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Abstract

The notions of intersection soft filer(IS-filter), Boolean intersectional
soft filter(Boolean IS-filter) and ultra inetersectional soft filter(ultra IS-
filter) in Heyting algebras are introduced and their characterizations and
relations are investigated. We discuss characterizations of IS-filter and
Boolean IS-filter and consider relations between IS-filters and Boolean
IS–filters. Also we introduce the concept of prime IS-filter and investi-
gate the relation between ultra IS-filter and prime Boolean IS-filter.
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1 Introduction
In mathematics, Heyting algebras are special bounded lattice that constitute
a generalization of Boolean algebras. In the 19th century, Luitzen Brouwer
founded the mathematical philosophy of intuitionism. Intuitionism is based
on the idea that mathematics is a creation of the mind and believed that
a statement could only be demonstrated by direct proof. Arend Heyting,
a student of Brouwer’s, formalized this thinking into his namesake algebras
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(Heyting algebra). Heyting-algebras have played an important role and have its
comprehensive applications in many aspects including genetic code of biology,
dynamical systems and algebraic theory [2, 3, 4, 5, 6, 7, 8, 14].

The complexities of modeling uncertian data in in economics, engineering,
environment and many other fields can not successfully use classical methods
because of various uncertainties typical for those problems.

To overcome these difficulties, Molodtsov [17] introduced the concept of soft
set as a new mathematical tool for dealing with uncertainties. Maji et al. [15]
also studied several operations on the theory of soft sets. Since then, soft set
theory has wide range of application in economics, engineering, environment,
information science ,inteligence system and algebraic structure [10, 11, 16]

In this paper, we define intersection soft filer(IS-filter), Boolean intersec-
tional soft filter(Boolean IS-filter) and ultra inetersectional soft filter(ultra IS-
filter) and investigates related properties.

2 Preliminary Notes
In this section, we recall the definition of heyting algebra and investigate several
properties of Heyting algebras. Also we introduce filter and soft set.

Definition 2.1. [1] Heyting algebra is defined to be a bounded lattice H
such that for any pair of elements x, y ∈ H, there is a largest element z ∈ H
such that z ∧ x ≤ y. This element denoted by x→ y and is called implication.
The operation which sends each element x to the element x′ = x→ 0 is called
negation.

The definition of implication is equivalent to the existence of an element
x→ y such that

z ∧ x ≤ y ⇐⇒ z ≤ x→ y

Proposition 2.2. [1] For elements x, y, z in a Heyting algebra:

(hp1) x ∧ (x→ y) ≤ y,

(hp2) x ∧ y ≤ z ⇐⇒ y ≤ x→ z,

(hp3) x ≤ y ⇐⇒ x→ y = 1,

(hp4) y ≤ x→ y,

(hp5) x ≤ y =⇒ z → x ≤ z → y and y → z ≤ x→ z,

(hp6) x→ (y → z) = (x ∧ y)→ z,

(hp7) x ∧ (y → z) = x ∧ {(x ∧ y)→ (x ∧ z)},
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(hp8) x ∧ (x→ y) = x ∧ y,

(hp9) (x ∨ y)→ z = (x→ z) ∧ (y → z),

(hp10) x→ (y ∧ z) = (x→ y) ∧ (x→ z),

Corollary 2.3. For elements x, y, z in a Heyting algebra:

(hp11) x→ (y → z) = y → (x→ z),

(hp12) x→ 1 = 1, 1→ x = x, x→ x = 1,

(hp13) x→ (y → x) = 1,

(hp14) (x ∨ y) ≤ (x→ y)→ y.

Proof. (hp11) Using (hp6) we have x→ (y → z) = (x∧y)→ z = (y∧x)→ z =
y → (x→ z). (hp12) x ≤ 1⇒ x→ 1 = 1 By (hp8),we have 1→ x = 1∧ (1→
x) = 1∧x = x. x ≤ x⇒ x→ x = 1. (hp13) Using (hp11) and (hp12), we have
x→ (y → x) = y → (x→ x) = y → 1 = 1. (hp14) Using (hp6) and (hp9), we
get (x ∨ y) → ((x → y) → y) =(x → ((x → y) → y)) ∧ (y → ((x → y) → y))
=((x → y) → (x → y)) ∧ ((x → y) → (y → y)) =1 ∧ ((x → y) → 1) =1 ∧ 1
=1 and so (x ∨ y) ≤ (x→ y)→ y by (hp3).

Example 2.4. [8] (1)Every Boolean algebra is a Heyting algebra and every
Heyting algebra is a distributive lattice.

(2)Every bounded chain lattice H is a Heyting algebra. Indeed, for any
a, b ∈ H

a→ b :=

{
a if a ≤ b,
b otherwise.

Hence a Heyting algebra need not be a Boolean algebra.

Definition 2.5. [7] A nonempty subset F of H is called a filter of H if it
satisfies

(1) (∀x, y ∈ H) (x ∈ F , x ≤ y ⇒ y ∈ F) ,

(2) (∀x, y ∈ H) (x, y ∈ F , x ∧ y ∈ F) .

