	Error while saving block in walking I/O test
205-03	Error while restoring block in walking I/O test
206-xx	Increment pattern test failed
207-xx	ECC failure
210-01	Memory increment pattern test
210-02	Error while saving memory during increment pattern test
210-03	Error while restoring memory during increment pattern test
211-01	Memory random pattern test

Table	A-4. (Continued)
Memory	/ Error	Messages

Message	Probable Cause
211-02	Error while saving memory during random memory pattern test
211-03	Error while restoring memory during random memory pattern test
213-xx	Incompatible DIMM in slot x
214-xx	Noise test failed
215-xx	Random address test

A.6 Keyboard Error Messages (30x-xx)

Table A-5. Keyboard Error Messages

Message	Probable Cause	Message	Probable Cause
300-xx	Failed ID test	303-05	LED test, LED command test failed
301-01	Kybd short test, 8042 self-test failed	303-06	LED test, LED command test failed
301-02	Kybd short test, interface test failed	303-07	LED test, LED command test failed
301-03	Kybd short test, echo test failed	303-08	LED test, command byte restore test failed
301-04	Kybd short test, kybd reset failed	303-09	LED test, LEDs failed to light
301-05	Kybd short test, kybd reset failed	304-01	Keyboard repeat key test failed
302-xx	Failed individual key test	304-02	Unable to enter mode 3
302-01	Kybd long test failed	304-03	Incorrect scan code from keyboard
303-01	LED test, 8042 self-test failed	304-04	No Make code observed
303-02	LED test, reset test failed	304-05	Cannot /disable repeat key feature
303-03	LED test, reset failed	304-06	Unable to return to Normal mode
303-04	LED test, LED command test failed		-

A.7 Printer Error Messages (4xx-xx)

1	Table	A-6
Printer	Error	Messages

Message	Probable Cause	Message	Probable Cause
401-01	Printer failed or not connected	402-11	Interrupt test, data/cntrl. reg. failed
402-01	Printer data register failed	402-12	Interrupt test and loopback test failed
402-02	Printer control register failed	402-13	Int. test, LpBk. test., and data register failed
402-03	Data and control registers failed	402-14	Int. test, LpBk. test., and cntrl. register failed
402-04	Loopback test failed	402-15	Int. test, LpBk. test., and data/cntrl. reg. failed
402-05	Loopback test and data reg. failed	402-16	Unexpected interrupt received
402-06	Loopback test and cntrl. reg. failed	402-01	Printer pattern test failed
402-07	Loopback tst, data/cntrl. reg. failed	403-xx	Printer pattern test failed
402-08	Interrupt test failed	404-xx	Parallel port address conflict
402-09	Interrupt test and data reg. failed	498-00	Printer failed or not connected
402-10	Interrupt test and control reg. failed		-

A.8 Video (Graphics) Error Messages (5xx-xx)

Table A-7.
Video (Graphics) Error Messages

Message	Probable Cause	Message	Probable Cause
501-01	Video controller test failed	508-01	320x200 mode, color set 0 test failed
502-01	Video memory test failed	509-01	320x200 mode, color set 1 test failed
503-01	Video attribute test failed	510-01	640x200 mode test failed
504-01	Video character set test failed	511-01	Screen memory page test failed
505-01	80x25 mode, 9x14 cell test failed	512-01	Gray scale test failed
506-01	80x25 mode, 8x8 cell test failed	514-01	White screen test failed
507-01	40x25 mode test failed	516-01	Noise pattern test failed

See Table A-14 for additional video (graphics) messages.

A.9 Diskette Drive Error Messages (6xx-xx)

Table A-8. Diskette Drive Error Messages

Message	Probable Cause	Message	Probable Cause
6xx-01	Exceeded maximum soft error limit	6xx-20	Failed to get drive type
6xx-02	Exceeded maximum hard error limit	6xx-21	Failed to get change line status
6xx-03	Previously exceeded max soft limit	6xx-22	Failed to clear change line status
6xx-04	Previously exceeded max hard limit	6xx-23	Failed to set drive type in ID media
6xx-05	Failed to reset controller	6xx-24	Failed to read diskette media
6xx-06	Fatal error while reading	6xx-25	Failed to verify diskette media
6xx-07	Fatal error while writing	6xx-26	Failed to read media in speed test
6xx-08	Failed compare of R/W buffers	6xx-27	Failed speed limits
6xx-09	Failed to format a tract	6xx-28	Failed write-protect test
6xx-10	Failed sector wrap test	-	-

