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Abstract

In this paper, we give alternative proofs of some of the properties
of Baire-1 functions with respect to the new characterization of Baire-1
functions due to P.Y. Lee, W.K. Tang and D. Zhao. Some well-known
functions were given to illustrate some of these properties.
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1 Introduction

Recently, P.Y. Lee, W.K. Tang and D. Zhao formulated a new characterization
of Baire-1 functions which is similar to the epsilon-delta definition of contin-
uous functions. A function f : R → R is Baire-1 if for every ε > 0 there is a
positive real valued function δ(·) on R such that for any x, y ∈ R,

|x − y| < min {δ(x), δ(y)} =⇒ |f(x) − f(y)| < ε.

Due to this new definition, old results in the theory of Baire-1 functions
can be viewed once more from a new perspective. A respected mathematician
Russell A. Gordon has this to say regarding alternative proofs: “An alternate
proof of a theorem provides a new way of looking at the theorem and this fresh
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perspective is often enough to justify the new approach”[3]. Certainly, provid-
ing a new proof for an old result has immediate advantages. New methods are
learned which may turn out useful in solving other problems as well. Moreover,
some old and difficult results may now have direct and straightforward proofs.
For instance, the usual proof for showing that the class of Baire-1 functions is
closed under uniform convergence is quite long and involved. However, with
the new characterization the proof becomes short and easy. More than that
one can see more clearly now that indeed Baire-1 functions are the natural
extensions of the continuous functions. In fact, the proofs of some of the prop-
erties of Baire-1 functions are similar to the proofs for continuous functions
involving similar properties. Moreover, to appreciate this new approach we
gave well-known functions particularly Dirac, Riemann and Thomae functions
to illustrate some of these properties and to see some of the theorems in action.

2 Definitions and Preliminaries

We shall denote min {a, b} by a ∧ b and max{a, b} by a ∨ b for any two real
numbers a and b. We need the following definitions.

Definition 1 ([4]) A function f : R → R is said to be Baire-1 if for every
ε > 0 there is a positive function δ on R such that for any x, y ∈ R,

|x − y| < δ(x) ∧ δ(y) =⇒ |f(x) − f(y)| < ε.

Definition 2 ([5]) Let D be a class of positive real valued functions defined
on R. A function f : R → R is called D-continuous if for any ε(·) ∈ D there
is a positive real valued function δ(·) such that for any x, y ∈ R ,

|x − y| < δ(x) ∧ δ(y) =⇒ |f(x) − f(y)| < ε(f(x)) ∧ ε(f(y)).

The following propositions are crucial in the succeeding sections.

Proposition 1 ([5]) Let R =

+∞⋃
n=1

Fn where Fn’s are disjoint Fσ sets. Then

there is a positive function δ(·) on R such that x ∈ Fn , y ∈ Fm and n �= m
imply

|x − y| ≥ δ(x) ∧ δ(y).

Proposition 2 ([5]) Let D be the set of all positive real valued continuous
functions defined on R. If f : R → R is Baire-1 then f is D-continuous.

Proposition 3 ([1]) If f : R → R is a continuous function then for every
ε > 0 there is a positive continuous function δ on R such that for any x, y ∈ R,

|x − y| < max {δ(x), δ(y)} =⇒ |f(x) − f(y)| < ε.
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3 Determination of the Positive Function δ(·)
In this section we find explicitly the positive function δ(·) in the ε-δ character-
ization of Baire-1 functions for some well-known functions. We shall start by
showing that any function with a finite set of discontinuity points is Baire-1.
We then provide an example to see the theorem in action.

Theorem 1 Let f : R → R be a function with finite set of discontinuities.
Then f is Baire-1.

Proof: Let Df = {x1, x2, . . . , xn} be the set of discontinuities of f .
Let N = min {|xi − xj | : 1 ≤ i, j ≤ n and i �= j}. For each real number
ξ /∈ Df there is a corresponding positive number δξ such that for any y ∈ R,

|ξ − y| < δξ =⇒ |f(ξ) − f(y)| < ε.

Define

δ(x) =

{
N, x ∈ Df ;

δx, x /∈ Df .

Suppose |x − y| < δ(x) ∧ δ(y). It is clear that x and y cannot be both in Df .
Hence, either x ∈ R − Df or y ∈ R − Df . In either case, |f(x) − f(y)| < ε.
Hence, f is Baire-1. �

Example 1 Consider the well-known Dirac function f : R → R such that

f(x) =

{
0, x �= 0;

1, otherwise.

We will show that f is Baire class one. Let ε > 0. One can verify that f
is continuous on the set of all real numbers except at x = 0. Therefore, for
each real number ξ �= 0 there is a corresponding positive number δξ such that
for any y ∈ R,

|ξ − y| < δξ =⇒ |f(ξ) − f(y)| < ε.

