
FORMAL VERIFICATION AND VALIDATION
OF INTERACTIVE SYSTEMS SPECIFICATIONS
From Informal Specitications to Formal Validation

Yamine AÏT-AMEUR 1, Benoit BREHOLÉE 2, Patrick GIRARD 1,
Laurent GUITTET 1 and Francis JAMBON 3

1) LISI / ENSMA, BP 40109, Téléport 2, 86961 Futuroscope cedex, France
2) ONERA-CERT-DTIM, 2 Avenue Edouard Belin, BP 4025, 31055 Toulouse cedex, France
3) CLIPS-IMAG, BP 53, 291 avenue de la bibliothèque, 38041 Grenoble cedex 9, France

E-mail: {yamine, girard, guittet}@ensma.fr, breholee@cert.fr, francis.jambon@imag.fr

Abstract: This paper proposes a development process for interactive systems based both
on verification and validation methods. Our approach is formal and use at first
the B Method. We show in this paper how formal B specifications can be
derived from informal requirements in the informal notation UAN. Then, these
B specifications are validated using the data oriented specification language
EXPRESS. Several scenarios can be tested against these EXPRESS
specifications.

Key words: B Method, EXPRESS, UAN, interaction properties, verification, validation,
formal specification of interactive systems.

1. INTRODUCTION

Graphical user interfaces relying mostly on software, are being more and
more used for safety-critical interactive systems –for example aircraft glass
cockpits– the failure of which can cause injury or death to human beings.
Consequently, as well as hardware, the software of these interactive systems
needs a high level of dependability. Besides, on the one hand, the design
process must insure the reliability of the system features in order to prevent
disastrous breakdowns. On the other hand, the usability of the interactive
system must be carefully carried out to avoid user misunderstanding that can

2 Yamine AÏT-AMEUR 1, Benoit BREHOLÉE 2, Patrick GIRARD 1,
Laurent GUITTET 1 and Francis JAMBON 3

trigger similar disastrous effects. So, the software dependability of these
safety-critical interactive systems rely as well on safety as on usability
properties. Our work focuses on the use of formal techniques in order to
increase the quality of HCI software and of all the processes resulting from
the development, verification, design and validation activities.

In past workshops and conferences, we presented our approach through
papers dealing with formal specifications of HCI software [4], formal
verification of HCI software [5], test based validation of existing
applications [19], This paper addresses another topic not tackled yet by our
approach: design and formal validation of formal specifications with respect
to informal requirements. This work completes the whole development
process of a HCI software. Indeed, our approach uses the B formal technique
for representing, verifying and refining specifications [4, 5, 19], test based
validation of existing applications [19], secure code generation [18] and
integration of formal approaches [12].

This paper starts from the translation of the requirements in the UAN
notation [15] and shows how B specifications can be derived from. Then, the
EXPRESS formal data modeling language [11] is put into practice for the
validation of the derived B specifications. We show how the B specifications
can be translated to EXPRESS code which allows validation.

This paper is structured as follows. Section 2 reviews the different
notations and formal techniques that have been experienced on HCI. Next
section gives the informal requirements of a case study and its representation
in the UAN notation. Section 4 presents the B technique and the
specifications of the case study in B. Section 5 is related to validation. It
presents the formal data modeling technique EXPRESS which allows the
validation of the B specifications. We show how an automatic translation
from B to EXPRESS can be performed and how this technique is applied to
our case study. The result is a set of EXPRESS entities that are checked
against various scenarios. Last, we conclude on the whole suggested
approach.

2. NOTATIONS AND TECHNIQUES IN HCI: A
BRIEF STATE OF THE ART

2.1 Notations & Formal techniques

In order to express HCI software requirements, several notations were
suggested. As examples, MAD (for “Méthode Analytique de Description”)

Formal verification and validation of interactive systems
specifications

3

[27] and HTA (for Hierarchical Task Analysis) [29] use a hierarchical
decomposition of user tasks. On the other side, a notation like UAN [15] and
its extension XUAN [13] allow the description of not only the interface
feedback, but of the user behaviors as well. UAN specifications record the
state of the interface and tasks are described as state evolutions. This state
orientation of UAN facilitates translation to state based formal techniques
–B for example.

Several techniques were used in the HCI area. These techniques differ
from some point of views: semantics –algebraic or state based– verification
–incremental proof or fully automatic proof– etc. Some of these techniques
can be summarized in the following.

On the one hand, the first techniques are state based. They were based on
automata through statecharts [31] and ATN [30] [14], Petri Nets [2] [23].
They have been extended to support temporal logics to allow automatic
model checking like in CTL* [25], XTL [7] and SMV [8] [22], or with the
Lustre language [26]. The previous techniques support code generation and
automatic proving. Other techniques supporting state based semantics and
incremental proving and refinement like Z [20], VDM [21] or B [5] were
suggested.

On the second hand algebraic techniques have been applied with LOTOS
[24, 25] for describing HCI software. The proofs are achieved by rewriting
and refinement is performed by transformation. Other techniques based on
higher order type systems have been experienced.

All these techniques cover a limited part of the development of an HCI.
Our approach does not use only one technique, but it suggests to use several
techniques which cooperate, choosing each technique where it has proved to
be most efficient.

2.2 Our approach

Our approach uses the B technique. B supports formal specifications,
refinement from specifications to code and property verification through the
proof of the generated proof obligations. Specifications are derived from the
informal UAN notation and are validated using the EXPRESS data modeling
language.

