PRIMERA PARTE

ESTUDIOS REALIZADOS DURANTE EL QUINQUENIO 1939-44
POR EL SERVICIO DE PLANTAS MEDICINALES

BELLADONA

RENDIMIENTOS

Se iniciaron las experiencias sobre belladona con el estudio de la acción del nitrato sódico sobre la producción de hoja. No se hizo más que una recolección—el 11 de agosto—, ya que después empezaron a perderse plantas, no quedando las diversas eras en condiciones de ser comparadas sus producciones. Los rendimientos, estadísticamente significativos, fueron, en Kgs. de hoja fresca por Ha., los siguientes:

				Kgs.
Sin abono			 	1.546
A1 1	200	Kgs./Ha.	 	1.574
Abonado con nitrato	400))	 	1.974
Abonado con nitrato sódico	500)	 	1.599

De estas cifras se deduce que el nitrato sódico incorporado en cobertera a la dosis de 400 Kgs./Ha. produce un incremento cuantitativo de 428 Kgs./Ha., es decir, del 28 por 100.

Posteriormente se planearon tres experiencias: una, para ver el efecto de los diversos abonados sobre la producción de hoja; otra, para comprobar si la desigual vegetación de la experiencia del año anterior era debido a mala elección de la época de la siembra; y una tercera, para comparar la especie Atropa Belladona con la A. Bætica.

En la primera se obtuvieron los siguientes resultados, estadísticamente significativos:

			Ags.
Sin abono			1.262
Superfosfato de cal.	500	Kgs./Ha	1.310
Sulfato potásico	200	»)	1.410
Sulfato amónico	300	» }	1.410

			Kgs.
500	3)		1.508
200))		1.900
300))		1.733
500	33		0.060
300	>>		2.060
500	33	700 000 000 7	
200	33		1.983
300	3)	EVI 444 CF2	
	200 300 500 300 500 200	200 » 300 » 500 » 300 » 500 » 200 »	200 » 300 » 500 » 300 » 500 » 500 »

Se deduce de estos datos que el fertilizante que tiene más acción sobre la producción de hoja es el sulfato amónico, que origina un incremento del 37 por 100.

Esta recolección se efectuó el 30 de julio, y a los pocos días comen-

Una hermosa planta de belladona. (Foto S. P. M.)

zaron a observarse que se secaban plantas, de igual forma que ocurrió el año anterior. Por ello, tampoco se hizo una segunda recolección.

Para la segunda experiencia se hicieron semilleros de otoño y de invierno, aquél en septiembre y éste en enero, con trasplante en marzo y mayo, respectivamente. Se realizó también la recolección de ocho de las

treinta y dos eras de la plantación del año anterior, es decir, en aquellas donde las plantas secadas serán en número suficientemente pequeño para poder comparar resultados. Las cifras obtenidas en esta plantación de segundo año, debidamente ponderadas, y las procedentes de los semilleros de otoño e invierno son las siguientes, todas ellas estadísticamente significativas:

.	Prime	era recolección	Segun	da recolección	Terce	ra recolección	TOTAL
Plantación	Kgs.	Fecha	Kge.	Fecha	Kg.	Fecha	Kilogramos
Segundo año	8.633	14 de junio.	8.539	11 de agosto.	4.276	15 de octubre.	21.448
Primer año:							
	4.800	21 de julio.	3.536	24 de setbre.			8.3 3 5
Semillero de Invierno	1.772	15 de agosto.	2.557	6 de octubre			4.329

Queda patente del examen de estas cifras las ventajas del semillero de otoño sobre el de invierno, además de reducirse mucho el número de pies fallidos en el trasplante, que conviene hacerlo en primavera lo antes posible. En cuanto a la producción obtenida en las tres recolecciones de la plantación de segundo año, fué francamente excepcional. Al comparar las producciones de primer año de esta temporada con las de la pasada, téngase en cuenta que éstas proceden de una sola recolección y aquéllas de dos.

Por último, se comparó la especie Atropa Belladona con A. Bætica, resultando de más difícil nascencia y trasplante ésta que aquélla, aparte de su mucho menor rendimiento cuantitativo, aun sin tener en cuenta la cosecha excepcional a que antes aludimos. Las producciones totales, estadísticamente significativas, en Kgs. de hoja fresca por Ha. son las siguientes:

	Atropa	Belladona	Atro	pa Bætica	Diferencia
Plantación	Kgs.	Número de recolecciones	Kgs.	Número de recolecciones	a favor de Atropa Belladona
Segundo año	21,448	3	8.555	3	12.893
Primer año: Semillero de Otoño. Id. de Invierno	8.335 4.329	$\frac{2}{2}$	2.400 1.754	$\left \begin{array}{c} 2 \\ 2 \end{array} \right $	5,935 2,575

Visto un año la acción favorable del nitrato sódico y otro la del sulfato amónico sobre la producción de hoja, en 1943 se ha hecho una experiencia comparando ambos fertilizantes.

De las dos recolecciones efectuadas el 27 de julio y 7 de septiembre, con planta procedente de semillero hecho el otoño anterior, no resultó

estadísticamente significativa más que la primera, cuyos resultados fueron los siguientes, en Kgs. por Ha.:

Kgs.

	ngs.
Sin abono	2.456
Abonado con sulfato amónico: 250 Kgs./Ha	3.136
Id. con nitrato sódico: 300 íd	3.657

De aquí parece deducirse que el nitrato sódico tiene más efecto que el sulfato amónico sobre la producción de hoja.

Resumiendo las diversas experiencias, se llega a las siguientes conclusiones, en cuanto a rendimientos cuantitativos:

- 1.ª La siembra más conveniente de la belladona es en semillero de otoño.
 - 2.* Los abonos minerales nitrogenados son los de mayor acción.
 - 3.ª El nitrato sódico da más cantidad de hoja que el sulfato amónico.
 - 4.º No interesa el cultivo de Atropa Bætica.

Realizados en los dos últimos años los análisis correspondientes, para ver el efecto de las diversas prácticas y tratamientos sobre la riqueza en principios activos de las hojas de belladona, vamos a resumir los datos recogidos. El procedimiento seguido por el Profesor Gómez Serranillos, cuya aportación agradecemos mucho, fué el siguiente:

«Diez gramos de polvo de belladona convenientemente desecada y preparada (tamiz número 45), se pusieron en un frasco de tapón esmerilado, donde se añadieron 150 c. c. de ácido clorhídrico (1 : 100); se deja en maceración cuatro horas, agitando de vez en cuando; se filtra por papel, recogiendo 75 c. c., que equivalen a 5 grs. de hoja, echándoles en una ampolla de separación, donde se añaden 20 c. c. de solución de sosa al 7,5 por 100 y 10 c. c. de éter, agítese y no dejar reposar hasta la total separación, donde de nuevo se repite el tratamiento con 10 c. c. de éter sulfúrico; otra vez se agita, se deja reposar y se separa la capa acuosa; se juntan los líquidos etéreos en la primera ampolla y se añaden 25 centímetros cúbicos de SN/100 de ácido clorhídrico; después de agitar y dejar en reposo para la separación de los líquidos, se recoge la capa ácida en un vaso de precipitados de 200 c. c., se diluye con agua destilada hasta 150 c. c., aproximadamente; se añaden 5 gotas de tintura de cochinilla y se valora el exceso de ácido con SN/100 de sosa. La diferencia entre 25 y el número de centímetros cúbicos de SN/100 de sosa gastados se multiplica por 0,00289, y como se valoran los alcaloides correspondientes a 5 grs. de hoja, multiplicando el resultado por 20 se tendrá el tanto por ciento.»

De la comparación de las dos especies de Atropa, tomadas las muestras de la plantación de segundo año, resultan los siguientes porcentajes de alcaloides:

Especie	Prime	H O	J A S Segun	da recolección	Raices	Semillas
•	Kgs.	Fecha	Kgs.	Fecha	8 septiembre	13 agosto
Atropa Belladona Id. Bætica		14 de junio 5 de julio	0,413 0,438	11 de agosto 26 de agosto	0,524 0,638	0,823 0,8 6 0

Como se ve, las hojas de Atropa Bætica tienen un pequeño exceso de alcaloides. Relacionando la mínima de estas cifras para la belladona y la máxima para la A. Bætica con las producciones cuantitativas obtenidas en la plantación de segundo año, se obtienen las cifras siguientes:

	Atropa Belladona	Atropa Bætica
Cantidad de hoja en 1resco	21.448 4.124 0,332 1.369	8,555 1 671 0,45+ 758

Se ve, pues, que por la cantidad total de alcaloides obtenidos por hectárea no interesa tampoco el cultivo de A. Bætica.

Ahora bien: como con las valoraciones químicas anteriores se conoce sólo la cifra global de todos los alcaloides existentes en la hoja, sin saber la proporción que en el momento de la recolección existe entre la l-hiosciamina y la atropina, dato muy interesante, puesto que aquélla es más activa que ésta, el Profesor Gómez Serranillos completó aquellos análisis con la prueba biológica fundada en la acción paralizante que los alcaloides de Atropa ejercen sobre el pneumogástrico. Hechos los ensayos con ranas, instilando en el corazón abierto, una vez anotadas las pulsaciones normales, 5 gotas de tintura alcohólica de las dos especies de Atropa, diluída en suero fisiológico y dejando actuar durante diez y quince minutos, las pulsaciones contadas fueron las siguientes:

	ciones	Pulsa	B Æ T I C A
A los 10'	A los 15'	A los 10'	A los 15'
75 82	63 64	71	56 61
73	63	76	58

Pulsaciones normales al empezar la experiencia: 60.

Queda comprobada la mayor actividad de la tintura preparada con Atropa Belladona que la hecha con A. Bætica y que la acción es más duradera en aquélla, puesto que a los quince minutos la de la segunda ya no tiene efecto.

Se llega, pues, a la conclusión de que el porcentaje de alcaloides es un poco mayor en la A. Bætica; pero, en cambio, es más activa la acción alcaloídica de A. Belladona.

Otra experiencia fué la determinación de los alcaloides en la droga obtenida en parcelas sometidas a distintos tratamientos. Se obtuvieron las siguientes cifras:

Т	RAT	A M	LIE	N T	го	s .	Primera muestra 8 de junio	Segunda muestra 3º de julio
Sin abono							0,3737	0,56 3 5
Superfosfato de cal:	500	kgs.	por	He			0,3113	0,4768
Sulfato potásico: Sulfato amónico:								0, 43 85
Superfosfato de cal: Sulfato potásico:	500 200	» »	» »	» »	<u></u>	· · • · · · · · · · · · · · · · · · · ·	0,3164	0,+443
Sulfato amónico:	300					· · · · · · · · · · · · · · · · · · ·	1 1	0,5837
Superfosfato de cal: Sulfato amónico:	5 00 3 00	» »	» »	» »	<i>)</i> .	• • • • • • • • • • • • • • • • • • • •	0,3424	0,3959
						• • • • • • • • • • • • • • • • • • • •	i l	0,2991

Como se ve, del primer corte no se deduce ninguna conclusión, pues las parcelas testigos dan más riqueza en alcaloides que las abonadas. En el segundo sólo se observa un aumento del 0,02 por 100 en las parcelas abonadas con sulfato amónico. Es extraño que en el caso de fórmulas en las que interviene el sulfato amónico los resultados sean negativos, mientras que actuando sola esta sal se observa el ligero aumento indicado. También es digno de señalarse que los rendimientos más bajos en ambos cortes corresponden a las parcelas abonadas con fosfórico, potasa y nitrógeno. En definitiva, si bien parece vislumbrarse una acción favorable del sulfato amónico sobre la formación de alcaloides, los resultados son demasiado confusos para que pueda deducirse de ello una conclusión clara.

En el estudio comparativo entre el efecto del sulfato amónico y del nitrato sódico se obtuvieron los siguientes porcentajes medios:

TRATAMIENTOS	Primera muestra 27 de julio	Segunda muestra 7 de septiembre
A) Sin abono	0,0566 0,1448 0,1050	0,4128 0,1689 0,2909

Hecho el correspondiente cálculo, resultan estadísticamente significativas las diferencias B-A y C-A del primer corte, que son, respectivamente, 0,0982 y 0,0284; y la C-B del segundo, que es 0,1133.

De estas cifras se deriva que la acción del sulfato amónico es mayor que la del nitrato sobre las riquezas alcaloídicas obtenidas de las hojas del primer corte. En cambio, en las determinaciones correspondientes al segundo, las de las parcelas testigos son de mayor riqueza que las abonadas con nitrógeno, y, entre éstas, las fertilizadas con nitrato resultan más ricas que aquellas a las que se incorporó sulfato amónico.

Belladona.—Detalle de hoja, flor y fruto. (Foto S. P. M.)

Resumiendo las diversas experiencias se llega a las siguientes conclusiones, en cuanto a rendimientos cualitativos:

- 1.ª En el efecto de los diversos abonados sobre la formación de alcaloides en la hoja de belladona no se ha deducido ninguna conclusión clara.
- 2.* En Atropa Bætica, el tanto por ciento de alcaloides es algo mayor que en la belladona, pero esta droga es de acción más activa y de mayor rendimiento por Ha.

En definitica, considerando el rendimiento de ambas belladonas, tanto en cantidad como en calidad, resultan las siguientes

CONCLUSIONES GENERALES

- 1.º No interesa el cultivo de Atropa Bætica, tanto desde el punto de vista agronómico como del farmacognósico.
- La siembra más conveniente de la belladona es en semillero de otoño.
- 3.ª Los abonos minerales nitrogenados son los más convenientes desde el punto de vista cuantitativo, sin que se haya deducido nada en concreto respecto a su influencia sobre la formación de alcaloides.

Una plantación de belladona de dos años de edad. (Foto S. P. M.)

DATOS CULTURALES

De los datos y experiencias culturales recogidos durante el período 1939-44, se desprende que el cultivo de la belladona debe efectuarse del modo siguiente:

Preparación del semillero.—A fines de agosto o primeros de septiembre, en cajonera bajo chasis acristalado. Cama caliente, hecha a base de una capa de estiércol fresco de caballo de 70 cms. de espesor, recubierto de otra de mantillo de 10 cms.

Tratamiento de la semilla.—Sumergir la semilla en doble volumen de

su peso (5 grs, en 10 c. c.) de agua oxigenada comercial durante veinticuatro horas. Secar durante el otro día y sembrar.

Cantidad de semilla que hay que sembrar para tener planta suficiente para un área.—Cinco grs. en medio metro cuadrado.

Siembra en semillero.—Segunda quincena de septiembre.

Nascencia.—A los veinticinco-treinta días.

Densidad media.-Muy irregular.

Preparación previa del terreno.—Una labor en enero, seguida de un gradeo, y otra en marzo.

Abonado.—Conviene nitrogenado. Si se incorpora sulfato amónico, se aprovechará para ello la segunda labor preparatoria. En terrenos ácidos le conviene un encalado a razón de 2.000 Kgs, por Ha.

Trasplante.—Fines de marzo.

Marco de plantación.—1 × 0,80 mts. (125 plantas por área).

Reposición de marras.—Una, a los veinte días del trasplante.

Abonado en cobertera.—De emplear nitrato sódico en cobertera, se distribuirá después de la última reposición.

Riegos.—Uno con la segunda labor preparatoria, otro después del trasplante, otro tras la reposición y luego los que exija el año, dándose forzosamente uno a continuación de cada recolección. Por término medio: 10 riegos anuales.

Binas.—Generalmente, tres.

Escardas.-Las que exija el año; dos por término medio.

Recolecciones.—El primer año, una a primeros de julio y otra a mediados de septiembre. En años sucesivos, hasta tres: una a fines de julio, otra en la segunda quincena de agosto y la tercera en la primera decena de octubre.

Peso de mil semillas.—1,290 grs.

Poder germinativo.—Optimo: 54 por 100 en veintiocho días a la oscuridad y temperatura alternada de 20 y 30°.

Este es el resumen de los estudios realizados sobre la belladona y la Atropa Bætica en el quinquenio 1939-44 y que figuran con todo detalle en las respectivas Memorias anuales presentadas a la Superioridad. El trabajo correspondientes al año 1942 se ha publicado en el «Boletín del Instituto Nacional de Investigaciones Agronómicas», cuaderno número 41, en mayo de 1944, con el título de «Contribución número 2 al estudio de plantas medicinales productoras de alcaloides».

ESTRAMONIO

RENDIMIENTOS

Se iniciaron los estudios referentes a esta solanácea el año 1940 con el de la variedad de flor blanca y cápsulas espinosas, abonada con nitrato sódico. Las cantidades de hoja fresca recolectada, estadísticamente significativas, fueron las indicadas en el cuadro número 1.

De dichas cifras se deduce que la primera recolección es mayor que la segunda; que, tanto en una como en otra, se refleja claramente el efecto del nitrato sódico y que esta acción se hace más patente en la segunda recogida, hecha cuarenta y dos días después que la primera.

Al año siguiente se planeó la experiencia con las variaciones siguientes: dosis superior de nitrato sódico, 100 Kgs., más elevada que la del ensayo anterior; extirpación de los capullos florales y recolección fraccionada en cuatro períodos. Los resultados significativos obtenidos fueron los del cuadro número 2.

En este segundo estudio no fueron estadísticamente significativos más que los resultados obtenidos en las eras testigos y en las abonadas con la dosis máxima, equivalente a 600 Kgs./Ha. de nitrato sódico.

De la comparación de las cosechas obtenidas sin abono en los dos años se observa un incremento de 1.365,60 Kgs. a favor de la de 1941, lo que es atribuído no sólo a las diferencias meteorológicas de las dos campañas, mas también a la extirpación de los capullos florales. A dichas causas, además del suplemento de 100 Kgs./Ha. de nitrato sódico, se dehe también el aumento de 3.054,85 Kgs., logrado con la incorporación de 600 kilogramos, en lugar de los 500 del año anterior.

Por último, de la recolección fraccionada desde julio a octubre se dedujo que las cosechas segunda y tercera son las más productivas, aquélla más que ésta; en cuanto a la acción del nitrato sódico, alcanza su máximo con la tercera cosecha.

Era, pues, preciso aclarar dentro de los mismos años y experiencia el efecto de dicha extirpación, y éste fué el objeto de los ensayos del

Cuadro número 1

		Primera recolección (23 de julio)	ecolección julio)	Segunda recoleución (4 de septiembre)	colección iembre}	Diferencia	Cantidad total de
€ : —	TRATAMIENTOS	Cosecha Kgs. por hectárea	Aumento por abonado	Cosecha Ngs, por hectárea	Aumento por abonado	las dos recolecciones	noja ireeca recogida Ngs. por hectárea
Sin abono.	Sin abono	3.505,00		2.729,00	ı	776,00	6.234.00
200 kgs. pc	200 kgs. por hectárea N	3.533,57	28,57	3.201,23	472,23	332,34	6.734.80
300 »	*	3.978.09	473,09	3.479,00	750,00	499,09	7.457,09
4 00 *	•	4.160.30	655,56	00,600.₺	1.250,00	151,56	8.169,56
300 »	*	4.565,31	1.060,31	4.278,84	1.519,84	286,47	8.844,15

Cuadro número 2

	Primera recolección (1 de julio)	olección io)	Segunda recolección (5 de agosto,	solreción osto,	Tercera recolección (3 de septiembre)	olección embre)	Cuarta recolección	lección ubre)	Cantidad total de hoja fresta
TRATAMIENTOS	Cosecha Kgs. por hecta.	Aumento por abonado	Aumente Cosecha por hecta.	i	Aumento Cosechu por abonado kgs, por hecta.		Aumento Cosecha por abonado kgs. por hecta,	Aumento por abonado	
Sin abano	1.627.+0	1	2.5++,10		2.268,00	ŀ	1.160,10	1	7,599,00
200 kgs. por hectárea N.	n. s.	i	n. s.		2.505,60	237,60	1.406,20	246,10	1
** ° 00+	, E	l	3.134,20	390,10	2.991,40	723,40	1.687,60	527,50	l
«	2.087,40	460,00	3.826,30	1.282,20	1.282,20 3.945,10 1.677,10 2.040,20	1.677,10	2.040,20	880,10	11.899,00

n, s. = no significativo

año 1942, en los que también se comparó el cultivo del estramonio en secano y regadío y la acción por separado del superfosfato de cal, sulfato potásico y sulfato amónico.

Se empleó en este ensayo la variedad de flor blanca con cápsulas inermes, ya que si el rendimiento en cantidad y calidad no desmereciera respecto a la de frutos espinosos, sería más interesante el cultivo de aquélla, por ser mucho más fácil su recolección, en el caso corriente de no extirpar las flores. Los resultados significativos obtenidos fueron los que se citan en el cuadro núm. 3.

De dichas cifras se deduce que no interesa el cultivo en secano, que

Una planta de estramonio, variedad de flor blanca y cápsula espinosa. (Foto S. P. M.)

da un rendimiento anual inferior en 2.750 Kgs. con respecto al regadio; que es conveniente la extirpación de flores para el incremento de la cosecha, que supone, en el peor de los casos, 1.535 Kgs. de hoja fresca por hectárea; y el efecto favorable del sulfato amónico sobre la cantidad de cosecha, muy superior en todos los casos a los logrados con el superfosfato de cal y sulfato amónico.

Se ha observado también que mientras que en las eras de las que no se cortaron las flores sigue siendo la primera recolección la más elevada, como ocurrió en 1940 y con la segunda de 1941 (que equivale, por la

Cuadro número 3

	SECANO	o z			\	æ	R E C A D i	i o	0			
		$\overline{\big(}$		Con 6x	Con extirpación de flores	Nores			Sin ex	Sin extirpación de flores	flores	
Traism entos	Recolección única 24 de julio		Primera recolece 24 de julio	olección ulio	Primera recolección Segunda recolección 24 de julio 21 de septiembre	olección embre	Total	Primera recolección Segunda recolección 24 de julio 21 de septiembre	lección 110	Segunda rec 21 de septi	olección embre	Total
	Cosecha kgs. por Ha.	Aumen- to por abonado	Cosecha Aumen- Cosecha Aumen- gs. 10r Ha. abonado kgs. por Ha. abonado	Aumen- to por abonado	Coeccha Aumen- kgs. por Ha. abonado	Aumen- to por abonado	hoja fresca en kgs. por Ha.	Cosecha Aumen. Cosecha Aumen. Coecha Aumen. Ha, abonado kgs. por Ha, abo	Aumen- to por	Cosecha Aumen-Cosecha Aumen-gs. por Ha. abonado	Aumen- to por abonado	hoja fresca en kgs. por Ha,
Sin abonado	1.482	1	2.732	1	3.035	ı	5.767	2.714	ı	1.518	ı	4.232
500 kgs. por Ha. de superfos- fato de cal	1.539	52	n. s.	1	3 329	294	1	ů.	ı	: :	1	1
200 kgs. por Ha. de sulfato po-	1.628	146	3.227	+95	3.740	705	6.967	2.728	#	1.990	57.4	4.718
300 kgs. por Ha. de sulfato amonico		1.593	3.745	1.013	3.075 1.593 3.745 1.013 4.668 1.633 8.413	1.633	8.413	3.496	782	782 2.240	722	5.736

n. s. == no significativa

Cuadro núm. 4

	28 de junio	28 de junio	22 de julio	22 de julio	23 de agosto	gosto	15 de sep	Cuarta recolección 15 de septiembre	Cantidad de hoja fresca de las
TRATAMIENTOS	Cosechs Kgs. por Ha	Diferencia	Cosecha	Diferencia	Diferencia Cosecha Diferencia Cosecha Diferencia	Díferencia	Cosecha Ngs. por Ha.	Diferencia	dos primeras recogidas Kgs. por Ha.
1.º Fariedad espinosa:									
300 kgs. por Ha. de nitrato sódico 3.611	3.611	1,126	3.233	600	n. s.		n. s.		6.844
250 kgs. por Ha. de sulfato amónico. 2,485	2.485		2.240		n. s.	l	n. s.	1	4.725
2.0 I ariedad inerme:									
300 kgs. por Ha. de nitrato sódico	3.235	860	2.976	091	n. s.		i,		6.211
250 kgs. por Ha. de sulfato aménico	2.310	6-K	2.155	170	n. s.		n, 8.	١.	4.465

n. s. = no significativa.

época, a la primeras de los otros años), en las parcelas en que se procedió al extirpado de los capullos florales es mayor la última cosecha.

Finalmente, agrupando los rendimientos anuales de hoja fresca por hectárea logrados en los tres años de experimentación, se obtienen las cifras siguientes:

Queda claramente demostrado que la cosecha conseguida con variedad de cápsulas no espinosas es muy inferior a la de frutos con pinchos.

Vistos estos resultados, convenía un ensayo en el que, en idénticas condiciones ecológicas, se hiciera la comparación de la variedad espinosa con la inerme, así como la del abonado nitrogenado en forma nítrica con la de la sal amónica. Este fué el objeto del estudio hecho en 1943, del que se obtuvieron los resultados indicados en el cuadro número 4.

De dicho cuadro se desprende que aun sin tener en cuenta los resultados obtenidos en las recolecciones tercera y cuarta, por no ser significativas, el incremento de cosecha obtenido con el nitrato sódico sobre el sulfato amónico es de 2.119 Kgs./Ha. para la variedad espinosa y de 1.746 para la inerme.

Como no han resultado significativas las dos últimas recolecciones, con objeto de tener una orientación sobre el efecto de los abonos a lo largo del ciclo vegetativo, a continuación se comparan los diversos rendimientos brutos obtenidos:

	Recolección	Nitrato sódico	Sulfato amónico	Diferencia
Variedad espinosa	1.* 2.* 3.* 4.*	3.835 3.360 2.260 1.430	2.485 2.240 2.140 1.370	1,350 1,120 120 60
<u> </u>	Totales	10.885	8,235	2.650
Variedad inerme	1.* 2.* 3.* +.*	3.510 3.190 1.910 930	2.310 2.155 1.830 1.000	1,200 1,035 80 -70
	Totales	9.540	7.295	2.2+5

De las anteriores cifras se deduce, como es natural, el más rápido efecto del nitrógeno nítrico con respecto al amoniacal y la más constante acción de éste hasta igualarse la influencia de ambos fertilizantes e incluso superar el sulfato amónico al nitrato sódico en la cuarta recolección de la variedad inerme.

Comparada la acción de dichos fertilizantes a lo largo de las cuatro recolecciones, se observa un continuo descenso en los rendimientos brutos en una y otra variedad y con las dos clases de abonado.

En cuanto a la comparación de variedades, parece subsistir la ventaja de la espinosa sobre la inerme, como se ve por las cifras siguientes:

Variedades	Rendimientos medios d	e las eras abonados con
Variedages	Nitrato sódico	Sulfato aménico
Sepinosa	10.885	8.235
nerme	9.540	7.295
Diferencia a favor de la espinosa	1.345	1.040

Del examen de los rendimientos cuantitativos logrados en el período 1939-1943 se deducen las siguientes conclusiones:

- 1.ª No interesa el cultivo del estramonio en secano.
- 2. La variedad de flor blanca y cápsulas espinosas es más productiva que la inerme.
 - 3.ª La extirpación de flores eleva el rendimiento cuantitativo.
- 4.ª Los abonos nitrogenados producen un incremento mayor en la producción que los fosfóricos y potásicos.
- 5.* El nitrato sódico da más cantidad de hoja que el sulfato amónico.
- 6.º Dentro de las fluctuaciones impuestas por las circunstancias ecológicas de cada año, la primera recolección puede hacerse a los dos meses del trasplante.
- 7.º En cuanto al momento oportuno y número de las otras recogidas, no se ha deducido aún una conclusión clara.

Para completar este estudio se precisaba ver el efecto de las distintas clases de abonado, no sólo sobre el rendimiento cuantitativo, más también en la riqueza en principios activos de las hojas de estramonio. Los dos primeros años no se pudieron realizar los análisis por no disponer aún de laboratorio el Servicio de Plantas Medicinales. En los dos últimos años se determinaron los porcentajes de alcaloides con arreglo al siguiente procedimiento:

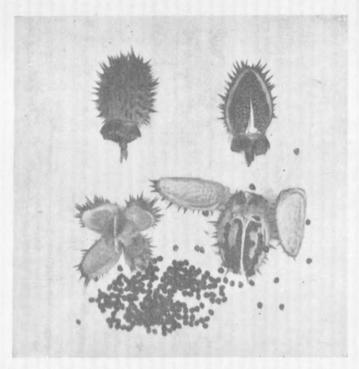
Quince gramos de polvo se colocan en un frasco de tapón bien esmerilado con 150 c. c. de mezcla etéreo-clorofórmica (2 volúmenes de éter por 1 de cloroformo). Después de agitar durante un cuarto de hora, se agregan 10 c. c. de amoníaco y se continúa agitando durante dos horas, dejándolo en reposo hasta el día siguiente.

Se filtra el líquido, se toman de él 100 c. c., se ponen en un Erlenmeyer, lavando la campana con un poco de mezcla, y se destila al baño maría hasta reducir su volumen a unos 2 c. c. Se agregan entonces 25 centímetros cúbicos de ácido sulfúrico al 5 por 100; se calienta a tempera-

tura suave, agitando con frecuencia para dar lugar a la transformación de los alcaloides en sulfatos. Se deja enfriar, se filtra la solución a una ampolla, latando matraz y filtro con agua caliente, y después de alcalinizar con amoníaco para liberar los alcaloides, se separan éstos, agotando con cloroformo hasta comprobar su separación con el reactivo de Meyer (yoduro mercúrico potásico).

La solución alcaloídica se destila, y sobre el residuo se evaporan por dos veces 5 c. c. de éter, para eliminar restos de amoníaco. En aquél se valoran los alcaloides mediante volumetría, por resta con SN/100 de sulfúrico e hidrato sódico, empleando tintura de cochinilla como indi-

Detalle de hoja y fruto de la variedad de estramonio de flor blanca y cápsula inerme. (Foto S. P. M.)


cador. El número de c. c. de solución ácida, combinada con los alcaloides, se multiplica por 0,00289 y se calcula el tanto por ciento.

En 1942, con objeto de determinar dicha riqueza en distintas épocas del período vegetativo, se tomaron muestras en tres ocasiones: el 15 de junio, cuando el trasplante estaba logrado, pero las hojas aun poco crecidas; en el momento en que éstas se encontraban en su máximo desarrollo, que correspondió, como es natural, con la primera recogida: 24 de julio; y cuando se iniciaba la pérdida de las plantaciones de regadío: 3 de octubre, puesto que la de secano ya había muerto para esta

fecha. Los resultados obtenidos fueron los indicados en el cuadro núm. 5.

De estos porcentajes se deduce: que la riqueza alcaloídica es, por lo menos, el 0,027 por 100 menor en secano que en regadío; que con la extirpación de las flores se consigue un incremento alcalóidico del 0,085 por 100, en el más desfavorable de los casos, y que es positivo el efecto del sulfato amónico sobre dicho porcentaje con el que llega a conseguirse un incremento del 0,139 por 100 (tercera muestra, sin flores), mientras que el máximo logrado con los abonados fosfórico y potásico es del 0,084 por 100.

Tanto en las eras con flores como en las desprovistas de ellas, dicha

Detalles del fruto y de la semilla de la variedad de estramonio de flor blanca y cápsula espinosa. (Foto S. P. M.)

riqueza alcaloídica aumentó de la primera muestra a la segunda, para disminuir en la tercera. Las diferencias de incremento entre los dos primeros cortes (0,048 por 100 sin flores y 0,099 por 100 con flores) demuestran que en el segundo caso es más rápida la elevación del porcentaje en principios activos.

