Exploring the Habitability of Icy Worlds: The Europa Jupiter System Mission A Joint NASA-ESA Outer Planet Mission Study #### **OPAG** Review - Strategic Science Plan Status - Europa Jupiter System Mission - Overview - Jupiter Europa Orbiter - Jupiter Ganymede Orbiter - OPAG review and input # Strategic Science Plan Europa Jupiter System Mission (EJSM) #### **Objectives** - Continue direct science involvement with JEO, JGO Projects - "Retire" weaknesses identified in the NASA and ESA reviews - Build the case for JGO to be an ESA "L" class mission - Refine joint aspects of EJSM (JEO, JGO) - Incorporate the best aspects from the Europa and Titan studies - Engage broad science community and public support ## EJSM Study Science Structure Leads (8) Working Groups (22 co-chairs) Full Science Team (57) Community (OPAG; EU; etc.) # Science Definition Team Working Groups SDT Co-chairs plus community members Working Group 1 (Satellites) Geophysics Composition Ice Geology Atmospheres/exospheres Working Group 2 (Jupiter) Working Group 3 (Magnetospheres) Working Group 4 (Jupiter System) Bruce Bills, Hauke Hussman Federico Tosi, Tom McCord Don Blankenship, Olivier Grasset Ralf Jauman, Jeff Moore Melissa McGrath, Andrew Coates Pierre Drossert, Leigh Fletcher, Amy Simon-Miller Krishan Khurana, Norbert Krupp Tim Van Hoolst, Melissa McGrath #### Transverse/cross-cutting Working Groups Working Group 5 (Origin and Formation) Working Group 6 (Astrobiology) Working Group 7 (Cosmic Connections) Working Group 8 (Radio Science) Working Group 9 (Education Public Outreach) Angioletta Coradini, Bill Moore, Hunter Waite Kevin Hand, Olga Prieto-Ballesteros Athena Coustenis, Masaki Fujimoto Paolo Tortora, Essam Marouf Athena Coustenis, Ron Greeley, Michel Blanc, Louise Prockter OPAG Feb 2010 5 ## Community Engagement: Special Sessions - Lunar and Planetary Science Conference (Houston, 23-27 Mar. 2009) Two sessions - European Geoscience Union (Vienna, 19-24 Apr. 2009) Four sessions - EJSM Instrument Workshop (Maryland, 15-17 Jul. 2009) - European Planetary Science Congress (Potsdam, 13-18 Sep. 2009) Four sessions and two workshops - Division of Planetary Science (Puerto Rico, 4-9 Oct. 2009) Several relevant sessions - Geological Society of America (Portland, 18-21 Oct. 2009) Cryovolcanism in the Solar System - American Geophysical Union (San Francisco, 14-18 Dec. 2009) The Galilean Satellites: 400 years of Discovery - *Galileo 400th* (Padua, 6-9 Jan. 2010) - EJSM Instrument Workshop (Noordwijk, 18-20 Jan. 2010) Similar sessions and activities will be held throughout 2010 ## Europa Jupiter Science Mission (EJSM) - NASA and ESA: Shared mission leadership - Independently launched and operated orbiters - NASA-led Jupiter Europa Orbiter (JEO) - ESA-led Jupiter Ganymede Orbiter (JGO) - Complementary science and payloads - JEO concentrates on Europa and lo - JGO concentrates on Ganymede and Callisto - Synergistic overlap - 11-12 instruments each - Science goals: - Icy world habitability - Jupiter system processes Synergistic science: The sum of JEO + JGO is greater than the parts #### Nominal EJSM Timeline - Launches: 2020 - Jovian system tour phases: 2–3 years - Moon orbital phases: 6–12 months - End of Prime Missions: 2029 - Flexibility if either flight element is delayed or advanced ### Coordinated timelines ensure synergistic science ## JEO Goal: ## Explore Europa to Investigate Its Habitability Habitabili #### Objectives (prioritized): - Ocean and Interior - Ice Shell - Chemistry and Composition - Geology and Landing Sites - Jupiter System - Satellite surfaces and interiors - Satellite atmospheres - Plasma and magnetospheres - Jupiter atmosphere - Rings Characterizing the archetype of icy world habitability ## JEO Traceability: Europa | Goal | | Science Objective | Science Investigation | | | | | | | |---|---|--|-----------------------|---------------|---|--|--|--|--| | | Ocean | Characterize the extent of | A1. Determi | ne the ampl | tude and phase of the gravitational tides. | | | | | | | | the ocean and its relation | A2. Charact | erize the ma | gnetic environment (including plasma) to determine the induction response | | | | | | . | | to the deeper interior. | | | multiple frequencies. | | | | | | lit. | | | A3. Charact | erize surface | motion over the tidal cycle. | | | | | | Explore Europa to investigate its habitability. | A. | | A4. Determi | ne the satell | ite's dynamical rotation state. | | | | | | bit | | | A5. Investig | ate the core, | rocky mantle, and rock-ocean interface. | | | | | | hal | | Characterize the ice shell | B1. Charact | erize the dis | ribution of any shallow subsurface water. | | | | | | | | and any subsurface water, | B2. Search t | for an ice-oc | ean interface. | | | | | | e ii | Ice | including their heterogeneity, and | | | | | | | | | ate | В. | the nature of surface-ice-ocean | | | atures and subsurface structure to investigate processes governing material | | | | | | tig | | exchange. | | | surface, ice shell, and ocean. | | | | | | est | | | | | al and global heat flow variations. | | | | | | UV | 7 | Determine global surface | | | organic and inorganic chemistry, including abundances and distributions of | | | | | |) i | Chemistry | compositions and chemistry, | | | nasis on indicators of habitability and potential biosignatures. | | | | | | a te | | especially as related to habitability. | C2. Relate c | ompositions | to geological processes, especially material exchange with the interior. | | | | | | gdo | | | C3. Charact | erize the glo | bal radiation environment and the effects of radiation on surface composition, | | | | | | ırı |); | | atmospł | neric compos | sition, albedo, sputtering, sublimation, and redox chemistry. | | | | | | E | | | C4. Charact | erize the nat | ure of exogenic materials. | | | | | | ıre | gy | Understand the formation of | D1. Determi | ne the form | ation history and three-dimensional characteristics of magmatic, tectonic, and | | | | | | bld | | surface features, including sites of | impact l | andforms. | | | | | | | [X] | eol | recent or current activity, and | D2. Determi | ne sites of n | nost recent geological activity, and evaluate future landing sites. | | | | | | | _ | identify and characterize candidate | D3. Investig | ate processe | s of erosion and deposition and their effects on the physical properties of the | | | | | | | D | sites for future in situ exploration. | surface | | of the physical properties of the | | | | | | | | | 31112300 | | | | | | | | JEO T | JEO Themes: Origins Evolution Processes | | | Life | Based on 2002 Decadal's "objectives of solar system exploration" | | | | | ## JEO Traceability: Jupiter System Science | Goal | Science Objective | | Science Investigation | | | | | |---|---|----------------------------------|---|--|--|--|--| | | Understand Europa in the context of the Jupiter system. | Satellite surfaces and interiors | E1. Investigate the nature and magnitude of tidal dissipation and heat loss on the Galilean satellites, particularly Io E2. Investigate Io's active volcanism for insight into its geological history and evolution (particularly of its silicate crust) E3. Investigate the presence and location of water within Ganymede and Callisto. E4. Determine the composition, physical characteristics, distribution and evolution of surface materials on Ganymede. E5. Determine the composition, physical characteristics, distribution and evolution of surface materials on Callisto. | | | | | | vestigate its | system science | itellite
Atms. | E6. Identify the dynamical processes that cause internal evolution and near-surface tectonics of Ganymede and Callisto. E7. Characterize the composition, variability and dynamics of Europa's atmosphere and ionosphere E8. Understand the sources and sinks of Io's crustal volatiles and atmosphere. E9. Determine the sources and sinks of the Ganymede and Callisto atmospheres. | | | | | | Explore Europa to investigate its habitability. | E. Jupiter | Plasma and