4 Yamine AÏT-AMEUR 1, Benoit BREHOLÉE 2, Patrick GIRARD 1,
Laurent GUITTET 1 and Francis JAMBON 3

Requirements

Informal
Specifications

Formal
Specifications

Source CodeComputer Program

Formal
Spécifications

Test-Based
Validation

Refinement

Compilation

Conception

Derivation

Translation

Scenarii
Validation

Scope of this article

UAN

B Express

Figure 1: Scope of this article in the approach we suggest for handling
the development and validation of HCI

Formal specifications, property verification and refinement from
specification to code have been have been presented in [4, 5, 19]
respectively. This paper presents the last point: deriving specifications from
semi-formal notations and their validation in EXPRESS. This paper
completes the whole developed approach described in figure 1.

3. CASE STUDY AND THE USER ACTION
NOTATION

3.1 The case study: the Rangeslider

An usual slider –with a single cursor– is a graphical toolkit widget used
by interface designers to allow the specification of a value in an interval. The
Rangeslider [3] used by Spotfire™ (http://www.spotfire.com) is an enhanced
version of this classical slider, i.e., it supplies two cursors –see fig. 2– in
order to allow users to select not only a single value, but a range of values.
This new widget is used by interface designers to implement easy-to-use
zoom or filtering functions. A Rangerslider user can interact with the widget
by the way of three different kinds of actions:
– Move one cursor: the user moves one of the two cursors, to the left or to

the right. As a consequence, the area of the center zone expands or
reduces. The moved cursor cannot cover over the other cursor nor exceed
the widget length.

Formal verification and validation of interactive systems
specifications

5

– Move the center zone: the user moves the center zone, and at the same
time both cursors come after it. So the area of the center zone remains
unchanged. No cursor can exceed the widget length.

– Select a value in outer zones: the user clicks in one of the outer zones
–MinZone or MaxZone– and the closest cursor moves at the selected
point. As a consequence, the area of the center zone expands or reduces.

MinZone MaxZoneCenterZone

MinCursor MaxCursor

s_min s_maxval_min val_max

x_slider
y_slider

width

length

Figure 2: RangeSlider scheme —with variables names used
both in the UAN, B and EXPRESS specifications.

3.2 The User Action Notation

The User Action Notation is an interaction-design notation. Hix et al.
suggest that “the UAN is intended to be written primarily by someone
designing the interaction component of an interface, and to be read by all
developers, particularly those designing and implementing the user interface
software” [15]. The UAN is user- and task-oriented. A UAN specification
describes, at the physical level, the user actions and their corresponding
interface feedback and state changes.

A typical UAN specification in a three-columns table which must be read
from left to right and from top to bottom. The first column is dedicated to the
user actions –mouse-clicks, keystrokes, etc.– the second one to the interface
feedback –icon highlighting, widget display, etc.– and the third one to the
interface state –name of the selected icon, position of a slider, etc. User
actions as well as interface feedback have a specific representation.

User actions represent user interactions with devices as mouse or
keyboard. Among the UAN user actions, we use in §3.3 the following:
– [X] context of the object X
– ~[X] move cursor in the context of object X
– ~[x,y in X] move cursor to (arbitrary) point within object X
– Mv depress the mouse button
– M^ release the mouse button
– * the action can be repeated 0 or more times

6 Yamine AÏT-AMEUR 1, Benoit BREHOLÉE 2, Patrick GIRARD 1,
Laurent GUITTET 1 and Francis JAMBON 3

Interface feedback represents the system actions that are observable.
Among the UAN interface feedback, we use:
– X ! highlight object X
– X -! unhighlight object X
– X > ~ object X follows (in dragged by) cursor
– display(X) display object X
– erase(X) erase object X
– redisplay(X) equivalent to erase(icon) and then display(icon)
– @x,y at point x,y (e.g. to display X)
– condition : action the action is triggered if condition is true
– (…) grouping mechanism

In the example table 1 below, in order to select a file, the user moves the
mouse pointer to the file icon “file2“ and depresses the mouse button. Then
the file icon is highlighted and all other icons are unhighlighted. The
interface state –the name of the selected file– is updated when the user
depresses the mouse button.

Table 1: UAN specification of the task “select icon”

TASK: select file

USER ACTIONS INTERFACE FEEDBACK INTERFACE STATE

~[file2] M^ file2 !

" file2’ ≠ file2 : file2’ -!

Mv selected = file

3.3 Specification of the Range-Slider in the UAN

The three tables below –table 2 to table 4– are the UAN specifications of
the three user interactions described in §3.1. In fact, a full UAN specification
must comprise five tables –one table for each user interaction. However the
two pairs of UAN tables for cursor and outer zones are so similar that one
table of each pair has been omitted. In these tables, Rangeslider is the name
of the whole slider object and ∆x is the spatial increment on the abscissa
axis.

3.3.1 Move one cursor (MinCursor)

In order to move the left cursor –MinCursor– the user must move the
mouse button in the context of the MinCursor object. Then, he can depress
the mouse button and drag the cursor. The MinCursor follows the mouse

Formal verification and validation of interactive systems
specifications

7

pointer and the center zone must be redisplayed. At each increment, the
value of the s_min variable is updated.

Table 2: UAN specification of the task “move MinCursor”

TASK: move MinCursor

USER ACTIONS INTERFACE FEEDBACK INTERFACE STATE

~[MinCursor] Mv MinCursor !

~[x,y in RangeSlider]* 0<x<s_max :

 MinCursor > ~

redisplay(CenterZone)

s_min=s_min+∆x

M^ MinCursor -!

3.3.2 Move the center zone (CenterZone)

In order to move the center zone –CenterZone– the user must move the
mouse button in the context of the CenterZone object. Then, he can depress
the mouse button and drag the zone. The zone follows the mouse pointer and
both cursors must be redisplayed. At each increment, the value of the
s_min and s_max variables are updated.

Table 3: UAN specification of the task “move CenterZone”

TASK: move CenterZone

USER ACTIONS INTERFACE FEEDBACK INTERFACE STATE

~[CenterZone] Mv CenterZone !