Proposition 2.6. [7] A nonempty subset F of H is called a filter of H if it
satisfies

(1) 1 ∈ F ,

(2) (∀x, y ∈ H) (x ∈ F , x→ y ∈ F ⇒ y ∈ F).

Definition 2.7. [7] Let F be a filter of H. F is called a Boolean filter of
H if it satisfies (x ∧ x′) ∈ F for all x ∈ H.
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Definition 2.8. [7] Let F be a filter of H. F is called an ultra filter of H
if it satisfies x ∈ F or x′ ∈ F for all x ∈ H.

Molodtsov [17] introduced the concept of soft set as a new mathematical
tool, and Çaǧman et al. [10] provided new definitions and various results on
soft set theory.

In what follows, let U be an initial universe set and E be a set of parameters.
Let P(U) denotes the power set of U and A,B,C, · · · ⊆ E

Definition 2.9. [10, 17] A soft set (f, A) of E (over U) is defined to be the
set of ordered pairs

(f, A) := {(x, fA(x)) : x ∈ E, fA(x) ∈P(U)} ,

such that fA(x) = ∅ if x /∈ A. The soft set (f, A) is simply denoted by fA.

For a soft set (f, A) of E over U and a subset τ of U, the set

iA (fA; τ) = {x ∈ A | fA(x) ⊇ τ}

is called the τ -inclusive set of (f, A).

3 Main Results
We first introduce the definition of IS-filter and investigate several properties.

Definition 3.1. A soft set fH of H is called an IS-filter of H if it satisfies:

(f1) (∀x, y ∈ H) (x ≤ y ⇒ fH(x) ⊆ fH(y)) ,

(f2) (∀x, y ∈ H) (fH(x ∧ y) ⊇ fH(x) ∩ fH(y)) .

Proposition 3.2. A soft set fH of H is an IS-filter of H if and only if it
satisfies:

(f3) (∀x ∈ H) (fH(1) ⊇ fH(x)) ,

(f4) (∀x, y ∈ H) (fH(y) ⊇ fH(x) ∩ fH(x→ y)) .

Proof. Suppose that fH of H is an IS-filter of H. Since x ≤ 1 for all x ∈ H, it
follows from Definition 3.1(f1) that fH(1) ⊇ fH(x) for all x ∈ H. This proves
(f3) hold. By (hp1), we have x∧ (x→ y) ≤ y. Hence fH(y) ⊇ fH(x∧ (x→ y))
By Definition 3.1(f2),fH(y) ⊇ fH(x ∧ (x → y)) ⊇ fH(x) ∩ fH(x → y). This
proves (f4) hold. Conversely, assume that fH satisfies conditions (f3) and (f4).
Let x, y ∈ H such that x ≤ y then x → y = 1 by (h3). By condition (f4)
and (f3), we have fH(y) ⊇ fH(x) ∩ fH(x → y) = fH(x) ∩ fH(1) = fH(x).
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which implies, fH(x) ⊆ fH(y).This prove (f1). By (hp6) and (hp12), we have
x→ (y → (x∧y)) = (x∧y)→ (x∧y) = 1. By Definition 3.1(f2), we have fH(x∧
y) ⊇ fH(y) ∩ fH(y → (x ∧ y)) ⊇ fH(y) ∩ (fH(x) ∩ fH(x→ (y → (x ∧ y)))) =
fH(y) ∩ (fH(x) ∩ fH(1)) = fH(x) ∩ fH(y). for all x, y ∈ H. This proves (f2)
hold, and so fH is an IS-filter of H.

Example 3.3. Let H = {0, a, b, 1} be a set with the following Cayley table
and Hasse diagram.

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

r 1
A
Ar��

L
LL

a r b
r
0
�
�
�

Then H is a Heyting algebra. Let fH be a soft set over U = Z in H given as
follows:

fH(x) =

{
2Z if x ∈ {a, 1}
2N if otherwise

Theorem 3.4. A soft set fH in H is an IS-filter of H if and only if

(f5) (∀a, b, c ∈ H) (a→ (b→ c) = 1 =⇒ fH(c) ⊇ fH(a) ∩ fH(b)) .

Proof. Assume that fH is a IS-filter of H. Let a, b, c ∈ H be such that a →
(b → c) = 1. By (hp3), we have a ≤ b → c. Then fH(b → c) ⊇ fH(a) by (f1),
and so fH(c) ⊇ fH(b) ∩ fH(b → c) ⊇ fH(b) ∩ fH(a). Conversely, let fH be a
soft set of H satisfying (f5). By x ≤ 1 and (hp12) we have x → (x → 1) = 1
it follows from (f5) that fH(1) ⊇ fH(x) ∩ fH(x) = fH(x) for all x ∈ H. Using
(hp12), we know that (x → y) → (x → y) = 1 for all x, y ∈ H = 1. It follows
from (f5) that fH(y) ⊇ fH(x) ∩ fH(x → y) for all x, y ∈ H. Therefore fH is a
IS-filter of H.

