M45P72 Modular Representation Theory Problem Sheet 2

Throughout the problem sheet, K denotes an algebraically closed field of characteristic p, and A a (finite-dimensional) algebra over K.

1. (a) Let M be an A-module. Prove that M/Rad(M) is simple iff M has a unique maximal submodule.

- (b) Prove that every A-module is a homomorphic image of a free A-module.
- (c) Prove that any direct summand of a projective A-module is projective.

2. Let $G = S_n$, let $\Omega = \{1, \ldots, n\}$, and denote by $K\Omega$ the KG-module with basis Ω , where the multiplication by $g \in G$ is defined by the permutation action on Ω . Let

$$S = \{ \sum_{\omega \in \Omega} \lambda_{\omega} \omega : \sum \lambda_{\omega} = 0 \}, \ T = \{ \lambda \sum_{\omega \in \Omega} \omega : \lambda \in K \}.$$

Show that S and T are KG-submodules of $K\Omega$. Show also that $S/(S \cap T)$ is a simple KG-module, and find its dimension (in terms of n and p = char(K)).

3. Compute the dimensions of all the simple KG-modules and also the dimension of $\operatorname{Rad}(KG)$ in the following cases:

- (i) $G = SL_2(p)$ (ii) $G = C_n$, a cyclic group, where $n = p^a m$ with $p \not| m$
- (iii) $G = D_{2n}$, a dihedral group with n odd, p = 2 (iv) $G = S_4$, p = 2
- (v) $G = S_4, p = 3$ (vi) $G = S_5, p = 2$.

4. Let $G = SL_2(p)$. As in lectures, define $X = (1,0)^T, Y = (0,1)^T$ and for $n \ge 0$ let V_{n+1} be the KG-module consisting of homogeneous polynomials in K[X,Y] of degree n.

- (a) Show that $\langle X^p, Y^p \rangle$ is a submodule of V_{p+1} . (Hence V_{p+1} is not simple.)
- (b) For any $k \ge 1$, find a proper nonzero submodule of V_{p+k} .

5. Let G be a finite group, and V a KG-module with corresponding representation $\rho: G \to GL(V)$. Prove that V is simple iff the linear span of the image $\rho(G)$ is the whole matrix algebra $\operatorname{End}_K(V)$. (Hint: use Theorem 4.5 of lectures.)

6. Let $G = \langle a, b \rangle \cong C_p \times C_p$, and let V_{2n} be the KG-module of dimension 2n defined in lectures, corresponding to the matrix representation sending

$$a \to \begin{pmatrix} I_n & 0\\ I_n & I_n \end{pmatrix}, \ b \to \begin{pmatrix} I_n & 0\\ N & I_n \end{pmatrix},$$

where N is the $n \times n$ matrix with 0's on the diagonal, 1's on the next diagonal down, and 0's elsewhere (see the example before Prop 2.8). Complete the proof sketched in the lectures that V_{2n} is an indecomposable KG-module.

7. Let S be a simple A-module, and suppose that U is an A-module such that $U/\text{Rad}(U) \cong S$. Prove that U is a homomorphic image of P_S , the projective cover of S.

TURN OVER!!

- 8. Find the Cartan matrix for the group algebra KG in the following cases:
 - (a) G a p-group
 - (b) $G = C_n$, where $n = p^a m$ with $p \not m$
 - (c) $G = S_3, p = 3.$
- **9.** Let $G = S_4$ with p = 2.
 - (a) Find mutually orthogonal idempotents $e_1, \ldots, e_k \in KG$ such that $1 = e_1 + \cdots + e_k$.
 - (b) Which KG-module $(KG)e_i$ is the projective cover of the trivial module?

10. (*Representations of direct products*) Let G_1, G_2 be finite groups.

- (a) Show that the tensor product space $KG_1 \otimes_K KG_2$ becomes an algebra if we define the product by $(g_1 \otimes g_2) (g'_1 \otimes g'_2) = g_1g'_1 \otimes g_2g'_2$ for $g_i, g'_i \in G_i$, extending linearly to all elements of the tensor product. Prove that as algebras, $KG_1 \otimes KG_2 \cong K(G_1 \times G_2)$.
- (b) For i = 1, 2, let S_i be a KG_i-module, and make S₁⊗S₂ into a K(G₁×G₂)-module by defining (g₁, g₂)(s₁ ⊗ s₂) = g₁s₁ ⊗ g₂s₂ (for g_i ∈ G_i, s_i ∈ S_i). Prove that if S₁, S₂ are both simple modules, then S₁ ⊗ S₂ is a simple K(G₁ × G₂)-module. (Hint: use Q6.)
- (c) Let S_i, S'_i be simple KG_i -modules for i = 1, 2. Show that $S_1 \otimes S_2 \cong S'_1 \otimes S'_2$ iff $S_i \cong S'_i$ for i = 1, 2.
- (d) Using Theorem 5.1 of lectures, deduce that every simple $K(G_1 \times G_2)$ -module is isomorphic to one of the modules $S_1 \otimes S_2$ in part (b).

11. (Optional: the conjugacy classes of $SL_2(p)$) Let $G = SL_2(p)$ with p an odd prime, and for $\lambda \in \mathbb{F}_p^*$, $\mu \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$ satisfying $\mu^{p+1} = 1$, define the following matrices in G:

$$t_{\lambda} = \begin{pmatrix} \lambda & 0\\ 0 & \lambda^{-1} \end{pmatrix}, \ s_{\mu} = \begin{pmatrix} 0 & 1\\ -1 & \mu + \mu^p \end{pmatrix}.$$

- (a) Show that there are (p-3)/2 non-conjugate matrices t_{λ} for $\lambda \neq \pm 1$. Work out the sizes of their conjugacy classes.
- (b) Show that there are (p-1)/2 non-conjugate matrices s_{μ} , and work out the sizes of their conjugacy classes.
- (c) Using the JCF theorem, show that there are exactly 2p 2 elements of order p or 2p in $GL_2(p)$ (hence also in G).
- (d) By adding up the numbers of elements in the classes in (a) and (b), together with those in (c) and also $\pm I$, show that all the elements of G have been accounted for.
- (e) Deduce that G has exactly p conjugacy classes of p-regular elements.