~[x,y in RangeSlider]* s_min<x<s_max :

 CenterZone > ~

 redisplay(MinCursor)

redisplay(MaxCursor)

s_min=s_min+∆x

s_max=s_max+∆x

M^ CenterZone -!

3.3.3 Select a value in an outer zone (MinZone)

In order to select a value in an outer zone –MinZone– the user must move
the mouse button in the context of the MinZone object. Then, he depresses
the mouse button. At this point, the left cursor –MinCursor– as well as the
center zone must be redisplayed at the new position.

Table 4: UAN specification of the task “select a value in MinZone”

TASK: select value in MinZone

8 Yamine AÏT-AMEUR 1, Benoit BREHOLÉE 2, Patrick GIRARD 1,
Laurent GUITTET 1 and Francis JAMBON 3

USER ACTIONS INTERFACE FEEDBACK INTERFACE STATE

~[x,y in MinZone] Mv^ redisplay(MinCursor)@x,y

redisplay(CenterZone)

s_min=s_min+∆x

These UAN tables, together with the figure 2 are the high level and
informal specifications of the Rangeslider. These specifications are very
useful for interface designers because they express in a rather short and
precise way the behavior of the RangeSlider. However, the UAN is a
notation to express requirements but cannot be used to prove or test the
features of the interaction object we analyze. As an example, we cannot be
sure that the cursor will never cover over the other cursor nor exceed the
widget length. So we must now use formal methods to prove this kind of
properties.

4. THE B TECHNIQUE AND FORMAL
SPECIFICATIONS

4.1 The B formal technique

Among the increasing number of formal methods that have been
described during the last decade, model oriented methods, such as VDM, Z
or B, seem to have a good place. These methods are based on model
description. They consist in defining a model by the variable attributes
which characterize the described system, the invariant that must be satisfied
and the different operations that alter these variables. Starting from this
observation, Z method uses set theory notations and allows to encode the
specifications in a structure named schema. Like VDM, it is based on
preconditions and post-conditions [16, 17]. Moreover, VDM allows the
generation of a set of proof obligations which simplify the use of the method
regarding to Z. In opposite, B is based on the weakest precondition
technique of Dijkstra [10]. Starting from this method, J.R. Abrial [1] has
defined a logical calculus, named the generalized substitutions calculus.
Notice that our choice is B. This choice is motivated by the fact that B is
supported by tools which allow a complete formal development. Moreover,
since it is based on the weakest precondition calculus, B helps to prove the
termination.

Formal verification and validation of interactive systems
specifications

9

4.2 Description of abstract machines

Several important clauses have been described by J.R. Abrial for the
definition of abstract machines. Depending on the clauses and on their
abstraction level, these clauses can be used at different levels of the program
development. In this paper, a subset of these clauses has been used for the
design of our specifications. We will only review these clauses. A whole
description can be found in the B-Book [1]. Briefly, these clauses mean:
– SETS defines the sets that are manipulated by the specification. These

sets can be built by extension, comprehension or with any set operator
applied to basic sets.

– CONSTANTS defines all the constants that are used in the machine.
Notice that the constants described can have any type (naturals, elements
of sets, constant functions and so on).

– PROPERTIES are logical expressions that are satisfied by the constants
described in the previous clause.

– VARIABLES is the clause where all the attributes of the described model
are represented. It represents the variables of the model of the
specification. In the methodology of B, we find in this clause all the
selector functions which allow accessing the different properties
represented by the described attributes.

– INVARIANT clause describes the properties of the attributes defined in
the clause VARIABLES. The logical expressions described in this clause
remain true in the whole machine and the represent assertions that are
always valid.

– INITIALISATION clause allows to give initial values to the variables of
the corresponding clause. Note that the initial values must satisfy the
invariant.

– OPERATIONS clause is the last clause of a machine. It defines all the
operations (functions and procedures) that constitute the abstract data
type represented by the machine. Depending on the nature of the
machine, the OPERATIONS clause authorizes particular generalized
substitutions to specify each operations.

4.3 Strengths of B

The B Method is based on sound and well known semantics since it is
based on predicate logic and on the weakest precondition calculus. But one
of the major advantages of this approach is the uniform description of the
whole development. Indeed, we will show in the reminder of this paper that
the same notation is kept to describe every part that constitutes an interactive

10 Yamine AÏT-AMEUR 1, Benoit BREHOLÉE 2, Patrick GIRARD 1,
Laurent GUITTET 1 and Francis JAMBON 3

system. Moreover, this method gives a technique for proof obligation
generation, proving, and refining to code.
– Proof obligations (PO). The calculus of generalized substitutions

outlined above is applied for each abstract machine defined in the
development. Rewriting techniques are applied to achieve this calculus
and they lead to a set of proof obligations which need to be proved in
order to have a sound and consistent specification and development.

– Proofs and proving. When the proof obligations are generated, they
have to be proved. For this purpose, a set of proof rules are provided and
the developer can achieve the proof of the PO's if they are provable.
Moreover, the tools implementing the B Method have an automatic
prover which allows to prove a major part of these PO's. The remaining
PO's are proved interactively using the interactive prover. This approach
allows to check the correctness of the specifications with respect to the
user needs. Indeed, some of the PO's are definitely not provable if the
abstract machine is not well defined. For example, in our case study the
38 of the 40 generated proof obligations have been proved automatically
using the "Atelier B" tool [9].

– Refinement: from the specifications to the code. As stated above, the B
method allows not only to support specifications through abstract
machines, but it allows the support of refinement and implementations as
well. Indeed, it is possible to set the whole development in a common
language, with a common semantics and a common proof technique. The
refinement makes it possible to introduce design and implementation
details while refining. Finally, refinement allows not only to derive code
but also to make the proofs and the proving process easier thanks to
incremental design decisions introductions.