Corollary 3.5. A soft set fH in H is an IS-filter of H if and only if

(f6) (∀a, b, c ∈ H) ((a ∧ b) ≤ c =⇒ fH(c) ⊇ fH(a) ∩ fH(b)) .

Proof. Using (hp2) and (hp3), we have (a ∧ b) → c = (a → (b → c)) = 1.
Therefore Corollary is valid by Theorem 3.4.

Theorem 3.6. Let fH be a soft set in H. Then fH is an IS-filter of H if
and only if it satisfies conditions (f3) and

(f7) (∀x, y, z ∈ H) (fH(x→ z) ⊇ fH((x→ (y → z)) ∩ fH(y)).
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Proof. Assume that fH is an IS-filter ofH. Since x→ (y → z) = y → (x→ z),
we have (x → (y → z)) → (y → (x → z)) = 1 by (hp3). It follows from
Theorem 3.4, we have fH(x→ z) ⊇ fH(x→ (y → z))∩fH(y) for all x, y, z ∈ H.
Convesely, suppose that fH satisfies condition (f3) and (f7). Putting x = 1
in (f7) and using (hp12), we have fH(z) = fH(1 → z) ⊇ fH(1 → (y →
z))∩ fH(y) = fH(y → z)∩ fH(y) for all x, y ∈ H. Therefore fH is a IS-filter of
H.

Theorem 3.7. Let fH be a soft set in H. Then fH is an IS-filter of H if
and only if it satisfies conditions (f3) and

(f8) (∀x, y ∈ H) (fH(x→ z) ⊇ fH(x→ (y → z)) ∩ fH(x→ y)).

Proof. Assume fH is an IS-filter of H. Since y∧(y → z) ≤ z, we have x→ z ≥
x→ ((y → z)∧ y) = (x→ (y → z))∧ (x→ y). By (hp5) and (hp10) It follows
from Corollary 3.5, we have fH(x → z) ⊇ fH((x → (y → z)) ∩ fH(x → y).
Conversely, suppose that fH satisfies condition (f1) and (f8). Taking x = 1 in
(f8) and using (f2), we have fH(z) ⊇ fH(y → z)∩fH(y) for all x, y ∈ H. Hence
fH is an IS-filter of H.

Theorem 3.8. Let fH be a IS-filter in H. Then fH is an IS-filter of H if
and only if it satisfies conditions (f3) and

(f9) (∀x, y, z ∈ H) (fH(x→ z) ⊇ fH(x→ y) ∩ fH(y → z)).

Proof. Assume that fH is an IS-filter of H. By (hp6), (hp8) and (hp11), we
have (x → y) → ((y → z) → (x → z)) = (y → z) → ((x → y) → (x →
z)) = (y → z) → (((x → y) ∧ x) → z) = (y → z) → ((x ∧ y) → z) = (y →
z)(x → (y → z)) = x → ((y → z) → (y → z)) = x → 1 = 1. It follows from
Theorem 3.4, we have we have fH(x → z) ⊇ fH(x → y) ∩ fH(y → z)}. This
proves (f9) hold. Suppose that fH satisfies conditions (f3) and (f9). Obviously
fH(1) ⊇ fH(x). Taking x = 1 in (f9) and using (hp12), we have fH(z) ⊇
fH(y → z) ∩ fH(y) for all x, y ∈ fH. This proves (f4) hold, and so fH is a
IS-filter of H by Proposition 3.2

Theorem 3.9. Let fH be a soft set in H. Then fH is an IS-filter of H if
and only if it satisfies the following conditions:

(f10) (∀x, y ∈ H) (fH(y → x) ⊇ fH(x)),

(f11) (∀x, a, b ∈ H) (fH((a→ (b→ x))→ x) ⊇ fH(a) ∩ fH(b)).

Proof. Assume that fH is an IS-filter of H. Using (hp13), we get fH(y → x) ⊇
fH(x→ (y → x))∩ fH(x) = fH(1)∩ fH(x) = fH(x) for all x, y ∈ H. By (hp11)
and a→ ((a→ (b→ x))→ (b→ x)) = (a→ (b→ x))→ (a→ (b→ x)) = 1,
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then a ⊆ ((a→ (b→ x))→ (b→ x)). It follows from (f3) that fH((a→ (b→
x))→ (b→ x)) ⊇ fH(a). By Theorem 3.6 we have fH((a→ (b→ x))→ x) ⊇
fH((a → (b → x)) → (b → x)) ∩ fH(b) ⊇ fH(a) ∩ fH(b). Conversely, let fH
be a IS-filter in H satisfying conditions (f10) and (f11). If we take y = x in
(f11), then fH(1) = fH(x → x) ⊇ fH(x) for all x ∈ H. Using (f11), we obtain
fH(y) = fH(1 → y) = fH(((x → y) → (x → y)) → y) ⊇ fH(x → y) ∩ fH(x)
for all x, y ∈ H. Therefore fH is an IS-filter of H.