El año 1943 también se realizaron las muestras correspondientes a las cuatro recolecciones, y en la última—15 de septiembre—se tomaron de cada era dos muestras, una a las ocho de la mañana y otra a las ocho de la tarde, con objeto de estudiar la hora de recogida más conveniente.

Cuadro número 5

•	SEC	SECANO			R E G A	E G A D Í O		
Ė	Primera	Sepunda	Con	Con extirpación de flures	lures	Sin	Sin extirpación de fiores	inres
- Trichicos	muestra 15 de Junio	muestra 24 de Julio	Primera muestra 15 de Junio	Segunda muestra 24 de Julio	Tercera muestra 3 de veptiembre	Primera muretra 15 de Junio	Segunda inuestra 2+ de Julio	Tercera muestra 3 de Septiembre
Sin abonado	0,1452	0,2181	0,3150	0,3633	0,3085	0,1726	0,2716	0,2239
500 kgs. por Ha. de superfosfa- to de cal.	в. S.		1	n. F.	0,3297	ė. G	n. 8.	0,2517
200 kgs. por Ha. de sulfato po- tásico	e.	n. s.	ì	s: d	0,3933	n. s.	n. 8.	0,2306
300 kgs. por Ha. de sulfato amónico	0,18++	й	0,3389	n. s.	0,++82	0,2+55	s. u	0,3000

n. s. = no significativa

El número de los incrementos alcaloídicos que han resultado significativos es el indicado en el cuadro núm. 6.

De las cifras indicadas en dicho cuadro se deduce que, salvo para la primera recolección de la variedad espinosa, todos los demás resultados significativos acusan ventaja para la variedad inerme y una acción más favorable para el sulfato amónico que para el nitrato sódico y que esta influencia se atenúa generalmente a lo largo de las cuatro recolecciones.

En cuanto a la época óptima para el contenido en principios activos de la droga, se observa que es la de la segunda recolección (22 de julio) superior a la primera y a partir de la cual comienza un decrecimiento continuo.

Analizadas las muestras tomadas en el mismo día con doce horas de diferencia, no resultaron comparativamente significativas, por lo cual se confrontaron las riquezas alcaloídicas brutas, resultando que, para las dos variedades, son mayores las cifras obtenidas con las hojas recogidos por la mañana que las conseguidas de la droga vespertina. En el peor de los casos se obtuvo un incremento del 0,004 por 100.

Del examen de los rendimientos cualitativos logrados durante los años 1942 y 1943 se deducen las siguientes conclusiones:

- 1.ª No interesa el cultivo del estramonio en secano.
- 2." No hay conclusión decisiva sobre si la variedad más ventajosa es la espinosa o la inerme, si bien hay más indicios de que sea la última la más rica en alcaloides.
 - 3.ª La extirpación de flores eleva la riqueza en principios activos.
- 4.ª Los abonos nitrogenados elevan el porcentaje alcaloídico en mayor proporción que los fosfóricos y potásicos.
- 5.ª Dentro de los abonos nitrogenados, parece ser el sulfato amónico más conveniente que el nitrato sódico, pero no se ha deducido nada definitivo.
- 6.ª Aun contando con las fluctuaciones impuestas por las circunstancias ecológicas de cada año, puede decirse que la recolección hecha a los tres meses del transplante es la más rica en alcaloides.
- 7.3 La hoja recogida por la mañana posee un porcentaje alcalóidico más elevado que la de la tarde.

Visto que en el rendimiento cuantitativo en hoja fresca se muestra superior el nitrato sódico al sulfato amónico, y que, al contrario, en la riqueza de la droga éste es de acción menos eficaz que aquél, vamos a relacionar ambos factores para deducir el rendimiento total en principios activos, en la primera cosecha, tanto de la variedad espinosa como de la inerme, por ser la única en la que los cuatro valores resultaron estadísticamente significativos:

	Cosecha por	Ha. en kgs.	u/ ₀	Total
Tratamientos	Hoja fresca	Ноја чеса	de alcaloides	de alcaloides en kgs.
1.º Variedad espinosa ·				
300 kgs. por Ha, nitrato sódico	3,611	578	0,262	151,44
250 kgs. por Ha. sulfato amónico	2,485	398	0,164	65,27
2.º Variedad inerme				
300 kgs. por Ha, nitrato sódico	3.235	518	0,176	91,17
250 kg . por Ha. sulfato amónico.	2.310	370	0,290	107,30

Se ve que respecto a la producción total de alcaloides por hectárea tampoco se llega a una conclusión clara, ni respecto a la variedad ni a la clase de abonado nitrogenado más conveniente.

En resumen, considerados los rendimientos del estramonio, tanto en cantidad como en calidad, resultan las siguientes

CONCLUSIONES GENERALES:

- 1.ª No es conveniente el cultivo del estramonio en secano.
- 2.ª En cantidad de hoja, es más productiva la variedad espinosa que la inerme, pero en porcentaje alcalóidico es probable lo contrario. Determinada la cantidad de alcaloides por hectárea, tampoco se obtiene una conclusión clara.
- 3.º La extirpación de flores eleva el rendimiento, tanto en cantidad como en calidad.
- 4.ª Los abonos nitrogenados son los que producen mayor incremento en hoja y en riqueza alcalóidica.
- 5.ª El nitrato sódico da más cantidad de hoja que el sulfato amónico, en tanto que éste parece ejercer más influencia sobre la formación de alcaloides.
- 6.ª Como orientación aproximada, sometida a las fluctuaciones impuestas por las circunstancias ecológicas de cada año, puede decirse que la recolección hecha de los sesenta a noventa días del transplante es la más productiva en cantidad y calidad.
- 7.º La hoja recogida por la mañana posee un porcentaje alcalóidico más elevado que la de la tarde.

DATOS CULTURALES

De los datos y experiencias culturales recogidos durante el período 1939-1943 se deduce que el cultivo del estramonio debe efectuarse del modo siguiente:

Preparación del semillero: Durante el mes de enero en cajonera, bajo chasis acristalado. Cama caliente, hecha a base de una capa de estiércol fresco de caballo de 50 cms. de espesor, recubierta de otra de mantillo de 10 cms.

Cantidad de semilla que hay que sembrar para tener planta suficiente para un área: 10 gramos en 1/2 m.².

Siembra en semillero: Mediados de febrero.

Nascencia: A los quince-veinte días de la siembra.

Densidad media: 25 plantas por dm.².

Preparación previa del terreno: Una labor en febrero, seguida de un gradeo; otra en abril.

Abonado: Conviene nitrogenado. Si se incorpora sulfato amónico, se aprovechará la labor anterior al transplante.

Transplante: Mediados de abril, a los sesenta días de la siembra.

Marco de plantación: 1 × 0,80 metros (125 plantas por área).

Reposición de marras: Dos, una a los quince días y otra a los veinticinco del transplante.

Abonado en cobertera: De emplear nitrato sódico en cobertera, se distribuirá después de la última reposición.

Extirpación de flores: Hay que empezar a primeros de mayo, repitiéndola semanalmente.

Riegos: Uno con la segunda labor preparatoria; otro, después del transplante y de cada marreo, éstos muy ligeros; luego, los que exige el año, dando forzosamente uno a continuación de cada recolección de hoja. Por término medio, ocho riegos anuales.

Binas: Generalmente, dos.

Escardas: Las que exige el año; por término medio, dos.

Recolecciones: Una a primeros de julio, a los setenta-ochenta días del transplante, y otra a fines de agosto. A mano.

Peso de mil semillas: 8,14 gramos. Número de semillas por gramo: 122.

Germinación óptima: 87 por 100 a los catorce días, a la oscuridad y temperatura alternativa de 20°-30°.

Este es el resumen de los estudios realizados sobre estramonio en el quinquenio 1939-1944 y que figuran con todo detalle en las respectivas Memorias anuales presentadas a la Superioridad. El trabajo correspondiente al año 1942 se ha publicado en el «Boletín del Instituto Nacional de Investigaciones Agronómicas», cuaderno núm. 41, mayo de 1944, con el título de «Contribución núm. 3 al estudio de plantas medicinales productoras de alcaloides».

HYDRASTIS CANADENSIS L. (1)

Preámbulo

La importancia del Hydrastis canadensis L., como agente terapéutico, está universal y oficialmente reconocida, como lo demuestra el hecho de haber sido adoptado por casi todas las farmacopeas.

La acción farmacológica de sus derivados galénicos, debida principalmente a la hidrastina, pero en parte también a la berberina y canadina, es tanto más interesante cuanto que no puede ser sustituída por la de los principios activos aislados antes mencionados. Por ello y por ser fuente sobre todo de hidrastina, se interesan todos los países por la posesión de dicha especie, de cuyo rizoma se obtienen sus preparados galénicos, de uso tan frecuente por la seguridad en sus efectos.

Los ensayos de aclimatación que de esta planta norteamericana se han realizado, hasta ahora, en Europa, aunque de resultados variables, pueden estimarse, en conjunto, alentadores. Por lo que a nosotros respecta, el éxito ha coronado la empresa, pues los rizomas de que se partió para conseguir dicha aclimatación dieron plantas de desarrollo normal, no sólo en su parte aérea, sino en rizoma y raíces y, lo que es más importante, una riqueza en hidrastina que satisface las exigencias de nuestra Farmacopea.

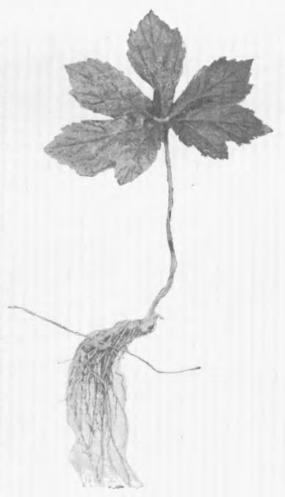
SINONIMIAS

El Hydrastis canadensis L. se denomina rizoma de Hydrastis del Canadá, sello de oro, raíz de oro, raíz amarilla, raíz para los ojos, frambuesa de tierra, remedio de oro, colorete indio, cúrcuma salvaje, cúrcuma de Ohio, además de otros nombres (cúrcuma, turmeric de la India, turmeric salvaje, etc.), cuya denominación no es aconsejable, por inducir a confusiones con el rizoma de Cúrcuma longa L. (Cúrcuma tinctórea Gui-

⁽¹⁾ El estudio completo agronómico-farmacognósico, hecho en colaboración con el Profesor César González Gómez, se ha publicado en el núm. 1, noviembre de 1942, de «Farmacognosia», Anales del Instituto José Celestino Mutis, del Consejo Superior de Investigaciones Científicas.

bourt), que es la cúrcuma verdadera, espontánea y cultivada en la India, Ceylán, Java, Bengala y China.

Su denominación en otros idiomas es la siguiente: Al., Hydrastis-rhizom; Fr., Rhizome d'hydrastis; Ing., Goldenseal root y yelow root; It., Rizoma d'idraste; Port.


Rhizoma de hydrastis.

Consignemos que el color amarillo lo debe esta cúrcuma, que en ocasiones falsifica al polvo de Hydrastis, a la materia colorante amarilla llamada curcumina, base del papel de cúrcuma, mientras que el Hydrastis lo debe fundamentalmente al alcaloide del mismo color llamado berberina, que después estudiaremos y que está muy difundido en el reino vegetal.

HISTORIA.

Los indígenas y primeros colonizadores de la parte oriental de América del Norte emplearon los rizomas como medicamento contra las inflamaciones de la boca y ojos, así también como tónico amargo para combatir los trastornos funcionales de estómago e hígado. Igualmente utilizaron su jugo como tintura para el cutis y los vestidos.

En el herbario formado por el capitán Lewis durante su expedición a las fuentes del Missouri y a lo largo

Un ejemplar de Hydrastis, de dos años de edad. (Foto S. P. M.)

de las costas del Pacífico, aparece un ejemplar de Hydrastis, recogido el 24 de mayo de 1804, con una nota escrita por dicho historiador referente al uso de esta planta en Kentucky y otras regiones del Oeste.

Su interés comercial puede decirse que comienza en el año 1860, en que se inicia la demanda mundial de tan interesante material farmacéutico. Desde esta época comienza una progresiva elevación del precio de esta droga hasta el año 1920, en que llegó a pagarse seis dólares la libra de 454 gramos, sufriendo posteriormente diversas oscilaciones, según las diferentes condiciones del mercado. Al iniciarse el actual conflicto mundial se cotizaba alrededor de los cuatro dólares la libra.

El rizoma espontáneo ha sido recolectado tan intensamente y sin precaución alguna en su país nativo, que en la actualidad no basta a satisfacer las necesidades comerciales.

La propagación natural es lenta y aun en circunstancias favorables las plantas son eliminadas por la invasión de vegetación más vigorosa en las zonas de bosques desaparecidos o roturados, pues anticipemos que la planta necesita protección especial, singularmente de la luz, para su crecimiento. Esta escasez, tan acentuada, del producto natural, ha obligado a su cultivo, que en los Estados Unidos se realizó de un modo tan desmedido que ha repercutido en la desvalorización de la droga.

También pueden ser aprovechables en el comercio las hojas y tallos, pues, como veremos, son ambas partes portadoras de los mismos principios activos contenidos en el rizoma, aunque en menor porcentaje.

ORICEN EGTÁNICO Y GEOGRÁFICO

Este rizema medicinal es suministrado por la especie Hydrastis canadensis L. Pertenece a las Angiospermas, clase Dicotiledóneas, subclase Arquiclamídeas, orden Ranales, familia Berberidáceas, por tener flores hermafroditas, periantio trímero, androceo de infinitos estambres y ovario monocarpelar y biovulado. Esta clasificación es de acuerdo con Engler. Otros autores la incluyen entre las Ranunculáceas.

Es originaria de los bosques sombríos, saneados y ricos en humus del Canadá y de la zona de los Estados Unidos comprendida entre el Sur de Nueva York, particularmente Minnesota y Oeste de Ontario, hasta el Mediodía de Georgia y Missouri, subiendo en altitud conforme se acerca a este límite Sur. Los principales centros de producción del Hydrastis han sido Ohio, Indiana, Kentucky y Oeste de Virginia; esto no quiere decir que algunas localidades, como el Sur de Illinois y Missouri, Norte de Arkansas y Tennesee, en su región Centro y Oeste, hayan suministrado también cantidades estimables de rizoma.

DESCRIPCIÓN DE LA PLANTA

Es una especie vivaz, cuyo aparato vegetativo consiste en un rizoma corto con numerosos raíces y un tallo aéreo. El rizoma produce largos estolones (30-45 cms.), delgados y frágiles, que tienen yemas adventicias que, como vereinos, pueden utilizarse en la propagación de la especie, puesto que, al desarrollarse aquéllas, dan unas veces plantas floríferas idénticas a la madre y otras estériles. Además, cerca de la hase del tallo o tallos brotados del rizoma se forman generalmente dos yemas de invierno que perpetúan el crecimiento en la primavera próxima; es co-

rriente que sólo brote una de dichas yemas, mientras que la otra actúa como reserva para los casos de destrucción accidental de la parte aérea de la planta, caso comprobado por nosotros, como más adelante se indicará.

El rizoma y las raíces tienen el color amarillo ya consignado y fundamento de alguno de sus nombres vulgares más significativos. El tallo aéreo es cilíndrico, alcanza unos 40 ó 50 cms. de altura, pubescente, sobre todo en su base, con pelos unicelulares largos y distanciados, de color verde rojizo, bifurcándose en su parte superior, donde lleva generalmente dos hojas (alguna vez una o tres), una grande y la otra pequeña. Una de las ramificaciones del tallo termina por la hoja grande, sentada, y la otra por la pequeña, peciolada, y la flor solitaria, sobre una prolongación de dicho peciolo, que está generalmente provisto en su base de dos pequeñas glándulas. Las hojas tienen una anchura media, en estado adulto, de 15 a 20 cms., y son palmeadas, pubescencia igual a la del tallo, con cinco a nueve grandes lóbulos agudos, desigualmente dentadas y con nervios fuertemente prominentes. En el momento en que aparece la flor, están dichas hojas incompletamente desarrolladas y fuertemente plegadas, pero a medida que avanza la floración se despliegan. siendo relativamente delgadas. La hoja superior envuelve a la yema floral. La floración aparece hacia abril o mayo y dura pocos días (cinco o seis). La flor es de un blanco verdoso, pequeña, y pierde en el momento de la antesis los tres sépalos petaloides. Tiene de 40 a 50 estambres libres, insertos sobre un receptáculo carnoso y convexo, más largos que los carpelos. Estos son también libres, en número de cinco a doce, uniloculares, con dos óvulos anatropos, ovales, lampiños, terminados en su parte superior en un estilo corto, cuyo ápice se dilata en dos lóbulos laterales, papilosos y franjeados. El fruto, carnoso, es un agregado de bayas que madura en julio o agosto y adquiere entonces color rojo vivo, recordando a la frambuesa, por lo que se le da uno de los nombres consignados en la sinonimia. Las semillas son pequeñas, redondeadas, brillantes, lisas y negras, y en número de cinco a veinticuatro, una o dos por baya. Contienen aquéllas un albumen carnoso, que en su parte superior aloja un pequeño embrión, recubierto todo ello por un tegumento espeso. La persistencia de la parte aérea de la planta está en relación con el grado de humedad; si ésta es grande, puede durar aquélla hasta el invierno; pero si el grado higrométrico es menor, muere inmediatamente después de la maduración de los frutos, de tal modo que a final de septiembre no subsisten vestigios externos de la planta. Esto último es lo que precisamente ha ocurrido en los ensayos efectuados por nosotros en la parcela de la Casa de Campo, de Madrid.

El Hydrastis se desarrolla espontáneamente en colonias densas, extendiéndose sobre áreas considerables, con preferencia en los bosques de hoja caediza (arce, tilo, haya, etc.) y bien sombreados, en las vertientes de las colinas, por ofrecer un drenaje natural. No se encuentra esta especie en lugares húmedos, estancados, cenagosos ni en terrenos pedregosos. Conviene, pues, puntualizar que el Hydrastis, para prosperar bien, exige un suelo arenoso o incluso algo arcilloso, pero siempre que sea mullido y muy rico en humus, nunca calizo. En terrenos de tal naturaleza las raíces y los estolones penetran en todas direcciones, de preferencia en las de menor resistencia. El Hydrastis, para llegar a su completo desarrollo, a partir de la germinación de la semilla, exige de tres a cuatro años, razón por la cual se prefiere utilizar para su multiplicación los fragmentos de rizoma, aunque puedan emplearse también los estolones y las semillas. Aunque Podgorodetsky consiguió rizomas de seis años en huen estado, generalmente mueren a los cuatro, bien destruyéndose o fragmentándose naturalmente en trozos que originan nuevos individuos.

Cultivos

Dada la importancia que el rizoma de Hydrastis tiene desde el punto de vista terapéutico, como veremos después, consideramos del mayor interés el estudio de su aclimatación. Para que ésta pueda merecer tal calificativo, es decir, para que sea completa, la planta de que se trate debe vegetar en el nuevo lugar sin cuidados especiales distintos de los que es le daban en el país de origen, ha de vivir en armonía con la flora local y reproducirse espontáneamente. Por tanto, para que tenga resultados prácticos, todo desplazamiento tiene que hacerse dentro de límites bastantes estrechos, si no en el espacio, sí en lo relativo a la variación de medio. Precisa, pues, realizarse, como labor preliminar, una confrontación entre las condiciones de clima y suelo del país originario y aquel en el que se intenta la aclimatación. Dicha tarea fué iniciada el año 1935, y no encontramos datos precisos, pues la bibliografía consultada adolecía de insuficiencia, tanto en las observaciones meteorológicas como en el aspecto agrológico, fitogeográfico y ecológico, que si hacían incompleto el conocimiento de las exigencias del Hydrastis en el país de origen, menos podían satisfacer la avidez del presunto importador. No obstante, de la recopilación de todos estos datos llegamos a la conclusión de que, si bien las incógnitas que quedaban por descifrar mantenían cierta incertidumbre en el resultado de la empresa, ésta, lejos de ser aventurada, ofrecía muchas probabilidades de éxito, a pesar del carácter vivaz del Hydrastis, que hacía más difícil el problema, pues la adecuada aclimatación de una especie anual sólo requiere condiciones favorables a su desarrollo durante los meses que dura su período vegetativo, librándose del peligro que para las vivaces implican los rigores de los períodos invernal y estival.

Suspendidos en este punto los trabajos durante el período 1936-39 que duró nuestra guerra de liberación, y creado el Servicio de Plantas Medicinales de la Dirección General de Agricultura en 1940, se solicitó del Ingeniero Agregado en la Embajada de España en Wáshington, don Miguel Echegaray, el envío, entre otras, de una pequeña cantidad de semilla de Hydrastis canadensis. No obstante el interés que dicho Ingeniero puso en las gestiones, no se consiguió semilla, pero sí rizomas, de

los que a fines del mismo año se recibieron 400. El número, pequeño, y la clase de órgano multiplicador remitidos eran, si no nuevos inconvenientes para la aclimatación, factores retardadores de la misma.

En efecto, al no conocer suficientemente las exigencias de la nueva especie introducida, conviene cultivarla en lugares diferentes y con perseverancia, sin considerar los primeros éxitos o fracasos como definitivos. Además, mientras que el vegetal en cuestión es joven y de reciente introducción, su vida está más en peligro por ciertas diferencias ambientales cuyo efecto será cada vez menor en individuos desarrollados y aclimatados por completo; por ello convendría un remanente de material ensayado para subvenir a estas probables pérdidas. Otra razón: los ejemplares transportados de uno a otro Continente tardan siempre cierto tiempo en acomodarse al ritmo de las estaciones de su nuevo medio, y durante los primeros años la probable iniciación extemporánea de la vegetación implica mayores peligros, por heladas, excesivo calor o insolación, escasa o demasiada humedad, etc.

En segundo lugar, hubiera sido preferible partir de semillas y no de rizomas, ya que los individuos procedentes de semilla presentan frecuentemente cierta diversidad de formas y exigencias que hacen más amplio el campo sobre el que ha de actuar la selección natural y bastará que ésta deje una sola forma entre cientos para haber logrado la adaptación. En cambio, las variedades por vía ágama son más escasas y lentas y por ello la aclimatación de una especie introducida de este modo es más larga, y siempre que ello sea posible, deberá procurarse el refrendo de los resultados conseguidos con el empleo de las semillas producidas por las plantas importadas o las obtenidas de sus partes.

Planteado, pues, el problema de la aclimatación del Hydrastis, partiendo de escaso número de rizomas, no había posibilidad de iniciar el estudio simultáneamente en situaciones varias, por lo cual se concentraron todos lo sesfuerzos a conseguir en un solo sitio un a modo de vivero que facilitara posteriormente el material de multiplicación necesario para ir ampliando los ensayos. Para buscar este lugar adecuado hubo que analizar las condiciones requeridas por el Hydrastis referentes a clima, suelo, iluminación y cuidados culturales.

Antes de seguir creemos oportuno advertir que en su país natal es muy corriente cultivar el Hydrastis asociado con el Ginseng (Panav quinquefolium L.), por tener ambas especies las mismas exigencias y encontrarse espontáneas en zonas de características semejantes. No obstante, parece ser el Hydrastis de cultivo menos difícil que el de la mencionada Araliácea, aparte de ser menos sensible a enfermedades (ataques de Alternaria, etc.), y a la acción de los roedores. Pero si comparado con el de esta especie es el cultivo del Hydrastis más fácil, equiparado con el corriente hortícola es mucho más delicado, al requerir cuidados especiales y requisitos numerosos en todas sus fases vegetativas.

Con objeto de hacer más económico su cultivo, se pensó en iniciar la aclimatación simultánea del Hydrastis y del Ginseng y, a tal fin, los

rizomas de Hydrastis vinieron acompañados de una pequeña muestra (seis gramos) de semilla de Ginseng, de la que se sembraron tres gramos en cama caliente bajo chisis y otros tres en semillero al aire libre, no germinando ni una sola semilla. Pasadas las actuales circunstancias internacionales se intentará nuevamente la aclimatación de esta especie.

CLIMA

La zona de procedencia del Hydrastis, en la cual se iniciaron por el Departamento de Agricultura de los Estados Unidos los ensayos culturales en 1899, ofrece climatológicamente ciertas coincidencias con la de nuestra Patria, especialmente su mitad septentrional, por encima de los 40° de latitud. Sus características generales corresponden a las propias de los climas templados, es decir, que en el aspecto térmico hay que registrar una amplia oscilación anual sencilla, estios calurosos cortos e inviernos de duración e intensidad creciente con la altitud. Con relación a los valores pluviométricos, la estación cálida es interrumpida por lluvias onvectivas de carácter tormentoso, durante los inviernos y estaciones ce transición, en que llueve por la influencia de las depresiones que, procedentes de los océanos, penetran en los Continentes, creciendo con la latitud la frecuencia de estas depresiones, y en el invierno, el período seco es tanto más largo cuanto más alejada está la zona de cultivo de las costas occidentales, efecto de la influencia anticiclónica de los respectivos Continentes.

TERRENO

Respecto a terreno, ya hemos visto que crece espontáneo en suelos arenosos o algo arcillosos, pero mullidos y ricos en humus, bien saneados y nunca calizos. Los suelos dedicados a este cultivo en Norteamérica están bien abonados, ya naturalmente por la incorporación de la materia orgánica procedente de las sustancias vegetales en descomposición, propia de los bosques de hoja caediza, o bien con abonado artificial, para lo que es corriente emplear en las comarcas productoras yanquis harinas de hueso o de semilla de algodón en dosis de unos veinte kilogramos por área, con la ventaja de no incorporarse con ellas al terreno semillas de malas hierbas. A estas sustancias suele añadirse una fuerte cantidad de sulfato potásico, alrededor de cinco kilogramos por área. En cambio, Sabalistsch-ka opina que este abono es perjudicial.

Según Perrot y Gatin, en otras zonas norteamericanas también se utilizan otros abonos minerales, siendo una fórmula bastante generalizada la de dos-tres kilogramos de kainita (22,6 por 100 de cloruro potásico; 19,4 por 100 de sulfato magnésico; cloruro sódico, sulfato cálcico, etcétera) o medio kilogramo de cloruro potásico, mezclado con tres kilogramos de superfosfato de cal, por área de terreno. Por supuesto,

no se precisan abonos nitrogenados, ya que el humus almacena suficiente cantidad de reservas asimilables de dicho elemento.

Estos fertilizantes se incorporan al terreno de quince a veinte días antes de la plantación. En cambio, se emplea poco el estiércol de cuadra descompuesto, por ser opinión de aquellos agricultores que, si bien estimula el desarrollo de la vegetación, añadido al suelo a fines del invierno, a veces acelera la destrucción de la parte aérea del Hydrastis. Si se trata de suelos compactos, entonces se añade una capa de mantillo hasta de un metro de espesor, a veces sola y en ocasiones mezclada con la cuarta parte de arena. Disponen también los agricultores norteamericanos la tierra

Un aspecto de la plantación de Hydrastis. (Foto S. P. M.)

en caballones, pero debe cuidarse, si el cultivo se establece en una zona donde sea aconsejable el secano, de que dichos caballones tengan el declive suficiente para que escurra el agua de lluvia sin que por ello quede mucha tierra expuesta a la evaporación.

Consideradas, pues, las condiciones óptimas del terreno para el cultivo del Hydrastis, se dió una labor de cava de unos 25 centímetros a la parcela destinada a tal efecto en el campo de experiencias del Servicio de Plantas Medicinales de la Dirección General de Agricultura, previamente estercolado con estiércol de caballo descompuesto, a razón de 50.000 kilogramos por hectárea, en contra de la opinión corriente en Norteamérica y que antes hemos expuesto; pero téngase en cuenta que el

terreno en que se iba a hacer el ensayo no reunía las condiciones exigidas, especialmente en lo referente a materia orgánica y acidez y realmente había que crear un suelo apropiado. Dada la poca planta de que disponíamos, en este primer ensayo se prescindió de estudiar la acción de los abonos fosfatados y potásicos, que se iniciará cuando se disponga del material necesario para poder plantear la experiencia en magnitud suficiente para que puedan eliminarse de los resultados los errores debidos a causas ajenas al abonado.

Separadas cuidadosamente piedras, raíces y malas hierbas, un mes antes de efectuar la plantación se incorporó al suelo una capa de mantillo de hoja bien descompuesto y de unos 40 cms. de espesor, práctica que debe repetirse todos los años. Así quedaron modificadas convenientemente las propiedades físico-químicas del suelo propio de la parcela. En cambio, la poca riqueza en cal y lo saneado del terreno fueron circunstancias favorables al cultivo.

ILUMINACIÓN

Hemos indicado, al hablar de la zona originaria de esta planta, que aparece en bosques sombríos, lo que demuestra que es muy interesante estudiar su comportamiento respecto a la mayor o menor iluminación. Como en nuestro caso no se disponía de ninguna zona con sombra natural tupida, hubo de crearse una artificial, y al no tener suficientes rizomas para ensayar los diferentes procedimientos (cobertizos de tablas, latas, zarzos, varas, cañas, mimbres, juncos, arpilleras, etc.), hubo que decidirse por un solo tipo.

El más corriente en los Estados Unidos se construye a base de armaduras de madera, sobre las que se dispone una techumbre en forma de persiana, de modo que se pueda graduar a voluntad la iluminación del terreno así protegido. Variable la luminosidad según que la localidad sea más o menos septentrional o meridional, se considera, sin embargo, como dato práctico aconsejable dejar pasar en el verano una cuarta parte de los rayos solares, y de acuerdo con ello se calcula la sombra conveniente en primavera.

Esta techumbre de persiana resulta cara para grandes extensiones. Por otra parte, estimamos que en nuestro clima no es preciso una regulación tan exacta de la iluminación para la buena marcha vegetativa del Hydrastis y que bastaría una sombra conveniente, aunque constante. A tal fin, y con objeto de que el cobertizo fuera lo más económico posible, se aprovecharon unos pies derechos y cañizo de albañilería encontrados ambos entre las ruinas de las edificaciones de la parcela a raíz de terminar nuestra guerra de liberación. Con ambos materiales se construyó el tinglado protector de nuestro cultivo.

Ahora bien, si es preciso prevenir esta Berberidácea contra una luminosidad excesiva, ello no debe estar en contradicción con la ventilación de que dispone, por otra parte, la planta espontánea que crece en el bosque. Por esto, en todo sistema de sombra artificial, debe procurarse la libre circulación del aire, muy particularmente en tiempo húmedo o nublado. Aparte de las luz cenital, las orientaciones en las que más interesa la sombra son las del Sur y la de Poniente; luego los lados Norte y Este del cobertizo deberán estar provistos de las suficientes aberturas para que corra el aire libremente y que esta corriente no esté entorpecida ni por edificaciones próximas ni siquiera por cultivos y plantaciones, a no ser que tuvieran por misión suministrar la sombra necesaria.

La altura del cobertizo debe igualmente armonizar al sombra conveniente con la ventilación adecuada, además de permitir realizar con comodidad las labores necesarias. Cuando se trate de zonas de vientos fuertes, convendrá resguardar las tiernas plantitas con setos o matorrales, dispuestos a unos metros de distancia del cultivo en la dirección del viento dominante.

De acuerdo con todas estas consideraciones, el tinglado construído con los materiales ya mencionados, en la parcela de la Casa de Campo, se compone de tres armaduras formadas por nueve pies derechos y los listones necesarios para hacer de correas y pares, cubiertas después ambas vertientes de la techumbre con cañizo. La ventilación se logró, estudiada la dirección del viento dominante, con aberturas dejadas en los lados Norte y Sur, dos en la primera y en la segunda tres, una de ellas con puerta de cañizo, practicable. Las cuatro aberturas indicadas se obturaron con red metálica de un metro de altura sobre el suelo y 0,5 metros enterrada en él, con objeto de evitar los daños causados por conejos, ratones o topos. La fachada Oeste quedó totalmente cerrada, también con caúizo, y la oriental sólo con red metálica. La pared meridional se dejó con tres aberturas, porque unos grandes castaños que existen a unos cinco metros de distancia la dan tupida sombra casi permanentemente.