600-xx = Diskette drive ID test

601-xx = Diskette drive format

602-xx = Diskette read test

603-xx = Diskette drive R/W compare test

604-xx = Diskette drive random seek test

605-xx = Diskette drive ID media

606-xx = Diskette drive speed test

607-xx = Diskette drive wrap test

608-xx = Diskette drive write-protect test

609-xx = Diskette drive reset controller test

610-xx = Diskette drive change line test

611-xx = Pri. diskette drive port addr. conflict

612-xx = Sec. diskette drive port addr. conflict

694-00 = Pin 34 not cut on 360-KB drive

697-00 = Diskette type error

698-00 = Drive speed not within limits

699-00 = Drive/media ID error (run Setup)

A.10 Serial Interface Error Messages (11xx-xx)

Table A-9. Serial Interface Error Messages

Message	Probable Cause	Message	Probable Cause
1101-01	UART DLAB bit failure	1101-13	UART cntrl. signal interrupt failure
1101-02	Line input or UART fault	1101-14	DRVR/RCVR data failure
1101-03	Address line fault	1109-01	Clock register initialization failure
1101-04	Data line fault	1109-02	Clock register rollover failure
1101-05	UART cntrl. signal failure	1109-03	Clock reset failure
1101-06	UART THRE bit failure	1109-04	Input line or clock failure
1101-07	UART Data RDY bit failure	1109-05	Address line fault
1101-08	UART TX/RX buffer failure	1109-06	Data line fault
1101-09	Interrupt circuit failure	1150-xx	Comm port setup error (run Setup)
1101-10	COM1 set to invalid INT	1151-xx	COM1 address conflict
1101-11	COM2 set to invalid INT	1152-xx	COM2 address conflict
1101-12	DRVR/RCVR cntrl. signal failure	1155-xx	COM port address conflict

A.11 Modem Communications Error Messages (12xx-xx)

Table A-10. Modem Communications Error Messages

Message	Probable Cause	Message	Probable Cause
1201-XX	Modem internal loopback test	1204-03	Data block retry limit reached [4]
1201-01	UART DLAB bit failure	1204-04	RX exceeded carrier lost limit
1201-02	Line input or UART failure	1204-05	TX exceeded carrier lost limit
1201-03	Address line failure	1204-06	Time-out waiting for dial tone
1201-04	Data line fault	1204-07	Dial number string too long
1201-05	UART control signal failure	1204-08	Modem time-out waiting for remote response
1201-06	UART THRE bit failure	1204-09	Modem exceeded maximum redial limit
1201-07	UART DATA READY bit failure	1204-10	Line quality prevented remote response
1201-08	UART TX/RX buffer failure	1204-11	Modem time-out waiting for remote connection
1201-09	Interrupt circuit failure	1205-XX	Modem auto answer test
1201-10	COM1 set to invalid inturrupt	1205-01	Time-out waiting for SYNC [5]
1201-11	COM2 set to invalid	1205-02	Time-out waiting for response [5]
1201-12	DRVR/RCVR control signal failure	1205-03	Data block retry limit reached [5]
1201-13	UART control signal interrupt failure	1205-04	RX exceeded carrier lost limit
1201-14	DRVR/RCVR data failure	1205-05	TX exceeded carrier lost limit
1201-15	Modem detection failure	1205-06	Time-out waiting for dial tone
1201-16	Modem ROM, checksum failure	1205-07	Dial number string too long
1201-17	Tone detect failure	1205-08	Modem time-out waiting for remote response
1202-XX	Modem internal test	1205-09	Modem exceeded maximum redial limit
1202-01	Time-out waiting for SYNC [1]	1205-10	Line quality prevented remote response
1202-02	Time-out waiting for response [1]	1205-11	Modem time-out waiting for remote connection
1202-03	Data block retry limit reached [1]	1206-XX	Dial multi-frequency tone test
1202-11	Time-out waiting for SYNC [2]	1206-17	Tone detection failure
1202-12	Time-out waiting for response [2]	1210-XX	Modem direct connect test

Table A-10. (Continued)
Modem Communications Error Messages

Message	Probable Cause	Message	Probable Cause
1202-13	Data block retry limit reached [2]	1210-01	Time-out waiting for SYNC [6]
1202-21	Time-out waiting for SYNC [3]	1210-02	Time-out waiting for response [6]
1202-22	Time-out waiting for response [3]	1210-03	Data block retry limit reached [6]
1202-23	Data block retry limit reached [3]	1210-04	RX exceeded carrier lost limit
1203-XX	Modem external termination test	1210-05	TX exceeded carrier lost limit
1203-01	Modem external TIP/RING failure	1210-06	Time-out waiting for dial tone
1203-02	Modem external data TIP/RING fail	1210-07	Dial number string too long
1203-03	Modem line termination failure	1210-08	Modem time-out waiting for remote response
1204-XX	Modem auto originate test	1210-09	Modem exceeded maximum redial limit
1204-01	Time-out waiting for SYNC [4]	1210-10	Line quality prevented remote response
1204-02	Time-out waiting for response [4]	1210-11	Modem time-out waiting for remote connection