One can take δξ = |ξ|. Define

δ(x) =

{
1, x = 0;

δx, x �= 0.

Let x, y ∈ R such that |x − y| < δ(x) ∧ δ(y). It can easily be seen that
|f(x) − f(y)| < ε and hence f is Baire-1.
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The next theorem extends Theorem 1. Note however that the method of
constructing the positive function δ (·) in Theorem 1 cannot be applied in the
next theorem.

Theorem 2 Let f : R → R be a function with discrete set of discontinuities.
Then f is Baire-1.

Proof: Let Df = {r1, r2, . . . , rn, . . . } be the set of discontinuities of f . Since
Df is discrete then for every i there is an open interval Uri

of ri such that
Uri

∩ Df = {ri}. Let l(Uri
) denotes the length of the interval Uri

for each i.
Again, for every ξ /∈ Df there exists a positive number δξ such that for any
y ∈ R,

|ξ − y| < δξ =⇒ |f(ξ) − f(y)| < ε.

Put

δ(x) =

{
1
2
l(Uri

), if x = ri, i ∈ N;

δx, otherwise.

Suppose |x − y| < δ(x) ∧ δ(y). Observe that x and y cannot both belong to
Df at the same time. Hence, either x ∈ R − Df or y ∈ R − Df . Clearly, f is
Baire-1. �

Example 2 Let f : R → R such that

f(x) =

{
1, x = 1

n
, n ∈ N;

0, otherwise.

One can show that the set of discontinuities of f is the set A =
{

1
n

: n ∈ N
}∪

{0}. For every ξ /∈ A there exists a positive number δξ such that for any
number y ∈ R,

|ξ − y| < δξ =⇒ |f(ξ) − f(y)| < ε.

Put

δ(x) =

⎧⎪⎨
⎪⎩

1
n
, x = 1

n
, n ∈ N;

1, x = 0;

δx, otherwise.

Suppose that |x − y| < δ(x) ∧ δ(y). One can check that the only possibilities
are the following: (1) both x and y belong to A − {0} or (2) x or y is outside
A. In both cases, |f(x) − f(y)| < ε. Hence, f is Baire-1.

Two more interesting examples are given below the Riemann and Thomae
functions. These functions have interesting properties in the sense that both
functions are discontinuous on a countable set that is dense in R.



On Some Properties of Baire-1 Functions 397

Example 3 Let Q = {rn : n ∈ N} be an enumeration of the set of rational
numbers. Define f : R → R such that

f(x) =

{
1
n
, x = rn;

0, otherwise.

This is the well-known Riemann function. One can show that f is continuous
on the set of irrational numbers and discontinuous on the set of rational num-
bers. Let ε > 0. For every irrational number ξ there is a positive number δξ

such that for any y ∈ R,

|ξ − y| < δξ =⇒ |f(ξ) − f(y)| < ε.

We can find a natural number n such that 1
n

< ε. Consider r1, r2, . . . rn.
Let N = min {|ri − rj| : 1 ≤ i, j ≤ n and i �= j}.
Fixed k > n and let Mk = min {|rk − ri| : 1 ≤ i ≤ n}. Define

δ(x) =

⎧⎪⎨
⎪⎩

N, x = rk, k ≤ n;

Mk, x = rk, k > n;

δx, otherwise.

Suppose |x − y| < δ(x)∧δ(y). Notice that x and y cannot be both in {r1, r2, . . . rn}.
Furthermore, x cannot be in {r1, r2, . . . , rn} and y = rk, k > n. There are
two possibilities left: (1) both x and y belong to {rn+1, rn+2, . . . } or (2) at least
one of x and y is irrational. In both cases, |f(x) − f(y)| < ε. Therefore, f is
Baire-1.

We will now show that the Thomae’s function is Baire-1 using ε-δ charac-
terization of Baire-1 functions.

Example 4 Let f : R → R such that

f(x) =

⎧⎪⎨
⎪⎩

1
q
, x = p

q
, p, q ∈ Z and gcd(p, q) = 1, q > 0;

1, x = 0;

0, otherwise.

It is continuous on the set of irrational numbers but discontinuous on the set
of rational numbers. Let ε > 0. For every irrational number ξ there exists a
corresponding positive number δξ such that for any y ∈ R,

|ξ − y| < δξ =⇒ |f(ξ) − f(y)| < ε.