Muy interesante juzgamos el estudio de plantas cuyo cultivo pudiera asociarse al del Hydrastis y, a la vez, le dieran la sombra necesaria : árboles frutales, parras, lúpulo, judías o guisantes de enrame, tec. Tan pronto como dispongamos de planta suficiente, iniciaremos dichas experiencias, pues de conseguir una planta protectora conveniente, se disminuirían considerablemente los gastos de cultivo del Hydrastis, cuya partida más onerosa es la de constitución de la sombra artificial.

PROPAGACIÓN

El Hydrastis se propaga por semilla, por estolones provistos de yemas adventicias o por rizomas.

No abunda mucho la semilla de Hydrastis en la Naturaleza, tanto por quedar dificultadas las fructificaciones ante la densa vegetación de las manchas espontáneas, como por su destrucción por aves, roedores, etcetera. Cuando las semillas proceden de pies cultivados, el número de frutos obtenidos es más numeroso, debido al mayor esparcimiento de las plantas y a estar algo más resguardadas del ataque de animales. Pero,

además, los agricultores no son partidarios de este modo de multiplicación, porque aun conseguidas las semillas, no es fácil su germinación. En efecto, unas veces se desecan antes de la siembra y otras fermentan rápidamente la parte carnosa de las bayas, cuyo conjunto forma el fruto agregado característico de esta especie; en ambos casos se produce una considerable disminución del poder germinativo.

Para evitar esto se aconseja recoger estas infrutescencias cuando empiecen a tomar el color característico de su madurez, sin esperar a que éste sea completamente rojo vivo. Entonces se exprimen lo suficiente para eliminar la pulpa sin dañar las semillas, y el residuo, constituído por éstas y restos de la piel, se mezcla con diez veces su peso de arena fina, disponiendo la mezcla en capas estratificadas en una caja que desagüe bien. Es muy conveniente guardar la proporción indicada entre la arcna y las semillas, pues si éstas se estratifican, con poca arena fermentan con facilidad. La capa superior se cubre con una red metálica de malla muy fina, y dicho cajón se guarda en un local fresco y algo húmedo; no es aconsejable la práctica de enterrarla en la tierra en un sitio bien saneado y sombrío. Del modo indicado los residuos adheridos a los granos se pudren en poco tiempo y quedan las simientes en libertad, con su humedad natural, turgentes y brillantes.

Otros agricultores efectúan la estratificación mediante disposición de las semillas en capas alternadas de arena fina y mantillo, éstas más espesas que aquéllas. Nunca es aconsejable sembrar frutos enteros, primero, porque es muy fácil la fermentación y, además, porque aun en el caso de que germinaran las semillas, nacerían muy juntas las plantitas y se dificultarían en su vegetación.

Así preparadas estas y separadas de la arena fina, se realizará la siembra hacia fines de septiembre o primeros de octubre, en semillero bien preparado, a base de una capa de mantillo de unos treinta centímetros de espesor, circundado aquél en todo su perímetro por una valla de tabla o red metálica de unos veinte centímetros de altura sobre el suelo y otro tanto enterrada, con objeto de dificultar el ataque de topos o ratenes.

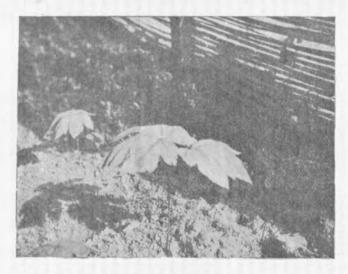
La distribución de la semilla puede hacerse a volco o a golpe, separados éstos de unos dos a cinco centímetros dentro de cada línea y éstas, entre sí, a unos quince centímetros. Apretadas un poco las semillas con una tabla contra el suelo, se recubren con otra capa de mantillo de unos dos centímetros. Iniciado el invierno, si el clima es frío y son de temer heladas, conviene cubrir el semillero con una buena capa de mantillo, musgo, serrín, etc.; en caso de que no sean tan bajas las temperaturas presumibles, bastará disponer sobre el tablar sacos o arpilleras que mantengan la humedad y eviten la acción directa del agua de lluvia sobre lo sembrado, bien por goteo de los árboles o de la cubierta protectora, si se tratare del caso de sombra artificial.

Efectuada así la siembra, o si ella fué natural (al caer espontáneamente los frutos maduros al suelo, en julio o agosto), en la primavera siguiente, a mediados de abril o primeros días de mayo, nacen las plantitas en una proporción media de un 30 por 100. Pasan por las siguientes fases:

- 1. Aparece la plantita con dos cotiledones orbiculares, de peciolos largos, que se continúan por una débil radícula. Durante este primer año sólo se observa el aumento de tamaño de estos órganos. Dichos cotiledones se hacen brillantes, de color verde esmeralda y alcanzan su tamaño máximo (8-12 cms. de diámetro) a las tres semanas, aproximadamente, siendo los peciolos entonces gruesos y largos y la radícula también más larga, aunque continúa débil. En esta edad los cotiledones son ligeramente escotados, con tres nervios en la base; los peciolos son un poco pubescentes, a veces divergentes e insertos sobre la raíz, a unos seis-doce milímetros debajo de la superficie. En agosto-septiembre, la plantita posee algunas raicillas fibrosas insertas a intervalos regulares sobre una raíz algo más gruesa, de la que parte una pequeña yema amarilla de unos cuatro mms. de longitud, aproximadamente.
- 2." Dura de uno a dos años. El rizoma es pequeño, a veces cónico, y se continúa por la raíz del primer año y algunas raicillas fibrosas. No tiene todavía tallo, pero sí una simple hoja cordiforme, algo peltada, de cinco lóbulos doblemente dentados, con un peciolo cuya longitud tiene unos doce-quince cms., rodeado en la base por estípulas.

Si la siembra se efectuó en cajonera con cubierta acristalada, en climas benignos y en sitios bien sombreados durante el verano, pueden las plantitas dar hoja al final del primer año.

3.ª Dura indefinidamente. El rizoma es tortuoso, nudoso, y lleva raíces fibrosas de color anaranjado. El tallo, cuyo diámetro es de cuatro a seis milimetros, es recto, redondo, más o menos pubescente, púrpura en su porción aérea, amarillo en la subterránea, y mide unos quince a treinta centímetros de altura.


El Hydrastis, para llegar a este completo desarrollo, a partir de la germinación de la semilla, exige de tres a cuatro años, razón por la cual, para su multiplicación, se prefiere utilizar los fragmentos de rizoma, aunque pueden emplearse también los estolones y las semillas.

En la propagación por estolones hay que tener en cuenta que las yemas de los mismos, a veces poco visibles, están irregularmente distribuídas a lo largo de dichos tallos y a una distancia del rizoma que oscila entre los cinco y treinta cms.; como es natural, son más abundantes cuando proceden de plantas, bien espontáneas o cultivadas de varios años de edad. Aun cuando los ejemplares mayores pueden plantarse directamente en el sitio definitivo, lo corriente es colocarles a la sombra, en cajas o tablares de tierra ligera mezclada con mantillo, en proporción de 2 : 1 y a unos seis centímetros en cuadro unos de otros. Allí se mantendrán desde su plantación, en el otoño, hasta que, en la primavera siguiente, alcancen el tamaño necesario para efectuar el transplante, operación en la cual se cuidará de que el punto vegetativo de la planta quede enterrado, por lo menos, a unos dos a tres centímetros de profundidad.

El procedimiento con mayor frecuencia empleado es el de división del rizoma durante el período de vegetación suspendida. En efecto, cuando cae la parte aérea, a fines de verano o principio de otoño, al lado de la cicatriz que deja aquélla se forman dos o a veces más yemas, por lo que bastará cortar el rizoma en trozos que cada uno conserve una yema y algunas raíces bien desarrolladas.

Si los trozos destinados a la plantación están algo marchitos, se les debe poner algunos días en arena húmeda, con lo cual recobran su turgencia y su característico color amarillo.

Cuando se trata de multiplicar una plantación, pueden sacarse rizomas todos los años, a partir del segundo, y divididos en la forma indicada se conseguirá un 100 por 100 de incremento medio anual, mientras que

Detalle de una planta de Hydrastis, con la sombra artificial creada para su protección. (Foto S. P. M.)

el procedimiento de estolones produce un 65 por 100, y con la reproducción sexual o por semilla (ya hemos dicho que cada planta da de cinco a veinticuatro granos), sólo se logra, por término medio, un 30 por 100 de aumento con respecto a la primitiva siembra. Si se trata de la extracción de rizomas en edad de aprovechamiento (dos a cuatro años), pueden utilizarse todos los trozos que se saquen con yemas y el resto de los rizomas se desecará para su venta como droga. De esta manera puede multiplicarse dicho material en un 200 por 100 o más.

Como para la aclimatación del Hydrastis hubo de partirse de este último modo de propagación, una vez preparado el terreno y lograda la sombra, como antes se indicó, se plantaron los rizomas el 10 de marzo, en líneas a 40-50 cms. de distancia, y dentro de ellas aquéllos a 15-20 cen-

tímetros, con lo que ocuparon cuatro tablares de 5,80 \times 2 metros de superficie total cada uno.

Además, en la parte más sombría del campo de experiencias, pero sin que la protección contra la luz solar fuera grande (por supuesto, sin ninguna sombra artificial), se plantaron el mismo día otros 40 rizomas: 20 sobre un suelo elaborado a base de mantillo, en la misma proporción indicada anteriormente, y otros 20 sobre la tierra natural de la finca.

El día 30 de marzo empiezan a brotar plantitas en su tercera fase en los tablares protegidos, y a los dos días en la era de mantillo dejada al descubierto. El día 30 de abril habían nacido, en los primeros, el 98 por 100 de la plantación, y en la segunda, 15, o sea el 70 por 100.

Estas últimas continuaron bien su vegetación, aunque más amarillentas las hojas que las correspondientes a las plantas protegidas, hasta mediados de julio, en que se marchitaron, no obstante disponer el terreno de suficiente humedad. En marzo brotaron otra vez las 15 plantas, y hasta el momento de escribir esta monografía, continúa normal su vegetación. En cuanto a los rizomas puestos en el terreno natural de la parcela, no brotó ninguno.

CUIDADOS CULTURALES

No es exigente en labores el Hydrastis y sólo requiere que esté el suelo muy limpio de malas hierbas. Por lo demás, si la capa de mantillo bien descompuesto es espesa, no se precisa ninguna otra labor; pero si aquélla es delgada y el suelo forma costra durante el verano, convendrá dar una labor superficial, con objeto de romper la mencionada costra, sin dañar el sistema radicular y especialmente los estolones, que se encuentran enterrados someramente en el terreno.

Hemos comprobado en nuestro ensayo que la sequía perjudica mucho al cultivo del Hydrastis, ya que por ser su período vegetativo relativamente corto, no tiene tiempo suficiente para reponerse del efecto causado por la falta de agua. En consecuencia, los riegos son necesarios en momentos determinados de su ciclo. Nosotros dimos uno al efectuar la plantación (10 de marzo), y otros cuatro los días 15 de mayo, 8 y 28 de junio y 25 de julio, diez días antes de recoger los frutos. El 15 de agosto se regó el cultivo por última vez en el año. La intensidad de cada riego debe ser la suficiente para que quede bien embebida la tierra, pero nunca encharcada; en nuestro caso, se gastaba en cada riego a razón de unos 500 m.³ por hectárea.

Se siguió con todo cuidado la marcha vegetativa de la plantación protegida contra la luz. Aparte de los riegos indicados, se dieron tres escardas el 20 de mayo, 15 de junio y 25 de julio.

La floración se inició el 4 de abril, con las características indicadas en la descripción botánica de esta planta, y en una proporción de un 60 por 100. Perrot y Gatin aconsejan cortar las flores para obtener rizomas más gruesos. El 15 de mayo, un conejo se comió las hojas de unas 20

plantas y pateó otros tantos pies; casi al mes—20 de junio—rebrotan casi todas las plantas cuya parte aérea había sido comida, debido a que la otra u otras yemas restantes en el rizoma emitieron nuevamente tallo provisto de una, en las plantas estériles, y dos hojas en las fértiles. No obstante, la floración en los pies procedentes de esta segunda brotación fué muy escasa e irregular.

De las flores conseguidas fructificaron un 50 por 100, y a medida que el tiempo avanzaba, se fué perdiendo más fruto, que se desprendía de la planta sin enfermedad o plaga visibles, y no obstante contener el terreno suficiente humedad. El 15 de julio se inicia la coloración roja viva característica del fruto maduro. El número final logrado fué de 44, es decir, un 11 por 100. Se recogen conforme van llegando a tal estado, del 15 al 20 de julio. Se hicieron cuatro lotes de 11 frutos y se les sometió a los siguientes tratamientos:

- 1.º Un lote fué sembrado inmediatamente en 11 tiestos llenos de mantillo, un fruto entero en cada tiesto.
- 2.º En otro lote se exprimieron los frutos, sin dañar las simientes, y una vez mezcladas éstas con diez partes de arena fina, se estratificaron las semillas obtenidas en un cajón de madera, que se conservó en un sitio fresco y sombrío hasta el 1 de marzo siguiente, fecha en que se sacaron los granos y se sembraron en 10 tiestos llenos de mantillo.
- 3.º Sacadas las semillas de un tercer lote y separadas de la pulpa carnosa de las bayas, en la forma arriba indicada, fueron sembradas inmediatamente (1 de agosto), en otros diez tiestos llenos de mantillo.
- 4.º Por último, las semillas extraídas del modo indicado y estratificadas en arena durante el invierno, se sembraron el 1 de octubre siguiente en 10 tiestos llenos de mantillo, cinco de los cuales quedaron a la intemperie, y los restantes colocados en una cajonera acristalada.

Al redactar este trabajo no se ha logrado todavía la germinación de ninguno de los cuatro lotes de semillas así tratados, coincidiendo este resultado hasta ahora con el obtenido por el Profesor de la Universidad de Vilna (Polonia), Dr. Jean Muszynski, quien opina que es imposible en Europa la germinación de esta semilla.

Continuando el estudio de la marcha vegetativa de la plantación de Hydrastis durante su primer año, el 15 de septiembre se cubrió toda ella con una capa de follaje de unos veinte centímetros de espesor, y así pasó todo el invierno, práctica que conviene repetir todas las estaciones frías que dure el cultivo. La protección contra las heladas fué suficiente, pues el 28 de marzo empiezan a brotar las plantas, después de haber quitado el 1 del mismo mes la capa de follaje a mano y con mucha precaución para no estropear los rizomas aún sin parte aérea. No conviene retrasar la retirada del follaje, con objeto de que el calor dado por ella no haga brotar la planta prematuramente. También es oportuno en este momento examinar bien los tablares para ver si hay rizomas descubiertos por los topos o por lo acción de las heladas, en cuyo caso se volverán a enterrar cuidadosamente.

Del 1 al 8 de abril brotaron casi todas las plantas, es decir 393, el 98 por 100 de los rizomas que el pasado año se habían importado. El 9 de abril se ven las primeras flores, pero este año sólo florece el 4 por 100 de las plantas. La fructificación es total en relación con los pies florecidos, pero los agregados de bayas se desarrollan más lentamente que el pasado año, y al escribir estas líneas continúan engrosando los frutos, pero no hay ninguno en condiciones de recolección.

El aspecto sanitario de la plantación ha sido perfecto durante todo el plazo transcurrido desde la iniciación del período vegetativo, y este año no tuvo lugar ningún ataque de conejos, ratones o topos, aunque se tomó la precaución, contra los dos primeros, de alambrar las partes abiertas del cobertizo.

Como se ve. todas las consideraciones anteriores se refieren al cultivo del Hydrastis bajo la sombra artificial. Caso de intentarse en zonas naturalmente protegidas de la luz solar directa, conviene tener en cuenta que los árboles de porte elevado (haya, tilo ,arce, plátano, etc.) son más convenientes que los de talla reducida, y en ningún caso se emplearán especies coníferas. Según algunos autores, tampoco convienen los árboles de hojas muy ricas en tanino (roble, encina, etc.). La parcela donde piensa instalarse la plantación definitiva deberá labrarse uno o dos meses antes de realizar ésta, extirpando aquellas raíces de los árboles circundantes que, por estar algo someras, puedan perjudicar la posterior vegetación del Hydrastis; esta limpieza convendrá repetirla anualmente. No obstante la capa natural de hoja descompuesta que se encuentra en dicho terreno, como al dar la labor indicada se mezclará con el suclo propiamente dicho, convendrá echar otra capa de mantillo de unos treinta centímetros de espesor. En este caso, consideramos más necesario un abonado mineral, fundamental, a base de superfosfato de cal y sulfato potásico, que cuando se trate de un cultivo con sombra artificial, siendo la razón de ello la competencia que encuentran en las raíces arbóreas, respecto a la absorción de elementos nutritivos.

RECOLECCIÓN, DESECACIÓN Y CONSERVACIÓN

El rizoma adquiere su mayor valor comercial a los cuatro o cinco años de la germinación de la semilla o a los dos o tres, si la planta procede de división de rizomas o estolones. Sólo en caso de plantaciones excepcionales convendrá hacer la extracción el segundo año. A partir del cuarto empieza a descomponerse y fraccionarse el rizoma por su parte más vieja. Por tanto, el incremento en peso y tamaño experimentado durante el último año queda anulado por aquella división, y si ésta pudiera interpretarse como circunstancia favorable a la multiplicación de la especie, también ello queda contrarrestado por la menor calidad comercial de la droga, cuyas propiedades terapéuticas, que son las que le dan su valor en el mercado, se amenguan a partir del momento que pudiéramos llamar de madurez económica.

Establecida ya la edad conveniente para la recolección del rizoma, la época adecuada del año es en septiembre u octubre, una vez que se ha secado totalmente la parte aérea de la planta. Este rizoma, con la cabellera de raíces y estolones que a él quedan adheridos, retiene bastante tierra y basura, que debe eliminarse lavándole en agua con cuidado. Si interesa la multiplicación del Hydrastis, convendrá aprovechar los trozos de rizoma o los estolones con yemas antes de proceder a la desecación de la droga.

Como cifra media de producción por área puede darse la de 50-60 kilogramos de rizoma fresco en una plantación de cuatro años de edad. En las experiencias efectuadas por el Office of Drug Plant Investigations, de los Estados Unidos, se obtuvieron 5.000 libras de rizoma fresco por acre (56 kilogramos por área); no obstante, otros ensayos realizados en otras regiones norteamericanas han dado hasta más de 6.000 libras de droga no desecada para la misma unidad de superficie (67 kilogramos por área).

La pérdida de peso por desecación obtenida por nosotros en un ensayo hecho aún con poca cantidad de rizomas (por lo que sólo damos a esta cifra el valor de una primera orientación) fué del 70 por 100.

Para realizar bien la desecación se extenderán los rizomas en capa delgada sobre un pavimento seco y limpio, en enrejados de madera o en bastidores de tela metálica, siempre en sitio sombreado o en local cubierto, en este caso bien ventilado. La capa de rizomas conviene removerla, por lo menos, tres veces al día, durante el período de desecación, variable según el estado higrométrico de la atmósfera.

Cuando la desecación se efectúa al aire libre, convendrá amontonar por la noche los rizomas y protegerlos contra el rocío, mediante zarzos de paja, esterillas o lonas. Claro está que, en caso de lluvia, también se pondrán a cubierto. No conviene un secado demasiado prolongado, y por esto, si el ambiente es húmedo, es práctica aconsejable terminar la desecación en un local o desecador calentados a una temperatura de unos 30° a 35°.

La conservación de los rizomas, una vez bien desecados, se logra disponiéndoles sueltos en pequeños montones en sitios secos, aireados y protegidos contra plagas. Caso de que se envase en cajas o barriles, hay que tener la precaución de que la droga no haya absorbido nuevamente humedad (es poco higroscópica), si quiere evitarse el peligro de enmohecimiento.

ACCIDENTES Y ENFERMEDADES

El Hydrastis no es muy afectado por enfermedades. La más temible es la de la marchitez, causada por la forma conidiana (Botrytis), de un ascomiceto helotiáceo del género Sclerotinia, que en Norteamérica ha originado daños de consideración en los Estados de Nueva York, Ohio, Michigan, Indiana, Wisconsin, etc.

Los conidios mencionados constituyen un polvillo gris, de fácil dise-

minación. Aunque con frecuencia aparece saprofito sobre las plantas muertas o las sustancias vegetales en descomposición, actúa otras veces como parásito, cuando existe un ambiente confinado húmedo o poco aireado. Son atacados todos los órganos de la planta: rizomas, hojas, flores y frutos, pero especialmente las partes más tiernas, y los síntomas primeros del ataque son la marchitez de hojas y, a veces, la podredumbre de los peciolos.

Por el origen de esta enfermedad se ve que si se ponen en vigor los consejos dados para el cultivo del Hydrastis respecto a ventilación, sombra, cuidados culturales, etc., se prevendrá bastante el ataque de Botrytis. Si éste se produjera, bien por no guardar dichas precauciones o por ser la temporada excesivamente húmeda, es preciso emplear los fungicidas ordinarios, si bien su efecto no es en este caso decisivo; de mayor eficacia parecen ser las pulverizaciones con soluciones de sulfato sódico al 1 por 100 o carbonato anhidro de sodio al 0,5 por 100. También es muy recomendable recoger en el otoño toda la capa de mantillo u hoja que recubre las eras plantadas de Hydrastis, en el que pueden quedar esclerocios del mencionado hongo. Quemada dicha capa se regará el suelo con una solución de sulfato de cobre al 1 por 100 y después se extenderá una nueva capa de hoja o mantillo.

Conforme ya hemos observado nosotros, la sequía marchita hojas y tallos antes de la normal terminación de la vegetación anual, pero no afecta a las partes subterráneas. De acuerdo con esto, se indicó anteriormente la conveniencia del riego en momentos determinados.

Los topos también pueden perjudicar las plantas de Hydrastis, bien por ataque directo o al levantar el terreno para formar las galerías. Por esto hemos aconsejado en páginas anteriores rodear el terreno de tablas, latas o una tupida red metálica, enterradas parcialmente. Las babosas y lombrices de tierra a veces atacan igualmente a esta berberidácea, pero los perjuicios que pueden ocasionarla son escasos.

CARACTERES MORFOLÓGICOS Y ÓRNAGOLÉPTICOS

El interés fundamental de esta especie está en el rizoma y las raíces, que son las partes utilizadas en medicina, a consecuencia de ser los órganos que tienen mayor cantidad de alcaloides (hidrastina, berberina, canadina, etc.), portadores de la interesante acción farmacológica de este material, por lo que motivó su inclusión en casi todas las farmacopeas. La de los Estados Unidos indica que no debe tener tallo, hojas o materias extrañas o, si los hubiere, que no pasen del 2 por 100. Al estado seco este rizoma se presenta en fragmentos muy irregulares, de unos 3 a 10 milímetros de diámetro y unos 2,5 a 5 cms. de largo.

Son nudosos, más o menos ramificados y torcidos o plegados sobre ellos mismos. Su superficie exterior tiene un color gris-pardo oscuro, con un viso verde amarillento, rugosa longitudinalmente, mostrando finos anillos transversales que abarcan todo el rizoma. En la cara superior presenta claramente las cicatrices redondeadas, deprimidas en su centro, que recuerda las impresiones de los sellos, de donde deriva el nombre de sello de oro, con que se conoce vulgarmente la planta. Tales impresiones provienen de los tallos anulares y la más reciente conserva algunas veces restos de ellos, así como de catafilos; otras, más pequeñas, situadas en la cara inferior y en los lados del rizoma, son producidas por las raicillas. Estas, de 1 mm. de grueso y varios cms. de longitud, que en un principio acompañan al rizoma, después se desecan y se hacen duras y quebradizas, por lo que se rompen fácilmente y se desprenden de aquél, dejando solamente pequeñas protuberancias de fractura amarilla, que indican el

Planta de Hydrastis en la que destaca, sobre el fondo del papel blanco, el fruto, (Foto S. P. M.)

sitio de su inserción. Ello es el motivo de que con frecuencia se encuentren en el comercio rizomas casi desnudos. Tienen un olor aromático desagradable, nauseoso, y un sabor amargo y acre muy persistente, que provoca una abundante secreción salivar cuando se mastica. La fractura del rizoma, que es duro y se rompe en seco, es córnea y cérea, de color amarillo vivo o amarillo verdoso, que el yodo colorea en azul, a causa de la mucha fécula que contiene. El corte transversal del rizoma seco muestra de 4 a 14 (rara vez más; puede llegar hasta 20) hacecillos vasculares, de color amarillo pálido, estrechos y dispuestos radialmente, in-

cluídos en la masa amarillo-parduzca. Si el rizoma se ablanda en agua calienta, la corteza se torna esponjosa, de color amarillo pálido, con un espesor mitad del de la parte interna, de la que está separada claramente por el cambium, siendo ésta más oscura que la corteza, a excepción de la medula central. Humedecido el corte con floroglucina y ácido clorhídrico, las partes leñosas estrechas del cilindro central que caminan de la medula a la corteza, toman color oscuro y rojizo, que contrasta bien con los radios medulares, más anchos y de color más claro.

COMPOSICIÓN QUÍMICA

Las numerosas investigaciones químicas llevadas a cabo en el Hydrastis por gran número de autores han demostrado en él las sustancias siguientes: abundante cantidad de almidón, un aceite esencial, una resina, una sustancia fluorescente, fitosterina, y cenizas ricas en aluminio, que no deben pasar del 6 por 100 y su proporción en ácido silícico nunca del 1 por 100. Pero, sin duda alguna, la parte más destacada de su composición es la presencia de los alcaloides hidrastina (del 2,97 al 3,45 por 100);

berberina (del 2,45 al 3,35 por 100:

$$CH_3O = \begin{array}{c|c} & CH_2 \\ & & \\ & & \\ & & \\ CH_2 \\ & &$$

- 45 -

canadina o xantopucina:

hidrastina y meconina:

La hidrastina está en la droga total (raíz y rizoma), en parte libre (1,25 por 100) y en parte combinada (hasta 2,31 por 100). El rizoma aislado contiene alrededor del 2,85 por 100 y las raíces solas del 1,2 por 100. La droga comercial contiene del 10 al 15 por 100 de humedad.

Los trabajos de Podgorodetzky han revelado que un extracto líquido preparado con las hojas contiene hasta el 2,07 por 100 de hidrastina, por lo que dicho autor aconseja aprovechar las hojas, conviniendo resaltar que éstas son de más rápido desarrollo que el rizoma. Caso de utilizarlas, al recolectarlas de la planta debe guardarse la precaución de recoger sólo una de las dos hojas de cada pie, con objeto de no interrumpir el desarrollo de éste. Las determinaciones llevadas a cabo en los rizomas procedentes tanto de los cultivos de Norteamérica como de los ensayos realizados en Rusia en los años 1909 a 1914 han demostrado que los rizomas de primavera contienen, desecados, del 2,98 al 2,99 por 100 de hidrastina, en tanto que los de otoño contenían hasta 3,32 por 100.

Nuestras determinaciones se hicieron siguiendo el método gravimétrico de la Farmacopea española, que es el siguiente:

Quince grs. de rizoma pulverizado (número 26) colóquense en un frasco de cierre hermético de unos 250 c. c. de capacidad; agréguense 150 c. c. de éter y agítese fuertemente durante diez minutos; añádanse 5 c. c. de amoníaco y agítese la mezcla de tiempo en tiempo por espacio de una hora; agréguense 15 c. c. de agua, agítese de nuevo, para que se aglomere el polvo, y déjese reposar. Decántese el líquido etéreo claro, trasládense 100 c. c. de él (= 10 grs. del material) a una ampolla de se-

paración y agótesele por agitación sucesiva en tres porciones de 30, 20 y 10 c. c. de una mezcla de 1 parte de ácido clorhídrico y 4 partes de agua, recogiendo los líquidos de loción en otra ampolla; alcalinícese el total ácido con amoníaco y agótese de nuevo, agitándose tres veces con 30, 20 y 10 c. c. de éter, que se reunirán, pasándolos por un trocito de algodón hidrófilo, previamente lavado con éter, en un matracito Erlenmeyer, tarado de antemano; evapórese el éter con las precauciones convenientes, deséquese el residuo a 100°, déjese enfriar en un desecador y pésese. El peso del residuo, multiplicado por 10, expresa la hidrastina contenida en 100 grs. del material ensayado.

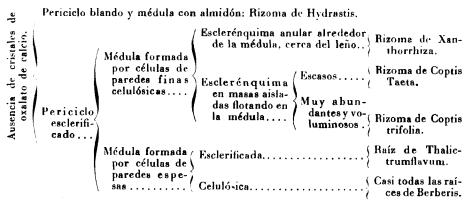
De este modo se ha comprobado que los rizomas y raíces del ensayo efectuado por nosotros en la Casa de Campo, de Madrid, recolectados en primavera, dan en conjunto y recién cogidos el 2,1 por 100 de hidrastina como media. Teniendo en cuenta que nuestra Farmacopea exige para el extracto fluído (1 gr. de extracto fluído representa 1 gr. de material) el 2 por 100 de hidrastina y que está comprobado que el rizoma en el otoño tiene mayor cantidad de principio activo, se comprende que nuestra droga, recolectada en dicha época, ha de satisfacer sobradamente las exigencias que ha de tener el polvo empleado en la preparación del mencionado extracto.

FALSIFICACIONES Y SOFISTIFICACIONES

El rizoma de Hydrastis se recolecta a veces por personas ignorantes, lo que es motivo de que se encuentre mezclado (falsificación) o reemplazado (sofistificación) por otros rizomas o raíces parecidos al que estudiamos. También le acompaña a veces hojas y tallos. La proporción de estas partes extrañas, así como la arena u otras impurezas, llega a alcanzar hasta el 50 por 100.

Como rizomas falsos de Hydrastis se han encontrado los rizomas y raíces de Cypripedium pubescens Wild y C. parviflorum Wild (Orquidáceas), Jeffersonia diphylla Pers y Leontice thalictroides L. (Berberidáceas), Stylophorum diphyllum Nuttal (Papaverácea), Aristolochia serpentaria L (Aristoloquiácea), Polygala Senega L. (Poligalácea), Curcuma longa L. (Zingiberácea), Collinsonia canadensis L (Labiada), Asplenium félix-femina Bernh. (Polipodiácea) y especies de Trillium (Liliáceas).

El rizoma de Cypripedium pubescens se reconoce porque presenta pequeños granos de fécula y rafidios de oxalato. También las raíces tienen un endodermo, donde las células están lignificadas solamente encima de los fascículos liberianos.


El rizoma y la raíz de Jeffersonia presenta células pétreas en la corteza y los granos de almidón son dos veces más grandes que los del Hydrastis. No contienen berberina. El rizoma y raíz de Stylophorum tienen células con tanino y muy pocos vasos en el xilema. El Leontice se caracteriza por la falta de haces de fibras visibles en el crecimiento cambial. La Aristolochia presenta células de esencia en la corteza; radios medu-

lares anchos, con células de pared gruesa y punteada; el rizoma sólo está recubierto por la epidermis y en la raíz se observan abundantes fibras. En la Polygala los elementos lignificados son casi incoloros, en tanto que los vasos y las fibras del Hydrastis son amarillos. La Cureuma se reconoce por su fécula de granos grandes, parecidos a los del jengibre, transformados en engrudo. Los granos de fécula de mediano tamaño son siempre sencillos y de forma aplanada lenticular. Vistos de frente son aovados o en forma de porra, llevando en el extremo más estrecho una pequeña prominencia, en la que se encuentra el núcleo, dentro de las capas. Vistos de lado son estrechos, lineales o en forma de elipse alargada. Sus capas son muy excéntricas y poco pronunciadas. El Asplenium tiene el rizoma ramificado con restos negros de las frondes, raíces negras y escamas ocráceas en su extremo. Muestra varios hacecillos adrocéntricos con traqueidas escaleriformes.