4.4 Deriving the B range slider specification from the
UAN notation

The definition of the UAN specification helps to derive a formal B
specification since it encodes the notions of state and of operations.

The following abstract machine describes what a set of range sliders is. It
describes the set of all the sliders to be SLIDERS and two constants
describing the length and the width of the screen. The PROPERTIES clause
types these two constants and gives their corresponding values.

MACHINE the_slider

SETS
SLIDERS

Formal verification and validation of interactive systems
specifications

11

CONSTANTS
screen_width,
screen_height

PROPERTIES
screen_width : NAT Ÿ
screen_width = 800 Ÿ
screen_height : NAT Ÿ
screen_height = 600

The model of this abstract machine is given by the attributes defined in
the VARIABLES clause. The set sliders describes the set of the actually
described range sliders. The other variables allow to access the attributes of a
given range slider.

Informally, as described in figure 2, each range slider is characterized by:
– x_slider and y_slider are the coordinates of the up left corner of

the window describing the range slider,
– width and length are respectively the width and the length of a

given range slider,
– val_min and val_max are the minimal and maximal values associated

to a range slider,
– and finally, s_min and s_max are the current low and up values of the

described range slider.

VARIABLES
sliders, x_slider, y_slider, width, length, val_min, val_max,

s_min, s_max

All these variables are typed in the INVARIANT clause. This clause
contains the properties that are always satisfied by the variables of the
model. These properties shall be maintained by the operations that affect
these variables. Two kinds of properties are described:
– typing properties that give types to the variables. The set sliders is

declared as a subset of the set SLIDERS. Then, all the other variables are
accessing functions and they are typed by their signature,

– safety properties which ensure a set of critical properties and model
consistance. They are described in first order logic and are maintained by
the B prover. They assert that the low (resp. Up) value of a slider shall be
greater (resp. Lower) or equal to the minimal (resp. maximal) value of
the range slider. Moreover, it states that the whole range slider is
contained in the screen dimensions. This last assertion ensures visibility
and reachability properties.

In the B language, these properties are described by:

12 Yamine AÏT-AMEUR 1, Benoit BREHOLÉE 2, Patrick GIRARD 1,
Laurent GUITTET 1 and Francis JAMBON 3

INVARIANT
sliders Ã SLIDERS Ÿ

x_slider Œ sliders-->NAT Ÿ
y_slider Œ sliders-->NAT Ÿ
width Œ sliders-->NAT Ÿ
length Œ sliders-->NAT Ÿ
val_min Œ sliders-->NAT Ÿ
val_max Œ sliders-->NAT Ÿ
s_min Œ sliders-->NAT Ÿ
s_max Œ sliders-->NAT Ÿ

/* Safety properties of the slider */
" sl.(sl:sliders =>(val_min(sl) >= 0)) Ÿ
" sl.(sl:sliders =>(val_min(sl) <= s_min(sl))) Ÿ
" sl.(sl:sliders =>(s_min(sl)<s_max(sl))) Ÿ
" sl.(sl:sliders =>(s_max(sl) <= val_max(sl))) Ÿ
" sl.(sl:sliders =>(val_max(sl) <= length(sl))) Ÿ
" sl.(sl:sliders

 =>(x_slider(sl) Œ 1..screen_width)) Ÿ
" sl.(sl:sliders

 =>(y_slider(sl) Œ 1..screen_height)) Ÿ
" sl.(sl:sliders

 =>(x_slider(sl)+length(sl) Œ 1..screen_width)) Ÿ
" sl.(sl:sliders

 =>(y_slider(sl)+width(sl) Œ 1..screen_height))

The initialization clause initializes all the variables of the model to the
empty set. One can be astonished why functions are initialized to the empty
set. In B, accessing functions are considered as subsets of Cartesian
products, therefore, they can be initialized to an empty set.

INITIALISATION
sliders := {} ||
x_slider := {} ||
y_slider := {} ||
length := {} ||
width := {} ||
val_min := {} ||
val_max := {} ||
s_min := {} ||
s_max := {}

The first operation allows to create a range slider with XX , YY as
coordinates of its left up corner. Its length and width are respectively given
by the parameters LENGTH and WIDTH . Finally, VMIN and VMAX
parameters indicates the minimal and maximal values of the range. The
slider is created with VMIN and VMAX as initial minimal and maximal
values. A preconditon ensures that the parameters are correctly typed and the

Formal verification and validation of interactive systems
specifications

13

invariant is maintained. It ensures that the creation of a range slider is
correctly performed.

OPERATIONS
create(XX,YY,LENGTH,WIDTH,VMIN,VMAX)=
PRE

sliders ≠ SLIDERS Ÿ
XX Œ NAT Ÿ YY Œ NAT Ÿ
WIDTH Œ NAT Ÿ LENGTH Œ NAT Ÿ
VMIN Œ NAT Ÿ VMAX Œ NAT Ÿ
VMIN >= 0 Ÿ
VMIN < VMAX Ÿ
VMAX <= LENGTH Ÿ
XX Œ 1..screen_width Ÿ
YY Œ 1..screen_height Ÿ
XX+LENGTH Œ 1..screen_width Ÿ
YY+WIDTH Œ 1..screen_height

THEN
ANY

sl
WHERE

sl Œ SLIDERS - sliders
THEN

sliders := sliders » {sl} ||
x_slider(sl):=XX ||
y_slider(sl):=YY ||
length(sl):=LENGTH ||
width(sl):=WIDTH ||
val_min(sl):=VMIN ||
val_max(sl):=VMAX ||
s_min(sl):=VMIN ||
s_max(sl):=VMAX

END
END;