We can also find a natural number n such that 1
n

< ε. Fix an integer k. We will
find a positive function δk : [k, k + 1) → R+ such that for any x, y ∈ [k, k + 1),

|x − y| < δk(x) ∧ δk(y) =⇒ |f(x) − f(y)| < ε.
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One can verify that there are only finitely many rationals in [k, k +1) with de-
nominators less than n. Let A = {r1, r2, . . . , rs} be the set of rational numbers
in [k, k+1) with denominator less than n. Let N = min {|ri − rj| : 1 ≤ i, j ≤ s, i �= j}.
Let x be a rational number in [k, k+1) but x /∈ A. Let Mx = min {|x − ri| : 1 ≤ i ≤ s}.
Define

δk(x) =

⎧⎪⎨
⎪⎩

N, x ∈ A;

Mx, x ∈ Q ∩ [k, k + 1) ∩ Ac;

δx, otherwise.

Suppose x, y ∈ [k, k + 1) and |x − y| < δk(x) ∧ δk(y). Notice that x and y
cannot both belong to A. Furthermore, x cannot be in A and at the same time
y ∈ Q∩ [k, k +1)∩Ac. If x, y ∈ Q∩ [k, k +1)∩Ac then the denominators of x
and y are greater than or equal to n. Thus, |f(x) − f(y)| < 1

n
< ε. If x or y is

an irrational number then it follows immediately that |f(x) − f(y)| < ε. Thus,
we have shown the existence of the positive function δk on [k, k + 1) with the
desired property. We will proceed now to prove that f is Baire-1. Note that

R =

+∞⋃
k=−∞

[k, k + 1) and [k, k + 1) ∩ [j, j + 1) = ∅ for k �= j. By Proposition

1, there is a positive function δ0 such that if x ∈ [k, k + 1) and y ∈ [j, j + 1),
k �= j then |x − y| < δ0(x) ∧ δ0(y) does not hold. Define

δ(x) = δ0(x) ∧ δk(x), x ∈ [k, k + 1).

Suppose x, y ∈ R and |x − y| < δ(x) ∧ δ(y). By definition of δ0 there is a k
such that x, y ∈ [k, k+1). Since |x − y| < δk(x)∧δk(y) then |f(x) − f(y)| < ε.
Hence, f is Baire-1.

So far,we have shown that specific functions with countable set of discon-
tinuities are Baire-1. However, the techniques used in each example are quite
different. We shall unify all the results in this section by proving that every
function with a countable set of discontinuity points is Baire-1 by using the
fact that R is a Lindelof space.

Theorem 3 Let f be a real valued function on R with a countable set of
discontinuities. Then f is Baire-1.

Proof: Let Df = {r1, r2, . . . , rn, . . . } be the set of discontinuities of f . We may
assume without loss of generality that Df = Q. For every irrational number ξ
there is a corresponding open interval Iξ centered at ξ such that for any y in
R,

y ∈ Iξ =⇒ |f(ξ) − f(y)| <
ε

2
.
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Observe that the family of open sets {Iξ}ξ∈�′ is an open cover for R. Since R

is Lindelof under the usual metric then there is countable subset {Iξi
}+∞

i=1 of
{Iξ}ξ∈�′ that covers R. We can find disjoint countable collection of Fσ sets {Fi}

such that R =

+∞⋃
i=1

Fi and Fi ⊆ Iξi
for each i. By Proposition 1, there exists

a positive function δ0 such that for any x ∈ Fm and y ∈ Fn, m �= n implies
|x − y| ≥ δ0(x) ∧ δ0(y). Put δ(x) = δ0(x). Suppose |x − y| < δ(x) ∧ δ(y).
By definition of δ0 there is an n such that x, y ∈ Fn. Since Fn ⊆ Iξn then
x, y ∈ Iξn . Now,

|f(x) − f(y)| ≤ |f(x) − f(ξn)| + |f(ξn) − f(y)| < ε.

Hence, f is Baire-1. �

4 Properties of Baire-1 Functions

In this section, we prove some of the basic properties of Baire-1 functions
using the new characterization. Although most of the proofs here are quite
straightforward, however for the sake of completeness, we provide proof for
each of the property. We will start by showing that every continuous function
is Baire-1.

Proposition 4 Let f : R → R be a continuous function. Then f is Baire-1.

Proof: Let ε > 0 and let f be continuous. For each x ∈ R there is a real number
δx > 0 such that for all y ∈ R we have |x − y| < δx implies |f(x) − f(y)| < ε.
Define a positive function δ : R → R+ such that δ(x) = δx. If |x − y| <
δ(x) ∧ δ(y) < δ(x) ∨ δ(y) implies |f(x) − f(y)| < ε. Hence, f is a Baire-1. �

Proposition 5 If f is continuous and g is Baire-1 then f ◦ g is Baire-1.

Proof: Let ε > 0. Since f is continuous there exists a positive function δ :
R → R+ such that for any x, y in R,

|x − y| < δ(x) ∧ δ(y) =⇒ |f(x) − f(y)| < ε.