Entre las especies de Trillium, la T. sessiliflorum está caracterizada por no tener fibras en los haces vasculares del rizoma y su parénquima contiene rafidios de oxalato y aceite.

Los rizomas y raíces de estas diversas falsificaciones tratados por el reactivo de Mandelin no dan la coloración roja de las células con hidrastina y son actualmente poco usados.

- G. Blake y J. Maheu, en 1926, han señalado como falsificaciones actuales del rizoma de Hydrastis:
- 1.º El Coptis Taeta Wall, donde el rizoma tiene una fractura de color amarillo blanco y brillante, como en el Hydrastis. La droga es originaria del Extremo Oriente. Es curioso hacer constar que la falsificación, como queda indicado, se realiza con una especie originaria del nordeste de Assam, China y Conchinchina, mientras que una planta vecina del Hydrastis, en América del Norte, y del mismo género que la asiática (Coptis trifolia Salisb), y cuyo rizoma es igualmente coloreado en amarillo por la berberina, no se encuentra adulterándolo. El rizoma de Coptis Taeta, cubierto de raíces delgadas enteras o, más a menudo, rotas, se presenta en fragmentos cilíndricos, frecuentemente tortuosos y nudosos, del grosor de una pluma de pato y de 2 a 5 centímetros de longitud, de color externo pardo amarillento, inodoro y sabor muy amargo.
- 2.º La Xanthorrhiza apiifolia L'Her, planta achaparrada de las regiones montañosas de América del Norte. Las raíces, de color muy amarillo por la berberina, y toda la planta, se utilizan para la tinción de paños.
- 3.º Especies de Pæonia, probablemente el grupo de la P. officinalis L. Las raíces son bastante delgadas, pues tienen de 1 a 2 mm. de diámetro y presentan en la fractura una superficie blanca grisácea, diferente, por lo tanto, del bello color amarillo del Hydrastis.
- 4.º Thalictrum flavum y Berberis sp., cuyas diferencias con el Hydrastis se consignan en el cuadro que a continuación transcribimos, y que es debido a Planchon, F. Bretin y P. Manceau:

Maclas de oxalato cálcico. Periciclo blando: Raíz de Pæonia,

Se puede, como queda indicado, distinguir el Hydrastis de sus diversas falsificaciones por los caracteres anatómicos esenciales, pues la droga oficinal muestra ausencia constante de fibras pericíclicas y de cristales de oxalato de cal, elementos que existen en la mayor parte de estas últimas falsificaciones citadas.

El polvo de Hydrastis está a menudo mezclado con alguno de los rizomas anteriormente consignados, también reducidos a polvo. Es frecuente encontrarlo mezclado con Cúrcuma, descubriéndose la presencia de esta última por olor a jengibre, sabor acre de especias, abundantes restos de parénquima, grumos amarillos de engrudo, células de esencia, masas de resina, pequeñas cantidades de súber, casi ausencia de fibras y trozos de vasos reticulares que destacan poco. Extraído el líquido extractivo alcohólico al décimo y vertido a gotas sobre el papel de filtro, produce manchas amarillas (debidas a la materia colorante curcumina antes citada), que, humedecidas con ácido bórico, se vuelven rojo-anaranjadas y que, tratando después con amoníaco, toman color azul oscuro. Humedeciendo algunos gramos del polvo con cloroformo sobre papel de filtro, la mancha enrojece cuando se trata con lejía de potasa.

La mezcla con el polvo de Polygala se descubre buscando la presencia del salicilato de metilo contenido en la esencia de Polygala, para lo cual se pondrán en contacto durante una hora 10 grs. de polvo con 30 grs. de éter. Se agita frecuentemente y al cabo de este tiempo se filtra, se evapora el éter y se toma el residuo por el agua. La solución acuosa filtrada y adicionada de una gota de cloruro férrico da una coloración violeta característica.

Por la comprobación de sus caracteres órganolépticos, así como por métodos histológicos, químicos y biológicos, se pueden descubrir las adulteraciones del polvo con los antes consignados, pero es característico del Hydrastis estar exento de glándulas, células pétreas, cristales,

elementos leñosos y fibrosos incoloros, porciones de hadroma de engrosamiento escaleriforme y granos de fécula de más de 20 micras de diámetro. Tiene olor débil y sabor amargo, y cuando se mastica tiñe la saliva de amarillo. Da el 20 por 100, por lo menos, de extracto seco con alcohol diluído.

RUIBARBO (1)

El género Rheum, al que pertenece esta poligonácea, posee un rizoma muy desarrollado, que después se estudiará con más detenimiento al hablar de la droga, recubierto superiormente por los restos de los tallos y peciolos foliares correspondientes a los brotes de años anteriores. Hojas alternas, sencillas, grandes, con nerviaciones palminervias; peciolos más o menos ensanchados en su base y con estípulas membranosas soldadas entre sí, constituyendo la ocrea. Flores hermafroditas en cimas helicoides, que forman a su vez espigas. Cáliz de seis sépalos, tres externos y tres internos, de los que los dos medios están más desarrollados y rodean: a los estambres dispuestos en dos verticilos trímeros, de los cuales el externo se desdobla, por lo que resultan en total nueve estambres, con los filamentos alesnados y las anteras ovales y versátiles; y a un pistilo, constituído por tres carpelos abiertos y concrescentes en un ovario unilocular, con un solo óvulo erguido y recto; tres estilos terminados por otros tantos estigmas casi sentados y papilosos. Fruto en aquenio, trígono, con aletas anchas, embrión recto y albumen carnoso.

Dentro de este género, los verdaderos ruibarbos corresponden a las especies Rh. palmatum L. var. tanguticum Maximowicz y Rh. officinale Baillon, originarias, respectivamente, como después se verá, del este del Thibet y noroeste de la China; pero con frecuencia aparecen falsificadas e hibridadas por los rapónticos procedentes de las especies Rh. rhaponticum L., Rh. undulatum L., Rh. compactum L., Rh. tartaricum L., Rh. hybridum Ait., Rh. Emodi Wall. (= Rh. Australe Colelr), Rh. crassinervium Fisch, Rh. Webbianum Royle, Rh. spiciforme Royle, Rh. mooreroftianum Royle.

De todos ellos, los más corrientes son los dos primeros: Rh. rha-

⁽¹⁾ El estudio completo agronómico-farmacognósico, hecho en colaboración con el Profesor don César González Gómez, se ha publicado en el núm. 4, junio de 1944, de «Farmacognosia», Anales del Instituto José Celestino Mutis, del Consejo Superior de Investigaciones Científicas.

ponticum L. y Rh. undulatum L. Vamos a indicar las diferencias vegetativas esenciales entre éstos y los ruibarbos verdaderos.

En primer lugar, el limbo de las hojas radicales de los verdaderos ruibarbos tienen el borde hendido; el del Rh. palmatum L. es palmeado-hendido, con 5 ó 6 lóbulos dentados, que, aunque mayores, recuerdan algo a la hoja del ricino; y el Rh. officinale es casi orbicular, de un metro o más de diámetro, con 5 lóbulos cortos, que, a su vez, están desigualmente hendidos.

En cambio, los rapónticos tienen el limbo de sus hojas radicales con el borde entero y más o menos ondulado; de color verde-grisáceo y con el ápice obtuso el del Rh. rhaponticum L., mientras que el limbo del Rh. undulatum L. tiene aquél agudo y es casi dos veces más largo que ancho.

CLIMA Y SUELO

Según Przewalski, antiguamente se encontraban ruibarbos en el oeste de China y este del Thibet; pero en tanto que en las montañas de Nanschan, donde nacen los ríos Edsingol y Tatunggol, al norte del macizo de Kukunor y en la provincia de Kansu, aparece casi exclusivamente el Rh. palmatum L. var. tanguticum, en el sur de la provincia de Szetschwan, se halla, en primer lugar, el Rh. officinale.

En 1870-73 ya escaseaban mucho los ejemplares de esta planta en las zonas mencionadas, debido a la intensa recolección de que había sido objeto. El citado viajero encontró más poblados de ruibarbo los valles y desfiladeros orientados al norte de la región de Ganzu, al nordeste de Kukunor, y los ejemplares procedentes de aquí fueron los clasificados por Maximowicz como de la especie Rheum palmatum, variedad tanguticum. También halló plantas Przewalski en los montes de Dschachar Dsorge, al sur de Hoangho y, en mayor cantidad, hacia el oeste, en las montañas de Ugutu y al pie de Dschachar Fidsa.

En 1906, Tafel encontró ruibarbos de hojas profundamente lobuladas en la comarca de Dulangomba, al oeste de Kukunor, en los bosques claros de coníferas y a 3.300-3.500 metros sobre el nivel del mar. Después encontró rodales de mayor o menor extensión al sur de la estepa de Tasidan, en el valle de Tsaghanussa; en la zona de Yoghoregol, a 2.800 metros de altitud; en las montañas de Ograiula, en la cuenca del Hoangho y, por último, en el valle transversal de Tschärnong, muy cerca del macizo de Dschachar Fidsa, visitado por Przewalski.

Se ve, pues, que el área originaria del ruibarbo está incluída en la región esteparia continental póntico-centroasiática, tan rica en especies endémicas disyuntas hacia occidente, con formaciones duriherbosas y durifruticosas, que en aquellos pasajes, donde el terreno conserva más humedad (valles y desfiladeros del este del Thibet) ceden su puesto a plantas vivaces, como el Rheum mencionado y diversas umbelíferas (Ferula, Dorema, etc.).

Entre los Rheum cultivados en Europa son conocidos de artiguo en el comercio los que suministran los rapónticos francés e inglés (Rh. rhaponticum L., Rh. undulatum L., Rh. compactum L., etc.) y el austríaco (Rh. Emodi Wall, Rh. compactum L., etc.), pero, por su inferior calidad, nunca lograron desplazar la droga china.

Actualmente se cultiva el ruibarbo asiático en Europa, sobre todo el Rh. palmatum, variedad tanguticum, dando una droga de igual calidad. El cultivado en Alemania, sobre todo en Baviera, es también excelente, si bien se obtiene en escala insuficiente aun para cubrir las necesidades de este país. A diferencia de la droga china, formada sólo por rizoma,

Planta de ruibarbo. (Foto S. P. M.)

la alemana contiene también raíces y, si éstas son grucsas, tienen la misma e incluso mayor actividad que los rizomas.

Pero debido a la facilidad con que se hibridan las especies de Rheum, se presume que el cultivado en Europa no es una raza pura, sino un híbrido no sólo de Rheum palmatum × Rheum officinale, más también, y con mayor diferencia, de estos ruibarbos chinos con las especies de rapónticos más arriba mencionados y utilizados en Europa para la alimentación, ya que desde el siglo XVII se cultivan en este continente los rapónticos, principalmente el Rh. rhaponticum, junto a los dos ruibarbos: officinale y palmatum.

Este último, de hojas palmeadas, como ya hemos dicho, suministra los rizomas más activos, reticulados y coloreados; los del officinale no lo son tanto, y mucho menos aun los rapónticos, de hoja redonda y rizomas poco reticulados, pequeños y claros.

El que ha servido de base a las experiencias llevadas a cabo en la parcela que el Servicio de Plantas Medicinales de la Dirección General de Agricultura posee en la Casa de Campo de Madrid, procede del único ejemplar que se encontró en la misma en 1939, al terminar nuestra Guerra de Liberación. Por sus características no parece ser puro, sino un híbrido, ya que el examen de sus rizomas acusa un abundante y bien desenvuelto sistema estrellado, y al lado de oximetilantraquinonas se observa raponticina, reconocible muy bien, aparte de otros ensayes de que luego hablaremos, por la fluorescencia violeta característica que presenta a la luz ultravioleta de la lámpara de cuarzo. No obstante ello, y como se verá en el curso de este trabajo, el gran desarrollo vegetativo adquirido, su rendimiento en rizomas, el aspecto de éstos y su actividad hacen que su droga sea francamente aceptable y que, por ello, deba fomentarse su cultivo.

Con este material, los ensayos de cultivo de ruibarbo en España convenía realizarlos en las condiciones más semejantes a las de su zona de procedencia. De los diversos sitios de que se disponía para la experiencia, el de mayor altitud era de 650 metros sobre el nivel del mar. Aunque inferior a las registradas al hablar de Kukonor o Yoghoregol, se decidió utilizarle para el ensayo. Los resultados que después se indican demostraron que el ruibarbo vegeta perfectamente a esta altitud y produce una droga de riqueza satisfactoria.

Para deducir el terreno más apropiado al cultivo del Rheum fué ensayado éste en cajoneras de vegetación rellenas de tierras minerales y orgánicas. En estas últimas el desarrollo aéreo de la planta es grande, pero sus órganos subterráneos adquieren excesiva tendencia a la ramificación y una textura esponjosa, aparte de exhalar un poco poco intenso.

Dentro de los suelos minerales, en los francamente arcillosos no prospera el ruibarbo. lleva una vegetación precaria y su rizoma es corto y delgado. En cambio, en una tierra arenosa y profunda vive perfectamente y da buen rendimiento en droga, como se dedujo del ensayo a pleno campo, hecho con posterioridad al de las cajas de vegetación.

Estudiado el efecto de la caliza, como después se indicará al hablar del abonado, se vió que, tanto en terrenos arenosos sin encalar como en los encalados, provistos ambos de suficiente materia orgánica, crece perfectamente esta planta y da cosechas bastante similares en cantidad y calidad. En cuanto a su aspecto, los rizomas procedentes de la pare la caliza eran más irregulares y de color menos intenso que los otros.

En conclusión: el ruibarbo vegeta perfectamente en nuestro país en toda clase de climas, con preferencia en los templados y fríos continentales de influencias atlántica, en lugares expuestos al norte y protegidos del viento, con una altitud superior a los 650 metros y en suelos lige-

ros, profundos, con algo de materia orgánica y caliza, frescos, permeables y más bien sombreados.

MULTIPLICACIÓN

El ruibarbo se propaga por trozos de rizoma o por semillas. Como ya se ha dicho, las formas cultivadas en Europa son probablemente bastardos de plantas espontáneas asiáticas. Por esto la reproducción por simiente tiene el peligro de que aparezcan tipos originarios u otros nuevos, que desharían la uniformidad de la plantación y producirían variaciones en la cantidad y composición de los principios activos. Ello, unido a que la multiplicación sexual requiere más tiempo y cuidados hasta la obtención de la droga, hace que sea la vía ágama la más aconsejable en un cultivo de carácter industrial, como hemos comprobado en nuestros ensayos más adelantes mencionados.

Al efectuar, como después diremos, la recolección de los rizomas durante el otoño, se seleccionarán los mejores, y si, corrientemente, sirve de base para esto el aspecto exterior de los mismos, en cuanto a tamaño, superficie poco rugosa y sanidad, debiera esta tría basarse, además, en su riqueza en antraquinonas y antraglucósidos, a la que se fijará un límite mínimo, así como uno máximo, del que no pasará la cantidad de raponticina. Aconsejamos, en consecuencia, que no se inicie una plantación de ruibarbo a partir de un material sin garantía.

Los rizomas escogidos se dividirán en tantos trozos como yemas vigorosas posean, es decir, de 5 a 7, por término medio, en ejemplares bien desarrollados. Estos renuevos pueden plantarse en otoño, pero para tener una plantación más uniforme y con pocos fallos conviene efectuarla en febrero o marzo. En tal caso, para conservar hasta dicha época los trozos de rizomas, y cuando no se disponga de un local cerrado adecuado, se hará una excavación de unos 50 cms. en un suelo más bien seco, se coloca en el fondo una capa horizontal de éstos, que se recubre con unos 10 cms. de tierra; después otra nueva serie de renuevos, y así su cesivamente, hasta tres o cuatro capas sucesivas.

Llegado el momento de la plantación, se desentierran los rizomas y se llevan al terreno previamente labrado y abonado, como luego se indicará.

No obstante los inconvenientes antes indicados para la mutiplicación sexual, es en unos casos conveniente, indispensable en otros.

Los frutos son núculas monospermas con tres alas membranosas, que sirven de diseminación y proceden de los sépalos internos, persistentes. Como media de 10 pesadas, repetidas durante cuatro años, se deduce que mil de aquellos aquenios pesan $13,25 \pm 1,232$ ggrs. y, en consecuencia, un gramo contiene 75 frutos.

Para el estudio del poder germinativo se hicieron diversos ensayos en el laboratorio, de los que resultó que la germinación óptima (92 por 100) se consiguió en un plazo de doce días con granos en la oscuridad

y a una temperatura alrededor de los 25°. Por encima y debajo de dicha temperatura, el poder germinativo va disminuyendo y en muestras colocadas a la luz no se consiguió más del 40 por 100 durante treinta días. En cuanto a la duración del poder germinativo, se ha observado un descenso lento desde el mismo año de la recolección, con un 85 por 100 a los tres meses de ésta, hasta un 35 por 100 el cuarto año, continuándose la experiencia.

Para determinar el modo mejor de siembra se partió de semilla recogida el mismo año. En septiembre se hicieron una siembra directa, otra en semillero al aire libre y la tercera en cajonera cubierta con chasis acristalado, todas ellas enterrando bien la semilla, pues ya hemos dicho que la luz retrasa su germinación.

- $1.^{\circ}$ Siembra directa de otoño.—Se hizo el 15 de septiembre en cuatro eras de $7 \times 2,5$ metros a golpes dispuestos a un metro en cuadro. No nació.
- 2.º Siembra en semillero al aire libre.—Cama caliente, preparada diez días antes con estiércol fresco de caballo, dispuesto en una capa de 50 cms. de espesor, recubierta después por otra de mantillo de 10 centímetros. Se hizo la siembra el 15 de septiembre, empleando un gramo de frutos en una superficie de 0,40 × 0,80 metros.

Nació el 12 de octubre, con irregularidad; pero a partir de fines del mismo mes, coincidiendo con unos días de brusco descenso de la temperatura, comenzó a perderse planta, hasta que el 28 de noviembre se abandona dicho semillero.

Siembra en cajonera cubierta con chasis acristalado.—La cama caliente se confeccionó del mismo modo que la anterior, con la sola diferencia de que la capa de estiércol fué en este caso de 30 cms, de espesor. Realizada la siembra el mismo día que en el semillero al aire libre y con idéntica cantidad de grano, empezó la nascencia el 30 del mismo mes, con bastante uniformidad. Después, a lo largo del otoño e invierno, se observa que amarillean las hojas de algunas plantitas, que van aumentando en número, hasta que se pierden varios rodales. A fines de marzo se puede considerar perdido un 60 por 100 de lo nacido. El 12 de abril se hacen dos partes de las plantas subsistentes: una de ellas se repica sobre eras preparadas, a base de mantillo revuelto con tierra y al marco de 50 cms. en cuadro, y la otra mitad se lleva directamente al terreno de asiento, donde se colocan al marco de 1 × 0,70 metros. Esta plantación, no obstante tenerla siempre limpia de malas hierbas, con la tierra bien mullida y con suficiente humedad, se va perdiendo paulatinamente un 30 por 100 de las plantas colocadas a raíz del trasplante; y el resto, salvo 12 plantas, durante el verano, principalmente a continuación de días muy calurosos.

Los pies repicados, en los que hubo un 2 por 100 de pérdidas al efectuar la operación, continuaron normalmente su vegetación hasta el 20 de mayo, fecha en que se intentó el trasplante definitivo con 25 ejemplares; pero iniciada una brusca elevación de temperatura a primeros

de junio, sólo prosperaron cuatro de los 22 que habían agarrado al hacer el trasplante. Las restantes plantas continuaron en las eras de repicado hasta pasados los grandes calores, trasplantándose al terreno definitivo a primeros de septiembre. Estos ejemplares sufrieron mucho los efectos de las heladas, perdiéndose durante el invierno en una proporción del 53 por 100.

Además de estas siembras de otoño, se hicieron, al año siguiente, otras en primavera, con semilla de la misma cosecha y procedencia y en idénticas condiciones a las mencionadas. La siembra en cajonera cubierta se efectuó el 4 de marzo, empleándose 4,5 gramos de frutos en una super-

Detalle de un semillero de ruibarbo. (Foto S. P. M.)

ficie de 1,50 × 0,80 metros. El 18 de marzo empieza la nascencia, con alguna desigualdad. Continúa la vegetación normalmente hasta el 11 de abril, día en que se realiza el trasplante de la tercera parte de las plantas al terreno definitivo. El 19 del mismo mes se reponen las marras, que fueron el 25 por 100 del total de plantas puestas. En junio se siguen observando fallos y pérdidas de plantas que habían prendido al ser trasplantadas. Continúan haciéndose estas observaciones, cada vez con más frecuencia, hasta el 15 de agosto, fecha en la que subsiste el 35 por 100 de los ejemplares que existían el 6 de mayo.

De las plantas restantes, una mitad se repica el mismo día 11 de

abril y la otra se deja en semillero hasta el otoño. Los pies repicados en aquella fecha tuvieron un 7 por 100 de fallos, perdiéndose después, a lo largo del verano, el 24 por 100, de modo que el 10 de septiembre subsistían el 69 por 100 del número inicial de plantas repicadas. En cambio, las repicadas en otoño, este mismo día 10 de septiembre, prendieron en una proporción del 96 por 100.

En cuanto a su resistencia al invierno, los ejemplares de trasplante directo en la misma primavera de la siembra demostraron bastante sensibilidad al frío, hasta el punto de que el 25 por 100 que subsistía el 15 de agosto quedó reducido al 20 en la siguiente primavera. En cuanto a las plantas repicadas, tanto en abril como en septiembre, resistieron perfectamente los fríos y las heladas, brotando en primavera el 63 por 100 y el 90 por 100 del número inicial de pies.

Al año siguiente se repitió la experiencia del repicado en la primavera y otoño con plantas procedentes de cajonera cubierta sembrada el 1.º de marzo. Hecho el primer repicado el 20 de abril, hubo un 12 por 100 de marras al efectuar la operación, más un 30 por 100 durante el verano, de modo que el día en que se hizo el repicado de otoño—15 de septiembre—quedaban un 58 por 100 del número inicial de plantas repicadas. En cuanto a las sacadas del semillero en esta fecha, prendieron un 89 por 100. A la primavera siguiente brotaron el 51 por 100 y el 84 por 100, respectivamente, del número inicial de pies.

Como se ve, es conveniente la práctica del repicado, no sólo por fomentar el desarrollo del sistema radicular, a cuya penuria es debido el menor número de fallos, más también, si el terreno está bien mullido, porque con él se logran raíces napiformes, lisas y poco ramificadas, como conviene para obtener una droga limpia y de calidad.

Respecto a la siembra de primavera en semillero al aire libre, se hizo el 20 de marzo y empezó la nascencia el 10 de abril, es decir, a los veintiún días. El aspecto de las plantitas y su posterior vegetación no difieren de las obtenidas en cama caliente, pero corren el riesgo de que un descenso brusco de la temperatura, nada difícil en los climas a los que se adapta el cultivo del ruibarbo, impida la germinación o mate las tiernas plantitas recién nacidas.

Finalmente, con la siembra directa de primavera, hecha el 15 de abril, a golpes y al marco acostumbrado de 1×0.70 metros, no tuvo mayor éxito que la de otoño, pues si bien el 21 de mayo se observaron algunas plantitas, éstas fueron en número no superior al 6 por 100 del total de golpes, advirtiendo que en cada golpe se enterraron unos ochodiez frutos.

En resumen, la multiplicación más conveniente del ruibarbo es la vegetativa, por trozos de rizoma plantados en febrero o marzo; y en el caso de recurrir a la sexual, se hará la siembra en cama caliente, durante el mes de marzo, para efectuar el repicado en septiembre y el trasplante al terreno definitivo en la primavera siguiente, también en los meses de febrero o marzo.

ABONADO

Aclarados ya los mejores procedimientos de multiplicación, se prepararon 30 eras de tierra uniforme. Diez de ellas se dejaron como testigos y en las 20 restantes fué incorporado el 15 de noviembre estiéreol bien descompuesto, en proporción de 300 Kgs. por área. De estas eras estercoladas, 10 fueron encaladas el 20 de diciembre, con una dosis de 15 Kgs. por área.

En el mes de febrero, en cada una de las tres series de eras se añadieron, en una sí y otra no, la siguiente dosis de abono mineral, expresada en Kgs. por área: 3,50 de superfosfato de cal. 2 de sulfato potásico y 1,75 de sulfato amónico.

La distribución del plan general del ensayo sobre los diversos abonados es la indicada en el cuadro siguiente:

10 A	9 T	8 A	7 T	\	5 T	+ A	3 T	2	1 T	Esterculado y encalado
20	19	18	. 17	16	15	1+	13	12	11	Estercolado
T	A	T	. A	T	A	T	A	T	A	
30	29	28	27	26	25	2+	23	22	21	Sin estercols
A	T	A	T	A	T	A	T	A	T	

A = Abonado

T = Testigo

En el segundo año no se añadió ningún fertilizante y en febrero del tercer año se volvió a incorporar a las mismas parcelas la fórmula del abonado mineral que acabamos de indicar.

PREPARACIÓN DEL TERRENO

Una vez levantada la cosecha anterior, que fué adormidera, el 15 de octubre se dió al terreno una labor de una profundidad de 30 a 40 centímetros. El 15 de noviembre se repartió el estiércol en la proporción ya indicada y se incorporó a la tierra con una labor ordinaria, y el 20 de diciembre se efectuó el encalado con otra labor, cruzada respecto a la anterior. No conviene retrasar el estercolado más de primeros de encro, pues en plantaciones en las que se había incorporado el estiércol hacía poco, se observó una perjudicial tendencia a la ramificación de las raíces de ruibarbo.

Después no hubo necesidad de ninguna limpieza del suelo hasta el 25 de febrero, fecha en que, con una bina, seguida del correspondiente rastrillado, se enterró el abono mineral, previamente repartido.

PLANTACIÓN

El 1 de marzo se efectuó la plantación con trozos de rizomas procedentes de la cosecha del año anterior y conservados como ya se ha dicho. Se pusieron en líneas a un metro de distancia y, dentro de cada línea, a 70 cms., bien recubiertos los trozos y apretada a su alrededor la tierra, a la que se dió un riego seguidamente.

De este modo, el número de renuevos por área será de 140 a 145. Sólo hubo un 2 por 100 de fallos, que fueron repuestos el 15 de marzo. En los ensayos de años siguientes, el porcentaje de renuevos prendidos siempre ha sido superior al 90 por 100, y en 1943 no hubo ni una sola marra.

Consideramos este marco de plantación como más aconsejable, a consecuencia del estudio comparativo hecho entre dicho marco, que fué el adoptado para el ensayo de abonado, otro a metro en cuadro y un tercero al de 0.70×0.50 metros, utilizados los dos últimos en parcelas contiguas a las del ensayo.

De los resultados obtenidos se deduce que los rendimientos medios en el cuarto año de cultivo de las parcelas con marco 1×1 y 1×0.70 fueron de 38 ± 3.02 kilogramos de droga seca por área, en el primer caso, y, en el segundo, 53 ± 6.74 ; pero, además, con el marco de metro en cuadro se precisaron más escardas que las dadas a las eras con menor marco. En cuanto a las parcelas plantadas a distancia de 0.70×0.50 metros, las grandes hojas basilares de las plantas inmediatas se molestaban en su mutuo desarrollo, lo que repercutió en su vegetación y en su rendimiento cuantitativo que, no obstante la mayor densidad de plantación, fué de 48 ± 7.02 de droga seca por área.

LABORES

El 26 de marzo comenzaron a surgir los rojos brotes, que echan el primer año unas seis hojas, en general, que luego se pierden durante el invierno. Durante este año se dieron tres binas, el 15 de mayo, 18 de julio y 16 de septiembre; siete riegos, además del inmediato a la plantación, entre el 15 de marzo y el 10 de septiembre, y una escarda el 20 de abril, pues, posteriormente, se desarrollan las hojas lo suficiente para impedir la vegetación de malas hierbas alrededor de los pies del ruibarbo.

Al iniciarse los primeros fríos se aporcaron convenientemente aquéllos, para resguardar la yema principal de la acción de las heladas. El 28 de febrero del segundo año se inicia la brotación y durante este segundo año experimentaron las ocho o diez hojas brotadas un gran desarrollo. Al empezar la vegetación se dieron una bina y rastrillado, el 15

de abril; otra bina, el 27 de mayo, y la última, el 25 de agosto. Escardas sólo se precisaron dos: la primera, el 30 de marzo, y el 15 de junio la segunda. En cuanto a riegos, se dieron nueve, entre el 8 de marzo y el 20 de agosto. La última operación fué, como el año anterior, el aporcado.

Aunque ya durante el segundo año estas plantas iniciaron sus inflorescencias, fué el tercer año cuando floreció toda la plantación durante el mes de mayo. Excepto en las eras que se dejaron para obtención de semilla, una en cada grupo de parcelas, en las plantas de las demás se cortaron los tallos florales, práctica que redunda en beneficio del rendimiento de la plantación. Durante este tercer año las labores realizadas fueron una bina y rastrillado el 15 de marzo, con la que se incorporó al terreno el abono bisanual de que ya hablamos; otra, el 3 de junio, y el 15 de septiembre la última. Escardas: una, el 10 de abril. Riegos: siete, entre el 18 de marzo y el 17 de septiembre.

En el cuarto año, dos binas, el 10 de mayo y el 8 de julio; una escarda, el 5 de junio; seis riegos, distribuídos entre el 1 de abril y el 28 de agosto; el corte de tallos florales y las faenas de recolección.

Ha de advertirse que, para mejor estudiar la acción de las diversas fórmulas de abonado sobre el ruibarbo, no se pusieron cultivos intercalados entre las calles de aquél, pero admite perfectamente la asociación con plantas de huerta durante los dos primeros años, en cuyo caso aquellas labores quedan supeditadas a las que requieran dichas hortalizas, con lo cual, no sólo se obtiene un provechoso beneficio de la tierra, sino que las más frecuentes e intensas labores que el cultivo hortícola precisa, favorecen también la vegetación del ruibarbo.

RECOLECCIÓN

Una plantación de ruibarbo produce buenos rizomas hasta los ocho años, y en ciertas ocasiones aun más, pero como no conviene, generalmente, tener tanto tiempo ocupada la tierra, se considera que la época óptima para compaginar la máxima riqueza en principio activo con el mayor rendimiento cuantitativo y el mínimo de permanencia en el mismo suelo, es el cuarto año de plantación en el terreno definitivo. No obstante este desiderátum, circunstancias de carácter económico pueden obligar en determinados casos a realizar la recolección el tercer año, lo que, si no aconsejable, es, por lo menos, admisible. Lo que de ninguna mancra debe hacerse es desenterrar los rizomas de ruibarbo el segundo o primer año, por ser pequeños, de escasa actividad, consistencia blanda y de difícil conservación. Además, como los dos primeros años permite la vegetación del ruibarbo efectuar cultivos intercalares hortícolas entre sus líneas, se obtienen las correspondientes cosechas, lo que no hace onerosa la ocupación del terreno por la poligonácea que estudiamos más que el último o los dos últimos años, según que la recolección se efectúe el tercer o cuarto año.

