Macroscopic patterns emerge from random individual behaviours

Linglong Yuan
University of Liverpool

AIMS-UoL Joint Postgraduate Conference
16.06 .2023

Plan

Introduction

Example: Central Limit Theorem and large deviations

Example: Kingman's model of selection and mutation

Macroscopic phenomena in complex systems

How do the following phenomena happen?

- Water becomes ice at degree zero
- A magnet loses magnetism above certain temperature
- Free market is more efficient in productivity
- Richer gets richer
- Species extinction
- Covid-19 spreads exponentially at outbreak

Why stochastic models?

In stochastic models, we assume

- there are many individuals in a population
- the population is in a certain environment with constant or evolving characteristics
- individuals interact randomly with each other under the constraints from the environment
- although we do not dictate how each individual should behave (it is completely random), macroscopic/collective phenomena will appear

What is the fate of the population given the random behaviours of individuals?

Plan

Introduction

Example: Central Limit Theorem and large deviations

Example: Kingman's model of selection and mutation

Central Limit Theorem

Theorem
Let X_{1}, X_{2}, \ldots be independent and identically distributed (i.i.d) random variables with mean μ and variance σ^{2}. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then

$$
\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \text { is approximately standard normal as } n \rightarrow \infty
$$

Figure: Histogram of a sample of data $\frac{S_{n}-n \mu}{\sigma \sqrt{n}}$ vs. the pdf of a standard normal distribution

Remark Although each random variable behaves independently of any other, they collectively fall in the attraction of standard normal

One step further: large deviations

Theorem (Nagaev, 1979)
Let X_{1}, X_{2}, \ldots be independent and identically distributed (i.i.d) random variables with mean μ and variance σ^{2}. Let $S_{n}=\sum_{i=1}^{n} X_{i}$.
Assume that

- the tail probability function $\bar{F}(t):=\mathbb{P}\left(X_{1} \geq t\right)$ is regularly varying with index $-\beta<-2$
- there exists $\delta>0$ such that $\mathbb{E}\left[\left|X_{1}\right|^{2+\delta}\right]<\infty$

Then for any $x_{n} \geq \sqrt{n}$,

$$
\mathbb{P}\left(S_{n}-\mu n \geq x_{n}\right) \sim \bar{\Phi}\left(\frac{x_{n}}{\sigma \sqrt{n}}\right)+n \bar{F}\left(x_{n}\right), \quad n \rightarrow \infty
$$

where $\bar{\Phi}$ is the tail probability function of the standard normal distribution.

Two scenarios

Let $M_{n}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. We can write
$\mathbb{P}\left(S_{n}-\mu n \geq x_{n}\right)=\mathbb{P}\left(S_{n}-\mu n \geq x_{n}, M_{n}<x_{n}\right)+\mathbb{P}\left(S_{n}-\mu n \geq x_{n}, M_{n} \geq x_{n}\right)$
Then,

- normal scenario: $\mathbb{P}\left(S_{n}-\mu n \geq x_{n}, M_{n}<x_{n}\right) \sim \Phi\left(\frac{x_{n}}{\sigma \sqrt{n}}\right)$
- one-big-jump scenario:

$$
\begin{aligned}
\mathbb{P}\left(S_{n}-\mu n \geq x_{n}, M_{n} \geq x_{n}\right) & \sim \mathbb{P}\left(M_{n} \geq x_{n}\right) \\
& \sim n \bar{F}\left(x_{n}\right)
\end{aligned}
$$

What happens in the one-big-jump scenario?

Proposition 1 (Berger, Birkner, Y, 23)
Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence satisfying

- $\lim _{n \rightarrow \infty} n \bar{F}\left(x_{n}\right)=0$,
- $\bar{F}\left(x_{n}\right)>0$ for all n.

Then we have

What happens in the one-big-jump scenario?

Proposition 1 (Berger, Birkner, Y, 23)
Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence satisfying

- $\lim _{n \rightarrow \infty} n \bar{F}\left(x_{n}\right)=0$,
- $\bar{F}\left(x_{n}\right)>0$ for all n.

Then we have

$$
\lim _{n \rightarrow \infty} d_{\mathrm{TV}}\left(\mathscr{L}\left(R\left(\xi_{1}, \ldots, \xi_{n}\right) \mid M_{n} \geq x_{n}\right),(\mathscr{L}(\xi))^{\otimes(n-1)}\right)=0
$$

where $d_{\mathrm{TV}}=$ total variation distance; $R(\cdots)$ is to remove the largest element.

What happens in the one-big-jump scenario?

Proposition 1 (Berger, Birkner, Y, 23)
Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence satisfying

- $\lim _{n \rightarrow \infty} n \bar{F}\left(x_{n}\right)=0$,
- $\bar{F}\left(x_{n}\right)>0$ for all n.