In order to keep this paper in a reasonable length, we show only one
operation that manipulates the range slider. It allows to move the left value
of the range slider to the left. In B this operation is described by:

move_left_slider(one_slider, new_left_min_value)=
PRE

one_slider Œ sliders Ÿ
new_left_min_value Œ NAT Ÿ

 new_left_min_value > val_min(one_slider) Ÿ
 new_left_min_value < s_max(one_slider)

THEN
s_min(one_slider) := new_left_min_value

END;
....
END

14 Yamine AÏT-AMEUR 1, Benoit BREHOLÉE 2, Patrick GIRARD 1,
Laurent GUITTET 1 and Francis JAMBON 3

Other operations related to the range slider have been described in this
abstract machine. Moreover, the whole application is represented by several
abstract machines not presented in this paper. Indeed, abstract machines
related to the mouse management, to the direct manipulation and so on have
been described. Finally, notice that the abstract machine described in B and
presented in this paper has shown that it is possible to:
– ensure that a range slider remains in the screen limits,
– ensure that the low and up values of a range slider respect the definition

of a range,
– move the low value, of a range slider to the left in order to decrease its

left value, by running the corresponding operation.

For the whole developed abstract machine, the proof obligations have
been generated. They all have been automatically proved. However, this
specification has not been built at the first attempt. We had to enrich the
preconditions and to remove other preconditions. Indeed, the prover behaves
following:
– preconditions are not complete, therefore the proof cannot be achieved,
– preconditions are contradictory, then the user has to make new choices

and to check the requirements.

Finally, about 40 proof obligations are generated for this application. We
had to prove only 2 proof obligations using the interactive prover, i.e., "by
hand". This shows that when the application is well specified following
sound software engineering concepts, the proof phase can be considerably
reduced.

All these properties are safety properties. In the next section we address
the problem of the validation of such formal specifications that is not
supported by the B formal technique.

5. THE EXPRESS TECHNIQUE AND VALIDATION
OF SPECIFICATIONS

Describing data models is a major concern of the data management and
knowledge management areas. Several formalisms, models and techniques
allow to represent data and/or knowledge. For example, OMT, UML and so
on are used to represent information systems while KIF, KADS and so on
are techniques for knowledge representation. The definition of such
formalisms for representing information systems requires a set of concepts
usually needed. These concepts are related to structure, description and

Formal verification and validation of interactive systems
specifications

15

behavior. Structure defines the organization of the data in the information
system. For example classification or object orientation or relational
databases are ways of structuring information.

Description is related to the properties of the structured information. It is
defined by the set of the properties that a given description has. Attributes in
classes or in relational tables are ways to describe different classes or tables.
Behavior gives the information on how the data behave. Behavior is
obtained either by giving a function which shows how data evolve
(constructive approach) or by giving constraints on the data to restrict the
behavior to the licit data.

These three concepts require the definition of a language or any other
formalism which allows to handle them. It is highly suitable that this
language is processable. EXPRESS is a formal data modeling language that
handles these three kinds of knowledge. A data model in EXPRESS is
represented by a set of schemas that may refer to each other. Each schema
contains two parts. The first part is a set of entities that are structured in an
object oriented approach with multiple inheritance. The second part is a
procedural part which contains procedures, functions and global rules.

5.1 The EXPRESS data modeling language

The EXPRESS language has been designed in the context of the STEP
(STandard for the Exchange of Product model and data) international project
which aims at describing formal models for exchanging product data.
Moreover, this language can be used for the specification of several
applications in computer science areas.

This section focuses on the constructions we use in the reminder of the
paper. More details about the definition of this language can be found in [6,
28]. The EXPRESS language focuses on the definition of entities –types–
which represent the objects –classes– we want to describe. EXPRESS is type
oriented: entity types are defined at compile time and there is no concept of
meta-class. Each entity is described by a set of characteristics called
attributes. These attributes are characterized by a domain and constraints on
these domains. An important aspect of these entities is that they are
hierarchically structured allowing multiple inheritance as in several object
oriented languages. This part of the specification describes the structural
and the descriptive parts of the domain knowledge.

On the other hand, it is possible to describe processes on the data defined
in the entities by introducing functions and procedures. These functions are
used to define constraints, pre-conditions and post-conditions on the data.
They are also used to specify how the values of some properties that may be

16 Yamine AÏT-AMEUR 1, Benoit BREHOLÉE 2, Patrick GIRARD 1,
Laurent GUITTET 1 and Francis JAMBON 3

derived from the values of other properties. This part of the specification
describes the procedural part of the domain knowledge.

Finally, in EXPRESS, entities –data– and functions –processes– are
embedded in a structure called a SCHEMA. These schemes may reference
each other allowing a kind of modularity and therefore specification in the
large possibilities.

5.1.1 Entity definition

In EXPRESS, entities are defined in terms of attributes. Indeed, a set of
attributes (may be an empty set) is assigned to each entity. Each attribute has
a domain (where it takes its values) defining a data type. It can be either a
simple domain –integer, string– or a structured domain –lists, sets, bags–
(hard encoded in EXPRESS) or an entity type meaning that an attribute is of
type of another entity. We syntactically write:

SCHEMA foo1;
ENTITY A; ENTITY B;
att_A :INTEGER; att_1:REAL;
INVERSE att_2:LIST [0:?] OF STRING;
att_I#: B FOR att_3#; att_3:A;
END_ENTITY; END_ENTITY;
END_SCHEMA;

Informally, the entity B has three attributes: an integer, a list of string and
a pointer to another entity A which has only one integer attribute. att_I is an
inverse attribute of entity A corresponding to the inverse link defined by
attribute att_3 in entity B.