Como todas las drogas de raíces, la época del año más adecuada para la recogida es el otoño, y en nuestro ensayo se efectuó el 15 de octubre. Para orientarse respecto a los límites adonde llegan los órganos subterráneos a cosechar, se trazó a unos 25 cms. de la línea de plantación un surco paralelo a ella. Conocida de esta manera la profundidad media de rizomas y raíces, se efectuó a hecho el desenterrado de éstos.

CUIDADOS POSTERIORES

Una vez extraídos, se sacudieron y restregaron entre sí, para limpiarles de la tierra que llevaban adherida. Se ha observado que no es conveniente lavarles con agua, razón por la cual aconsejamos antes que la selección morfológica debe orientarse hacia la obtención de rizomas lisos y redondos, que se limpian con mucha mayor facilidad.

Realizada esta limpieza, se separaron de los rizomas las inserciones foliares, los brotes y las raíces. Estas, a su vez, se cortaron por su base para aislarlas entre sí, utilizando las gruesas como droga, mientras que las delgadas se desechan. Los brotes vigorosos, dejando cada uno con un trozo de rizoma, se destinaron a la multiplicación, en la forma ya indicada al hablar de ésta.

Tras una desecación previa, que duró seis días, realizada al aire libre, en semisombra (hubiera sido mejor en un local cubierto), adquirieron una consistencia tal los rizomas y las raíces gruesas, que se desprendía fácilmente su corteza, operación que se puede hacer a mano o con un cuchillo poco cortante, siempre con cuidado de no lastimar los tejidos subyacentes. Naturalmente, el tiempo que dura esta primera desecación depende del grado higrométrico del ambiente. Cuando estos órganos subterráneos eran de poco diámetro, en vez de pelarse se rasparon con el cuchillo.

Luego, los carnosos rizomas se cortaron transversalmente en trozos de unos ocho a diez centímetros de espesor, de intenso color amarillo, separando los de consistencia esponjosa, deteriorados o con poco color. Cuando se trate de ejemplares voluminosos (Eberhard cita el caso de uno del grosor de un brazo y 60 centímetros de longitud), se acostumbra, en ciertas zonas productoras, a hendirlos en dos, tres o hasta cuatro secciones longitudinales, que después se cortarán del modo antes indicado.

A continuación se procedió a la desecación definitiva, que vuelve rugosos los rizomas. Para ello se dispusieron los trozos en zarzos aislados del suelo y colocados en un local cubierto y seco. Tardaron en secarse sesenta y ocho días, aunque este plazo, como el de la primera desecación, depende de la humedad ambiente. Es práctica corriente en ciertas zonas productoras perforar las rodajas y engarzarlas en una cuerda que se cuelga después, con lo cual la desecación es más uniforme y menor el espacio ocupado. Escogidos cinco kilogramos de cada era, o sea un total de 150 kilogramos, quedaron reducidos a 47 kilogramos de droga seca; es decir, al 31,34 por 100 de su peso en fresco en el momento de la recolección.

Cuando se trate de grandes cantidades de rizomas y haya posibilidad de realizar la desecación artificial, se consigue una mayor rapidez en la operación, evitándose el riesgo de enmohecimiento que corre la mercancía cuando la desecación natural es lenta, como nos ocurrió en nuestra experiencia. En aquel caso la temperatura óptima oscila entre 25 y 30 grados centígrados.

RENDIMIENTO

Los rendimientos obtenidos en fresco, de cada era, fueron los siguientes, expresados en kilogramos por área:

										
10	9	8	7	6	5	4	3	2	1	
$oldsymbol{\Lambda}$	Т	A	Т	A	Т	A	T	A	Т	Estercolado (y encalado
18 6	125	175	130	169	134	180	129	184	141) ,
20	19	18	17	16	15	14	13	12	11	
Т	A	Т	A	Т	A	T	A	Т	A	Estercolado
112	166	128	182	120	173	131	170	138	180)
30	29	28	27	26	25	24	23	22	21	
A	Т	A	Т	A	Т	A	Т	A	Т	Sin estercolar
125	94	148	72	131	81	127	86	118	98	!

Hecho el cálculo estadístico para cada uno de los tres bloques de diez eras—sin estercolar, estercoladas y estercoladas y encaladas—quedan significativos los tres resultados: el primero, con un 95, y los otros dos con un 99 por 100 de probabilidades de que làs cifras obtenidas no son debidas al azar, al ser los valores de Z, respectivamente: 1,5214 menor que 1,5770, pero superior al 1,0212 dado en la tabla de Fisher, del 5 por 100; 2,648 y 2,353, mayores ambos del 1,5270 correspondiente a la tabla del 1 por 100.

Veamos ahora si las diferencias conseguidas entre las cras con abonado completo (A) y los testigos (T) son significativas:

Tratamientos	Diferencia entre produc- ciones (A-T)	Triple error. Upico diferencia	Significación de la diferencia	Diferencia significativa	Aumento por Ha. en kgs.	
Sin estercolar	218	100,95	Positiva	117,05	2341	
Con estiercol	241	36,15	Idem	204,85	4097	
Con id. y cal	235	45,94	Idem	189,06	3781	

Abonado mineral en kgs, por Ha.	TRA Sin estercolar	Con estiercol	Con estiercol y cal	
350 Superfosfato de cal	10.961	16.697	16.961	
Sin abonado mineral	8,620	12.600	13.180	

De las cifras anteriores se deducen las siguientes conclusiones, en lo referente a la cantidad de droga fresca recolectada:

- 1.ª La incorporación de estiércol al terreno eleva el rendimiento del ruibarbo en un 46,17 por 100 en las eras sin abono mineral, y 52,33 por 100 en las que se incorporó un abonado mineral completo.
- 2.ª El encalado del terreno supone un incremento de la cosecha del 4,59 por 100 con relación a las eras sin abonado mineral, y del 1,52 por 100 respecto a las provistas de una fórmula completa, pero ambas previamente estercoladas.
- 3.ª El estercolado y encalado del terreno aumenta la producción de rizomas un 52,90 por 100 en las eras sin abono mineral, y un 54,73 por 100 en las fertilizadas con abono mineral completo.
- 4.ª El efecto de éste con relación a las eras testigos se traduce en incrementos del 27,15, 32,51 y 28,68 por 100 en los bloques sin estercolar, estercolados y estercolados y encalados, respectivamente.

CARACTERES EXTERNOS DE LA DROGA COMERCIAL

El producto por nosotros logrado concuerda, en líneas generales, con los que corrientemente circulan en el comercio y-si se tiene en cuenta también su riqueza en principios activos, como después veremos—no desmerecería de ellos si, al intensificar el cultivo en España, se generalizase el uso de la droga nacional.

El ruibarbo de Schanzi, que es el puerto chino por donde se exporta esta droga, se presenta en trozos duros, pesados, algo cubiertos de polvillo, generalmente, y se diferencia del de Cantón y, en parte, del de Shanghai, por su estructura granujienta, casi deleznable, y por su jaspeado amarillo-anaranjado, muy manifiesto. En el borde de un corte transversal alisado de la droga se observa claramente, con auxilio de una lupa, una estriación radial; hacia dentro sigue una capa estrecha, de dibujo irregular, y luego otra ancha y jaspeada, cuyos diseños se desvanecen hacia la parte central del rizoma.

Esta droga se beneficia únicamente de los rizomas muy gruesos y

viejos. Tiene una estructura anatómica bastante complicada, tanto más difícil de comprender por cuanto que, en general, han sido quitadas la corteza y las porciones externas de la parte leñosa. Los trozos de ruibarbo son de muy variada forma: cilíndricos o poligonales y, a menudo, muestran el agujero por donde se ensartaron en la desecación. La estructura es granujienta y puestos en agua se hinchan y esponjan rápidamente en capas superficiales.

El ruibarbo medicinal auténtico, de procedencia alemana, está constituído por piezas enteras y de menor tamaño, fusiformes o rollizas, o por trozos cortados, con la cara exterior convexa y la interior casi plana

Vista de una plantación de ruibarbo. (Foto S. P. M.)

o con rajas transversales o longitudinales de forma completamente irregular. Algunas veces circulan también en el comercio pedazos procedentes de los cultivos alemanes, semejantes a los que llegan de las plantas cultivadas en China. Los trozos de raíces muestran, en el corte transversal, radios medulares anaranjados en un parénquima blanquecino.

El olor del ruibarbo, aunque débil, es característico y no todo desagradable; su sabor, ligeramente aromático y algo amargo; cuando se masca cruje entre los dientes, a causa de los grandes cristales que contiene.

COMPOSICIÓN QUÍMICA

Las antraquinonas, bien en combinación glucosídica o bien libres, que son los más importantes componentes químicos de esta especie, se presentan también en formas reducidas, estando en las plantas vivas la proporción entre unas y otras en dependencia de sistemas de oxireducción (oxidasas y peroxidasas) y factores externos dominantes (luz, temperatura, etc.). Debido a esto los rizomas de invierno poseen sólo antraquinonas reducidas, mientras que de primavera a otoño tienen, además, junto a éstas, antraquinonas, admitiéndose como probable que los sistemas antraquinonas antraquinonas reducidas actúan en las plantas como aceptores y donadores de hidrógeno, al modo de los pigmentos respiratorios.

Con una mezcla de alcohol metílico y éter se puede aislar de la droga un conjunto de antraquinonglucósidos cristalinos conocidos como reopurgarina, que se compone de:

Crisofaneina:

d-glucósido del crisofanol o ácido crisofánico, la 1-8-dioxi-3-metilantraquinona, que funde los cristales amarillos a 196°:

Reumemodinglucósido:

d-glucósido de la reumemodina, frangulaemodina o ácido frangulínico, la 1-6-8-trioxi-3-metil-antraquinona, cuyas agujas amarillo rojizas funden a 255°:

Reocrisina:

d-glucósido de la reocrisidina, que es un monometiléter de la reumemodina, que funde a 195°:

Reinglucósido:

d-glucósido de la reina o reina inactiva, que es la 1-8-dioxi-antraquinona-3-carbónico, que funde a 318°:

Además de los nombrados aglicones, han sido encontrados en pequeña cantidad en la droga otros antraquinonderivados, como la aloemodina:

el rabarberón, que parece ser idéntico a la isoemodina; el ácido reinólico, C₁₆H₈O₃ OH Entre las antraquinonas reducidas se ha encontra hasta ahora, únicamente el antranol, correspondiente al crisofanol. Otros productos de menor interés se han hallado también en la droga, como son: pectina, almidón, goma, glucosa, fructosa, algo de grasa, fitosterina (verosterol C₂₇H₄₆O), indicios de aceites etéreos, enzimas (antraglucoxidasas), ácido oxálico, hasta 12 por 100 de cenizas y taninos (rheotanoglucósidos), que tienen una acción antagónica con las antraquinonas. Entre estos últimos se han citado como cristalizados la glucogalina y la tetrarina. En la glucogalina (monogaloil-glucosa), que funde a 200°, se encuentra ácido gálico esterificado con el hidróxilo glucosídico de la betaglucosa; por ello se dejó hidrolizar fácilmente. La tetrarina es una combinación que, por desdoblamiento hidrolítico, suministra ácido cinámico y reosmina, al lado de glucosa y ácido gálico. También se ha encontrado la d-catequina.

RECONOCIMIENTO Y VALORACIÓN

Una sustitución del verdadero ruibarbo con los órganos subterráneos de los rapónticos no era fácil antes, cuando únicamente el ruibarbo chino era el oficinal, ya que aquéllos no muestran claramente el sistema estrellado formado por los hacecillos leptocéntricos (salvo el inglés, que lo presenta con muy escaso desarrollo) presentando, en cambio, en su sección transversal, disposición radial hasta el centro.

Desde que la sexta edición de la farmacopea alemana permite el

empleo de las raíces suministradas por las plantas cultivadas en su país, pierde importancia dicho carácter, ya que también las raíces del verdadero ruibarbo no poscen ningún sistema estrellado. Los polvos de ruibarbo chino y de rapóntico, al microscopio, se muestran cualitativamente casi completamente iguales. Se puede establecer la diferencia entre el ruibarbo y rapóntico por el aspecto que presenta el polvo de la droga sometido a la acción de la luz ultravioleta, pues las partículas con raponticina dan una fluorescencia azul clara, que destaca fuertemente y que, naturalmente, falta en las partículas del ruibarbo. En nuestros rizomas, fas taleólas sometidas a ensayo en la lámpara de Hanau dieron una hermosa fluorescencia de dicho color, si bien con la particularidad de quedar limitada a determinadas zonas de la sección, ostentando el resto las características del ruibarbo.

Desde el punto de vista químico, existe también en dichas drogas una diferencia en la cantidad de antraquinonas. La determinación colorimétrica de las antraquinonas en los rapónticos, sólo logra alcanzar la mitad de la contenida en el ruibarbo chino, por lo que resultan menos activos. La mejor diferenciación es la suministrada por la raponticina, glucósido que se presenta en el rapóntico en proporción aproximada del 5,5 por 100.

La presencia de ésta fué puesta de manifiesto en nuestras experiencias por el procedimiento de Tschirch. Para ello se lixiviaron 10 gramos de polvo con alcohol de 60, hasta obtener 26 gramos de líquido filtrado; se concentró éste a una temperatura inferior a 80°, hasta reducirlo a 7 gramos, y se agitó el residuo de la evaporación con éter en un matracito tapado. En la capa oscura del extracto, que pronto se separó, se formó, al cabo de algunas horas, un precipitado cristalino escaso, lo que demuestra la existencia de una pequeña proporción de raponticina, que quedó patente por las reacciones típicas (color rojo con los álcalis y olor a aldehido benzoico, o sea a almendras amargas, con el ácido nítrico).

Para la valoración de la droga citaremos tres procedimientos, entre los varios existentes: el de Tchirf y Leger, el colorimétrico y el biológico.

Método de Tchirf y Leger

«0,50-1 gramo de polvo de droga se hierve con disolución alcohólica de potasa, hasta extracción total; los líquidos alcohólicos reunidos contienen oximetilantraquinonas libres y las procedentes del desdoblamiento, así como los productos de descomposición de los rheotanoglucósidos; se destila el alcohol, se diluye el residuo con agua y se acidula con ácido clorhídrico: el precipitado obtenido se filtra, se lava con agua acidulada y se seca; el precipitado, con el filtro, se extrae en un Soxhlet con cloroformo para disolver solamente las oximetilantraquinonas y no los taninos. El agotamiento está terminado después de pocas horas. El cloroformo se destila y el residuo se calienta con 10 c. c. de sosa al 5

por 100 para disolver, por su carácter fenólico, las oximetilantraquinonas; se diluye con 50 c. c. de agua; a esta solución se añaden 25 c. c. de la del diazoico y, agitando, se agrega ácido elorhídrico a gotas hasta decoloración y completa separación de la materia colorante; se ve si el líquido tiene reacción ácida y se abandona algún tiempo. Se filtra por un filtro tarado y seco, se lava hasta reacción neutra al rojo Congo, se seca a 90° y se pesa.»

«El reactivo se prepara del siguiente modo: 2 gramos de paranitranilina se disuelven en 25 c. c. de agua; sobre esta disolución se vierten 60 cm.³ de ácido sulfúrico; se agregan 100 c. c. de agua y luego uno de nitrato sódico (3 gramos en 25 c. c. de agua); por último, se diluye hasta medio litro y se conserva en la oscuridad.»

«En los ensayos realizados hemos empleado la KOH alcohólica al 3 por 100 y el ClH al 1/4.»

«El uso de la disolución de diazoico es un poco delicado y conviene emplearla en el momento de prepararla; frecuentemente, debido a su excesiva acidez, produce directamente la precipitación antes de acidular, por lo cual puede usarse el mismo reactivo con la mínima acidez posible, aumentando también la cantidad de NaOH al 5 por 100, que se adiciona al residuo de la destilación con cloroformo.»

Con este procedimiento se han analizado por los doctores Romero y Roig las muestras de las parcelas sin abono de nuestra experiencia, obteniendo una riqueza en oximetilantraquinonas del 2,7 por 100, superior a la media obtenida de los ruibarbos francés e inglés, que dan el 1,5 y 2,07 por 100, respectivamente.

Método colorimétrico

La reacción más corriente usada para el reconocimiento de las oximetilantraquinonas es la de Bornträger, que es la siguiente: Se hierve 0,01 gramos de ruibarbo con 10 c. c. de lejía de potasa al 1 por 100, debiéndose obtener un líquido que, filtrado y acidulado con CIH y agitado en seguida con 10 c. c. de éter, debe dar una capa etérea que, agitada con 5 c. c. de amoníaco, quede de color amarillo pálido (debido al ácido crisofánico), tomando color rojo cereza (por la emodina) el amoníaco. Como ocurrió claramente en nuestro caso, la coloración amarilla de la capa etérea puede comprobarse eventualmente por comparación con éter puro; la coloración roja de la capa acuosa pasa a rosada cuando hay demasiada poca sustancia activa. Con este ensayo se reconocen las antraquinonas libres y en estado de glucósidos.

Se ha logrado hacer la determinación de ambos componentes por separado mediante el siguiente procedimiento: Se hierve una cantidad exactamente pesada de la muestra (2 a 5 gramos) con 200 gramos de cloroformo; se separan de la solución las antraquinonas disueltas mediante lejía de sosa de 5 por 100; se sobresatura ésta con un ácido; se agita

con eloroformo; se evapora éste y se pesa el residuo que representa las antraquinonas libres de la droga. Luego se hierve el polvo de la droga, lixiviando con 200 gramos de eloroformo y 5 c. c. de ácido sulfúrico al 25 por 100, para hidrolizar las antraquinonas combinadas al estado de glucósidos; se lava el eloroformo con una solución de bisulfato sódico de 10 por 100; se filtra el eloroformo por kieselguhr (harina fósil); se lava el filtrado con ácido elorhídrico al 1 por 100; se evapora el eloroformo y se pesa el residuo, que representa las antraquinonas que estaban en forma de glucósidos. En este caso encontramos el 1,25 por 100 de antraquinonas libres y el 3,55 por 100 de antraquinonas combinadas.

La simple comparación de este método con el de Tchirf y Leger demuestra que se llega a resultados muy dispares en el porcentaje de los principios activos. Por otra parte, éstos nada en concreto indican sobre la actividad farmacológica que el material ha de tener, por lo cual es obligado recurrir al método biológico, pues incluso la determinación del valor por el método moderno de Tschirch, en que se determinan químicamente las antraquinonas antes y después de haber oxidado las antraquinonas reducidas con agua oxigenada y que debía bastar en las necesidades prácticas, especialmente cuando todavía se toma en consideración la cantidad de las antraquinonas glucosídicamente combinadas, es insuficiente para informarnos sobre su potencia purgante, pues no sabemos en qué proporción se encuentran los derivados de antraquinonas inactivos, poco activos, fuerte y muy fuertemente activos, ya que todos los existentes en la droga de igual manera participan en la formación del color.

Método biológico

Se fundamenta en hacer ingerir la droga que se ha de examinar en forma de píldoras a ratones blancos, de 15 a 20 gramos de peso, después de haber ayunado dieciocho horas. Las dosis activas conducen a una expulsión de excremento pastoso que, a medida que aquéllas son más fuertes, se hace flúido; los normales son en forma de bolas, un tanto consistentes. Desgraciadamente no pudimos determinar la dosis mínima activa de nuestra droga, pues la escasez de animales de que entonces disponíamos sólo nos permitió comprobar de manera cierta su buena actividad, advirtiendo que los rizomas ensayados fueron recolectados, como ya se ha dicho, el 15 de octubre, lo que hace pensar que los efectos logrados, como no iban acompañados de una fuerte congestión de la mucosa, dato comprobado por la necropsia, dependían en gran parte de las antraquinonas, ya que las formas reducidas sólo se dan en invierno y hubieran producide una mayor irritación.

PELITRE

Desde el año 1935—con la interrupción forzosa del período 1936-1939—se viene estudiando en la parcela de experimentación que el Servicio de Plantas Medicinales posee en la Casa de Campo, de Madrid, uno de los tres productos considerados de mayor valor como insecticidas de contacto: nos referimos al pelitre, procedente del Pyrethrum Cinerariefolium Vis.

CULTIVO

Determinado el peso de las mil semillas diez veces, en otras tantas tantas muestras correspondientes a diversas cosechas, se obtuvo como cifra media la de 1,113 ± 0,084 gramos. Estudiado en el laboratorio el poder germinativo de semilla recogida hace seis meses, se obtuvo el máximo, 48 por 100, en veinte días, a la oscuridad y a temperaturas alternadas de 20 y 30°. A 20° se consiguió un 42 por 100 en veintitrés días, también a la oscuridad. Puestas a la luz las semillas, dieron 44 por 100 en veintiún días a 20°; y 41 por 100 en veintidós a 20°-30°. A 15° no se consiguió que germinara ningún grano, ni enterrados ni descubiertos.

Ensayado este poder germinativo con la misma semilla, se obtuvieron, en las condiciones óptimas ya indicadas, los siguientes resultados, durante tres años consecutivos:

Primer año	 	 48	por	100.
Segundo año		31	por	100.
Tercer año	 	 12	por	100.

El cuarto año no germinó ninguna semilla. Como se ve, conviene emplear la de la cosecha anterior.

Para la multiplicación por semilla es aconsejable la siembra en semillero. La siembra directa no interesa, pues, como ya hemos visto, el

poder germinativo de las semillas de pelitre es bajo, y se originarían numerosos fallos, lo que dificultaría las labores de limpieza durante las primeras fases de la vegetación y la consecución de un sembrado uniforme, además de existir un mayor gasto de semilla.

Se preparó semillero de primavera, en cama caliente, a base de estiércol fresco de caballo, dispuesto en una capa de 0,40 metros de espesor y ésta recubierta por otra de mantillo de 0,10 metros. Se gastaron en 1,15 m.º 15 gramos de semilla, mezclada previamente con arena. Se distribuyó aquélla a voleo, incrustándola en la tierra, por compresión, con una tabla y se recubrió con una capa delgada de mantillo. A continuación se dió un riego muy ligero, que se repite periódicamente en cantidad y número estrictamente suficiente para mantener alguna humedad en el suelo. La fecha de siembra fué el 18 de marzo. Nació el 4 de abril, con irregularidad, formando manchones, pero éstos muy espesos, lo que implicó pérdida de planta por falta de espacio y por no poder utilizar toda la nacida para el transplante. De esta experiencia se deduce que la cantidad de semilla necesaria para un área de plantación (habida cuenta de la planta necesaria para reposición de marras) es de unos 45 gramos, en una extensión de semillero de unos 20 m.2. Al tener las plantas de tres a cuatro hojitas, se suspenden los riegos, y cuando tienen seis bien desarrolladas, se efectúa el transplante.

Hecho posteriormente semillero de otoño (4 de septiembre), se ha visto la conveniencia de sembrar el pelitre en primavera, pues las plantas vegetan mejor y resultan más vigorosas, si bien germinan con algún mayor porcentaje, 52 por 100, cuando se emplee la semilla recién recogida.

Los terrenos de asiento más convenientes para el pelitre, dado su carácter xerofítico y calcícola, son los de secano, calizos o silíceo-calizos, de subsuelo permeable y con alguna altitud. El cultivo en suelos fértiles y profundos, aunque da lugar a mayores producciones, disminuye mucho la duración de la plantación y, sobre todo, la actividad del producto. En cuanto al clima, prefiere los secos, de veranos cálidos. Soporta bien largos períodos de sequía y temperaturas bajas, habiendo comprobado nosotros la resistencia hasta de heladas de 8º bajo cero.

La tierra empleada para nuestra experiencia se había preparado con una labor algo profunda, con objeto de remover bien el suelo y eliminar las malas hierbas, sobre todo la grama, de la que estaba infectada. Después se dió un pase de rastra. Se hizo el trasplante de parte del semillero el 8 de junio y otro el 16 de septiembre, en líneas a 0,70 metros de distancia, y dentro de las líneas la equidistancia fué de 40 centímetros. En el primer trasplante hubo un 48 por 100 de fallos; repuestos el 20 de junio, al atardecer, también hubo un 29 por 100 de marras con respecto a la primitiva plantación, que no se pudieron cubrir nuevamente por lo avanzado de la estación. En el segundo trasplante hubo un 18 por 100 de fallos, repuestos en 29 de septiembre; pasado así el invierno, en la primavera brotó el 94 por 100 de las plantas puestas. En

consecuencia, queda demostrado que para el semillero de primavera conviene el trasplante de otoño.

El trasplante de la planta procedente de semillero de otoño se hizo el 25 de marzo, y se observó a los quince días un 14 por 100 de fallos, que fueron repuestos el 10 de abril.

Esta operación, tanto si se hace en otoño como en primavera, debe efectuarse después de un período de lluvias, para que el terreno esté en buen tempero. Por ello, el trasplante de otoño, al haber mayor seguridad de lluvias en esta época, asegura un mayor rendimiento. En cambio,

Una parcela de pelitre en el camno experimental del Servicio. (Foto S. P. M.)

el semillero de otoño con trasplante en primavera, aunque tiene las desventajas que ya hemos visto, posee a su favor lograr un poder germinativo algo más elevado si se emplea semilla del año, y(además, el no ocupar el terreno hasta la primavera, pudiendo utilizarse éste para algún esquilmo de recolección temprana.

Caso de que el terreno esté seco en el momento del trasplante, es conveniente, si ello es posible, echar un poco de agua a cada planta después de colocada.

Los terrenos demasiado secos o insuficientemente permeables deben disponerse en cerros de 30 cms. de altura y distantes 70 cms. unos de

otros, colocándose las plantas en la cresta de los cerros, a 40 cms. una de otra.

Como cuidados culturales, es preciso tener el semillero bien límpio de malas hierbas y sin costra, dar a la plantación de asiento unas tres binas durante el año, aparte de la labor preparatoria antes indicada y otra en otoño, para facilitar el almacenamiento del agua de lluvia.

En el trasplante de otoño (16 de septiembre) correspondiente a semillero de primavera se hizo un ensayo de abonado a base de las siguientes fórmulas y distribución:

A		В		С		D	
	16		15		14		1 3
Ð		С		A		В	
	12		11		10		9
G		D		В		A	
	8		7		6		5
В		A		D		С	
	4	1	3		2		1

A = Testigo

B = Superfosfato de cal 18/20 : 2,50 kgs. por área

C = Id. Id. : 5,00 Id. ... (Id. Id. : 5,00 Id.

 $D = \begin{cases} 1d, & 1d, & 10,00 \\ \text{Nitrato sódico}.....: 2,00 & 1d. \end{cases}$

Tamaño de las eras...... 20 m².

La incorporación del superfosfato se hizo el 20 de marzo, y la del nitrato, en cobertera, el 15 de abril.

La primera floración se inicia, con la aparición de algunos botones, el 20 de abril, y comienzan a abrirse el 17 de mayo. Para efectuar la recolección se esperó a que estuvieran las flores completamente abiertas, pues, aunque durante bastante tiempo se ha discutido si convenía coger los capullos o las flores abiertas, ya se ha aclarado perfectamente que «las flores tienen más abundancia en piretrinas cuanto más desenvueltas se hallan».

Tuvo lugar la recogida de flores el 2 de mayo y duró hasta el 30 del mismo mes. Fueron surgiendo después nuevas flores, de modo que hubiera podido hacerse otra recolección en agosto; pero no se hizo, ya que las de mayor riqueza en principios activos son las de la primera recolección.

Esta se hizo segando los tallos florales a unos 10 cms. del suelo. Deben elegirse días despejados y con poca humedad ambiente. La separación

de las flores de los tallos y hojas se hizo pasando los haces por una especie de peine. La industria dispone de máquinas especiales para esta operación, que debe hacerse siempre que se quiera un producto de calidad, pues los tallos y las hojas, si bien también poseen piretrinas, sólo es en proporción del 20 y del 50 por 100, respectivamente, de las contenidas en las cabezuelas.

Continuada esta experiencia en años sucesivos, en los que también se repitió el abonado, a las dosis y con el reparto indicado, se hizo la recolección: el tercer año, del 30 de mayo al 5 de junio; la del cuarto, del 20 al 26 de mayo, y la del quinto, del 28 de mayo al 10 de junio.

Los rendimientos obtenidos fueron los siguientes:

A		16	В		15	$ \mathbf{c} $		14	Ð		13
2.° 3.° 4.° 5.°	1,95 3,10 3,50 2,80			3,40 2,90 3,70 3,00			3,80 4,10 4,50 4,00			3,90 5,00 4,80 4,30	
D		12	C		11	A		10	В		9
	4,80 5,00 5,20 4,60			4,60 4,80 4,30 4,40			3,60 3,80 3,90 2,10			4,00 4,25 4,10 3,80	
c		8	D		7	В		6	Δ		5
	3,90 3,70 5,00 2,95			4,30 4,00 4,50 3,85			3,60 4,10 4,40 3,90			3,00 3,90 4,00 2,60	
В		4	A		3	D		2	C		1
	3,50 3,80 4,10 4,50			2,90 3,70 2,80 1,75			4,00 4,40 4,25 3,85			3,90 4,30 5,60 3,10	

Hechos los cálculos estadísticos correspondientes, se obtuvieron los siguientes resultados:

Año	VAL	OR DE Z	Signo	Porcentaje
de la recolección	Experiencia	Tablas Fisher del	de la significación	de probabilidades
2.°	1,5684	(1 %) 1,1401 Id.	Positiva	99
3.°	1,1658	Id.	Id.	99
4.º	1,6395	ld.	Id.	99
5.°	0,8368	$(5^{\circ}/_{\circ}) 0,7798$	Id.	95

Para las diferencias obtenidas entre los diversos tratamientos, resultan las siguientes significaciones y valores:

Años de la recolección	Combinaciones	Significación de la diferencia	Diferencia significativa	Aumento por área en kilogramos
ı	$B - \Lambda$	Positiva	1,50	7,50
l	C A	ld.	3,20	16,00
5.0	D = A	ld.	4,00	20,00
2.0	C - B	l ld.	0,15	0,75
i	D B	Id.	0,95	4,75
	D — C	Negativa		_
	Producción por á	irea sin abonar: 57	,25 kilogramos.	
	B — A	Negativa	-	
	C A	Positiv a	0,66	3.30
2.0	D A	Id.	2,16	10,80
3.0	C - B	ld.	0,11	0,55
	D B	Negativa		
	D - C	Id.	minore	!
	Producción por ás	rea sin abonar: 72,5	50 kilogramos.	
	D A	Negativa		-
	$\mathbf{C} = \mathbf{\Lambda}$	Positiva	0,66	3,30
4.0	D A	Id.	1,01	5,03
4. *	C B	Negativa		
	D B	ld.	~ 4	<u> </u>
1	D — C	Id.	_	
	Producción por á	rea sin abonar: 71,0	00 kilogramos.	
	B A	Negativa	1,87	9,35
	C A	ld.	1,12	5,60
• •	D A	Id.	3,27	16.35
5 .º	С · В	Positiva		
	D B	Id.		· —
,	D = C	14.	-	
	Producción por á	rea sin abonar: 46,5	25 kilogramos.	•

Tratamientos	Primera recolección (Segundo año)	Segunda recolección (Tercer año)	Tercera recolección (Cuarto año)	Cuarta recolección (Quinto año)
Sin abono	57,25	72,50	71,00	46,25
2,50 kgs, por área super	64,75			55,60
5,00 kgs. por área super	73,25	75,80	74,30	51,85
5,00 kgs. por área super	77,25	83,30	76,05	62,60

De los anteriores datos se deduce el efecto favorable del abonado mineral sobre el rendimiento cuantitativo del pelitre, sobre todo el de la mezcla superfosfato de cal y nitrato sódico, a dosis de cinco a dos kilogramos, respectivamente, por área.