Theorem 3.10. Let fH be an IS-filter of H. Then the following are equiv-
alent:

(f12) (∀x, z ∈ H) (fH(x→ z) ⊇ fH(x→ (z′ → z)),

(f13) (∀x, z ∈ H) (fH(x→ z) = fH(x→ (z′ → z)),

(f14) (∀x, y, z ∈ H) (fH(x→ z) ⊇ fH(y → (x→ (z′ → z))) ∩ fH(y).

(f15) (∀x, y, z ∈ H) (fH(x→ z) ⊇ {fH(x→ (z′ → y)) ∩ fH(y → z)}).,

Proof. (f12) ⇒ (f13) Assume that fH satisfies the condition (f12) and let
x, y, z ∈ H. Using (hp5) and (hp11), we know that x → z ≤ z′ → (x →
z) = x → (z′ → z). Using (f1), we have fH(x → z) ⊆ fH(x → (z′ → z).)
Therefore fH(x → z) = fH(x → (z′ → z)). (f13) ⇒ (f14) Assume that fH
satisfies the condition (f13) and let x, y, z ∈ H. Since fH is a IS-filter of H,
we have fH(x → (z′ → z)) ⊇ fH(y → (x → (z′ → z))) ∩ fH(y). Using
(f13), then we have fH(x → z) = fH(x → (z′ → z)) ⊇ fH(y → (x → (z′ →
z))) ∩ fH(y). (f14) ⇒ (f15) Assume that fH satisfies the condition (f14) and
let x, y, z ∈ H. By (hp5) and (z′ → y) ≤ ((y → z) → (z′ → z)) then we
have x → (z′ → y) ≤ x → ((y → z) → (z′ → z)). It follows from (f1) that
fH(x → ((y → z) → (z′ → z))) ⊇ fH(x → (z′ → y)). Using (f14), (hp11) and
(f3), we have fH(x → z) ⊇ fH((y → z) → (x → (z′ → z))) ∩ fH(y → z) =
fH(x→ ((y → z)→ (z′ → z)))∩ fH(y → z) ⊇ fH(x→ (z′ → y))∩fH(y → z).
for all x, y ∈ H. (f15)⇒ (f12) Assume that fH satisfies the condition (f12) and
let x, y, z ∈ H. Taking y = z in condition (f15) and using (f3), we obtain
fH(x → z) ⊇ fH(x → (z′ → z)) ∩ fH(z → z) = fH(x → (z′ → z)) ∩ fH(1) =
fH(x→ (z′ → z). Therefore fH(x→ z) ⊇ fH(x→ (z′ → y)).

Theorem 3.11. A soft set fH of H is an IS-filter of H if and only if the
nonempty τ -inclusive set iH (fH; τ) is a filter of H for all τ ∈P(U).

Proof. Suppose that fH is an IS-filter of H and for each τ ∈ P(U) be such
that iH (fH; τ) 6= ∅, then there exists a ∈ iH (fH; τ) such that fH(a) ⊇ τ.
By (f3) we have fH(1) ⊇ fH(a) ⊇ τ and 1 ∈ iH (fH; τ) . Let x, y ∈ H be
such that x → y ∈ iH (fH; τ) and x ∈ iH (fH; τ) . Then fH(x → y) ⊇ τ
and fH(x) ⊇ τ. It follows from (f4) that fH(y) ⊇ fH(x → y) ∩ fH(x) ⊇ τ,
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that is, y ∈ iH (fH; τ) . Thus iH (fH; τ) (6= ∅) is a filter of H by Proposition
2.6. Conversely, suppose that τ -inclusive set iH (fH; τ) is a filter of H for
all τ ∈ P(U) with iH (fH; τ) (6= ∅). For any x ∈ H, let fH(x) = τ. Then
x ∈ iH (fH; τ) . Since iH (fH; τ) is a filter of H, hence 1 ∈ iH (fH; τ) . It follows
that fH(1) ⊇ fH(x) = τ. Let x, y ∈ H such that fH(x→ y)∩ fH(x) = τ. Then
x, x → y ∈ iH (fH; τ) . Since τ -inclusive set iH (fH; τ) is a filter of H, then we
have y ∈ iH (fH; τ) . It follows that fH(y) ⊇ fH(x→ y)∩ fH(x) = τ. Therefore
fH is a IS-filter of H by Proposition 3.2.

Theorem 3.12. If fH is an IS-filter of H, then the set

Γa := {x ∈ H | fH(x) ⊇ fH(a)}

is a filter of H for every a ∈ H.

Proof. Assume that fH is an IS-filter. For any x ∈ H, since fH(1) ⊇ fH(x),
then 1 ∈ Γa. Let x, y ∈ H be such that x ∈ Γa and x → y ∈ Γa. Then
fH(x) ⊇ fH(a) and fH(x → y) ⊇ fH(a). It folllow from (f1) that fH(y) ⊇
fH(x) ∩ fH(x→ y) ⊇ fH(a). Hence y ∈ Γa, and so Γa is a filter of H.