By Proposition 3 the function δ : R → R+ can be arranged to be a continuous
function. Since g is Baire-1 then by Proposition 2, there exists a positive
function λ : R → R+ such that for any x, y in R,

|x − y| < λ(x) ∧ λ(y) =⇒ |g(x) − g(y)| < δ(g(x)) ∧ δ(g(y)).

It follows that

|x − y| < λ(x) ∧ λ(y) =⇒ |f(g(x)) − f(g(y))| < ε.

All these show that f ◦ g is Baire-1. �
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Proposition 6 If f : R → R is Baire-1 then so is the function |f |.

Proof: Let ε > 0. There exists a positive function δ : R → R+ such that for
any x, y ∈ R,

|x − y| < δ(x) ∧ δ(y) =⇒ |f(x) − f(y)| < ε.

By a well-known inequality, we have ||f(x)| − |f(y)|| ≤ |f(x) − f(y)|. Hence,
|f | is Baire-1. �

Proposition 7 If f and g are Baire-1 functions then so is f + g.

Proof: Let ε > 0. Since f and g are Baire-1 functions there exist positive
functions δ1 and δ2 that correspond to f and g respectively such that for any
x,y in R,

|x − y| < δ1(x) ∧ δ1(y) =⇒ |f(x) − f(y)| <
ε

2

and

|x − y| < δ2(x) ∧ δ2(y) =⇒ |g(x) − g(y)| <
ε

2
.

Put δ(x) = δ1(x) ∧ δ2(x), x ∈ R. Suppose |x − y| < δ(x) ∧ δ(y). Then

|f(x) + g(x) − (f(y) + g(y))| ≤ |f(x) − f(y)| + |g(x) − g(y)|
<

ε

2
+

ε

2
= ε.

Hence, f + g is Baire-1. �
The idea of the proof in the next proposition is borrowed from [5].

Proposition 8 If f and g are Baire-1 functions then so is the product fg.

Proof: Let ε > 0 . Let En = {x ∈ R : |f(x)| < n and |g(x)| < n}, n ∈ N. It
is straightforward to show that R =

⋃∞
n=1 En and each En is an Fσ set. We

can find a sequence {Fn} of disjoint Fσ sets such that Fn ⊆ En for each n and
R =

⋃∞
n=1 Fn. By Proposition 1 there is a positive function δ0 such that if

x ∈ Fm and y ∈ Fn with m �= n then |x − y| ≥ δ0(x) ∧ δ0(y). Since f and g
are Baire-1 functions then there exist positive functions λn and μn such that

|x − y| < λn(x) ∧ λn(y) =⇒ |f(x) − f(y)| <
ε

2n

and

|x − y| < μn(x) ∧ μn(y) =⇒ |g(x) − g(y)| <
ε

2n
.
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Define δ : R → R+ as follows

δ(x) = λn(x) ∧ μn(x) ∧ δ0(x), x ∈ R.

Let x, y ∈ R such that |x − y| < δ(x) ∧ δ(y). Now,

|f(x)g(x) − f(y)g(y)| ≤ |f(x)| |g(x) − g(y)|+ |g(y)| |f(x) − f(y)|
≤ n (|g(x) − g(y)|+ |f(x) − f(y)|)
< n

( ε

2n

)
+ n

( ε

2n

)
= ε.

Thus, fg is Baire-1. �

Corollary 1 If f : R → R is Baire-1 then for every constant c, c + f and cf
are Baire-1 functions.

Corollary 2 If f and g are Baire-1 then the functions max {f, g} and min {f, g}
are both Baire-1.

The classical proof of the theorem below is quite long and involved(See [2]).
However, with the new characterization of Baire-1 functions the proof becomes
short and easy.

Theorem 4 If {fn} is a sequence of Baire-1 functions that converges uni-
formly to f then f is Baire-1.

Proof: Let ε > 0. Since {fn} converges uniformly to f then there exists a
natural number N such that for all n > N we have |fn(x) − f(x)| < ε

3
for all

x ∈ R. Pick a natural number n0 > N . Since fn0 is Baire-1, there exists a
positive function δ : R → R+ such that for any x, y ∈ R,

|x − y| < δ(x) ∧ δ(y) =⇒ |fn0(x) − fn0(y)| <
ε

3
.

Let x, y ∈ R such that |x − y| < δ(x) ∧ δ(y).
Then

|f(x) − f(y)| ≤ |f(x) − fn0(x)| + |fn0(x) − fn0(y)|+ |fn0(y) − f(y)|
<

ε

3
+

ε

3
+

ε

3
= ε.

Therefore, f is Baire-1. �
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