NOTES:

- [1] Local loopback mode
- [2] Analog loopback originate mode
- [3] Analog loopback answer mode
- [4] Modem auto originate test
- [5] Modem auto answer test
- [6] Modem direct connect test

A.12 System Status Error Messages (16xx-xx)

Table A-11 System Status Error Messages Message Probable Cause 1601-xx Temperature violation 1611-xx Fan failure

A.13 Hard Drive Error Messages (17xx-xx)

Table A-12 Hard Drive Error Messages

Message	Probable Cause	Message	Probable Cause
17xx-01	Exceeded max. soft error limit	17xx-51	Failed I/O read test
17xx-02	Exceeded max. Hard error limit	17xx-52	Failed file I/O compare test
17xx-03	Previously exceeded max. soft error limit	17xx-53	Failed drive/head register test
17xx-04	Previously exceeded max.hard error limit	17xx-54	Failed digital input register test
17xx-05	Failed to reset controller	17xx-55	Cylinder 1 error
17xx-06	Fatal error while reading	17xx-56	Failed controller RAM diagnostics
17xx-07	Fatal error while writing	17xx-57	Failed controller-to-drive diagnostics
17xx-08	Failed compare of R/W buffers	17xx-58	Failed to write sector buffer
17xx-09	Failed to format a track	17xx-59	Failed to read sector buffer
17xx-10	Failed diskette sector wrap during read	17xx-60	Failed uncorrectable ECC error
17xx-19	Cntlr. failed to deallocate bad sectors	17xx-62	Failed correctable ECC error
17xx-40	Cylinder 0 error	17xx-63	Failed soft error rate
17xx-41	Drive not ready	17xx-65	Exceeded max. bad sectors per track
17xx-42	Failed to recalibrate drive	17xx-66	Failed to initialize drive parameter
17xx-43	Failed to format a bad track	17xx-67	Failed to write long
17xx-44	Failed controller diagnostics	17xx-68	Failed to read long
17xx-45	Failed to get drive parameters from ROM	17xx-69	Failed to read drive size
17xx-46	Invalid drive parameters from ROM	17xx-70	Failed translate mode
17xx-47	Failed to park heads	17xx-71	Failed non-translate mode
17xx-48	Failed to move hard drive table to RAM	17xx-72	Bad track limit exceeded
17xx-49	Failed to read media in file write test	17xx-73	Previously exceeded bad track limit
17xx-50	Failed I/O write test	-	-

NOTE:

xx = 00, Hard drive ID test xx = 19, Hard drive power mode test xx = 01, Hard drive format test xx = 20, SMART drive detects imminent failure xx = 02, Hard drive read test xx = 21, SCSI hard drive imminent failure xx = 03, Hard drive read/write compare test xx = 24, Network preparation test xx = 04, Hard drive random seek test xx = 36, Drive monitoring test xx = 05, Hard drive controller test xx = 71, Pri. IDE controller address conflict xx = 06, Hard drive ready test xx = 72, Sec. IDE controller address conflict xx = 07, Hard drive recalibrate test xx = 80, Disk 0 failure xx = 08, Hard drive format bad track test xx = 81, Disk 1 failure xx = 09, Hard drive reset controller test xx = 82, Pri. IDE controller failure xx = 10, Hard drive park head test xx = 90, Disk 0 failure xx = 14, Hard drive file write test xx = 91, Disk 1 failure xx = 15, Hard drive head select test xx = 92, Sec. controller failure xx = 16, Hard drive conditional format test xx = 93, Sec. Controller or disk failure xx = 17, Hard drive ECC test xx = 99, Invalid hard drive type

A.14 Hard Drive Error Messages (19xx-xx)