En las cuatro eras en que se hizo el trasplante de primavera (8 de junio), correspondiente al semillero del 18 de marzo anterior, se hizo una recolección de flor el 16 de agosto, recogiéndose una cifra media por era de 0,125 kgs. de flor fresca, equivalente a 0,625 kgs. por área.

En cuanto a los rendimientos conseguidos con trasplante el 25 de marzo de planta procedente de semillero de otoño (4 de septiembre), el rendimiento de flor fresca fué de 2,25 kgs., es decir, ligeramente inferior al conseguido con el trasplante de 16 de septiembre de pies originarios de semillero de primavera.

La desecación se hizo a la sombra, depositando las cabezuelas sobre arpilleras en capas delgadas, que se removieron por mañana y tarde. Durante la noche se taparon con unas lonas. De ser posible, se hará esta operación en un local techado, seco y bien ventilado. Se tardó en esta operación catorce días, dándose por terminada cuando los capítulos se desmenuzan entre los dedos; 20 kgs. de flor fresca quedaron reducidos a 3,85 una vez desecados, aumentando con ello el olor penetrante de la droga. De tallos y hojas se recogieron 15 kgs. por área, que quedaron reducidos por desecación a 10 kgs.

MÉTODOS ANALITICOS

Estas determinaciones de los rendimientos cuantitativos de la flor del pelitre no pudieron seguirse paralelamente de sus análisis en principios activos, pues no disponíamos de elementos, sobre todo para la valoración biológica de la droga. Pero este complemento de nuestra labor ha sido hecho por los doctores Fernández (Obdulio) y Capdevila (Carlota) (1), con pelitre de diversas procedencias, entre los que se encontraban las flores correspondientes a las parcelas no abonadas y recolectadas en nuestro campo en los años 1935 y 1942, detalle que nos interesa consignar, pues de la lectura de tan interesante trabajo, en el que sus autores sólo hablan del «pelitre de la Casa de Campo», pudiera deducirse erróneamente que le encontraron allí en estado espontáneo.

Estudiados por los autores los diversos procedimientos de análisis, obtuvieron los resultados indicados en el cuadro de la página siguiente.

Habida cuenta de que el pelitre más rico de Europa es el de la procedencia yugoslava de Primorska, cuya riqueza en piretrinas oscila alrededor del 8 por 100, según transcriben dichos autores de Gnadinger y Corl, resulta que el pelitre procedente de los cultivos establecidos en 1935 por el extinguido Comité y en 1942 por el actual Servicio de Plantas Medicinales, puede rivalizar con el yugoslavo y es superior a los procedentes de Rusia, Bulgaria y Suiza, y, desde luego, al de otras procedencias nacionales.

De los numerosos procedimientos estudiados por los doctores Fernández y Capdevila, deducen estos investigadores que los que tienen por fundamento la capacidad de la piretrolona para formar semicarbazonas resultan de técnica larga y dan números bajos, por no dar compuestos cristalinos; y aquellos que consisten en aislar, previa saponificación, los ácidos formadores de las piretrinas, son de técnica dificultosa y lenta. Por tanto, los métodos de más práctica aplicación y, por esto, más utilizados en el laboratorio, son los fundados en las cualidades reductoras de la piretrolona, una vez aislada de su combinación con los ácidos crisantemocarboxílicos. En consecuencia, recogemos del trabajo citado las técnicas correspondientes a los dos métodos incluídos en este grupo: el de Gnadinger y Corl y el de Martín y Tattersfield.

1.º Método de Gnadinger y Corl

Los autores fundaron su técnica en el poder reductor de la piretrolona, por su condición de alcohol-acetona, ya mencionada por Staudinger y Harder. Por tener las piretrinas esta misma propiedad, quisieron utilizarla como se hace en los azúcares reductores, así como la disolución alcalina de hidrato cúprico (reactivo de Fehling); pero, como aquí, el método no puede ser gravimétrico, porque la cantidad de piretrina es muy pequeña, utilizaron ellos el método colorimétrico de Folin para determinar glucosa con sangre. En este método, para determinar piretrinas en disolución alcohólica, se emplea el tubo Folin, modificado por Benedit, que es un tubo de capacidad determinada para evitar la oxi-

⁽¹⁾ Fernández (O.) y Capdevila (C.): «El pelitre, insecticida español: Pyrethrum Cinerariefolium Vis». «Revista de la Real Academia de Ciencias de Madrid». Tomo XXXVII-1943.

METODOS

	Staudinger v Hørder	Gnadinger v Corl	Martin v Tattersfield	Wilcolxon	Tatters	Tattersfield y Hobson	lobson		Ripert		Can	Canneri y Bigalli	çalli
MUESTRAS	Piretrinas Totales º/w grs.	Piretrinas Totales º/w grs.	Piretrinas Totales º/os grs.	Piretrinas Totales º/w grs.	P. I	P. 11	Totales 0/m grs.	P. 1	P. 11	Totales 0/s0 grs.	P. 1	P. II	Totales º/oo gre.
:	2,50	(6'2	8,03	8,78	5,08	2,33	7,41	4,48	2,66	7,14	5,96	3,50	9,46
Felitre de Madrid	3,47	8,93	8,45	9,02	4,95	3,44	8,39	5,30	4,48	42,6	6,07	4,62	69,6
	2,54	46,4	I	4,06	1	l	1	2,69	2,29	4,98	١	l	ì
Felitre de Granada	2,58	5,11	I	5,06	l	I	1	2,69	2,61	5,30	l	ı	1
:	· ·	6,10	6,34	6,27	4,56	2,09	6,65	2,94	2,34	5,28	5,19	3,33	8,5.1
relitre aragones		6,22	6,42	6,33	4,78	1,94	6,72	3,42	2,56	6,04	5,31	3,55	8,80
	1	3,75	4,99	5,16	ı			2,71	2,39	5,10	3,96	3,60	7,56
Felitre catalan		4,44	5,36	5,77	1			3, T	2,46	5,61	+,+	3,50	46.5

dación del óxido cuproso: la de la bola es de 15,5 cm³. y la de la parte estrecha de 4,5 cm³.

La técnica es la siguiente: Se extraen 10 grs. de polvo de pelitre con éter de petróleo de punto de ebullición bajo en un Soxhlet durante ocho horas. Se enfría la disolución, cuyo volumen ha de ser inferior a 100 cm³. a 20°, y se deja a esta temperatura media hora o toda la noche. Se filtra por un filtro de poro fino en un vaso de 400 cm³., de boca ancha, añadiéndole 0,6 grs. de arena pura y calcinada, y se evapora a una temperatura inferior a 75°. Desaparecidos los últimos vestigios del

Recolección de un cultivo de pelitre en la provincia de Tarragona, (Foto Ribera.)

disolvente, se traslada el residuo con alcohol de 95° caliente, exento de aldehido, a un frasco de 100 cm.º (previamente marcados los 80 centímetros cúbicos), usando suficiente alcohol para completar el volumen a 80 cm.3; a la disolución caliente se le añade con una pipeta 15 centímetros cúbicos de otra de acetato de plomo básico y se completa el volumen con alcohol caliente, agitando fuertemente el frasco y enrasado de nuevo con alcohol. Se filtra y al filtrado se le añaden dos gramos de carbonato sódico anhídro para precipitar el plomo; se deja quince minutos, agitando de vez en cuando, y se filtra inmediatamente; del líquido filtrado se colocan 10 cm.3 en un tubo de Folin y se añaden con una pipeta 6 cm.3 de la solución alcalina de Cu (OH)2, preparado así: Disuélvanse 2,5 grs. de SO4Cu, 5 H2O en 100 cm.º de agua templada; enfriese una vez disuelto; disolver 5 grs. de tartrato NaK y 7,5 gramos de NaOH de (96 por 100 de NaOH) separadamente en 100 cm.3 de agua fría; llévense las disoluciones a un frasco de 500 cm.º de volumen, mézclese y complétese éste. La disolución sólo es estable siete días. Mézelese, agitando y teniendo cuidado de que quede líquido en la parte estrecha del bulbo del tubo de Folin.

En otro tubo se miden 10 cm.³ de la disolución tipo de glucosa (que contenga 2 mmgrs.) y se añaden 6 cm.³ del reactivo cúprico. Puestos los tubos verticales en un baño a la temperatura de 78° durante cuarenta y cinco minutos, se separan del baño, se enfrían a 20° y se les añade con una pipeta a los dos tubos 10 cm.³ del reactivo Folin, dejándolos verticales tres minutos; se tapan los tubos y se mezcla bien el contenido, que se traslada a un frasco de 100 cm.³, completando con agua el volumen. Se filtra el producto a través de un Gooch con una capa gruesa de asbesto, usando débil succión. Compáranse al mismo tiempo en un colorimétrico Dubosco las disoluciones y por la lectura de la escala se calcula la glucosa equivalente, y, leyendo en la tabla de los autores el número correspondiente a la cifra de dextrosa, se tiene la de piretrina. Para los cálculos se han hecho siempre cinco lecturas y se ha tomado la media.

El reactivo de Folin se prepara disolviendo 150 gramos de molibdato sódico bihidratado en 300 cm.³ de agua, para agregar sobre la disolución obtenida 2 cm.³ de bromo, agitando. Luego de disuelto éste, se adicionan 225 cm.³ de ácido fosfórico, y seguidamente 150 de ácido sulfúrico al tercio. Antes de mezclar 75 de ácido acético y de completar un litro con agua, se expulsa el exceso de bromo, pasando con lentitud una corriente de aire.

2.º Método de Martín Tattersfield.

0,5 grs. de polvo se extraen con éter de petróleo de punto de ebullición de 40 a 50° en un Soxhlet; el disolvente se separa a baja temperatura en corriente de anhídrido carbónico, y las últimas porciones en un desecador de vacío; el residuo se extrae varias veces con alcohol absoluto, calentando en baño de agua hirviendo. A esta disolución alcohólica se la depura de la pequeña cantidad de piretrina que pueda contener, añadiendo 1 cm.³ de NaOH, CIN y 4 cm.² de otra de sulfato de cinc, agitando en baño de agua. Al líquido resultante, frío a 20°, se añaden 25 cm.³ de alcohol absoluto, se agita y se deja vertical; se filtra por papel analítico en un matraz de 50 cm.³ y se completa con alcohol absoluto el volumen.

Para la valoración se toman, medidos exactamente, 2 cm.³; se colocan durante cuarenta y cinco minutos sobre un baño María, hirviendo con 10 cm.³ de disolución alcalina de ferricianuro potásico recientemente preparado, en un tubo de Folin. El líquido frío se traslada a un matraz cónico y se evalúa inmediatamente el exceso de ferricianuro por el yodo que deja en libertad al añadir 10 cm.³ de solución IK en sulfato de cinc (el sulfato cíncico evita el retroceso de ferrocianuro a ferricianuro en presencia de yodo) y 10 cm.³ de ácido acético al 3 por 100; el I liberado

se valora con thiosulfato, usando engrudo de almidón para ver el final de la reacción.

Se hace al mismo tiempo, y en las mismas condiciones, un ensayo en blanco, colocando en otro tubo 10 cm.º de la disolución alcalina de ferricianuro potásico y 2 cm.º de alcohol de 80°.

1 cm.3 de S2O2Na2 0,005 N equivale a 0,000862 grs. de piretrina.

Ensayos biológicos.

Está perfectamente comprobado, según los doctores Fernández y Capdevila, que la finura del polvo de pelitre influye en la actividad biológica, pues al radicar las piretrinas en los aquenios, si éstos no están triturados convenientemente, quedan aquéllas retenidas en las células de las paredes y, por lo tanto, se sustraen al contacto con los insectos.

Para los ensayos biológicos emplearon cucarachas (Blatta orientalis), Blatellas y pulgones (Aphis rumicis), teniendo en cuenta no sólo el número de insectos muertos, sino el tiempo tardado por el polvo en ejercer su acción.

Actuando un gramo de polvo grosero sobre 47 pulgones en caja de Petri cerrada, murieron todas a los veinticinco minutos; con polvo menos grueso murieron a los quince minutos.

Al emplear Blatella, se observó que el animal es muy sensible. Nueve tratadas con polvo fino, murieron todas a los cinco minutos, no obstante efectuar este ensayo en vaso abierto.

Las cucarachas se colocaron en placas de Petri, una en cada caja; pero una vez vuelto el animal sobre la espalda, a los quince minutos se destapó para que se aireara, a pesar de lo cual murieron una a las dos horas y otra a las seis y media. Puestas en cápsula abierta, cayeron a los diez minutos, muriéndose a las seis horas. Queda demostrado con estos últimos ensayos que el tiempo tiene su influencia en la apreciación de la actividad de las piretrinas y que las eucarachas no son a propósito para estas experiencias.

Comparada la actividad biológica del pelitre de la parcela de experimentación del Servicio de Plantas Medicinales con los procedentes de Aragón y Cataluña, resultó también aquél el de más calidad.

Por último, indican los citados investigadores los trabajos de Wilcoxon y Hartzel y Schechter y Hieller, según los cuales parece que en la cabezuela del pelitre existe una sustancia, destilable en corriente de vapor, de aroma grato (probablemente un hidrocarburo), inactiva para los insectos, pero que se sospecha que modifica la capacidad de las piretrinas, según que estén aisladas o en la flor. Destilando 125 grs. de flores abiertas en corriente de vapor sobrecalentada a 125° se obtuvo un litro de destilado; extraído éste con éter ctílico y destilado el éter, obtuvieron los doctores Fernández y Capdevila una esencia de color castaño y de olor agradable, que se desecó sobre sulfato sódico calcinado con un rendimiento de 0,7 grs. de esencia, lo que supone el 0,56 por 100.

ADORMIDERA

RENDIMIENTOS

Las experiencias realizadas con esta papaverácea tuvieron por objeto determinar la conveniencia de su cultivo en secano y regadio; sembrada en primavera u otoño, ver el efecto de los diversos abonados sobre la producción de opio y su riqueza en morfina; y comparar diversas variedades españolas y alemanas.

En 1940 se hizo una siembra en febrero y se ensayó, en las 16 parcelas de regadío preparadas, la acción del superfosfato de cal y sulfato potásico. Hecha la recolección de opio el 25 de junio, se obtuvieron los siguientes rendimientos, por era de 20 m.², estadísticamente significativos:

Sin abono	15,139	gramos
Superfosfato de cal 400 kgs./Ha	14,561	»
Sulfato potásico, 150 íd	13,418))
Sulfato potásico, 150 íd	15,161))

De estas cifras se deduce que la producción media de opio por hectárea de terreno no abonado es de 7-8 kgs. y que el superfosfato de cal y el sulfato potásico no tienen acción sensible sobre el aumento de producción.

Como de los alcaloides del opio es el más abundante la morfina y, en cierto modo, puede deducirse la bondad de aquél por la cantidad que contenga de este alcaloide, el Prof. Gómez Serranillos hizo las determinaciones correspondientes a los diversos tratamientos según el método de Petit, que es como sigue:

«Sepárense porciones de distintos puntos de la masa del opio objeto del ensayo, redúzcanse a fragmentos desnudos y mézelense lo más intimamente posible, con el fin de obtener una mezela media del producto problema. Pésense 7,50 grs. de dicha muestra, tritúrense en un mortero con 3 grs. de cal recién apagada y finamente pulverizada y añádanse,

poco a poco, 75 c. c. de agua destilada, sin dejar de triturar, sobre todo al principio, a fin de obtener mezcla íntima bien homogénea; agitese ésta durante dos horas, evitando la formación de espuma; pásese por un filtro, tómense exactamente 52 c. c. de capacidad, agréguense 2 c. c. de alcohol y 15 c. c. de éter, tápese bien, agítese fuertemente y añádase un gramo de cloruro amónico; cuando éste se haya disuelto agítese, trotando las paredes de la vasíja con una varilla de vidrio, hasta que aparezca un precipitado cristalino bien perceptible; séquese entonces la va-

Vista general de la experiencia sobre adormidera. (Foto S. P. M.)

rilla, tápese el matraz y déjese reposar veinticuatro horas, para que los cristales de morfina se reúnan y depositen.

En un embudo de 5 cms. de diámetro colóquense, uno dentro del otro, dos filtros de papel de igual peso, sin pliegues, con sus lados contrapuestos; humedézcanse con agua destilada y séquese sobre el embudo el doble filtro así preparado. Decántese el éter que sobrenada en el matraz antes citado y añádanse al líquido del matraz otros 15 c. c. de éter; agítese, déjese reposar y decántese sobre el filtro la nueva capa etérea; déjese secar el filtro al aire y viértase entonces en el líquido acuoso remanente, que será amarillento parduzco y casi diáfano. Añádanse sobre los cristales de morfina que se han quedado en el matraz 8 c. c. de agua

destilada, saturada de morfina y éter; agítese para interponer los cristales y viértase sobre el filtro, recogiendo aparte el líquido de la segunda filtración para volverlo al matraz y hacer pasar con él toda la morfina al filtro, y lávese sobre éste el magma cristalizado con agua saturada de morfina y éter, hasta que la loción no se enturbie con el nitrato de plata acidulado con nítrico.

Llegado este caso, póngase en la estufa, calentada a más de 100°, el embudo con el doble filtro y su contenido; manténgase en ella hasta la desecación completa (unas dos horas); déjese enfriar y lávese el precipitado cristalino con tres porciones sucesivas de 8 c. c. de benzol. Llévese de nuevo a la estufa el embudo con los filtros; deséquese a más de 100° hasta peso constante; déjese enfriar en un desecador, sepárese con cuidado el filtro exterior y, empleando éste como tara, pésese el interior, con su contenido. El aumento de peso representa la morfina anhidra existente en 5 grs. de opio, y, por consiguiente, para referirla a 100 bastará multiplicarla por 20.»

De este modo se obtuvieron los siguientes porcentajes medios de morfina, estadísticamente significativos:

Sin abono	7,821 %
Superfosfato de cal	6,927 %
Sulfato potásico	7,040 %
Superfosfato de cal	6 A6A D/
Superfosfato de cal	0,404 %

Practicadas, tres meses más tarde, nuevas valoraciones, se obtuvieron incrementos en la riqueza en morfina, que no pasaron, en el mayor de los casos, del 0,098 por 100, lo que demuestra que los alcaloides se encuentran ya formados en el fruto y no, como erróneamente se creía, que aparecen después de obtenido el látex, en virtud de la fermentación lenta por él experimentada.

De estos análisis se desprende, en consecuencia, que la riqueza media de morfina del opio recién recolectado era de 7,821 por 100 en el terreno sin abono, que este porcentaje no aumenta con la fermentación del opio y que, tanto el superfosfato de cal como el sulfato potásico, no tienen acción sensible sobre dicha riqueza alcaloídica (1).

En 1941 se comparó la adormidera de procedencia española con las variedades Eckendorf, Peragis, Mahndorf y Strubes.

Sembradas y nacidas todas simultáneamente, empezó por sobresalir la vegetación de la Mahndorf y la española; al poco tiempo se adelanta aquélla y la Eckendorf va igualando a ésta, hasta sobrepasarla, después del aclareo, de modo que, al llegar a la recolección, el orden de las cin-

⁽¹⁾ El estudio completo agronómico-farmacognósico correspondiente a este primer año, hecho en colaboración con el Profesor don Manuel Gómez-Serranillos, se ha publicado en el núm. 7 del «Boletín del Instituto Nacional de Investigaciones Agronómicas», Madrid, septiembre de 1942.

co variedades, en cuanto a su vegetación, es el siguiente: Eckendorf, Mahndorf, Strubes y, en último lugar, muy igualadas, la española y la Peragis,

En cuanto al tamaño de las cápsulas, son las mayores las españolas, a las que siguen las de las variedades Eckendorf, Mahndorf, Strubes y Peragis. En cuanto a resistencia al pulgón, mostraron el siguiente orden de intensidad, de más a menos: Eckendorf, Mahndorf, Peragis, Strubes y española.

Los rendimientos obtenidos, de los que no se hizo estudio estadístico, fueron los indicados en el cuadro siguiento:

Número de la era	Número de pies	Número de cápsulas	Opio obtenido en grs.	Peso de las cápsulas en grs.	Pero en grs. de la semilla de cada cápsula
$\mathbf{N} \stackrel{1}{\downarrow} 1$	46	86	6,850	320	50
2	48	100	7,148	340	71
P (3	51	325	8,720	600	220
1 4	35	335	9,012	490	146
E (5)	45	354	9,862	1.150	450
6	35	327	9,230	800	270
4 5 7	40	150	6,621	230	43
M } 8	31	130	5,980	300	78
5 (9	20	84	4,326	245	63
S } 10	33	87	2,867	255	63

N = cspanola; P = Perages; E = Eckendorf; M = Mahndorf; S = Strubes.

Se ve que, en opio, las cantidades conseguidas, aunque muy dispares, denotan el siguiente orden de preferencia de las variedades:

Eckendorf, Peragis, española, Mahndorf y Strubes.

En cuanto a producción de semillas, el orden es: Eckendorf, Peragis, Strubes, española y Mahndorf.

Por las escasas cantidades obtenidas de opio (pues se partió de pequeñas muestras de semillas), no se pudo determinar la riqueza en morfina de las distintas variedades.

Se ve que en cuanto a vegetación, producción de opio y cantidad de semilla, es la variedad Eckendorf la más interesante.

En 1942 se estudió el cultivo de la adormidera en secano. Los resultados obtenidos, de los que tampoco se hizo cálculo estadístico, fueron los siguientes:

Núm. de era	Núm. de pies	Núm. de cápsulas	Opio obtenido en gramos	Peso de las cápsulas en gramos	Peso en gramos de la semilla de cada cápsula	Clase de abono
1	40	53	3	100	11	0
3	49	91	9	270	77	3 N
3	45	86	6	285	102	2 N
4	44	85	2	260	92	N
4 5	41	72	4	250	80	N
6	46	56	4	155	28	0
7	42	73	5	175	38	3 N
8	46	92	5	255	84	2 N
ğ	$\tilde{52}$	78	6	185	30	2 N
10	45	81	6	168	27	N
1i	4+	80	5	175	40	Ö
12	46	81	6	230	47	$3 \widetilde{N}$
13	52	87	8	305	113	3 N
14	41					
		56.	4	132	8 .	2 N
15	42	68	5	200	55	N
16	43	51	4	120	27	0

O = Testigo; N = dosis sencilla de sulfato amónico (100 Kgs. Ha); 2 N = doble; 3 N = triple.

De dicho cuadro se deduce que la cantidad obtenida de opio parece ser proporcional, aunque con muy pequeña diferencia, a las dosis de sulfato amónico, y mucho menor que la conseguida en regadío.

Tampoco se pudo determinar la riqueza en morfina, dadas las exiguas cantidades de opio obtenidas.

Cabe, pues, la posibilidad de obtener, en el clima de Madrid, la adormidera en secano; pero la producción de opio por hectárea de terreno no abonado sufre una reducción de 7-8 kgs. en regadío, a 2,5 en secano.

En 1943 se hizo una siembra en otoño y otra en primavera, en la cual se volvió a comparar el cultivo en secano y en regadío, así como el efecto del sulfato amónico.

La siembra de otoño se heló en el mes de enero. En cuanto a la de primavera, en el mes de mayo se observaba una diferencia grande en la vegetación entre las eras de secano y las de regadío, y en éstas el efecto del sulfato amónico se notaba a simple vista. Pero en la segunda quincena de dicho mes se iniciaron los fuertes calores, que tanto daño causaron en todos los cultivos. Se vió sensiblemente el efecto perjudicial que ello causó en la adormidera, cuyo desarrollo se detuvo, no formándose el botón floral más que en un escaso número de pies. Las plantas que antes acusaron esta acción perniciosa fueron, precisamente, las que más adelantadas estaban; es decir, las de regadío abonadas con sulfato amónico. En cambio, las de secano se defendieron mejor, pero acabaron por seguir los mismos pasos que las anteriores, formándose en ellas más cápsulas, que quedaron pequeñísimas. En consecuencia, hubo de abandonarse la experiencia.

De todos estos estudios se han deducido las siguientes conclusiones:

- 1.* La siembra de adormidera debe hacerse a primeros de febrero. Si se efectúa en otoño, corre grave riesgo de helarse, y si se realiza en primayera, el calor perjudica extraordinariamente la fructificación.
- El cultivo en secano da una producción de opio muy inferior a la conseguida en regadío.
- De las cinco variedades ensayadas, la más productiva es la Eckendorf.
- 4.ª La producción media de opio obtenida por hectárea, en Madrid, es de 7-8 kilogramos.
 - 5. La riqueza media en morfina del opio obtenido es 7,82 por 100.

El campo de adormidera, en el momento de iniciar la recolección de opio. (Foto S. P. M.)

- 6.ª La riqueza en morfina es sensiblemente igual recién recogido el opio que a los tres meses de la cosecha.
- 7.ª Los abonos minerales fosfóricos y potásicos no ejercen influencia positiva ni en la cantidad de opio ni en su riqueza alcaloídica.
- 8.ª Los abonos nitrogenados (sulfato amónico) parecen incrementar la producción de opio, sin tenerse aún datos sobre su efecto en el porcentaje en morfina.

DATOS CULTURALES

De los ensayos y observaciones hechas durante el período 1939-1944 se deduce que el cultivo de la adormidera debe realizarse del modo siguiente :

Preparación del terreno: Una labor en diciembre y otra cruzada en enero, con la cual se incorpora el sulfato amónico, seguida de un rastrillado.

Siembra: Directa, a primeros de febrero y a chorrillo.

Marco: En líneas, a 0,65 metros de distancia. Cantidad de semilla por hectárea: 5 kilogramos.

Nascencia: A los veinticinco-treinta días.

Aclareo: A mediados de abril, dejando los golpes a unos veinte centímetros.

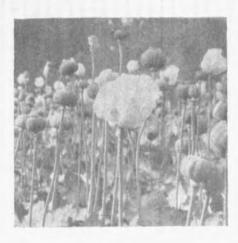
Binas: Una.

Escardas: Una.

Riegos: Uno con la segunda labor preparatoria, otro anterior a la siembra, y durante la vegetación, otros dos.

Floración: Se inicia a primeros de junio.

Recolección: A fines de junio. El momento adecuado es cuando las cápsulas inician el cambio de su coloración del verde al amarillo claro.


Forma de hacer las incisiones: Transversalmente y poco profundas, de modo que no lleguen al endocarpio. Las horas más apropiadas son las primeras de la mañana.

Recogida del opio: Al día siguiente por la mañana, raspando los frutos con una espátula y recogiendo el látex en una cápsula.

Jornales gastados: En la recogida por hectárea: 40 para hacer las incisiones y 100 para recoger el opio.

Peso de mil semillas: 0,452 gramos.

Germinación óptima: El 96 por 100 a los doce días, a la oscuridad y una temperatura de 20°.

LOBELIA

DATOS GENERALES

De los dos géneros más corrientes de la familia Lobeliáceas—Laurentia y Lobelia—, este último, que toma su nombre del médico flamenco Matías von Lobel, botánico de Jacobo I de Inglaterra, posee unas doscientas especies repartidas entre las regiones cálidas y templadas en ambos mundos.

Las más corrientes de ellas son las siguientes: Lobelia inflata L., L. syphilítica, L. cardinalis L. y L. splendens L., originarias de Norte-américa, en donde se las encuentran diseminadas desde Labrador hasta Georgia, al N. O., en Nebraska y Arkansas; L. urens L., que aparece en los terrenos silíceos de varios países europeos, entre ellos en las praderas húmedas y orillas de los ríos de las regiones inferior y montana del N. O. y S. O. de España, en las que se la conoce con los nombres vulgares de matacaballos y escurripe; L. nicotianæfolia Hayne, originaria del Asia Occidental; L. Delessea Gaud, de Méjico; L. Molleri Henry, que se encuentra en Santo Tomé; L. Dortmanna L., de los países bálticos; etcétera.

De todas ellas, es la Lobelia inflata la más rica en el alcaloide denominado lobelina, al que debe sus propiedades vomitivas enérgicas, favoreciendo, a pequeñas dosis, la expectoración, por lo que se preconiza esta droga en los tratamientos contra el asma y la disnea.

BOTÁNICA

Es una hierba anual, muy acre e hirsuta, debido a los pelos rigidos que posee diseminados por todo el tallo y el haz de las hojas. Su tallo, recto y muy ramificado, tiene una altura media de 40 a 60 cms. y está recorrido por numerosos canales laticíferos. Hojas alternas, finas y dentadas: ovaladas y apenas pecioladas en la parte inferior de la planta; sentadas y con tendencia a la forma lanceolada en la superior.

Inflorescencias en racimos poco densos, constituídos por flores peque-

ñas de color azul claro y acompañadas de brácteas foliáceas. Cáliz lampiño, hinchado y dividido en cinco lóbulos agudos casi tan largos como la corola. Esta es irregular y bilabiada; el labio superior se compone de dos lóbulos estrechos, y el inferior de tres más anchos, con algunas manchas azuladas. El androceo está compuesto por cinco estambres, vellosos en el vértice y soldados entre sí por la parte superior de sus filamentos y por el borde de las anteras. El gineceo está compuesto por dos carpelos de placentación axilar, con un solo estilo, y se transforma, al madurar, en una cápsula vesicular, a lo que alude el nombre específico de la planta. Dicha caja está recorrida transversalmente, entre las nerviaciones, por finas venas. Encierra gran número de pequeñísimas semillas albuminadas, parduzeas y con la superficie reticular.

CULTIVO

En enero de 1942 se recibieron dos lotes de semilla de Lobelia, una de procedencia alemana y otra norteamericana, ambas de la cosecha de 1941.

Mil semillas de la alemana pesaron 0,03 gramos, y de la americana, 0,04. Puestos en un aparato Jacobsen 10 germinadores con 1.000 semíllas en total (500 alemanas y 500 americanas), a la oscuridad y a 20° de temperatura, y otros 10 a la luz e idéntica temperatura, al cabo de un mes no habían germinado ninguna de la primera serie, y de la segunda un 7 por 100 la de procedencia alemana y un 22 por 100 de la americana. El 8 de marzo (es decir, a los treinta y seis días de iniciado el ensayo y, aproximadamente, a los seis meses de edad de los granos) estaba nacido el 9 por 100 del lote de la europea puesto a la luz y el 27 por 100 del de la americana, mientras que continuaban sin nacer las simientes co-locadas a la oscuridad.

Al día siguiente se hizo la siembra de grano americano en semillero de cama caliente, dispuesto en cajonera provista de chasis acristalado. En una superficie de 0,40 × 0,40 se sembró a voleo un gramo de semilla, mezelada con arena muy fina. Se apretó contra la tierra con una tabla muy lisa, sin cubrir con mantillo y regada con gran precaución. Al lado se preparó otro ensayo de semilla alemana, en idénticas condiciones e igual fecha. Se inicia la nascencia el 15 de abril para la siembra de grano americano y el 20 para el de procedencia alemana, en ambos casos muy clara y desigual, hasta el punto de que el 15 de mayo, algo crecidas las plantitas, se cuentan 25 en el primer caso y 32 en el segundo, en toda la superficie de ambos semilleros. Dichas plantas quedan concentradas en dos o tres grupos en la parte central de las superficies sembradas; ninguna en los bordes y rincones de la cajonera, ni aun en la parte inferior, donde siempre se acumula más semilla por arrastre del agua de riego.