Semantically, an entity has a model. In the EXPRESS community, the
model is named a physical file. The model consists of a set of entity
instances with explicit instance identity. The attribute values are either literal
values of the EXPRESS simple or structured built-in types or references to
other entity instances. Instead of entering into deep semantic details, we give
an example of a model (physical file) which can be associated to the
previous entity definitions.

Let us consider a particular representation, named instance, of the entity
B, where att_1 evaluates to 4, att_2 is the list ('hello', 'bye') and att_3
points the particular instance of the entity A where its att_A attribute
evaluates to 3. Then, the model (physical file) associated to these particular
instances of the entities A and B is described by

1=A(3, #2) ;
2=B(4,('hello','bye') ,# 1);

Formal verification and validation of interactive systems
specifications

17

5.1.2 5.1.2. Derived attributes

As it is the case for several object oriented languages, it is possible to
have derived attributes in the entity definitions. For example, we can derive
in entity B2 (assumed to be defined in the same schema Foo1) a Boolean
attribute stating whether or not the length of the att_2 list is equal to the
integer attribute att_A defined in entity A by writing:

ENTITY B2;
att_1:REAL#;
att_2:LIST[0:?] OF STRING;
att_3: A#;
DERIVE

att_4 :BOOLEAN:= (SELF.att_3\A.att_A=SIZEOF(SELF.att_2))#;
END_ENTITY;

where:
– SELF is an EXPRESS keyword representing a variable which designates

the current entity,
– . is the dot notation to access the attribute of an entity,
– \ character allows to access super-type,
– and SIZEOF is an EXPRESS built-in function which gives the length of

an aggregate data type.
The derived (computed) attributes do not physically appear in the model

(physical file).

5.1.3 5.1.3. Constraining entities

It is possible to limit the allowed population (elements) of the models to
those instances that satisfy some stated constraints. They are introduced
thanks to the WHERE clause of EXPRESS that provides for instance
invariant, and to the global RULE clause that provides for model invariant.

Let us assume that the allowed values for att_A are [1..10] and that
exactly two instances shall have an attribute value 1, we may write (QUERY
is a built-in iterator on class):

ENTITY A#; RULE Card FOR A#;
att_A: integer; WHERE
WHERE SIZEOF(QUERY(inst<*A |
(SELF.att_A>=1) and (inst.att_A=2))) =2
(SELF.att_A<=10) ; END_RULE;
END_ENTITY;

Derivations and constraints are the only places where functions may
occur. They provide the two high level abstraction mechanisms identified as
necessary in data driven active databases. Therefore, it is possible to

18 Yamine AÏT-AMEUR 1, Benoit BREHOLÉE 2, Patrick GIRARD 1,
Laurent GUITTET 1 and Francis JAMBON 3

formally specify a global class of problems. Moreover, derivations and
constraints are inherited. These features define a set inclusion semantics to
EXPRESS inheritance mechanism.

5.1.4 Functions and procedures

As we have seen previously on examples, functions can be used to
associate rules to data. These rules may be either derivation or (local or
global) constraints. Syntactically, a function is declared in EXPRESS as:

FUNCTION F (x : typ_1; y : typ_2) :typ_3;
(*Function_Body;*)
End_Function;

The previous declaration has only presented a function interface. It has
two parameters of types typ_1 and typ_2. The result is of type typ_3. We
note that these types can be either built-in EXPRESS types, or defined types
or defined entities.

function_body represents the body of the defined function. Assignment,
sequence and control structures (if statement loops and recursion) can be
used in this function body. These features give powerful expression
possibilities to the language. Indeed, we get the same expression possibility
as other recursive specification languages.

5.2 Translation of B specifications to EXPRESS

The translation from B specifications to EXPRESS code is based on the
semantics of generalized substitutions on which B is built. The idea consists
in:
– representing the state variables of the model by an EXPRESS entity. This

entity describes a state in the underlying transition system. According to
the B semantics, this transition system describes the semantic model of
the developed application,

– representing the invariant properties by global EXPRESS rules. Indeed,
the properties that are described in the INVARIANT B clause are global
properties that need to be satisfied at each state,

– and finally, representing operations by entities expressing the initial and
the final states with local rules that express the relationship between the
initial and the final states.
All the objects that are defined in an abstract machine are translated into

EXPRESS. Each abstract machine corresponds to one EXPRESS schema.

Formal verification and validation of interactive systems
specifications

19

5.3 The case study in EXPRESS

The following EXPRESS entity defines the model associated to the
abstract machine described in B. It is obtained by a translation of all the
variables that are described in the VARIABLES B clause.

SCHEMA The_Slider;

ENTITY Slider;
x_slider,y_slider :INTEGER;
width, length :INTEGER;
val_min, val_max :INTEGER;
s_min, s_max :INTEGER;

END_ENTITY;

For a given range slider, the previous entity describes the x_slider
and y_slider representing its coordinates, its width and length, its
minimal and maximal values and finally its low and up values. The
instanciation of this entity allows to create a range slider. This entity
preserves the identifiers introduced in the B abstract machine. Moreover, it
encodes all the invariant properties which are related to typing of the
variables.