Theorem 3.13. Let a ∈ H and let fH be a soft set of H. Then

(1) If Γa is a filter of H, then fH satisfies the following condition:

(f12) (∀x, y ∈ H) (fH(x→ y) ∩ fH(x) ⊇ fH(a) ⇒ y ∈ Γa) .

(2) If fH satisfies (f1) and (f12), then Γa is a filter of H.

Proof. (1)Assume that Γa is a filter of H. Let x, y ∈ H be such that fH(x →
y) ∩ fH(x) ⊇ fH(a). Then we have the following consequence x → y ∈
Γa and x ∈ Γa. Since Γa is filter, we have y ∈ Γa. (2) Suppose that fH
satisfies (f3) and (f12). From (f1) it follows that 1 ∈ Γa. Let x, y ∈ H be such
that x ∈ Γa and x→ y ∈ Γa. We have fH(x) ⊇ fH(a) and fH(x→ y) ⊇ fH(a),
This implies that fH(x)∩fH(x→ y) ⊇ fH(a). By the assumed condition (f12),
we get y ∈ Γa. Therefore Γa is a filter of H by Proposition 2.6

we introduce the concept of Boolean IS-filter and and investigate some of
the properties.

Definition 3.14. A IS-filter fH of H is said to be Boolean IS-filter if the
following assertion is valid.

(∀x ∈ H) (fH(x ∨ x′) = fH(1)) .

Remark 3.15. Every Boolean IS-filter is IS-filter of H, but the converse
may not be true a shown in the following example.
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Example 3.16. Let H = [0, 1] and define ∧,∨ and implication → on H as
follows: {

x ∧ y = min{x, y},
x ∨ y = max{x, y} x→ y :=

{
1 if x ≤ y,
y if x > y

for all x, y ∈ H. Then H is a Heyting-algebra. Let fH be a soft set of H in
which

fH(x) :=

{
τ if x ∈ [0.5, 1],
∅ otherwise,

where τ( 6= ∅) ∈P(U). Then fH is an IS-filter of H.
But it is not a Boolean IS-filter of H over U since fH(1) = τ and

fH(
1

3
∨ 1

3

′
) = fH(

1

3
∨ (

1

3
→ 0)) = fH(

1

3
∨ 0) = fH(

1

3
) = ∅

Proposition 3.17. Let fH be an IS-filter of H, then the following are equiv-
alent:

(1) (∀x, z ∈ H) fH(x→ z) = fH(x→ (z′ → z)),

(2) (∀x ∈ H) fH(x) = fH(x′ → x),

(3) (∀x, y ∈ H) fH(x) ⊇ fH((x→ y)→ x),

(4) (∀x, y ∈ H) fH(x) = fH((x→ y)→ x),

(5) (∀x, y, z ∈ H) fH(x) ⊇ fH(z → ((x→ y)→ x)) ∩ fH(z),

Proof. (1) ⇒ (2) Assume that fH satisfies the condition (1) and let x ∈ H.
Using condition (1), we have fH(x) = fH(1 → x) = fH(1 → (x′ → x)) =
fH(x′ → x). (2) ⇒ (3) Since x′ ≤ x → y, then (x → y) → x ≤ x′ → x,
and so fH(x′ → x) ⊇ fH((x → y) → x). Thus, from (2), we can deduce that
fH(x) = fH(x′ → x) ⊇ fH((x → y) → x). (3) ⇒ (4) On the other hand,
since x ≤ (x → y) → x, we have fH(x) ⊆ fH((x → y) → x). Thus, we can
get fH(x) = fH((x → y) → x). (4) ⇒ (5) Since fH is an IS-filter of H, then
fH((x→ y)→ x) ⊇ fH(z → ((x→ y)→ x)) ∩ fH(z). It follows from (4) that
fH(x) = fH((x→ y)→ x) ⊇ fH(z → ((x→ y)→ x))∩ fH(z). (5)⇒ (1) Since
z ≤ x → z, we have (x → z)′ ≤ z′ and z′ → (x → z) ≤ (x → z)′ → (x → z).
Thus, we have fH((x → z)′ → (x → z)) ⊇ fH(z′ → (x → z)). It follows
from (5) that fH(x → z) ⊇ fH(1 → (((x → z) → 0) → (x → z))) ∩ fH(1) =
fH((x→ z)′ → (x→ z)) ∩ fH(1) ⊇ fH((x→ z)′ → (x→ z)) ⊇ fH(z′ → (x→
z)) which implies, fH(x → z) ⊇ fH(z′ → (x → z)). Therefore, it follows from
Theorem 3.10 that fH(x→ z) = fH(z′ → (x→ z)).