El 1.º de junio se repicaron dichas plantitas en tiestos rellenos de mantillo, procurando que todas fueran con algo de cepellón. No obstante, fallaron cuatro de las plantas americanas y siete de las alemanas; las

21 y 25 restantes, respectivamente, se dejaron ya en los mismos tiestos, sin trasplantar. La marcha de la vegetación no acusó diferencia entre las plantas de una y otra procedencia. De ambos lotes se dejaron sin regar diez tiestos, que se perdieron en el plazo de treinta y dos días, sin llegar a florecer más que dos plantas alemanas y cuatro americanas. En cuanto a las macetas regadas, prosiguieron normalmente su ciclo vital, iniciándose la floración el 19 de junio en las parcelas americanas y el 23 en las alemanas. La fructificación comienza el 29 de junio en estas últimas y el 5 de julio, siete días más tarde, en las americanas, no obstante haber

En primer lugar, dos eras de cilantro, y a continuación otras dos de Lobelia. (Foto S. P. M.)

empezado la floración tres días antes. Esta, y en consecuencia la fructificación, va escalonada y más uniforme en las plantas americanas que en las alemanas. La maduración de las primeras cápsulas empieza el 10 de julio.

El mismo día 9 de marzo se hicieron también las correspondientes siembras en semillero al aire libre, en idénticas condiciones a las ya reseñadas. Nacieron los dos lotes, americano y alemán, el 5 y 6 de abril, respectivamente, este último con alguna mayor densidad que el de la cajonera, aunque también muy claro y desigual. La semilla americana germinó francamente mal. Hecho el conteo el 15 de mayo, existían 47 plan-

tas alemanas y 11 americanas. Se ve que al aire libre germinó la Lobelia de diez a quince días antes que en cajonera cristalizada.

El repicado se realizó el mismo día 1.º de junio que para las plantas de la cajonera. Fallaron 14 de las alemanas y tres americanas. Empieza la floración de las primeras el 13 de junio, y de las segundas el 16. La maduración de las primeras cápsulas comienza el 29 del mismo mes.

Además de todas estas siembras en semillero, y también el mismo día, se hizo una siembra directa sobre una era de tierra bien mullida, a golpes a, 0.50×0.30 metros y al descubierto, con grano alemán. Se regó con regadera muy fina. No nació nada.

En 1943 se importó semilla de Alemania procedente de la cosecha de 1942, sembrándose también semilla obtenida en la parcela el año anterior y la cantidad que se reservó de la importada en 1941.

La semilla alemana de 1942 se sembró el 3 de marzo en cajonera con cama caliente, bajo chasis acristalado. Con objeto de poder efectuar el repicado en mejores condiciones, se hizo la siembra más clara, empleando un gramo en una superficie de $1,20\times0,40$ metros y sin cubrir. Nace el 30 del mismo mes, es decir, diez antes que el año 1942, en manchas desigualmente repartidas por toda la superficie del semillero.

De la semilla obtenida de los cultivos hechos en la parcela el año anterior, se preparó un lote de procedencia americana y otro de alemana, ambos de un gramo, distribuídos cada uno en una superficie de $1,20\times0,40$. La americana no nació y la alemana lo hizo el 3 de abril, es decir, al mes justo de la siembra, con la desigualdad acostumbrada.

En cuanto a la semilla de 1941, alemana, sembrada el mismo día y en idénticas condiciones, nació el 2 de abril, pero con mayor densidad que las anteriores, aunque tampoco de modo uniforme y siempre en manchas aisladas, diseminadas por la parte central del semillero.

Hecha también el 3 de marzo una siembra en semillero al aire libre de la semilla importada dicho año, de las obtenidas el anterior en la parcela, tanto de procedencia alemana como americana y de la alemana de 1941, el primer lote nació el 25 del mismo mes; el segundo, el 28, y la americana no nació. Las características de densidad y poca uniformidad fueron semejantes a las del pasado año, es decir, con alguna ventaja en relación a las siembras en cajonera acristalada.

Respecto a la siembra con grano alemán de 1941, hecha en la misma fecha, nació el 23 de marzo, o sea a los veinte días de haberla repartido, plazo más breve que todos los correspondientes a los otros ensayos; pero más importancia damos al hecho de que esta nascencia fué mucho más general y uniforme que en los demás casos, no obstante observarse aquí también calveros. La densidad media obtenida fué de 15 plantas por decímetro cuadrado.

Con las plantas procedentes de los otros ensayos se hizo un repicado en la misma forma que la indicada para el año 1942, consignándose resultados muy parecidos a los de dicho año, que no alteraron en nada, por consiguiente, las conclusiones hasta entonces deducidas. Pero en lo

referente al semillero de grano alemán de 1941, como la regular nascencia permitía ya disponer de apreciable cantidad de planta, se pensó en hacer un estudio a pleno campo, cuyos detalles expondremos a continuación. Señalemos antes que la siembra directa, repetida este año con sémilla obtenida en la parcela y de procedencia alemana, tampoco tuvo el menor éxito.

Para preparar el ensayo a pleno campo, el 1.º de mayo se repicó la planta con extremado cuidado sobre eras a las que se había dado una buena labor e incorporado una capa de mantillo de un decímetro de espesor. Se ocuparon ocho eras de dimensiones 7 × 2,5 metros, disponiendo las plantas en grupos de seis filas a 0,20 metros de distancia unas de otras y con un intervalo de medio metro entre los dos grupos de cada era. Dentro de las líneas, la equidistancia entre golpes fué también de 20 centímetros. A continuación del repicado se regó a mano durante los primeros días. Contados los fallos el 10 de mayo, se observó que éstos suponían el 14 por 100. Repuestos en la misma fecha con planta que se había dejado en el semillero, se continuaron los cuidados: escardas y riegos a mano. El 2 de junio se verificó el trasplante al terreno definitivo.

Este, dividido en 20 eras de 7 × 2,50 metros, se preparó con una labor profunda el 10 de enero, seguida de un pase de rastra. El 1.º de febrero se incorporó estiércol fresco de caballo, a razón de 250 kilogramos por área. A continuación se dió una labor corriente. El 15 de marzo se distribuyeron los abonos fosfórico y potásico, cuyas respectivas dosis fueron tres kilogramos de superfosfato de cal 16/18 y 1 kilogramo de sulfato potásico por área. Se rastrilló el terreno para cubrir estos abonos. El 11 de abril, 2 y 20 de mayo se dieron oportunas binas para tener el suelo limpio de malas hierbas. El 28 de mayo se dió un riego (ya se habían dado anteriormente otros tres), y el 30 se distribuyó el nitrato sódico en proporción de 1,5 kilogramos por área. El 2 de junio, tras un rastrillado, se procedió al trasplante de los pies repicados, al marco de 0,50 × 0,30 metros, procurando que todos ellos llevaran cepellón. El 26 se continuó esta faena, que se hizo en las primeras horas de la mañana y a la caída de la tarde, regando al terminar las dos jornadas.

La distribución de dichos abonos fué como sigue:

Primera serie	T 20	P K N 19	P K 18	N 17
Segunda serie	N 16	P K 15	P K N	T
Tercera serie	P K N 12	T 11	P K 10	. N
Cuarta serie	РК 8	N 7	Т 6	P K N 5
Quinta serie	N +	P K N 3	т 2	P K 1

T = testigo.

El 15 de junio se hizo una revisión, observándose fallos en todas las eras, de modo que de las 80 plantas puestas en cada una quedaban las siguientes (cifras sin paréntesis):

1.ª serie.	75 (77)	70 (75)	68 (72)	63 (69)
i. serie.	20	19	18	17
2.ª serie.	72 (78)	74 (76)	65 (70)	60 (71)
	16	15	14	13
3.ª serie.	69 (73)	70 (7+)	60 (65)	59 (67)
<i>5. 50</i>	12	11	10	9
4.ª serie.	66 (75)	65 (70)	57 (61)	53 (63)
T. Gelle.	8	7	6	5
5.ª serie.	68 (71)	6+ (69)	60 (65)	58 (6+)
o, 20110,	4 .	3	2	1

Si a estas cifras añadimos la observación de que la orientación de la diagonal que va de la era 1 a la 20 es sensiblemente S. E.-N. O. y que,

N = abonado con nitrato sódico.

P K = abonado con superfosfato de cal y sulfato potásico.

PKN = abonado completo.

además, las eras 12, 15, 16, 18, 19 y 20 tienen más sombra que las restantes, parece deducirse que la fuerte insolación estival perjudica a la Lobelia.

Repuestas las marras el 16 de junio, evitando también las horas de calor y regando al atardecer, se observaron a los diez días, el 26, que estaban prendidas las plantas indicadas entre paréntesis en el cuadro anterior. Como se ve, subsiste la tendencia a disminuir el número de fallos hacia la zona menos iluminada, aunque en esta segunda reposición el porcentaje de marras es mayor que en la primera, lo que atribuímos a lo avanzado de la época.

RECOLECCIÓN

El día 21 de junio se inicia la floración en algunos de los ejemplares prendidos en el primer trasplante, y a partir de este momento continúa ya ininterrumpidamente. El 5 de julio se observan flores en las plantas últimamente trasplantadas, y el 10, habida cuenta de que la floración es general e incluso ya se observan algunas cápsulas, se realiza la recolección. Desde el 16 de junio al 10 de julio se dieron dos riegos.

RENDIMIENTO DE LA PLANTA

Se segaron las plantas a 10 centímetros del suelo, se pesaron inmediatamente las de cada era y se ponderaron los resultados, suponiendo que en todas éstas hubiera 78 plantas, que es el número máximo de las contenidas en una era, la número 16. Las cifras fueron las siguientes, en kilogramos por era:

1.ª serie.	6,200	7,100		5,300	- 1	6,720	
	20		19		18		17
2.ª serie.	6,230	6,220	:	7,500		5,670	
	16		15		14		13
3.ª serie.	6,800	6,400		5,850		6,970	
	12		1!		10		9
4.ª serie.	5,500	6,550		6,750		7,250	
	8		7		6		5
5.ª serie.	4,920	7,300		5,150		6,900	
	+		3		2		1

Realizado el cálculo estadístico según el método de análisis de la varianza, las tablas de distribución de Z de Fisher dan: 0,8919 la del 1 por 100 y 0,6250 la del 5 por 100; la primera cifra superior, y la segunda inferior al valor 0,6410, que nosotros hemos obtenido para Z. Luego las cantidades cosechadas con los diversos tratamientos son significativas y tienen un 95 por 100 de probabilidades de que sus diferencias sean debidas a los distintos abonados y no a un fenómeno casual.

Veamos ahora si estas diferencias son significativas o, por el contrario, quedan absorbidas por el error. La desviación típica correspondiente a un tratamiento es 1,330. El triple de este valor, 3,990.

Combinaciones	Diferencia entre producciones	Significación de la diferencia	Diferencia significativa	Aumento por hectárea en kgs.	
1.0 N-T	1,220	Negativa	n. s.		
2.° PK -T	-0.+00	Negativa	n. s.		
3.º PKN—T	5.780	Positiva	1,790	205	
4." PK-N	1,620	Negativa	n. s.		
5.° PKN—N	+,560	Positiva	0,570	65	
6,° PKNPK	6,180	Positiva	2,190	250	

No obstante no resultar significativa la diferencia entre los rendimientos entre las parcelas abonadas con nitrato sódico y las testigos (1.º), por ser absorbida aquélla por el error, de los resultados significativos logrados parece deducirse una acción eficaz del abono nitrogenado sobre la cosecha de planta de Lobelia, ya que el máximo incremento se logra, no en la combinación tercera (acción del abono completo), sino en la sexta (acción del nitrato sódico).

El rendimiento en planta fresca en las eras testigos es de 3.448 kilogramos por hectárea, y en las que se incorporó abono completo (PKN), de 3.653 kilogramos.

DESECACIÓN

La hierba recogida en cada era se extendió el mismo día 1.º de julio, en capa delgada, sobre lonas colocadas en el suelo de un porche techado y abierto por sus partes laterales y delantera, orientada ésta al Norte. El tiempo fué seco y caluroso y se procuró que nunca diera el sol directamente sobre las plantas. A los diecisiete días, el 18 del mismo mes, estaba la hierba completamente seca. Las pérdidas por desecación fueron las siguientes, en kilogramos:

Número de la era	PESO DE LA PLANT	Pérdida en kilogramos	
	En fresco	En seco	Terdida en anogramos
1	6,900	1,840	5,060
2	5,150	1,320	3,830
$\frac{2}{3}$	7,300	1,750	5,550
4 5	4,920	1,810	3,110
5	7,250	1,620	5,630
6 7	6,750	1,780	4,970
7	6,550	1,630	4,920
8 9	5,500	1,380	4,120
9	6,970	1,290	5,680
10	5,840	1,440	4,400
11	6,400	1,660	4,740
12	6,800	1,780	5,020
13	5.670	1,420	4,250
14	7,500	1,530	5,970
15	6,220	1,340	4,880
16	6,230	1,450	4,780
17.	6,720	1,770	4,950
18	5,300	1,300	4,000
19	7,100	1,670	5,430
20	6,200	1,530	4,670
TOTALES	127,270	31,310	95,960

De las cifras anteriores se deduce que 100 kilogramos de planta fresca quedan reducidos, por desecación, a 25,38.

DESCRIPCIÓN DE LA DROGA

Así obtenida la droga, Herba Lobeliæ, tiene un color verde grisáceo, olor herbáceo y sabor, al principio, poco marcado, que después se hace acre e irritante. Se presenta en el comercio comprimida, bajo la forma de pequeños paquetes rectangulares, y, en consecuencia, está constituída por trozos de tallos y hojas, con los que van mezclados flores y frutos. Especificaremos las características de cada una de estas partes para facilitar el reconocimiento de la droga auténtica.

Los trozos de tallo aparecen estriados longitudinalmente, angulosos, aplastados, vellosos y ásperos, con su parte inferior frecuentemente rojizo-violácea. Hojas sencillas, de color verde amarillento, enteras o troceadas, pinnadas, con la nerviación principal pronunciada, algo gruesas, de limbo entero y bordes irregularmente aserrados, con pelos diseminados por ambas caras, sobre todo en el haz: las hojas inferiores, de cinco a siete centímetros de longitud media por dos a cuatro de anchura, ovaladas, estrechadas bacia el corto peciolo; las superiores, más pequeñas, lanceoladas y sesiles.

Las flores, que a veces aparecen en racimos completos, sencillos, terminales o axilares, otras se presentan aisladas o fraccionadas; tienen longitud media de ocho mms, y son pentámeras y pediceladas. Sépalos li-

neales o alesnados. El labio superior de la corola aparece hendido en dos hasta su base, y el inferior posee tres lóbulos, en los que se observan a veces unas manchas azuladas, de tono distinto al resto de los pétalos. Los estambres están soldados por su parte superior y rodean al estilo. Frutos capsulares aovados, de unos cinco mms. de largo, con el cáliz persistente, generalmente con diez nerviaciones longitudinales, atravesadas por numerosas y finas vetas transversales. Semillas alargadas, de superficie reticulada y excavadas en numerosas y pequeñas fosas.

El estudio microscópico de la hoja muestra una epidermis superior constituída por una cutícula estriada y células sinuoso-poligonales, pro-

Detalle de una planta de Lobelia. (Foto S. P. M.)

vistas de papilas salientes, mientras que la cutícula de la epidermis inferior tiene estrías menos marcadas y células sinuosas más irregulares. Ambas epidermis tienen espesamientos nodulosos. Estomas muy poco abundantes en el haz y numerosos en el envés, acompañados de tres o cuatro células anejas; en el borde, aserrado, se encuentran también estomas acuíferos. Abundancia de pelos tectores unicelulares, de longitud y espesor variables, cónicos, con su base ensanchada, situada, por lo general, entre dos elevaciones de la epidermis. Faltan cristales de oxalato de calcio. Mesofilo heterogéneo y asimétrico, con una capa unicelular en empalizada.

En el parénquima liberiano, nerviaciones foliares y flores, se encuentran tubos laticiferos. Las hojas periantiales tienen sus células de la misma forma sinuosa-poligonal ya indicada al hablar de la epidermis; los pelos, también semejantes, y numerosos estomas. Los granos de pólen son de forma redondeada—tetraédrica, ligeramente aristados, de paredes delgadas, lisos—con tres poros y un grosor de unas veinte µ. El endocarpio del fruto está constituído por células de perímetro anguloso. El tegumento seminal le forman células alargadas, penta o hexagonales, de paredes gruesas, color amarillento y lámina media muy marcada.

El polvo de esta hierba está constituído por fragmentos de tallo, trizas de las hojas, con formaciones pelosas, restos de mesofilo, partes del periantio con células parcialmente papilosas, porciones de saco polínico, en las que se observa, sobre todo, la capa fibrosa o endotecio; y fragmentos de pericarpio, tegumento seminal y semillas.

Composición química.

El estudio químico de esta droga demuestra que contiene hasta diez alcaloides, de los cuales la lobelina es el principal, y entre los secundarios son de constitución conocida la lobelidina, lobelamina, lobelanidina, isolobelanina (o norlobelanina), norlobelanidina, etc. Además, contiene un glucósido: la lobelacrina, un ácido lobélico no bien definido, inflatina, esencia grasa, resina y un 10 por 100 de cenizas.

La lobelina, descubierta por Procter en 1838, existe en la droga en proporción media del 0,2 al 0,3 por 100, y su fórmula es la siguiente:

$$C_{6}H_{5},CHOH,CH_{2},HC$$

$$C_{6}H_{5},CHOH,CH_{2},CO,C_{6}H_{5}$$

$$CH_{3}$$

DETERMINACIÓN DE LA LOBELINA.

Para determinar la riqueza alcalóidica de la Lobelia se pusieron en un frasco de tapón esmerilado, de 250 c. c., 15 gramos del polvo de dicha droga con 150 c. c. de éter sulfúrico y 10 de amoníaco. Se tuvo en maceración durante media hora, agitando frecuente y fuertemente, si bien se consigue lo mismo sin remover, teniendo dicho polvo doce horas en contacto con la mezcla.

A continuación se filtró por filtro plegado, tapando el embudo durante dicha operación con un vidrio de reloj; 100 c. c. de filtrado se destilan en baño maría, en un Erlenmeyer de 250 c. c., hasta dejar unos cinco; entonces se añaden 30 c. c. de ácido clorhídrico (una parte de ácido clorhídrico al 25 por 100 y 99 de agua), se agita con frecuencia el matraz, se climina nuevamente el éter y se filtra, por filtro plegado, a

una ampolla de separación. Después se alcaliniza con amoníaco al 10 por 100 (no perjudica el exceso) y se agita tres veces, cada dos minutos, con 25 c. c. de éter.

La solución etérea se filtra por un algodón a un matraz de 20 c. c., lavando bien embudo y algodón con éter. Se destila el éter en baño maría, se disuelve el residuo en tres o cuatro centímetros cúbicos de alcohol y se añaden 30 c. c. de clorhídrico SN/100 y unas gotas de rojo de metilo, titulándose con potasa.

Un centímetro cúbico de ácido clorhídrico centinormal equivale a 0,0003372 gramos de alcaloide.

RENDIMIENTO EN ALCALOIDES.

Siguiendo este procedimiento se determinó la riqueza en lobelina de la muestra tomada de la cosecha correspondiente a cada una de las 20 eras de que se compone la experiencia. Los porcentajes así logrados fueron los siguientes:

Primera serie	0,297	20	0,310	19	0,300	18	0,301	17
Segunda serie	0,305	16	0,298	15	0,302	14	0,295	13
Tercera serie	0,296	12	0,281	11	0.304	10	0,295	9
Cuarta serie	0,297	8	0,279	7	0,284	6	0,305	5
Quinta serie	0,286	4	0,298	3	0,283	2	0,308	1

Realizado el cálculo estadístico, las tablas de distribución de Z de Fisher dan: 0,8919 la del 1 por 100 y 0,6250 la del 5 por 100, ambas cifras superiores al valor 0,5594 que se ha obtenido para Z, luego los porcentajes logrados no son significativos.

Agrupados éstos por tratamientos, resultan los siguientes valores medios:

Sin abono	0,2902 por 100	de alcaloide.
Nitrato sódico	0,2932	»
Superfosfato de cal \ Sulfato potásico	0,3014	»
Superfosfato de cal		
Sulfato potásico	0,3022	»
Nitrato sódico		

De estas cifras parece deducirse un incremento gradual del porcentaje alcalóidico de Lobelia con las anteriores fórmulas de abonado, pero no puede hacerse ninguna conclusión concreta, ya que aquellas cifras no han sido estadísticamente significativas.

CONCLUSIONES.

- 1.º El procedimiento óptimo de siembra de Lobelia inflata L. es en semillero de primavera, al aire libre, con semilla de más de un año, sin cubrir con mantillo.
- 2.ª El transplante es algo delicado, por lo que conviene un repicado previo.
- 3.ª No es necesario, pero sí conveniente, el cultivo en sitio algo sombreado.
- 4.ª Los rendimientos significativos logrados en esta experiencia han sido de 3.448 kgs. de planta fresca por hectárea en las parcelas no abonadas.
- 5.ª De la acción de las distintas clases de abonos minerales parece deducirse que es el nitrato sódico el de mayor influencia en el rendimiento cuantitativo.
- 6.ª Por la desecación a la sombra, 100 kgs. de planta quedan reducidos a 25,38.
- 7.ª La riqueza alcalóidica media, no significativa, obtenida en las eras no abonadas, es del 0,2902 por 100.
- 8.º De la acción de las distintas clases de abonos minerales sobre la formación de alcaloides parece deducirse que el mayor incremento (0,0120 por 100) es debido a la acción de una fórmula completa.

MOSTAZA NEGRA (1)

ESTUDIO BOTÁNICO

Sinominias

Brassica nigra (L.) Koch = Sinapis nigra L. = Mutarda nigra Bernh = Sisymbrium nigrum Prantl = Melanosinapis nigra V. Calestani = Raphanus sinapis offis. Crantz = B. Sinapis Noulet Vis = Crucifera Sinapis E. H. L. Grause = Melanosinapis communis Schimper et Spenner = Erysimum glabrum Presl = Sinapis tetraëdra Presl = Sinapis erysimoides Roxb = S. Gorroea Buch-Hamilt ex Wall = S. orgyalis Roth = Sinapis erysimoides Roxb.

DESCRIPCIÓN DE LA SEMILLA.

Estas semillas, que son la parte utilizada como droga, se componen del tegumento; una sola capa de células de aleurona; un par de cotiledones acanalados y conduplicados; la radícula y el embrión, curvo. Exteriormente dicha radícula y los extremos de los cotiledones no se notan, al contrario de lo que ocurre en otras crucíferas, en las que forman una prominencia y dos surcos más o menos marcados. El color de la semilla es rojo-parduzco oscuro y la superficie se presenta finamente reticulada, detalle que apenas se conoce a simple vista. El diámetro medio de estos granos es de 1,45 mms. y su forma aovado-esférica.

Estudiando a 400 aumentos el mencionado tegumento, se observa que se compone de las siguientes capas, expuestas de fuera adentro:

- 1.ª Una epidérmica, muy gruesa y señalada, constituída por células mucilaginosas de aspecto hialino, que aparece rota con mucha frecuencia en las preparaciones microscópicas.
- 2.ª Una subepidérmica, de naturaleza variada y que suele desaparecer en las semillas ya maduras.

⁽¹⁾ El estudio agronómico completo de esta especie, unido a uno farmacognósico del Profesor don César González Gómez, sobre la conveniencia del desengrasado de la semilla, se ha publicado en el número 2 de «Farmacognosia», Anales del Instituto José Celestino Mutis, del Consejo Superior de Investigaciones Científicas.

3.º Una capa de células en empalizada, compuesta por una fila de células con sus caras radiales, de color más o menos castaño, más espesadas en la mitad inferior y adelgazadas ligeramente en punta en su parte superior, es decir, la colindante con la capa subepidérmica, o, en caso de que ésta hubiera desaparecido, con la epidérmica. Dichas células presentan una longitud muy variable (de 18 a 30 micras) y, por ello, la superficie exterior de la semilla ofrece un aspecto reticular, observada a pocos aumentos. Las zonas de coloración más castañas corresponden a las células en empalizada de mayor longitud, y aquellas donde ésta es menor, coinciden con las partes de tonos claros.

Detalle de una planta de mostaza negra. (Foto S. P. M.)

4.º Una capa pigmentada, formada por células parenquimatosas y que sólo se distingue a trozos en las preparaciones, tal vez enmascarada por el espesamiento inferior de las células en empalizada.

Para obtener los cortes transversales de estas semillas se ablandaron mediante tratamiento por una solución acuosa de hidrato potásico al 20 por 100 durante siete días. Después se deshidrataron, por inmersión, durante diez minutos en alcohol de 95 grados y otro tanto en alcohol absoluto. Por último, se tuvieron durante veinticuatro horas en un baño de líquido glicerinado (Glicerina hidestilada de 30 grados Baumé y alcohol de 90°, en partes iguales).

Con el fin de orientar perfectamente las semillas en el bloque de parafina para obtener los cortes completamente transversales, se cortaron aquéllas con un escalpelo perpendicularmente a la prominencia radicular y de modo que uno de los casquetes fuera mayor que el otro. De no hacer este corte preliminar, es muy difícil después dar la orientación deseada a los granos, aparte de realizarse mejor la imbibición en parafina.

Realizado este corte y sacados del líquido glicerinado los casquetes mayores que la mitad de la semilla, se pasaron por xilol durante treinta a cuarenta minutos. Puesto el baño en la estufa se reguló ésta a una temperatura un poco superior a los 46-48°, que es el punto de fusión de la parafina, y así se dejó durante veinticuatro horas. Después se realizó directamente la inclusión en bloque de parafina de punto de fusión 52-54°. Se orientaron muy fácilmente los trozos de semilla, colocándolos con la parte plana hacia abajo. Efectuados los cortes a un espesor de 20 micras, se pegaron a los portas con albúmina glicerinada Meyer y se efectuó una selección previa de ellos a 225 aumentos.

Para la tinción se pasaron los portas rápidamente por encima de la llama de una lamparilla de alcohol, para que se secaran bien las preparaciones sin que llegara a fundirse la parafina, y se sumergieron en un cristalizador con xilol, para disolver aquélla. A los cinco minutos se pasaron al alcohol absoluto y de éste al de 95 y al de 90°, cinco minutos en cada uno de ellos. Después se efectuó la tinción con una solución alcohólica de verde luz, obtenida por disolución de un gramo de este colorante en 100 c. c. de alcohol de 90°.

Teñidas las preparaciones, se pasaron por la serie inversa de alcoholes de 90, 95° y absoluto, también durante cinco minutos en cada una. Una vez deshidratadas se aclararon en xilol otros cinco minutos. En ciertas preparaciones hubo necesidad de emplear el aceite de clavo con anterioridad al xilol. Por último, se hizo el montaje permanente en bálsamo del Canadá disuelto en xilol.

Obtenidas estas preparaciones, se midieron la capa de células en empalizada y la pigmentada, dando los siguientes resultados, en divisiones del micrómetro:

	Divisiones del micrómetro	Micras
Células en empalizada \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$ \left\{ \begin{array}{ll} M = & 0.640 \pm 0.014 \\ DS = & 0.083 \pm 0.010 \\ CV = 12.960 \pm 1.595 \end{array} \right\} $	2 3,0
(Anchura	$ \left(\begin{array}{l} M = 0.130 \pm 0.003 \\ DS = 0.015 \pm 0.002 \\ CV = 11.530 \pm 1.419 \end{array} \right) $	+.7
Capa pigmentada Anchura	$ \left\{ \begin{array}{l} M = 0.220 \pm 0.007 \\ DS = 0.042 \pm 0.005 \\ CV = 19.000 \pm 2.350 \end{array} \right\} $	7,9

Para cada medida, como se ve, se indica la media (M), la desviación standard (DS) y el coeficiente de variabilidad (DV), con sus errores probables.

Descripción de la plantita.

Sembradas estas semillas, germinaron un 95 por 100 en catorce días, iniciándose su nacimiento al sexto. A los veinticinco días de la siembra, momento en que brotó la tercera hojita, se midieron la longitud del hipocotileo, peciolos, cotiledones, primer entrenudo y peciolo de la primera hojita. Los resultados obtenidos fueron los siguientes:

$$\begin{array}{c} \text{Hipocotileo.} & \\ & M = 55,000 \pm 0,795 \\ DS = 5,876 \pm 0,570 \\ CV = 10,720 \pm 1,020 \\ \\ \text{Peciolo de los cotiledones.} & \\ & M = 15,000 \pm 0,200 \\ DS = 1,483 \pm 0,141 \\ CV = 9,880 \pm 0,942 \\ \\ \text{Primer entrenudo.} & \\ & \\ & M = 0,410 \pm 0,021 \\ DS = 0,156 \pm 0,015 \\ CV = 38,300 \pm 3,650 \\ \\ \text{Peciolo de la primera hoja.} & \\ & M = 8,000 \pm 0,202 \\ DS = 1,498 \pm 0,143 \\ CV = 17,820 \pm 1,698 \\ \end{array}$$

Las cifras dadas como longitud de los peciolos de los cotiledones es la media de los correspondientes a cada plantita. Debe observarse la mayor variabilidad de la longitud del primer entrenudo con relación a otras medidas observadas.

Además de las diferencias biométricas que acabamos de exponer, se hicieron también las siguientes observaciones:

Hipocotíleo de color verde-grisáceo. Cotiledones de forma acorazada ensanchada y color verde-amarillento. Tanto en el primer entrenudo como en el peciolo de la primera hoja, se observan algunos pelos, más en aquél que en éste. La prímera hoja es de forma oval, con los bordes festoneados y pelosos. También aparecen algunos pelos en la superficie del limbo, sobre todo en el envés. La segunda hoja, un poco más pequeña que la primera, tiene la misma forma y aspecto de los bordes y más pelosidad que aquélla. Ambas son ásperas al tacto, algo más por el haz que por el envés. Su nerviación es reticular.

DESCRIPCIÓN DE LA PLANTA ADULTA.

Esta planta alcanza hasta metro y medio y más de altura, siendo lo corriente un metro a un metro treinta y cinco. Es de consistencia herbácea, de raíz delgada, pivotante, casi recta y abundantemente ramificada. Tallo erguido, velloso, cilíndrico, glauco, con la ramificación muy extendida. Hojas alternas, pecioladas cortamente, sin estípulas, verdes, lampiñas; las inferiores en forma de lira, con segmentos dentados muy grandes, el terminal obtuso, más o menos lobulado; las superiores lanceoladas, recorridas por una nerviación media pronunciada, dentadas o enteras. Flores amarillas, pequeñas, pedunculadas, dispuestas en largos

racimos en la parte superior de las divisiones del tallo. Están constituídas por un cáliz de cuatro sépalos, libres, lanceolados, verdosos, caducos y más largos que el pedúnculo. Corola cruciforme, formada por cuatro pétalos libres, ovoides, unguiculados en el vértice, que rodean al androceo. Este está constituído por seis estambres tetradínamos. Gineceo constituído por dos carpelos bilaterales, abiertos, concrescentes, en un ovario unilocular, con dos placentas parietales que llevan dos filas de óvulos campilótropos, colgantes. Fruto en silicua, paralelo al tallo y bastante unido a él, delgado, tetragonal, un poco redondeado, terminado por una punta corta, bilocular, con dos valvas, que presenta una nerviación media carenada, separadas por un falso tabique longitudinal. Semillas en número de cuatro a seis por silicua y dispuestas en una serie.

ESTUDIO ACRONÓMICO.

SUELO Y CLIMA.

El corto período vegetativo de la mostaza—cien a ciento veinte días—permite su cultivo en climas rigurosos, a los que resiste bastante bien. No obstante, en zonas cálidas y de intensa iluminación el rendimiento en semilla es mejor.