The other invariant clauses that are related to the universally quantified
properties, which express safety properties, are represented by a global
EXPRESS rule. This rule expresses that all the instances of the entity
slider satisfy the expressed logical properties. It states that the set of all
the instances of a range slider satisfying these properties is exactly the set of
all instances of a range slider. It is given by:

RULE coord FOR (Slider);
LOCAL

sliders_ok, ens_sliders :
SET OF Slider := [] ;

END_LOCAL;
sliders_ok := QUERY(s <* Slider | ((s.val_min >=0) AND

(s.val_min <= s.s_min) AND
(s.s_min < s.s_max) AND
(s.s_max <= s.val_max) AND
(s.val_max <= s.length) AND
(s.x_slider >= 0) AND
(s.x_slider + s.length < 800) AND
(s.y_slider >= 0) AND
(s.y_slider + s.width < 600)));

ens_sliders := QUERY(s <* Slider | true);
WHERE

sliders_ok = ens_sliders ;
END_RULE;

20 Yamine AÏT-AMEUR 1, Benoit BREHOLÉE 2, Patrick GIRARD 1,
Laurent GUITTET 1 and Francis JAMBON 3

Finally, operations are also transformed into an EXPRESS entity. The
translation principle is based on the semantics of B. Indeed, the entity slider
expresses the state of the described system (state based formal semantics).
So, an operation, acting on a state, transforms an initial state Ei to a final
state Ef.

The operation move_left_slider considers two states: the initial
state E i and the final state Ef and its input parameter, namely
new_left_min_value. The description of this entity is given by:

ENTITY Move_Left_Slider;
-- states
Ei, Ef : Slider ;
-- input parameter
new_left_min_value : INTEGER;

The next part completes the description of an operation by an entity. It
translates the precondition part (expressed by the B keyword PRE), the effect
of the operation by expressing the change of s_min in the final state and
finally it states the unchanged attributes in final state. The result gives the
following WHERE rules.

WHERE
-- Translation of preconditions

pre1: new_left_min_value >= Ei.val_min ;
pre2: new_left_min_value < Ei.s_max ;

-- Translation of perations
ope1: Ef.s_min = new_left_min_value;

-- Translation of unchanged state variables
cst1: Ef.x_slider = Ei.x_slider ;
cst2: Ef.y_slider = Ei.y_slider ;
cst3: Ef.width = Ei.width ;
cst4: Ef.length = Ei.length ;
cst5: Ef.val_min = Ei.val_min ;
cst6: Ef.val_max = Ei.val_max ;
cst7: Ef.s_max = Ei.s_max ;

END_ENTITY;
....
END_SCHEMA;

This approach shows that it is possible to automatically translate B
specifications into EXPRESS data modeling specifications. This translation
will allow to give data models that represent specification tests.

Formal verification and validation of interactive systems
specifications

21

5.4 Validation scenarios

In order to describe tests of B specifications –recall that validation and
test are not supported by B– we need to describe instantiations of the
EXPRESS data model.

As an illustration consider two rangesliders that are described by the
same coordinates (x_slider =20 and y_slider=30), the same length
and width (equal to length=100 and width = 10), the same minimal and
maximal values (equal to val_min= 40 and val_max= 80) and the same
up value (equals to s_max = 60). Consider that the first range slider RS1
corresponding to the initial state has a low value (equals to s_min= 50) and
the second range slider RS2 has a low value (equals to s_min = 45). In fact
this situation corresponds to a moving of the left value of a range slider. It
can be expressed as move_left_slider(RS,45). Here we consider
that the range sliders RS1 and RS2 corresponds respectively to the range
sliders of the initial and final states. In EXPRESS, this situation corresponds
to the description of the three following instances:

#1=SLIDER (20, 30, 10, 100, 40 , 80, 50 , 60)#;
#2=SLIDER (20, 30, 10, 100, 40 , 80, 45 , 60)#;
#3=MOVE_LEFT_SLIDER(#1, #2, 45)#;

The previous set of instances represent a test case for the
move_left_slider operation. The method can be generalized to other
operations and to compositions of these operations that allow the description
of a wide range of user scenarios. The test sequences can then be produced
using the UAN specifications described in §3.3. Thanks to these
specifications, a wide coverage can be achieved.

6. CONCLUSION

This paper shows a formal technique that allows to derive, verify and
validate formal B specifications of HCI software. The informal requirements
are expressed using the semi-formal notation UAN which is used as the basis
for writing formal specifications. This process is proved helpful for writing
formal specifications. Indeed, the direct derivation of these specifications
from informal requirements is a hard task. This approach bridges the gap
between user oriented specifications which feed the formalization process,
the B formal development and verification techniques.

As a second step this paper addresses a crucial issue related to formal
validation of formal specifications. It suggests to use a data oriented

22 Yamine AÏT-AMEUR 1, Benoit BREHOLÉE 2, Patrick GIRARD 1,
Laurent GUITTET 1 and Francis JAMBON 3

modeling language, namely EXPRESS, which allows to represent validation
scenarios. This approach increases the efficiency of the HCI software
development process since validation is not performed at the programming
language level but at higher and abstract specifications. This approach
allows to validate scenarios of application earlier in the development
process. The result increases the efficiency of the development and decreases
its cost.

Finally, to end the whole development process we suggest there is a need
for taking into account user tasks descriptions and user tasks validations.
This topic has not been addressed in this paper but it will be tackled in future
developments. Indeed, we think that task representations and validations are
possible within the framework we have developed.

REFERENCES

1. Abrial, J.-R. The B Book: Assigning Programs to Meanings. Cambridge University Press,
1996.

2. Accott, J., Chatty, S. et Palanque, P. A formal description of low level interaction and its
application to multimodal interactive systems. In Proceedings of Eurographics Workshop
on Design, Specification, and Verification of Interactive Systems (DSV-IS'96) (5-7 June,
Namur, Belgium), Springer-Verlag, 1996, pp. 92-104.

3. Ahlberg, C. et Truve, S. Tight Coupling: Guiding User Actions in a Direct Manipulation
Retrieval System. In Proceedings of HCI'95 Conference on People and Computers X
,1995, pp. 305-321.

4. Aït-Ameur, Y., Girard, P. et Jambon, F. A Uniform approach for the Specification and
Design of Interactive Systems: the B method. In Proceedings of Eurographics Workshop
on Design, Specification, and Verification of Interactive Systems (DSV-IS'98) (3-5 June,
Abingdon, UK), 1998, pp. 333-352.