Theorem 3.18. Let fH be an IS-filter of H , then the following are equiv-
alent:
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(1) fH is a Boolean IS-filter of H,

(2) (∀x, z ∈ H) fH(x→ z) = fH(x→ (z′ → z)),

Proof. (1) ⇒ (2) Suppose that fH is Boolean IS-filter and let x, y ∈ H. Using
(f2) we have fH(x → z) ⊇ fH((z ∨ z′) → (x → z)) ∩ fH(z ∨ z′) ⊇ fH((z ∨
z′) → (x → z)) ∩ fH(1) ⊇ fH((z ∨ z′) → (x → z)) From (hp9), (hp11)
and (hp12) and Definition 3.1 we get (z ∨ z′) → (x → z) = (z → (x →
z)) ∧ (z′ → (x → z)) = (x → (z → z)) ∧ (z′ → (x → z)) = (x → 1) ∧ (z′ →
(x → z)) = 1 ∧ (z′ → (x → z)) = z′ → (x → z) = x → (z′ → z) Thus
fH(x → z) ⊇ fH((z ∨ z′) → (x → z)) = fH(x → (z′ → z)) (2) ⇒ (1)
Assume that fH satisfies (2). Using Theorem 3.10 (3) and (hp12), we have
fH((x′ → x) → x) = fH((x′ → x) → (x′ → x)) = fH(1) Using (hp5), (hp9),
(hp11) and (hp12), we have (x′ → x)→ x ≤ (x′ → x)→ (x∨ x′) = (1∧ (x′ →
x))→ (x∨ x′) = ((x→ x)∧ (x′ → x))→ (x∨ x′) = ((x∨ x′)→ x)→ (x∨ x′),
It follow from Definition 3.1 and Proposition 3.17 fH(1) = fH((x′ → x) →
x) ⊆ fH(((x ∨ x′) → x) → (x ∨ x′)) = fH(x ∨ x′), and so fH(x ∨ x′) = fH(1).
Therefore fH is Boolean IS-filter.

Theorem 3.19. Let fH be an IS-filter of H. Then the following are equiv-
alent:

(1) fH is a Boolean IS-filter of H,

(2) (∀x, z ∈ H) (fH(x→ z) = fH(x→ (z′ → z)),

(3) (∀x, y ∈ H) (fH(x) ⊇ fH((x→ y)→ x)),

(4) (∀x, y, z ∈ H) (fH(x→ z) ⊇ {fH(x→ (z′ → y)) ∩ fH(y → z)}).,

Lemma 3.20. In Heyting algebra H , the following are hold:

(1) (∀x, y, z ∈ H) (x→ y ≤ (y → z)→ (x→ z))

(2) (∀x, y, z ∈ H) (x→ y ≤ (z → x)→ (z → y))

(3) (∀x, y ∈ H) ((x→ y)→ y ≤ (x→ (x→ y))→ (x→ y))

Proof. (1) Since x∧y ≤ y, we have x∧(x→ y) ≤ x∧y ≤ y by (hp8). It follows
from that (hp8) (x∧(x→ y))∧(y → z) ≤ y∧(y → z) ≤ (y∧z) ≤ z and so from
(hp2) (x→ y)∧ (y → z) ≤ x→ z Thus, we have x→ y ≤ (y → z)→ (x→ z)
(2) Since z ∧x ≤ x, we have z ∧ (z → x) ≤ z ∧x ≤ x by (hp8). It follows from
that (hp5) and (hp6) x→ y ≤ (z∧ (z → x))→ y = ((z → x)∧z)→ y ≤ (z →
x) → (z → y) (3) Using (hp12) and (hp6) we get (x → y) → y ≤ 1 = (x →
y)→ (x→ y) = ((x ∧ x)→ y)→ (x→ y) = (x→ (x→ y))→ (x→ y)
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Theorem 3.21. Let fH be an IS-filter of H. Then the following are equiv-
alent:
(1) fH is a Boolean IS-filter of H,

(2) (∀x, y ∈ H) (fH(((x→ y)→ y)→ x) ⊇ fH(y → x))

(3) (∀x, y, z ∈ H) (fH(((x→ y)→ y)→ x) ⊇ fH(z) ∩ fH(z → (y → x))).