Table A-13 Hard Drive Error Messages

Message	Probable Cause	Message	Probable Cause
19xx-01	Drive not installed	19xx-21	Got servo pulses second time but not first
19xx-02	Cartridge not installed	19xx-22	Never got to EOT after servo check
19xx-03	Tape motion error	19xx-23	Change line unset
19xx-04	Drive busy error	19xx-24	Write-protect error
19xx-05	Track seek error	19xx-25	Unable to erase cartridge
19xx-06	Tape write-protect error	19xx-26	Cannot identify drive
19xx-07	Tape already Servo Written	19xx-27	Drive not compatible with controller
19xx-08	Unable to Servo Write	19xx-28	Format gap error
19xx-09	Unable to format	19xx-30	Exception bit not set
19xx-10	Format mode error	19xx-31	Unexpected drive status
19xx-11	Drive recalibration error	19xx-32	Device fault
19xx-12	Tape not Servo Written	19xx-33	Illegal command
19xx-13	Tape not formatted	19xx-34	No data detected
19xx-14	Drive time-out error	19xx-35	Power-on reset occurred
19xx-15	Sensor error flag	19xx-36	Failed to set FLEX format mode
19xx-16	Block locate (block ID) error	19xx-37	Failed to reset FLEX format mode
19xx-17	Soft error limit exceeded	19xx-38	Data mismatch on directory track
19xx-18	Hard error limit exceeded	19xx-39	Data mismatch on track 0
19xx-19	Write (probably ID) error	19xx-40	Failed self-test
19xx-20	NEC fatal error	19xx-91	Power lost during test
	c = Tape ID test failed		= Tape BOT/EOT test failed

1901-xx = Tape servo write failed

1905-xx = Tape read test failed

1902-xx = Tape format failed

1906-xx = Tape R/W compare test failed

1903-xx = Tape drive sensor test failed

1907-xx = Tape write-protect failed

A.15 Video (Graphics) Error Messages (24xx-xx)

Table A-14				
Video	(Graphics) Error	Messages	

	, , ,		•
Message	Probable Cause	Message	Probable Cause
2402-01	Video memory test failed	2418-02	EGA shadow RAM test failed
2403-01	Video attribute test failed	2419-01	EGA ROM checksum test failed
2404-01	Video character set test failed	2420-01	EGA attribute test failed
2405-01	80x25 mode, 9x14 cell test failed	2421-01	640x200 mode test failed
2406-01	80x25 mode, 8x8 cell test failed	2422-01	640x350 16-color set test failed
2407-01	40x25 mode test failed	2423-01	640x350 64-color set test failed
2408-01	320x200 mode color set 0 test failed	2424-01	EGA Mono. text mode test failed
2409-01	320x200 mode color set 1 test failed	2425-01	EGA Mono. graphics mode test failed
2410-01	640x200 mode test failed	2431-01	640x480 graphics mode test failed
2411-01	Screen memory page test failed	2432-01	320x200 256-color set test failed
2412-01	Gray scale test failed	2448-01	Advanced VGA controller test failed
2414-01	White screen test failed	2451-01	132-column AVGA test failed
2416-01	Noise pattern test failed	2456-01	AVGA 256-color test failed
2417-01	Lightpen text test failed, no response	2458-xx	AVGA BitBLT test failed
2417-02	Lightpen text test failed, invalid response	2468-xx	AVGA DAC test failed
2417-03	Lightpen graphics test failed, no resp.	2477-xx	AVGA data path test failed
2417-04	Lightpen graphics tst failed, invalid resp.	2478-xx	AVGA BitBLT test failed
2418-01	EGA memory test failed	2480-xx	AVGA linedraw test failed

A.16 Audio Error Messages (3206-xx)

Table A-15 Audio Error Messages				
Message	Probable Cause			
3206-xx	Audio subsystem internal error			

A.17 DVD/CD-ROM Error Messages (33xx-xx)

Table A-16 DVD/CD-ROM Error Messages			
Message	Probable Cause		
3301-xx	Drive test failed		
3305-xx	Seek test failed		

A.18 Network Interface Error Messages (60xx-xx)

Table A-17 Network Interface Error Messages					
Message	Probable Cause	Message	Probable Cause		
6000-xx	Pointing device interface error	6054-xx	Token ring configuration test failed		
6014-xx	Ethernet configuration test failed	6056-xx	Token ring reset test failed		
6016-xx	Ethernet reset test failed	6068-xx	Token ring int. loopback test failed		
6028-xx	Ethernet int. loopback test failed	6069-xx	Token ring ext. loopback test failed		
6029-xx	Ethernet ext. loopback test failed	6089-xx	Token ring open		

A.19 SCSI Interface Error Messages (65xx-xx, 66xx-xx, 67xx-xx)