5. Aït-Ameur, Y., Girard, P. et Jambon, F. Using the B formal approach for incremental
specification design of interactive systems. In Proceedings of Engineering for Human-
Computer Interaction (14-18 September, Kluwer Academic Publishers, 1998, pp. 91-108.

6. Bouazza, M. Le langage EXPRESS. Hermès, Paris, 1995.
7. Brun, P. XTL: a temporal logic for the formal development of interactive systems.

Palanque, P. et Paternò, F. (Ed.). In Formal Methods for Human-Computer Interaction,
Springer-Verlag, 1997, pp. 121-139.

8. Clarke, E.M., Emerson, E.A. et Sistla, A.P. Automatic Verification of Finite-State
Concurrent Systems using Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems. 2, 8 (1986), pp. 244-263.

9. ClearSy. Atelier B - version 3.5. 1997.
10.Dijkstra, E. A Discipline of Programming. Prentice Hall, Englewood Cliff (NJ), USA,

1976.
11.EXPRESS. The EXPRESS language reference manual. ISO, 1994 ISO 10303-11.
12.Girard, P., Baron1, M. et Jambon, F. Integrating formal approaches in Human-Computer

Interaction. In Proceedings of INTERACT 2003 - Bringing the Bits togETHer - Ninth IFIP
TC13 International Conference on Human-Computer Interaction - Workshop <<Closing

Formal verification and validation of interactive systems
specifications

23

the Gaps: Software Engineering and Human-Computer Interaction>> (September 1-5,
Zurich, Switzerland), 2003.

13.Gray, P., England, D. et McGowan, S. XUAN: Enhancing the UAN to capture temporal
relation among actions. Department of Computing Science, University of Glasgow,
February 1994, Department research report IS-94-02.

14.Guittet, L. Contribution à l'Ingénierie des Interfaces Homme-Machine - Théorie des
Interacteurs et Architecture H4 dans le système NODAOO. Doctorat d'Université (PhD
Thesis) : Université de Poitiers, 1995.

15.Hix, D. et Hartson, H.R. Developping user interfaces: Ensuring usability through product
& process. John Wiley & Sons, inc., Newyork, USA, 1993.

16.Hoare, C.A.R. An Axiomatic Basis for Computer Programming. CACM. 12, 10 (1969), pp.
576-583.

17.Hoare, C.A.R., Hayes, I.J., Jifeng, H., Morgan, C.C., Sanders, A.W., Sorensen, I.H.,
Spivey, J.M. et Sufrin, B.A. Laws of Programming. CACM. 30, 8 (1987).

18.Jambon, F. From Formal Specifications to Secure Implementations. In Proceedings of
Computer-Aided Design of User Interfaces (CADUI'2002) (May 15-17, Valenciennes,
France), Kluwer Academics, 2002, pp. 43-54.

19.Jambon, F., Girard, P. et Boisdron, Y. Dialogue Validation from Task Analysis. In
Proceedings of Eurographics Workshop on Design, Specification, and Verification of
Interactive Systems (DSV-IS'99) (2-4 June, Universidade do Minho, Braga, Portugal),
Springer-Verlag, 1999, pp. 205-224.

20.Johnson, C.W. Using Z to support the design of interactive, safety-critical systems.
IEE/BCS Software Engineering Journal. 10, 2 (March 1995), pp. 49-60.

21.Marshall, L.S. A Formal Description Method for User Interface. Ph.D Thesis : University
of Manchester, 1986.

22.McMillian, K. The SMV System. Carnegie Mellon University, 1992.
23.Palanque, P. Modélisation par Objets Coopératifs Interactifs d'interfaces homme-machine

dirigées par l'utilisateur. Doctorat d'Université (PhD Thesis) : Université de Toulouse I,
1992.

24.Paternò, F. et Faconti, G.P. On the LOTOS use to describe graphical interaction. In
Cambridge University Press, 1992, pp. 155-173.

25.Paternò, F. et Mezzanotte, M. Formal verification of undesired behaviours in the CERD
case study. In Proceedings of IFIP TC2/WG2.7 Working Conference on Engineering for
Human-Computer Interaction (EHCI'95) (14-18 August, Grand Targhee Resort
(Yellowstone Park), USA), Chapman & Hall, 1995, pp. 213-226.

26.Roché, P. Modélisation et validation d'interface homme-machine. Doctorat d'Université
(PhD Thesis) : École Nationale Supérieure de l'Aéronautique et de l'Espace, 1998.

27.Scapin, D.L. et Pierret-Golbreich, C. Towards a method for task description : MAD.
Berliguet, L. et Berthelette, D. (Ed.). In Working with display units, Elsevier Science
Publishers, North-Holland, 1990, pp. 371-380.

28.Schenck, D. et Wilson, P. Information Modelling The EXPRESS Way. Oxford University
Press, 1994.

29.Shepherd, A. Analysis and training in information technology tasks. Diaper, D. (Ed.). In
Task Analysis for Human-Computer Interaction, Ellis Horwood, Chichester, USA, 1989,
pp. 15-55.

30.Waserman, A. User Software Engineering and the design of Interactive Systems. In
Proceedings of 5th IEEE International Conference on Software Engineering ,IEEE society
press, 1981, pp. 387-393.

24 Yamine AÏT-AMEUR 1, Benoit BREHOLÉE 2, Patrick GIRARD 1,
Laurent GUITTET 1 and Francis JAMBON 3

31.Wellner, P. StateMaster : a UIMS based on Statecharts for prototyping and target
implementation. In Proceedings of Human Factors in Computing Systems (CHI'89) (30
April - 4 May, Austin, USA), ACM/SIGCHI, 1989, pp. 177-182.