(4) (∀x, y ∈ H) (fH(x) ⊇ fH((x→ y)→ x)),

Proof. (1)⇒ (2) Suppose that fH is a Boolean IS-filter of H. Since x ≤ ((x→
y) → y) → x we have (((x → y) → y) → x) → y ≤ x → y by Lemma
3.20. Using Lemma 3.20 and (hp 11), we get ((((x → y) → y) → x) → y) →
(((x → y) → y) → x) ≥ (x → y) → (((x → y) → y) → x) = ((x → y) →
y) → ((x → y) → x) ≥ y → x and so fH((((x → y) → y) → x) → y) →
(((x → y) → y) → x) ⊇ fH(y → x) for all x, y ∈ H by Definition 3.1(f1).
It follows from Proposition 3.17 that fH(((x → y) → y) → y) ⊇ fH(((((x →
y) → y) → x) → y) → (((x → y) → y) → x)) ⊇ fH(y → x). (2) ⇒ (3)
Assume that the condition (2) holds in H and let x, y ∈,H. Since fH is a
IS-filter, we have fH(y → x) ⊇ fH(z) ∩ (z → (y → x)). By appling to (2), we
get fH(((x → y) → y) → x) ⊇ fH(y → x) ⊇ fH(z) ∩ (z → (y → x)) (3) ⇒
(4) Assume that fH satisfies condition (3) and let assume that fH is fantastic
filter of H . Since x → (((x → y) → y) = (x → y) → (x → y) = 1, we
have x ≤ (x → y) → y. Using (hp5) and (hp6), we get ((x → y) → x) ≤
(x → y) → ((x → y) → y) = ((x → y) ∧ (x → y)) → y = (x → y) → y By
Definition 3.1 (f1), we have fH(x → (((x → y) → y)) ⊆ fH((x → y) → y) By
Lemma 3.20 (3), we have ((x → y) → y ≤ (x → (x → y)) → (x → y)). By
(hp5), (x → (x → y)) → (x → y)) → x ≤ ((x → y) → y) → x. By condition
(3) fH((x → y) → x) ⊆ fH(((x → (x → y)) → (x → y)) → x) = fH(((x →
y) → y) → x) Hence fH((x → y) → x) ⊆ fH((x → y) → y) ∩ fH(((x →
y) → y) → x) By Proposition 3.2(f3), fH((x → y) → x) ⊆ fH(x) Since
x → ((x → y) → y) = (x → y) → (x → y) = 1, we have x ≤ (x → y) → y.
Using (hp5) and (hp6), we get ((x → y) → x) ≤ (x → y) → ((x → y) →
y) = ((x → y) ∧ (x → y)) → y = (x → y) → y By Definiton 3.1 (f1), we
have fH(x → (((x → y) → y)) ⊆ fH((x → y) → y) By Lemma 3.20 (3), we
have ((x → y) → y ≤ (x → (x → y)) → (x → y)). By (hp5), (x → (x →
y)) → (x → y)) → x ≤ ((x → y) → y) → x. By condition (2) fH((x →
y) → x) ⊆ fH(((x → (x → y)) → (x → y)) → x) = fH(((x → y) → y) → x)
Hence fH((x → y) → x) ⊆ fH((x → y) → y) ∩ fH(((x → y) → y) → x)
By Proposition 3.2 (f4), fH((x → y) → x) ⊆ fH(x) (4) ⇒ (1) By Theorem
3.19
Theorem 3.22. A soft set fH on H is a Boolean IS-filter of H if and only

if the nonempty τ -inclusive set iH (fH; τ) on H is a Boolean filter of H for all
τ ∈P(U).
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Proof. Suppose that fH is a Boolean IS-filter of H. Let τ ∈ P(U) with
iH (fH; τ) 6= ∅. Then iH (fH; τ) is a filter of H by Theorem 3.11. Hence,
1 ∈ iH (fH; τ), and so τ ⊆ fH(1). For all x ∈ H. It follows from Definition 3.14
that τ ⊆ fH(1) = fH(x∨x′) and so that x∨x′ ∈ iH (fH; τ) . Therefore iH (fH; τ)
is a Boolean filter of H Conversely suppose that iH (fH; τ) is a Boolean filter
of H for all τ ∈ P(U) with iH (fH; τ) 6= ∅. Then iH (fH; τ) is a filter of H,
and so fH is a IS-filter of H. Note that 1 ∈ iH (fH; τ). Since iH(fH; fH(1))
is a Boolean filter of H, we get x ∨ x′ ∈ iH(fH; fH(1)) for all x ∈ H. Hence
fH(x ∨ x′) ⊇ fH(1). This implies that fH(x ∨ x′) = fH(1). Therefore fH is a
Boolean IS-filter of H.

Theorem 3.23. ( Extension property ) Let fH and gH be IS-filters of H
such that fH(1) = gH(1) and fH(x) ⊆ gH(x) for all x ∈ H. If gH is a Boolean
IS-filter of H, then so is fH.

Proof. Assume that fH is a Boolean IS-filter of H. Then fH(x ∨ x′) = fH(1)
for all x ∈ H. Hence fH(x ∨ x′) ⊇ gH(x ∨ x′) = gH(1) = fH(1) for all x ∈ H.
This implies that fH(x∨ x′) = fH(1). Therefore fH is a Boolean IS-filter of H

Finally,we introduce the concept of ultra IS-filter and investigate some of
the properties. Also we introduce the concept of prime IS-filter and investigate
the relation between ultra IS-filter and prime Boolean IS-filter.

Definition 3.24. A soft set fH of H is called an ultra IS-filter of H if it is
a IS-filter of H that satisfies:

(∀x ∈ H) (fH(x) = fH(1) or fH(x′) = fH(1)).