Table A-18 **SCSI Interface Error Messages**

Message	Probable Cause	Message	Probable Cause
6nyy-02	Drive not installed	6nyy-33	Illegal controller command
6nyy-03	Media not installed	6nyy-34	Invalid SCSI bus phase
6nyy-05	Seek failure	6nyy-35	Invalid SCSI bus phase
6nyy-06	Drive timed out	6nyy-36	Invalid SCSI bus phase
6nyy-07	Drive busy	6nyy-39	Error status from drive
6nyy-08	Drive already reserved	6nyy-40	Drive timed out
6nyy-09	Reserved	6nyy-41	SSI bus stayed busy
6nyy-10	Reserved	6nyy-42	ACK/REQ lines bad
6nyy-11	Media soft error	6nyy-43	ACK did not deassert
6nyy-12	Drive not ready	6nyy-44	Parity error
6nyy-13	Media error	6nyy-50	Data pins bad
6nyy-14	Drive hardware error	6nyy-51	Data line 7 bad
6nyy-15	Illegal drive command	6nyy-52	MSG, C/D, or I/O lines bad
6nyy-16	Media was changed	6nyy-53	BSY never went busy
6nyy-17	Tape write-protected	6nyy-54	BSY stayed busy
6nyy-18	No data detected	6nyy-60	Controller CONFIG-1 register fault
6nyy-21	Drive command aborted	6nyy-61	Controller CONFIG-2 register fault
6nyy-24	Media hard error	6nyy-65	Media not unloaded
6nyy-25	Reserved	6nyy-90	Fan failure
6nyy-30	Controller timed out	6nyy-91	Over temperature condition
6nyy-31	Unrecoverable error	6nyy-92	Side panel not installed
6nyy-32	Controller/drive not connected	6nyy-99	Autoloader reported tape not loaded properly

n = 5, Hard drive = 6, CD-ROM drive = 7, Tape drive yy = 00, ID = 03, Power check = 05, Read = 06, SA/Media = 08, Controller = 23, Random read = 28, Media load/unload

A.20 Pointing Device Interface Error Messages (8601-xx)

Table A-19 Pointing Device Interface Error Messages

Message	Probable Cause	Message	Probable Cause
8601-01	Mouse ID fails	8601-07	Right block not selected
8601-02	Left mouse button is inoperative	8601-08	Timeout occurred
8601-03	Left mouse button is stuck closed	8601-09	Mouse loopback test failed
8601-04	Right mouse button is inoperative	8601-10	Pointing device is inoperative
8601-05	Right mouse button is stuck closed	8602-xx	I/F test failed
8601-06	Left block not selected		-

Index

Numerics

8259 Mode 4-6

A

AMT 1-3, 2-8, 8-8, A-4 APIC Mode 4-6, 4-7 Audio codec 2-7, 2-9, 5-11, 5-12 Audio Specifications 5-13

В

BIOS upgrading 8-2 boot device order 8-3 Boot error codes8-4

C

chipset 2-6 CMOS 4-8 CMOS, clearing 4-8 configuration memory 4-8

D

DisplayPort 2-2, 6-1, 6-6 DisplayPort connector 6-6 Direct Memory Access (DMA) 4-7 Display Modes (resolutions) 6-4

E

eSATA 5-3

F

flashing, ROM 8-2

G

graphics subsystem 6-1 graphics, upgrading 6-5

Н

HD Audio Controller 5-11 header pinouts, system board 7-11

ı

I/O controller, super 2-4, 2-5, 2-7 I/O map, system 4-14 interrupt handling, 8259 mode 4-6 interrupt handling, APIC mode 4-6 interrupts, hardware 4-6 interrupts, PCI 4-7

K

keyboard interface 5-7

L

LED (indications), boot error code 8-5 LED (indications), power button status 7-6

M

Management engine 8-8 Memory, system 2-7, 3-4 memory allocation 3-5, 6-3 memory map 3-6 mouse (pointing device) interface 5-7

Ν

Network Boot 8-3 Network Interface Controller 5-14

P

parallel interface 5-5
Parallel Interface Connector 5-6
password, Setup 4-10
password, Power-On 4-10
PCI 2.3 4-1
PCI Express 4-2
pointing device interface, 5-7
power LED indications 7-6
processor, Intel 2-4, 3-1, 3-2
Processor Upgrading 3-3

R

Real-time clock (RTC) 4-8 ROM flashing 8-2 S SATA/eSATA 5-2 SATA Connector 5-2 serial interface 5-4 Serial Interface Connector 5-4 Smart Cover (hood) Lock 2-2, 4-11 Smart Cover (hood) Sensor 2-2, 4-10 SMBIOS 8-7 specifications environmental, 2-10 physical 2-11 power supply 2-10 socket, processor 2-6, 3-3 system board component designators7-9 system ID 8-7

T

Temperature Status 8-7

U

Universal Serial Bus (USB) interface 5-9 upgrading BIOS 8-2 upgrading graphics 6-5

V

VGA connector 6-6

W

Web sites (for additional information 1-1