magnetospheres | E10. Characterize the neutral atoms and molecules escaping Europa's gravity. E11. Characterize the composition of and transport in Io's plasma torus. E12. Study the pickup and charge exchange processes in the Jupiter system plasma and neutral tori. E13. Study the interactions between Jupiter's magnetosphere and Io, Ganymede and Callisto (incl. characterize Ganymede's magnetic field) E14. Understand the structure, composition and stress balance of Jupiter's magnetosphere. E15. Determine how plasma and magnetic flux are transported in Jupiter's magnetosphere. E16. Characterize the abundance of minor species (especially water and ammonia) in Jupiter's atmosphere to understand the evolution of the Jovian system, including Europa. E17. Characterize Jovian atmospheric dynamics and structure. | | | | | | | Ö | 36 | E18. Characterize the properites of the small moons, ring source bodies and dust E19. Identify the dynamical processes that define the origin and dynamics of ring dust. | | | | | Europa science objectives addressed in first 100 days in orbit ## Europa Science Campaigns: Profiling and Targeted Observations 290 Mb coordinated targets ~1700 coordinated targeted observations obtained after 9 mo. ## JEO Jovian Tour Example - 33 perijoves during Jovian Tour - 23 with satellite flybys 22 permit JEO-Earth radio occultations Rich opportunities to acquire Jupiter System Science ## JGO Goals and Objectives - Key JGO science phases - Jupiter system: In-depth exploration - · From Jupiter orbit, synergistically with JEO - Callisto: In-depth study and mapping - · Multiple flybys using a resonant orbit - Ganymede: Detailed orbital study - · Elliptical orbit first, then circular orbit - Science Objectives: - Ganymede: Characterize Ganymede as a planetary object, including its potential habitability - Satellite System: Study the Jovian satellite system - Jupiter: Study the Jovian atmosphere - Magnetosphere: Study the Jovian magnetodisk / magnetosphere - Jupiter system: Study the interactions occurring in the Jovian system Characterizing the Jupiter system and its outer Galilean moons ### JGO Traceability: Ganymede | Goal | Science objective | Science investigation | | | | | | | |--------------------------|---------------------|--|---|--|--|--|--|--| | | A. Ice shell and | A1. | Time dependent altimetry and gravity to determine Love numbers h2 and k2. | | | | | | | | ocean | | | | | | | | | Ct | | | Study the magnetic field at multiple frequencies | | | | | | | object
/ | | A3. | Subsurface characterization - Determine the properties of the icy shell and the presence and location | | | | | | | | | | of shallow liquid water. | | | | | | | <u>`</u> | | A4. | Constrain the amplitude of forced libration and obliquity and non-synchronous rotation | | | | | | | planetary | B. Induced and | B1. | Globally characterize Ganymede's intrinsic magnetic field (to accuracy of 0.1nT). | | | | | | | an | intrinsic magnetic | B2. | Characterize particle population within Ganymede's magnetosphere and its interaction with Jupiter's | | | | | | | pli
hat | fields | $\overline{}$ | magnetosphere | | | | | | | _ a _ | | | Investigate the generation of Ganymede's aurora | | | | | | | Ē. a | | | Study of the ionosphere and exosphere of Ganymede | | | | | | | nede as
potenti | | | Investigate surface composition and structure on open vs. closed field line regions | | | | | | | ne | C. Geology and | C1. | Improve global and regional mapping | | | | | | | Ganymede
ng its poter | search for past and | $\overline{}$ | Topographic mapping of large fractions of the surface. | | | | | | | ian
y it | present activity | C3. | Subsurface characterization | | | | | | | _ | | | Constrain global and regional surface ages | | | | | | | iz | D. Surface comp. | D1. | Nature and location of non-ice and organic compounds | | | | | | | جو ال | and physical | | | | | | | | | ac
i | properties of | D2. | Constrain the existence and rate of mass transfer processes | | | | | | | Characterize
includi | subsurface layers | | | | | | | | | ည် | E. Deep interior | E1. Precise determination of low-degree static gravity field and shape | | | | | | | | | | E2. | | | | | | | | | | E3. | Search for deviations from hydrostatic equilibrium and for mass anomalies | | | | | | | | | | | | | | | | JEO Themes: Origins **Evolution Processes Habitability** Life To be modified wrt Cosmic Vision themes before June 2010 ### JGO Traceability: Satellites | Goa | | ence obj | | | | | | | | | | | |-----------------------------------|-------------------------------|---|----------|--------------|---------------|---------------|------------------|----------|--|--|--|--| | | | allisto: S | tudy | | • | varying po | tential and sh | hape - | Time dependent altimetry and gravity to determin | | | | | | | urface | | Love n | umbers | | | | | | | | | | com | position, | | F2. Study t | ne induced m | nagnetic fiel | d at multiple | frequ | iencies | | | | | | phys | sical prop | perties, | F3. Subsur | ace characte | rization | | | | | | | | | puta | tive ocea | | | | | and organic c | | | | | | | | inte | rnal stru | - | | | | | | liquity and non-synchronous rotation | | | | | Ε | | | - | | | | | | field and shape | | | | | ste e | | | | | | | fractions of th | | | | | | | 8 | • | | EJSM | F8. Charac | erization of | Callisto ion | osphere and e | exospl | here. | | | | | 9 | | | | F9. Constra | in the existe | nce and rate | of mass tran | nsfer p | processes between a) leading vs trailing | | | | | _ | | | | hemisp | heres (role o | f impactors | and dust); b) | north | vs south hemispheres. | | | | | Ite | | | | F10. Constra | in global and | d regional si | urface ages | | | | | | | Sa | | | | F11. Improv | e imaging co | verage of C | 'allisto's surfa | ace . | | | | | | an | G. I | o and Eu | _ | | | | | | plasma/neutral tori | | | | | Š | | | | | | | | itudes | and local times | | | | | J. | | | | | erization of | | | | | | | | | Study the Jovian satellite system | H. S | tudy the | | H1. Charac | eristics and | chemical co | mposition of | the su | urfaces of outer irregular satellites | | | | | <u>></u> | irre | irregular satellites
(if close flybys are | | H2. Astrom | etric observa | tions and m | ass determin | ation | of irregular satellites | | | | | pn | (if cl | | | | | | | | | | | | | S | feasi | feasible) EISM | | H3. Search | for new oute | r irregular | satellites | | | | | | | | I. In | vestigate | the | II. Physica | l characteriz | ation and cl | nemical comp | positio | on of the ring system in 3D and over different | | | | | | inne | inner region of the
Jupiter system
including the ring | | timesca | les and searc | ch for new a | ssociated sate | ellites | 3 | | | | | | Jupi | | | I2. Charac | eristics and | chemical co | mposition of | f the su | urfaces of Thebe, Amalthea and other small inner | | | | | | _ | | | satellite | S | | | | | | | | | | syste | | EJSM | I3. Provide | improved e | phemerides | and mass est | timates | es for small inner satellites | | | | | JEO The | JEO Themes: Origins Evolution | | | Processes | Habitability | Life | To be modif | fied v | wrt Cosmic Vision themes before June 2010 | | | | ## JGO Traceability: Jupiter | Goal | Science objective | Science investigation | | | | | | | | |-------------------------|---------------------|-----------------------|--|--|--|--|--|--|--| | | J. The upper | J1. | Determination of general circulation & composition in the upper atmosphere | | | | | | | | | atmosphere | J2. | Characterization of the vertical coupling in the atmosphere & of its drivers, ion drag or wave | | | | | | | | | | | activity) | | | | | | | | | | J3. | Temperature structure retrieval from upper atmosphere to the troposphere | | | | | | | | | EJSM | J4. | Characterization of ionospheric total electron densities & variations | | | | | | | | | | J5. | Characterization of the wave activity at low- to mid-latitudes and eddy activity and eddy meridional | | | | | | | | ā | | | transport | | | | | | | | atmosphere | K. The stratosphere | K1. | Determination of the composition: H2O (characterisation of latitudinal variations, dynamics, role in | | | | | | | | lds | | | atmospheric chemistry); HCN (dispersion following the SL9 impact), hydrocarbons (stratospheric | | | | | | | | ě | | | chemistry) and haze; characterization of the strength of vertical mixing | | | | | | | | at . | | K2. | Determination of temperature structure from stellar and solar occultations over a wide range of | | | | | | | | | | | latitudes in the upper stratosphere (1-km at 20 K per measurement). | | | | | | | | /ia | | | Determination of the general circulation in the stratosphere | | | | | | | | jo | L. The troposphere | L1. | Determination of chemical composition: condensable species (NH3, H2O) and disequilibrium | | | | | | | | <u>a</u> | | | species (PH3, CO) | | | | | | | | Study the jovian | | L2. | Characterization of the strength of the vertical coupling in the atmosphere down to the troposphere | | | | | | | | ρn | | L3. | Determination of the composition & vertical structure of clouds and cloud size