Example 3.25. Let H = {0, a, b, c, 1} be a set with the following Cayley
table and Hasse diagram:

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b c 1
b 0 1 1 c 1
c 0 a a 1 1
1 0 a b c 1

r
0
B
B
BB




rbrJ

J ar

c r1

Then H is a Heyting algebra. Let fH be a soft set of H in which

fH(x) :=

{
τ1 if x ∈ {1, a, b},
τ2 otherwise,

where τ2 ( τ1 ∈ H. Then fH is an ultra IS-filter of H.
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Theorem 3.26. For an IS-filter fH of H, the following assertions are equiv-
alent:

(1) fH is ultra IS-filter,

(2) (∀x, y ∈ H) (fH(x) 6= fH(1) and fH(y) 6= fH(1) ⇒ fH(x → y) = fH(1)
and fH(y → x) = fH(1)).

Proof. Suppose that fH(x) 6= fH(1) and fH(y) 6= fH(1). Then fH(x′) = fH(1)
and fH(y′) = fH(1) by Hypothesis. Since fH(x→ y) ⊇ fH(x→ 0) = fH(x′) =
fH(1) we get fH(x → y) ≥ fH(1) and so fH(x → y) = fH(1). Similary,
it follows from fH(y) 6= fH(1) that fH(y → x) = fH(1). Conversely, let
fH(x) 6= fH(1) and fH(y) 6= fH(1) imply fH(x → y) = fH(1) and fH(y →
x) = fH(1)). Assume that fH(x) 6= fH(1). Since 0 ≤ x, we have fH(0) ⊆ fH(x).
If fH(0) = fH(1) then fH(x) = fH(1). This is contradiction. So fH(x → 0) =
fH(x′) = fH(1). Therefore fH is ultra IS-filter.

Definition 3.27. A IS-filter fH of H is said to be prime IS-filter if the
following assertion is valid.

(∀x ∈ H) (fH(x ∨ y) ⊆ fH(x) ∪ fH(y)) .

Theorem 3.28. Every ultra IS-filter is a prime IS-filter.

Proof. Suppose that fH is ultra IS-filter and let x, y ∈ H. By (hp14), we get
(x ∨ y) ≤ (x→ y)→ y. By fH is IS-filter of H, we have fH(x ∨ y) ⊆ fH((x→
y)→ y). From 0 ≤ y and Proposition 2.2 hp(5), we get (x→ y)→ y ≤ x′ → y.
Thus, fH(x ∨ y) ⊆ fH((x → y) → y) ⊆ fH(x′ → y) by Definition 3.1. So
fH(x ∨ y) ⊆ fH(x′ → y). For any x ∈ H, if fH(x) = fH(1). then fH(x ∨ y) ⊆
fH(1) = fH(x) ∪ fH(y) If fH(x) 6= fH(1) then fH(x′) = fH(1) by Hypthesis.
Thus, fH(y) ⊇ fH(x′) ∩ fH(x′ → y) = fH(1) ∩ fH(x′ → y) = fH(x′ → y) by
Definition 3.1. Therefore, fH(x ∨ y) ⊆ fH(x′ → y) ⊆ fH(y) ⊆ fH(x) ∪ fH(y)
This means that fH is a prime IS-filter of H.

Example 3.29. Let H = [0, 1] and define ∧,∨ and implication → on H as
follows: {

x ∧ y = min{x, y},
x ∨ y = max{x, y} x→ y :=

{
1 if x ≤ y,
y if x > y

for all x, y ∈ H. Then H is a Heyting-algebra.( In Example 3.16) Let fH be a
soft set of H in which

fH(x) :=

{
τ1 if x ∈ [0, 0.5],
τ2 if x ∈ (0.5, 1].

where τ1 ( τ2 in H. Then fH is a prime IS-filter of H. But it is not an ultra
IS-filter of H over U since fH(0.5) 6= fH(1) and fH(0.5′) 6= fH(1).
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Definition 3.30. An IS-filter fH of H is said to be prime Boolean IS-filter
if it is both prime IS-filter and Boolean IS-filter.

Theorem 3.31. In a Heyting-algebra H, the notion of a ultra IS-filter co-
incides with the notion of prime Boolean IS-filter.

Proof. In Theorem 3.28, we show that every ultra IS-filter is a prime IS-filter.
For any x ∈ H, since x ≤ x∨x′, x′ ≤ x∨x′, we get fH(x) ⊆ fH(x∨x′), fH(x′) ⊆
fH(x ∨ x′). According to the Definition of ultra IS-filter, we have fH(x) =
fH(1) or fH(x′) = fH(1). Thus, fH(1) ⊆ fH(x∨x′). From this and Definition
3.1(f1), we get fH(1) = fH(x ∨ x′). This means that fH is an Boolean IS-filter
of H. Conversely, suppose that fH is an Boolean prime IS-filter of H. For any
x ∈ H , fH(x∨x′) = fH(1) ≤ fH(x)∪ fH(x′) by Definition 3.14 and Definition
3.24 If fH(x) 6= fH(1), since fH(x) ≤ fH(1), fH(x′) ≤ fH(1), by Definition 3.1
(f1) we have fH(x′) = fH(1). Thus, fH is an ultra IS-filter of H.
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