
M45P72 Modular Representation Theory Problem Sheet 2

Throughout the problem sheet, K denotes an algebraically closed field of characteristic
p, and A a (finite-dimensional) algebra over K.

1. (a) Let M be an A-module. Prove that M/Rad(M) is simple iff M has a unique
maximal submodule.

(b) Prove that every A-module is a homomorphic image of a free A-module.

(c) Prove that any direct summand of a projective A-module is projective.

2. Let G = Sn, let Ω = {1, . . . , n}, and denote by KΩ the KG-module with basis Ω,
where the multiplication by g ∈ G is defined by the permutation action on Ω. Let

S = {
∑
ω∈Ω

λωω :
∑

λω = 0}, T = {λ
∑
ω∈Ω

ω : λ ∈ K}.

Show that S and T are KG-submodules of KΩ. Show also that S/(S ∩ T ) is a simple
KG-module, and find its dimension (in terms of n and p = char(K)).

3. Compute the dimensions of all the simple KG-modules and also the dimension of
Rad(KG) in the following cases:

(i) G = SL2(p) (ii) G = Cn, a cyclic group, where n = pam with p 6 |m

(iii) G = D2n, a dihedral group with n odd, p = 2 (iv) G = S4, p = 2

(v) G = S4, p = 3 (vi) G = S5, p = 2.

4. Let G = SL2(p). As in lectures, define X = (1, 0)T , Y = (0, 1)T and for n ≥ 0 let
Vn+1 be the KG-module consisting of homogeneous polynomials in K[X,Y ] of degree
n.

(a) Show that 〈Xp, Y p〉 is a submodule of Vp+1. (Hence Vp+1 is not simple.)

(b) For any k ≥ 1, find a proper nonzero submodule of Vp+k.

5. Let G be a finite group, and V a KG-module with corresponding representation
ρ : G → GL(V ). Prove that V is simple iff the linear span of the image ρ(G) is the
whole matrix algebra EndK(V ). (Hint: use Theorem 4.5 of lectures.)

6. Let G = 〈a, b〉 ∼= Cp × Cp, and let V2n be the KG-module of dimension 2n defined
in lectures, corresponding to the matrix representation sending

a→
(
In 0
In In

)
, b→

(
In 0
N In

)
,

where N is the n× n matrix with 0’s on the diagonal, 1’s on the next diagonal down,
and 0’s elsewhere (see the example before Prop 2.8). Complete the proof sketched in
the lectures that V2n is an indecomposable KG-module.

7. Let S be a simple A-module, and suppose that U is an A-module such that
U/Rad(U) ∼= S. Prove that U is a homomorphic image of PS , the projective cover
of S.

TURN OVER!!



8. Find the Cartan matrix for the group algebra KG in the following cases:

(a) G a p-group

(b) G = Cn, where n = pam with p 6 |m

(c) G = S3, p = 3.

9. Let G = S4 with p = 2.

(a) Find mutually orthogonal idempotents e1, . . . , ek ∈ KG such that 1 = e1+· · ·+ek.

(b) Which KG-module (KG)ei is the projective cover of the trivial module?

10. (Representations of direct products) Let G1, G2 be finite groups.

(a) Show that the tensor product space KG1⊗KKG2 becomes an algebra if we define
the product by (g1⊗ g2) (g′1⊗ g′2) = g1g

′
1⊗ g2g

′
2 for gi, g

′
i ∈ Gi, extending linearly

to all elements of the tensor product. Prove that as algebras, KG1 ⊗ KG2
∼=

K(G1 ×G2).

(b) For i = 1, 2, let Si be a KGi-module, and make S1⊗S2 into a K(G1×G2)-module
by defining (g1, g2)(s1 ⊗ s2) = g1s1 ⊗ g2s2 (for gi ∈ Gi, si ∈ Si). Prove that if
S1, S2 are both simple modules, then S1 ⊗ S2 is a simple K(G1 × G2)-module.
(Hint: use Q6.)

(c) Let Si, S
′
i be simple KGi-modules for i = 1, 2. Show that S1 ⊗ S2

∼= S′1 ⊗ S′2 iff
Si ∼= S′i for i = 1, 2.

(d) Using Theorem 5.1 of lectures, deduce that every simple K(G1 × G2)-module is
isomorphic to one of the modules S1 ⊗ S2 in part (b).

11. (Optional: the conjugacy classes of SL2(p)) Let G = SL2(p) with p an odd prime,
and for λ ∈ F∗p, µ ∈ Fp2 \ Fp satisfying µp+1 = 1, define the following matrices in G:

tλ =

(
λ 0
0 λ−1

)
, sµ =

(
0 1
−1 µ+ µp

)
.

(a) Show that there are (p − 3)/2 non-conjugate matrices tλ for λ 6= ±1. Work out
the sizes of their conjugacy classes.

(b) Show that there are (p− 1)/2 non-conjugate matrices sµ, and work out the sizes
of their conjugacy classes.

(c) Using the JCF theorem, show that there are exactly 2p − 2 elements of order p
or 2p in GL2(p) (hence also in G).

(d) By adding up the numbers of elements in the classes in (a) and (b), together with
those in (c) and also ±I, show that all the elements of G have been accounted
for.

(e) Deduce that G has exactly p conjugacy classes of p-regular elements.