Then we have

$$
\lim _{n \rightarrow \infty} d_{\mathrm{TV}}\left(\mathscr{L}\left(R\left(\xi_{1}, \ldots, \xi_{n}\right) \mid M_{n} \geq x_{n}\right),(\mathscr{L}(\xi))^{\otimes(n-1)}\right)=0
$$

where $d_{\mathrm{TV}}=$ total variation distance; $R(\cdots)$ is to remove the largest element.

Remark 2
Note that this result requires no structural conditions on the distribution of the ξ 's.

The phase transition

Depending on how large x_{n} is,

- if $\bar{\Phi}\left(\frac{x_{n}}{\sigma \sqrt{n}}\right) \sim n \bar{F}\left(x_{n}\right)$:
with probability $\frac{\bar{\Phi}\left(\frac{x_{n}}{\sigma \sqrt{n}}\right)}{\mathbb{P}\left(S_{n}-\mu n \geq x_{n}\right)}$, normal scenario occurs with probability $\frac{n \bar{F}\left(x_{n}\right)}{\mathbb{P}\left(S_{n}-\mu n \geq x_{n}\right)}$, one-big-jump scenario occurs
- if x_{n} is much smaller, only normal scenario occurs
- if x_{n} is much larger, only one-big-jump scenario occurs

Simulation: $\bar{F}(x)=x^{-2.5}, x \geq 1 ; \quad n=50000$

Not centralised; total length is the sum; length of the red segment is the largest summand; x_{n} is the distance between vertical lines

Plan

Introduction

Example: Central Limit Theorem and large deviations

Example: Kingman's model of selection and mutation

Kingman's model (1978)

Kingman considers an infinite population with discrete generations, and fitness values of an indivdual within $[0,1]$.

Selection: At each generation, the number of offspring of an individual in the next generation depends on its fitness. If it is fitter, then more offspring will be produced.
Mutation:

- For each child, with probability b, it is mutated, and its fitness will be sampled randomly from a common distribution Q
- with probability $1-b$, it inherits the fitness of its parent

Maths formulation

Kingman's model uses probability measures to describe the evolution of the population.

It has three parameters $\left(P_{0}, Q, b\right)$ and the dynamics is defined as:

$$
\begin{equation*}
P_{n+1}(d x)=(1-b) \underbrace{\frac{x P_{n}(d x)}{\int_{0}^{1} y P_{n}(d y)}}_{\text {selection }}+b \underbrace{Q(d x)}_{\text {mutation }}, \quad n \geq 0 \tag{1}
\end{equation*}
$$

- Q, P_{n} are probability measures on $[0,1]$,
- $b \in(0,1)$ is deterministic.

What questions to ask?

- Will $\left(P_{n}\right)$ converge?
- What does the limit of P_{n} look like?
- How does the limit of P_{n} depend on the three parameters $\left(P_{0}, Q, b\right)$?

Kingman (1978): convergence and condensation

Define $\zeta:=1-b \int \frac{Q(d y)}{1-y}$.
Theorem
(1)-Mutation dominates Selection:

If $\zeta \leq 0$, then $\left(P_{n}\right)_{n \geq 0}$ converges strongly to

$$
\frac{b \theta Q(d x)}{\theta-(1-b) x}
$$

with θ being the unique solution of $\int \frac{b \theta Q(d x)}{\theta-(1-b) x}=1$.
(2)-Selection dominates Mutation:

If $\zeta>0$, then $\left(P_{n}\right)_{n \geq 0}$ converges weakly to

$$
\frac{b Q(d x)}{1-x}+\zeta \delta_{1}(d x)
$$

here $\delta_{1}(d x)$ is the Dirac measure at 1. Condensation occurs.

Regimes

Meritocracy or Aristocracy: if condensation will occur Democracy: if condensation will not occur

A random model

In the original model, the mutation probability b is fixed for all generations.

If we say the mutation probability for generation n is b_{n} such that $\left(b_{n}\right)$ is an i.i.d. sequence with

$$
\mathbb{E}\left[b_{n}\right]=b, \quad \forall n \geq 1
$$

How will such noise affect the condensate size?
In other words, if you want to reduce or increase the condensate size, would you add the noise or not?

Comparison: main result

Theorem (Y, 2020,2022)
The sequence $\left(P_{n}\right)$ in the random model will converge to a limit.
The limit will less likely have a condensate, and if it does, the condensate size will be smaller than that from the Kingman's model.

References

- Quentin Berger, Matthias Birkner and Y. Collective vs. individual behaviour for sums of i.i.d. random variables: appearance of the one-big-jump phenomenon. ArXiv (2023)
- Sergey V. Nagaev. Large deviations of sums of independent random variables. The Annals of Probability (1979).
- Linglong Yuan. Kingman's model with random mutation probabilities: convergence and condensation II. Journal of Statistical Physics (2020).
- Linglong Yuan. Kingman's model with random mutation probabilities: convergence and condensation I. Advances in Applied Probability (2022).

THANK YOU

