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Macroscopic phenomena in complex systems

How do the following phenomena happen?

▶ Water becomes ice at degree zero

▶ A magnet loses magnetism above certain temperature

▶ Free market is more efficient in productivity

▶ Richer gets richer

▶ Species extinction

▶ Covid-19 spreads exponentially at outbreak

https://www.youtube.com/watch?v=GuuqfZRPhHQ&ab_channel=ScienceFTW


Why stochastic models?

In stochastic models, we assume

▶ there are many individuals in a population

▶ the population is in a certain environment with constant or
evolving characteristics

▶ individuals interact randomly with each other under the
constraints from the environment

▶ although we do not dictate how each individual should behave
(it is completely random), macroscopic/collective phenomena
will appear

What is the fate of the population given the random behaviours of
individuals?
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Central Limit Theorem

Theorem

Let X1,X2, . . . be independent and identically distributed (i.i.d)
random variables with mean µ and variance σ2. Let Sn =

∑n
i=1 Xi .

Then

Sn − nµ

σ
√
n

is approximately standard normal as n → ∞.



Figure: Histogram of a sample of data Sn−nµ
σ
√
n

vs. the pdf of a standard

normal distribution

Remark Although each random variable behaves independently of
any other, they collectively fall in the attraction of standard normal
distribution

https://www.youtube.com/shorts/aDagFRVOn0E
https://www.youtube.com/shorts/aDagFRVOn0E


One step further: large deviations

Theorem (Nagaev, 1979)

Let X1,X2, . . . be independent and identically distributed (i.i.d)
random variables with mean µ and variance σ2. Let Sn =

∑n
i=1 Xi .

Assume that

▶ the tail probability function F (t) := P(X1 ≥ t) is regularly
varying with index −β < −2

▶ there exists δ > 0 such that E[|X1|2+δ] < ∞
Then for any xn ≥

√
n,

P(Sn − µn ≥ xn) ∼ Φ( xn
σ
√
n
) + nF (xn), n → ∞

where Φ is the tail probability function of the standard normal
distribution.



Two scenarios

Let Mn = max{X1,X2, . . . ,Xn}. We can write

P(Sn−µn ≥ xn) = P(Sn−µn ≥ xn,Mn < xn)+P(Sn−µn ≥ xn,Mn ≥ xn)

Then,

▶ normal scenario: P(Sn − µn ≥ xn,Mn < xn) ∼ Φ( xn
σ
√
n
)

▶ one-big-jump scenario:

P(Sn − µn ≥ xn,Mn ≥ xn) ∼ P(Mn ≥ xn)

∼ nF (xn)



What happens in the one-big-jump scenario?

Proposition 1 (Berger, Birkner, Y, 23)

Let (xn)n≥1 be a sequence satisfying

▶ limn→∞ nF (xn) = 0,

▶ F (xn) > 0 for all n.

Then we have

lim
n→∞

dTV

(
L

(
R(ξ1, . . . , ξn)

∣∣Mn ≥ xn
)
,
(
L (ξ)

)⊗(n−1)
)
= 0

where dTV=total variation distance; R(· · · ) is to remove the
largest element.

Remark 2

Note that this result requires no structural conditions on the
distribution of the ξ’s.
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The phase transition

Depending on how large xn is,

▶ if Φ( xn
σ
√
n
) ∼ nF (xn):

with probability
Φ(

xn
σ
√
n
)

P(Sn−µn≥xn)
, normal scenario occurs

with probability nF (xn)
P(Sn−µn≥xn)

, one-big-jump scenario occurs

▶ if xn is much smaller, only normal scenario occurs

▶ if xn is much larger, only one-big-jump scenario occurs



Simulation: F (x) = x−2.5, x ≥ 1; n = 50000
Not centralised; total length is the sum; length of the red segment
is the largest summand; xn is the distance between vertical lines
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Kingman’s model (1978)

Kingman considers an infinite population with discrete generations,
and fitness values of an indivdual within [0, 1].

Selection: At each generation, the number of offspring of an
individual in the next generation depends on its fitness. If it is
fitter, then more offspring will be produced.
Mutation:

▶ For each child, with probability b, it is mutated, and its fitness
will be sampled randomly from a common distribution Q

▶ with probability 1− b, it inherits the fitness of its parent



Maths formulation

Kingman’s model uses probability measures to describe the
evolution of the population.

It has three parameters (P0,Q, b) and the dynamics is defined as:

Pn+1(dx) = (1− b)
xPn(dx)∫ 1
0 yPn(dy)︸ ︷︷ ︸
selection

+ bQ(dx)︸ ︷︷ ︸
mutation

, n ≥ 0. (1)

▶ Q,Pn are probability measures on [0, 1],

▶ b ∈ (0, 1) is deterministic.



What questions to ask?

▶ Will (Pn) converge?

▶ What does the limit of Pn look like?

▶ How does the limit of Pn depend on the three parameters
(P0,Q, b)?



Kingman (1978): convergence and condensation
Define ζ := 1− b

∫ Q(dy)
1−y .

Theorem

(1)-Mutation dominates Selection:
If ζ ≤ 0, then (Pn)n≥0 converges strongly to

bθQ(dx)

θ − (1− b)x
,

with θ being the unique solution of
∫ bθQ(dx)

θ−(1−b)x = 1.

(2)-Selection dominates Mutation:
If ζ > 0, then (Pn)n≥0 converges weakly to

bQ(dx)

1− x
+ ζδ1(dx),

here δ1(dx) is the Dirac measure at 1. Condensation occurs.



Regimes

Meritocracy or Aristocracy: if condensation will occur
Democracy: if condensation will not occur



A random model

In the original model, the mutation probability b is fixed for all
generations.

If we say the mutation probability for generation n is bn such that
(bn) is an i.i.d. sequence with

E[bn] = b, ∀n ≥ 1.

How will such noise affect the condensate size?

In other words, if you want to reduce or increase the condensate
size, would you add the noise or not?



Comparison: main result

Theorem (Y, 2020,2022)

The sequence (Pn) in the random model will converge to a limit.

The limit will less likely have a condensate, and if it does, the
condensate size will be smaller than that from the Kingman’s
model.
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