distribution | | | | | | | | St | | | Study of the relation between the upper troposphere circulation & the deep circulation below the | | | | | | | | | | | clouds & processes driving the jets circulation. | | | | | | | | | | | clouds to processes driving the jets enculation. | | | | | | | | | | | Potential vorticity retrieval from combined dynamics and thermal measurements | | | | | | | | | M. Internal | M1. | Constrain the existence and size of a core, and the nature of the H-H2 phase transition - | | | | | | | | | structure of | | F man a constant of the consta | | | | | | | | | Jupiter | | | | | | | | | | 150 - 1 | | la di a | Process Helifability I I'm T. I. I'm I C. | | | | | | | | JEO Themes: Origins Evo | | lution | Processes Habitability Life To be modified wrt Cosmic Vision themes before June 2010 | | | | | | | ### JGO Traceability: Magnetosphere & Jupiter System | Goal | Science objective | Science investigation | |---------------------------------|----------------------|--| | | N. The | N1. Characterize the properties of the magnetodisk with nearly 3D coverage in order to obtain good and | | Ø | magnetosphere as a | reliable plasma moments (density, pressure, bulk flow velocity) | | erc | fast magnetic | N2. Improve our understanding of the plasma processes acting in the magnetodisk | | d
d | rotator | N3. Investigate the plasma sources, mass loading variability, composition, transport modes, and loss | | n
os | | processes in the magnetosphere | | vian
netosphere | | N4. Study of the dust - plasma interactions | | Jovian | | N5. Characterize the large-scale coupling processes between the magnetosphere, ionosphere and | | le . | | thermosphere | | ţ, | | N6. Magnetospheric response to solar wind variability | | Study the Jo
magnetodisk/mag | EJSM | N7. Look for direct evidence of the effects of the solar wind and planetary rotation on driving | | od | | magnetospheric dynamics | | S | O. The | O1. Characterize the time evolving Jovian radiation environment | | gr | magnetosphere as a | O2. Improve our understanding of the particle bombardment of the surfaces of the moons | | ma | giant accelerator | O3. Detail the particle acceleration processes | | _ | EJSM | O4. Study the loss processes of charged energetic particles | | | | O6. Observations of the moon auroral magnetic footprints | | ns | P. Satellite / mag. | P1. Study of pick-up & charge-exchange processes in plasma/neutral tori | | octions
jovian | interactions: the | | | 10 | magnetosphere as a | P2. Search for plasma effects on satellites (including irregular) | | in the | magnetized binary | P3. Analysis of absorption signatures by moons, rings and dust | | | system | 13. Pinarysis of absorption signatures by moons, rings and dust | | | Q. Tidal coupling | Q1. Determine short-term and long-term changes of the orbits of the Galilean satellites and the inner | | | among Jupiter and | satellites | | Study
occur | the setallites | Q2. Study the coupled evolution of Io Europa and Ganymede by determining internal structures, heat | | Sti | the satemites EISM | flows, and tidal responses (including tidal phase lags) of the moons. | | EO Ther | mes: Origins Evoluti | on Processes Habitability Life To be modified wrt Cosmic Vision themes before June 2010 | #### Ganymede science objectives addressed in 300 days in orbit ## Around Ganymede in 300 Days: Some Examples #### Remote sensing Significant improvement in spectral (x5) and spatial (80% at 2-2.5 km/pxl) resolution. ## In situ continuous acquisition Full investigation of intrinsic and induced magnetic fields #### > 400 Gb of compressed data ## JGO Jovian Tour Example - 17 Callisto flybys - 8 Ganymede flybys 33 perijove at ~15 R_J Rich opportunities to acquire Jupiter System Science ## **EJSM Synergistic Science** Satellite & Jupiter Monitoring; Radio Occultation Science? Ganymede Magnetosphere Studies #### OPAG Feb 2010: What's Needed? - Discussion sessions (Tues. morning) - Satellites (Dave Senske, Olivier Grasset) - Jupiter (Amy Simon-Miller, Leigh Fletcher, Bob Pappalardo) - Review the science - "Walk through" the example Jovian Tour - Make recommendations - Jupiter System Science (Melissa McGrath) - Synergistic Magnetospheric Science (Norbert Krupp) - General Discussion (all) OPAG Feb 2010 24