Tampoco es exigente respecto a terreno, aunque prefiere los de consistencia media, calizos, algo profundos, frescos y saneados.

ALTERNATIVA.

Va bien después de leguminosas, cereales o plantas de escarda. Debe evitarse siempre que suceda a otra crucífera, pues aparte del inconveniente que supone la persistencia en el mismo suelo de plantas con parceidas exigencias nutritivas, se favorece el ataque del pulgón, que es una de las más dañinas plagas de la mostaza.

ABONADO.

En octubre de 1941 se estercoló la parcela que se iba a dedicar a este cultivo, a razón de 30.000 kgs. por hectárea, incorporándolo con una buena labor al terreno, que había estado anteriormente sembrado de centeno. Es muy conveniente realizar el estercolado con la indicada anticipación e incluso durante el cultivo anterior, pues si se añade a la tierra durante las labores preparatorias de la siembra de la crucífera que estudiamos, se fomenta el desarrollo foliar a expensas de la formación de granos, que es lo que interesa producir.

En febrero de 1942 se preparó un ensayo de abono mineral para estudiar la acción del sulfato amónico, cloruro potásico y superfosfato de cal a las siguientes dosis por hectárea:

A : Testigo.

B : 150 kgs. de sulfato amónico.

C | 150 kgs. de sulfato amónico.
| 200 kgs. de cloruro potásico.
| 150 kgs. de sulfato amónico.
| 200 kgs. de sulfato amónico.
| 300 kgs. de superfosfato de cal.

Estas cantidades se distribuyeron en un cuadrado latino 4×4 , con eras de dimensiones 2.5×4 metros, de la forma siguiente:

16		15		14		13	-
	С.		A		В		D
12		11		10		9	
	В		υ		A		C
8		7		6		5	
•	A	!	C		Đ		В
4		3		2	*** ** ** **	1	
	D		В		\mathbf{c}		A

Preparación del terreno.

Después de la labor de incorporación del estiércol, se dió una profunda en el mes de enero, y en febrero otra más somera, con la que se procedió al enterrado del abonado mineral; a continuación se dió un pase de grada.

SIEMBRA.

A primeros de marzo se realizó la siembra a máquina en líneas separadas 50 cms. entre sí. La cantidad de semilla gastada fué de 300 gramos. No es aconsejable la siembra a voleo, que supone mayor consumo de semilla y posterior dificultad para efectuar las binas que han de darse durante la vegetación de la planta.

LABORES.

Empezó la nascencia a los diez días y cuando las plantitas poseían tres hojitas se dió una labor de bina, con el fin de mullir la superficie del terreno. A primeros de abril se hizo un aclareo, de modo que las plantas de cada línea quedaran a 20 cms. de equidistancia, y a mediados del

mismo mes se dió otra bina. Desde este momento, hasta el de la recolección, no hubo que realizar más cuidados que dos escardas para mantener el terreno limpio de malas hierbas.

Realizada la experiencia en regadío (en secanos frescos prospera bien, como ya se ha dícho), se dió un riego durante los trabajos preparatorios, después del reparto de los abonos minerales, otro a continuación de la siembra y otros tres a lo largo de la vegetación, el último doce días antes de la siega.

Cultivo de mostaza negra. (Foto S. P. M.)

RECOLECCIÓN.

La floración se inició a mediados de abril y la fructificación fué rápida, hasta el punto de que a primeros de julio estaban ya las silicuas en condiciones de estar recogidas. Este momento se reconoce porque los tallos empiezan a amarillear y las silicuas inferiores toman un color parduzco. No conviene aguardar a que todos los frutos estén maduros, pues, por su fácil dehiscencia, se desgranan rápidamente, con lo cual no sólo queda mermada la cosecha, mas también infestada la tierra de semilla, con el consiguiente perjuicio para los cultivos que sucedan a éste.

Para efectuar la recogida, se siegan las plantas por la mañana temprano, cuando aún conservan la humedad del rocio. Este momento es el mejor, pero caso de que, por cualquier circunstancia, no se pudiera efectuar entonces la siega, se hará ésta a la caída de la tarde, nunca en las horas centrales del día.

CUIDADOS POSTERIORES.

Las plantas cortadas se disponen sobre el terreno en haces o mejor aún en montones de dos metros de altura aproximadamente, formados por capas sucesivas de planta dispuesta circularmente, con las sumidades hacia el centro, las bases de los tallos al exterior y todo el montón cubierto con una capa de paja. Aunque este segundo procedimiento es entretenido, queda compensada su mayor carestía por el incremento en la cantidad de grano recolectado, ya que sobre los haces producen mermas de consideración los pájaros, muy ávidos de esta semilla.

A los diez o quince días de la siega, si el tiempo fué seco, se procede al desgranado. Terminada esta trilla, se criban las semillas y se transportan en lonas al granero o almacén (que será seco y bien ventilado), donde se extenderán en capa delgada, removida con tanta mayor frecuencia cuanta más humedad haya en el ambiente, puesto que la simiente de mostaza se enmohece fácilmente.

RENDIMIENTO.

Los rendimientos obtenidos en cada parcela fueron, en kilogramos, los indicados a continuación:

16	1,642	С	15	0,913	A	14	1,485	В	13	2,476	D
12	1,560	В	11	2,158	D	10	1,010	Λ	9	1,811	С
8	0,959	A	7	1,796	С	6	2,232	D	5	1,343	В
4	1,928	D	3	1,152	В	2	2,016	С	I	1,247	A

Para ver la significación estadística de los resultados de esta experiencia, se adoptó el método de Fisher de análisis de la varianza.

En la tabla de distribución de Fisher correspondiente al 1 por 100. resulta para n₁ = 3 y n₂ = 6 un valor de Z igual a 1,1401, valor inferior al que hemos obtenido (2,8449), luego la diferencia entre los rendimientos correspondientes a las diversas clases de abonado son debidas a éstas, con sólo un 1 por 100 de probabilidades de que los resultados sean debidos a la casualidad.

Veamos ahora si las diferencias obtenidas entre dichos tratamientos son significativas. La desviación típica correspondiente al error es 0,187 y, por tanto, la de un tratamiento 0,187 V 4 = 0,374. El triple de este valor es 1,122. Las diferencias conseguidas entre los distintos tratamientos, como se ve a continuación, son todas superiores a 1,122, luego su significación estadística es positiva en todos los casos y los incrementos significativos son los siguientes:

Combinaciones	Diferencia significativa	Aumento por Ha. en kgs.
B A	0,289	72,25
$\mathbf{C} = \mathbf{A}$	2,014	503,50
D - A	3,543	885,7 5
D — B	2,132	533,00
D - C	0,407	101,75
C - B	0,603	150,75

Producción por hectárea sin abono: 1032,250 kgs.

De las cifras anteriores se deduce que en las fórmulas en las que interviene el cloruro potásico se observa una positiva influencia de dicho fertilizante, ligeramente superior cuando va unido al superfosfato de cal que si se acompaña de sulfato amónico.

Estas semillas, inodoras cuando secas, al masticarlas tienen un sabor aceitoso y ligeramente ácido, que pronto se hace picante. Trituradas y humedecidas, adquieren también dicho sabor y el típico olor a mostaza. Ello es debido a poseer un fermento, denominado mirosina, que sólo actúa en presencia del agua y que ataca a la sinigrina o principio activo de la mostaza, disgregándola en glucosa, sulfato potásico y esencia de mostaza (isosulfocianato de alilo), que es la que produce el sabor picante y, al volatilizarse, el olor característico:

$$O.SO_3K$$

$$C = N - CH_2 - CH = CH_2 + H_2O = S = C = N - CH_2 - CH = CH_2 + C_6H_{12}O_6 + SO_4HK$$

$$C = N - CH_2 - CH = CH_2 + C_6H_{12}O_6 + SO_4HK$$

$$C = N - CH_2 - CH = CH_2 + C_6H_{12}O_6 + SO_4HK$$

Para determinar la riqueza en dicha esencia, a la que es debida la acción irritante y rubefaciente de la droga, se empleó el siguiente método:

En un matraz (de unos 250 c. c.) se ponen cinco gramos de polvo de mostaza negra y 100 c. c. de agua a 20°-25°. La mezcla se deja dos horas en el matraz tapado, agitándolo repetidas veces. Luego se añaden 20 centímetros cúbicos de alcohol y unos dos centímetros cúbicos de aceite de oliva (u otro aceite graso) y se destilan 40-50 c. c. (mejor unos

60-65 c. c.), que se recogen en un matraz aforado de 100 c. c., el cual contiene 10 c. c. de amoníaco. Al contenido del matraz aforado se añaden luego 20 c. c. de solución N/10 de nitrato argéntico, se pone un pequeño embudo encima del matraz y éste se calienta, primero media hora sobre el baño maría y luego media hora dentro del baño. Después del enfriamiento se completa el agua hasta la señal; se agita bien la mezcla y se filtra ésta a través de un papel de filtro no humedecido, recogiéndola en un frasco seco. A 50 c. c. del filtrado se añaden 6 c. c. de ácido nitrico (25 por 100) y unos 10 c. c. de solución de sulfato férrico-amónico y se titulan con solución N/10 de sulfocianuro amónico, hasta coloración parduzco-rojíza. Se dobla la cantidad de sulfocianuro amónico y se resta de 20 c. c. De la cantidad de solución N/10 de nitrato argéntico gastada, así encontrada, se deduce la cantidad de isosulfocianato en cinco gramos de semillas de mostaza, 1 c. c. de solución N/10 de nitrato argéntico = 4,956 mgs. de isosulfocianato de alilo.

De este modo se obtuvo, para la semilla producida en las eras no abonadas, una riqueza del 0,75 por 100 en isosulfocianato de alilo.

Como, además de esta esencia, posee la semilla del 25 al 30 por 100 de aceite graso, que puede emplearse en la fabricación de linimentos, jabones y preparados veterinarios y el desengrasado del grano no aminora su actividad terapéutica, no hay inconveniente en beneficiarse de ambos productos. Además, al eliminarse la grasa, aumenta el porcentaje de aquella esencia. En nuestro caso, la harina, previamente desengrasada con gasolina, dió una riqueza del 0,935 por 100 en isosulfocianato de alilo.

MENTA PIPERITA (1)

ESTUDIO CULTURAL

En este trabajo se recogen los datos obtenidos del cultivo de la menta piperita durante los años 1940 a 1943 en la parcela de experimentación que el Servicio de Plantas Medicinales de la Dirección General de Agricultura posee en la Casa de Campo, de Madrid.

Cada año se realizó una plantación de menta, con objeto de poseer siempre planta en distintos años de vegetación. En otro trabajo ya publicado, se indicaron las características del suelo en el que se han realizado estas experiencias y al que se dió, en noviembre, una labor profunda.

Como abonado fundamental se incorporó a la tierra donde iba a iniciarse la plantación, cada año, estiércol fresco de caballo, a una dosis de 200 kgs. por área. Este abonado se repartió y enterró en el mes de enero, mediante una labor superficial seguida de un rastrillado.

En el mes de marzo se efectuó la plantación de renuevos, que es el mejor medio de multiplicación, por el fácil arraigo de aquéllos. No es posible la reproducción sexual de esta labiada, ya que no llega a fructificación, pero aunque se obtuviera el grano, no convendría su empleo para perpetuar la especie, dado que ésta es un triple híbrido—Menta aquatica L. × M. viridis L. (= M. sylvestris L. × M. rotundifolia L.)—y, en consecuencia, se originaría la disyunción. Los renuevos empleados procedían de algunas plantas que se encontraron en la parcela al terminar nuestra guerra de liberación en 1939, restos de los cultivos que hubieron de abandonarse en 1936. Unicamente en 1943 se ha conseguido una pequeña cantidad de renuevos de procedencia alemana, a partir de la cual se ha iniciado un nuevo cultivo de selección.

Se adoptó esta época para la plantación, pues, hecha en otras eras en otoño, se observaron durante el invierno bastantes pérdidas. Se dis-

⁽¹⁾ Este trabajo, hecho en colaboración con el Dr. José María Perelló, se ha publicado en el núm. 4 de «Farmacognosia», Anales del Instituto José Celestino Mutis, del Consejo Superior de Investigaciones Científicas, Madrid, junio 1944.

puso la planta en caballones hechos a 40 cms. de distancia entre sí, y dentro de cada fila, los renuevos a 30 cms. A continuación se dió un riego.

Esta disposición en caballones se ha manifestado muy superior a la plantación en llano, pues, dado el carácter rastrero de la menta, de este modo se aminora el entrecruzamiento de estolones y raíces; se evita algo el corrido de la planta (que siempre tiene lugar a partir del primer corte); queda más ventilada la plantación y se facilita la extirpación de malas hierbas, que no sólo perjudican el desarrollo de dicha labiada, al mermarla espacio y alimentos, sino que encarecen su recolección, bien por tener que separar aquéllas o por quedar depreciado su valor, si se deja mezclada con especies extrañas y hasta en ocasiones perjudiciales.

Las labores que hubieron de darse durante los cuatro años de experiencias fueron las siguientes, aparte de las preparatorias ya citadas: en 1940, tres binas, cuatro escardas y seis riegos; en 1941, una labor de limpieza al iniciarse la vegetación, dos binas, cuatro escardas y nueve riegos; en 1942, labor de limpieza, tres binas, cinco escardas y siete riegos, y en 1943, la mencionada labor de invierno, cuatro binas, tres escardas y diez riegos.

Todos los años, a primeros de abril, se repartió, en cobertera, un kilogramo de nitrato sódico por área, y después de efectuado el primer corte, otro medio kilogramo.

Está comprobado que el momento de recolección más adecuado, por ser el de máximo contenido en esencia, es el de iniciación de la floración, lo que ocurrió, en los cuatro años, en las fechas siguientes: 28 de julio, 20 de junio, 11 de junio y 8 de julio.

Dada la pequeña cantidad de planta de procedencia alemana de que aún se dispone, no se hizo recolección de ella, limitándonos a tomar dos muestras—una de la era abonada y otra de la testigo—para la determinación de su esencia.

Se cortaron las plantas por la mañana. La siega se hizo con hoz, por debajo de los cuatro pares foliares superiores, pues al emplearse sólo las hojas más próximas a la inflorescencia, que son las más ricas en esencia, queda compensada la pobreza del tallo a ellas unido y resulta una mercancía (Herba Menthæ piperita) de aceptación comercial.

Si se desea conseguir una droga de superior calidad (Folia Menthæ piperita) se segará la planta a 1 dm. por encima del suelo y antes que se deseque se procederá a su deshojado, cogiendo la parte inferior del tallo con la mano izquierda y resbalando rápidamente la derecha, de abajo arriba; a veces se desprende la parte final del tallo con el último par de hojas, pero tanto por la consistencia herbácea de aquél como por su escasa longitud, ello no hace desmerecer el producto.

Este procedimiento de deshojado es el que más resultado nos dió, pues los demás son más onerosos y no quedan las hojas bien separadas, habida cuenta de la fragilidad de los peciolos. De todos modos, se comprende que esta operación no es apropiada para extensas plantaciones, y por ello consideramos que este cultivo, como otros muchos medicinales, es apropiado al tipo de explotación hortícola familiar, en la que se recolectará, de cada vez, la planta que puedan deshojar, en el mismo día, las mujeres y muchachos.

Lo que en ningún caso se puede aconsejar es el modo corriente de hacer esta recolección, en el afán de lucro, o sea segar la planta a ras del suelo para venderla, troceada, sin previo deshojado, ya que en este caso la proporción de parte leñosa es considerable, rebajando sensiblemente el rendimiento en esencia.

Una plantación de menta piperita. (Foto S. P. M.)

En las zonas extranjeras donde las extensiones dedicadas a esta planta son de relativa importancia, se realiza otro procedimiento de recogida, no ensayado aún por nosotros, y que consiste en segar la planta a seis u ocho centímetros del suelo, trocearla en seguida mediante su paso por un cortaforrajes y separar la hoja del tallo con una aventadora.

Una vez realizado el primer corte, la planta rebrota, cundiendo su ramificación con más intensidad que antes de la mencionada recogida. Los rendimientos medios obtenidos, en los dos cortes, durante los cuatro años de la experiencia, fueron los indicados en el cuadro de la página siguiente.

					PESO DE	рк ноја	N	KILOGRAMO	RAMOS		
Parcela	Año de	Tratamiento	PRIMER	ER CORTE	8.	SEGUNDO	DO CORTE		TOTAL I	OS CORTES	Tanto por ciento
	vegetación		Fecha de la re- colección	Fresca	Seca	Fecha de la re- colección	Fresca	Seca	Fresca	Seca	respecto
מ	•	Sin abonar	28 julio	27	5,50	19 octubre	46	6,45	73	11,95	1
G	; ;	Abonada	Id.	38	6,10	Id.	52	7,60	90	13,70	1
4	ခ် ၁	Sin abonar	20 junio	53	8,30	26 septiembre	90	15,15	143	23,45	96
2		Abonads	Id.	\$	10,15	Id.	%	14,50	162	24,65	80
	9	Sin abonar	11 junio	38	5,20	20 septiembre	55	7,90	93	13,10	27
c	. ح	Abonada	īd.	42	5,90	Id.	60	9,65	102	15,55	13
~	•	Sin abonar	8 julio	20	2,45	18 octubre	22	2,60	4 2	5,05	- 42
	اب	Abonada	ā	25	3,85	ld.	·30	4,05	ວົ	7,90	- 39

Rendimientos medios, en kilogramos de hoja por área

Estos datos se obtuvieron deduciendo la producción media de las seis eras (de 14 metros cuadrados cada una), de las cultivadas cada año y refiriéndola, después, a 100 m.².

Para la desecación se extendieron, en capas delgadas, las sumidades en un local cubierto y bien ventilado, sobre cañizos un poco elevados del suelo, de modo que hubiera circulación de aire por todas partes. Por falta de medios no se pudo comparar el efecto de esta desecación natural con la artificial, para la que se aconseja no pasar de los 35°. Las reducciones en peso de las distintas cosechas figuran también en el cuadro anteriormente citado, referidas igualmente a 100 m.².

Todas las plantaciones, de diversas edades, resistieron perfectamente los inviernos, no obstante ser muy crudos algunos de ellos y no protegerse aquéllas con mantillo o paja, como es costumbre en comarcas frías.

Si se observan las cifras del cuadro, se deduce que el segundo corte es siempre más productivo que el primero y que el rendimiento a lo largo de la vida de la planta alcanza su máximo el segundo año, baja algo el tercero y mucho el cuarto. Ello es debido a que cada vez el tallo se lignifica más y la parte foliar es más escasa y pequeña. Por ello, creemos aconsejable mantener el cultivo dos o tres años, como máximo.

Al levantar la plantación se deben dividir los mejores ejemplares en varias partes, conservando cada uno renuevos y raíces. Como dato práctico se ha deducido que de cada multiplicación se obtiene, por término medio, material para plantar una superficie cinco veces mayor.

De plagas sólo se ha observado el año 1942 un ligero ataque del coleóptero Agriotes lineatus L. que, en su fase larvaria, perforó algunas raíces, a consecuencia de lo cual se desecó posteriormente la parte aérea de la planta.

DETERMINACIONES ANALITICAS

Establecidos como puntos de vista los resultados de las determinaciones cuantitativas de aceite esencial en la hoja y los de su proporción en mentol libre y combinado, sobre estas dos principales características ha versado la práctica de los métodos de investigación elegidos, al propio tiempo que, de modo indirecto, han sido obtenidas otras cifras, como las expresivas de la humedad de la planta, por ejemplo, logradas al seguir un perfecto y estricto control de la desecación del material. En efecto, los datos analíticos de la esencia expresan la riqueza de la hoja deshidratada.

Se ha buscado, en primer lugar, el conocimiento exacto de la cantidad de aceite esencial contenido en la hoja de los diversos tipos de plantas obtenidas, y seguidamente, separada un cantidad adecuada del mismo por destilación en vapor de agua, se ha determinado la proporción en metol libre y combinado, así como el índice de refracción entre las constantes físicas. No se ha determinado el poder rotatorio ni la den-

sidad, datos que serán hallados y comparados con los de las esencias de cultivos venideros.

Para estas determinaciones se tomaron las muestras correspondientes a las plantaciones de los años primero, segundo, tercero y cuarto, tanto en las eras abonadas como en las testigos, los mismos días en que se efectuó el primer corte. Esto, en lo referente a la menta piperita de procedencia española. Respecto a la alemana, se tomaron dos muestras—una de planta abonada y otra sin abonar—el 8 de agosto.

I.—Análisis cuantitativo de la esencia.

El método.

El método de Schenker y Meyer, modificado ventajosamente por Zäck, es el que adoptamos entre los muchos conocidos. Su fundamento es el siguiente:

Si un aceite esencial se somete a la acción del enérgico poder oxidante de una solución valorada de bicromato potásico en las adecuadas condiciones que garanticen el completo transcurso del proceso, es evidente que, operando con pulcritud y en igualdad de condiciones, puede hallarse, traducido en cifras analíticas precisas, un factor, llamémosle factor de reducción, por expresar la capacidad reductora de la esencia frente al bicromato. Tal dato es de gran especificidad y precioso, como constante química de los aceites esenciales, en lo que a su determinación cuantitativa se refiere. En efecto, si una vez logrado tal factor, en adecuado aparato de cristal resistente, se destila con vapor de agua una cantidad exactamente pesada de material y es recogido cuantitativamente el destilado para someterlo inmediatamente a la acción oxidante de un volumen determinado de bicromato potásico N/5, es evidente que de la cantidad de bicromato reducida se deducirá, conocido el factor de reducción, la cantidad de esencia que contenía el destilado y, por tanto, la planta.

Este procedimiento, de fácil dominio en su técnica, es perfectamente aplicable a la determinación cuantitativa de esencias fácilmente oxidables. En las difíciles de oxidar existen, sin embargo, manifiestos inconvenientes en lo que al conocimiento exacto del tiempo de oxidación y, por tanto, de su grado, se refiere.

El aparato.

Consta el dispositivo empleado de un matraz de fondo esférico de 50 c. c. de vidrio Jena, cuyo cuello, de 12 cm., adapta perfectamente a esmeril por su boca, con la rama corta de un tubo dos veces acodado, en la forma y dimensiones detalladas en la figura; la rama larga del mismo, cortada en pico de flauta, es el tubo de condensación del refrigerante, previa adaptación del manguito correspondiente (de esta manera se evitan uniones con tubo de goma y, por consiguiente, los errores por la retención, por su parte, de cantidades apreciables de esencia). La

boquilla, con tapón esmerilado, del codo obtuso del tubo de desprendimiento, facilita las operaciones y limpieza. Ya en el pico de pluma del tubo, se adapta incompletamente, sostenido por un tapón de buen corcho con dos hendiduras de escape que se hierve cada vez con agua, el tubo de oxidación, consistente en un cilindro de Jena muy resistente, de fondo redondo y cuello esmerilado, con tapón de vidrio adaptable, de 16 cm. de altura y tres de diámetro interno (± 90 c. c. de cabida), marcado con un enrase a los 20 c. c.

Práctica de la operación.

± 0,2 grs. de hoja dividida en pedacitos de 1-2 mm.º se introducen en el matraz (con unos trozos de piedra pómez lavada) con 25 c. c. de agua destilada saturada de CINa. Se agita y ajusta el matraz al resto del aparato y se destila el contenido, calentándolo a ebullición suave con la llama de un micromechero. En el tubo de reducción, adaptado a la boca de salida del refrigerante, se recogen 20 c. c. de destilado.

Se añaden al líquido 5 c. c. de bieromato potásico N/5 y al conjunto (mediante el embudo pienométrico de 19 centímetros) 55 c. c. de ácido sulfúrico concentrado, vertidos con una probeta, por la boquilla del codo obtuso del tubo de desprendimiento, para que lo atraviese y lave. Se lava bien el embudo con suficiente agua y se tapa perfectamente el tubo de oxidación, sometiéndolo seguidamente durante diez minutos a una regular agitación, en aparato apropiado o a mano.

Se lava de nuevo el embudo y la probeta con 500 c. c. de agua y las de loción se recogen en un Erlenmeyer de 2.000 c. c., al cual se pasan el contenido del tubo de oxidación y las aguas de loción con otros 500 centímetros cúbicos. Después de adición de 1 gr. de IK cristalizado, se deja en la oscuridad durante treinta minutos y se valora el exceso de bicromato con thiosulfato N/10, en presencia de almidón [10 c. c. de (1 gr. de almidón soluble + 100 c. c. de agua)].

Determinación del factor de reducción de la esencia.

Hemos seguido para ello la técnica de Meyer: Una gota de aceite esencial (obtenido y preparado como más adelante se indica) de 10 a 15 mgrs., se pesa exactamente en un pesa-esencias de 1/4 de gramo, perfectamente seco y tarado. Se toman en un Erlenmeyer de 100 c. c., con tapón esmerilado, 10 c. c. de bicromato potásico N/5 y con una probeta, 20 c. c. de sulfúrico concentrado para análisis, mezclando bien los líquidos; la temperatura se eleva grandemente y entonces se introduce en el matraz el pesa-esencias, tapándole después herméticamente. Durante tres minutos se agita perfectamente y se deja luego tres cuartos de hora en reposo.

Se lava la probeta con 500 c. c. de agua y se toman las de loción en un Erlenmeyer de 1.500 c. c. con tapón esmerilado y al conjunto se añade el contenido del matraz de oxidación, que se lava también con 500 centímetros cúbicos de agua, incorporándoseles luego al líquido total. Se

añade luego 1 gr. de IK y se deja a oscuras treinta minutos, colorándose luego el exceso de bicromato con thiosulfito N/10 en presencia de engrudo de almidón (de almidón soluble 1 gr. + agua 100 c. c., 10 c. c.).

Determinado este coeficiente con cada una de las muestras de esencia obtenida de cada tipo de planta cultivada, y vistas las diferencias despreciables prácticamente entre unas y otras cifras, hemos adoptado como coeficiente medio para todos ellos la cifra 0,363, que expresa el número de centímetros cúbicos de S $\rm N/10$ de bicromato potásico necesarios para oxidar un miligramo de esencia.

Ensayo de abonado en una plantación de menta piperita. (Foto S. P. M.)

Determinación del factor de reducción del ácido sulfúrico concentrado.

En un matraz de dos litros con tapón esmerilado se toman 700 c. c. de agua con 50 c. c. de ácido sulfúrico concentrado y se enfría la mezcla. Se añaden luego 5 c. c. de bicromato potásico N/5 y 0,5 grs. de IK y se deja durante treinta minutos la solución a oscuras. Se valora luego el bicromato no reducido con S N/10 de thiosulfato sódico en presencia de engrudo de almidón.

Con objeto de referir siempre los resultados analíticos al material completamente anhidro, se tomó paralelamente a cada pesada del mismo, para las determinaciones, una cantidad (± 1 gr.) exactamente me-

DETERMINACION ANALITICA DE LA MENTA PIPERITA

		a \	L A N	TAE	a. vo	ANOL	,		PLANTA	PLANTA ALEMANA
DETERMINACIONES	PRIMER	RANO	SECUNDO AÑO	ON A NO	TERCER	R ANO	CUART	CUARTO AÑO	PRIMER	RAÑO
	Testigo	Abonada	Testigo	Abonada	Testigo	Abonada	Tertigo	Abonada	Testigo	Abonada
Esencia	1,411	1,520	1,561	1,762	1,776	1,977	1	1.+31	2,100	1,971
Mentol libre	47,13	44,78	49,10	47,80	58,70	57,41	1	+6,91	57,87	57,15
Mentol total	56,71	54,35	56,24	33,41	67,51	65.33	1	52,55	15,79	67.52
Mentol combinado,	9,58	9,57	7,34	5,61	8,81	7,92	I	5,64	9.6+	9,37
Indice de refracción a 20°	1,46	1,459	1,463	1,473	1,461	1,+6	!	1,4585	1,462	l
Humedad persistente al aire	26,5	26,6	26,5	26,1	26,3	27,4	I	28,3	29,3	ı
Humedad persistente sobre CaO	5,1	4,2	5,3	5,3	3,1	0,4	1	3,1	7.3	6,1
Humedad total	79,13	10,62	70,31	75,03	75,41	77,42		76,21	69,54	68.76
No se pudieron hacer las detern	ninaciones	correspond	ientes a la	planta sin	abonar del	cuarto año	por haber	as determinaciones correspendientes a la planta sin abonar del cuarto año por haberse estrupeado la planta	ido la plant	J

Se añaden luego 10 c. c. de S N/5 alcohólica de KOH y se hierve la mezcla al baño de arena media hora a reflujo. Después de frío el líquido, se diluye con 50 c. c. de agua y se valora el exceso de álcali con CIH N/5 en presencia de fenolftaleina (microbureta).

La cifra de mentol total viene expresada por la fórmula:

en la que

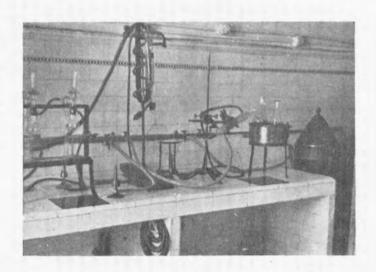
b = número de c. c. S N/5 KOH para saponificación de p.

p = gramos de esencia acetilada tomados.

c = número de centímetros cúbicos de S N/5 KOH para saponificar p gramos de aceite no acetilado calculados como en el mentol combinado).

III.—Determinación de la humedad.

Paralelamente a la destilación de la planta en cantidad necesaria para la obtención de suficiente esencia, fueron retirados del lote ± 100 gramos de aquélla, exactamente pesados en una balanza sensible al centígramo y desecados espontáneamente a la sombra hasta peso constante.


La planta seca así obtenida fué pasada cuantitativamente a bolsas de papel y conservada sobre cal (30 : 1) en unas cajas de cins de 24 × 20 × × 40 cms., herméticamente precintadas con una tira de esparadrapo y, al final, pesada de nuevo. Por último, ± 1 gr. de planta seca sobre cal exactamente pesado, a la media milésima de gramo. Después se tomo hasta peso constante en el desecador sobre P₂O₅. De las cifras así obtenidas fácil es deducir el agua total.

CONCLUSIONES.

- 1.ª Del estudio cultural de la menta piperita durante cuatro años, se deduce que el rendimiento cuantitativo en planta alcanza su máximo el segundo año de vegetación, con un incremento superior al 80 por 100 respecto a la cosecha del primero, para iniciar su decrecimiento el tercero (menos del 27 por 100 de aumento con relación al primero) y bajar el cuarto por debajo del 40 por 100 de la cantidad conseguida dicho primer año.
- 2.ª El segundo corte anual es siempre más productivo que el primero, oscilando este exceso entre el 10 por 100 el cuarto año y el 70 por 100 el segundo.
- 3. La acción del nitrato sódico es siempre favorable a la producción de planta, consiguiéndose con la aplicación de dicho abono incrementos que oscilan entre el 10 por 100 el tercer año y el 30 por 100 el cuarto año.
 - 4.ª Esta influencia positiva del nitrato sódico también se refleja en

la riqueza en esencia de la menta piperita de origen español, con aumentos comprendidos entre el 0,109, el primer año, y el 0,201 por 100 los años segundo y tercero. En cuanto a la menta alemana, resulta una disminución del 0,129 por 100 de esencia en la planta abonada.

5.ª Hecho el análisis cualitativo de la esencia, se deduce que es negativo el efecto del nitrato sódico sobre los porcentajes de mentol combinado con mermas en relación a las esencias procedentes de plantas no abonadas, que oscilan entre el 0,01 por 100, el primer año, y el 1,73 que experimenta en idénticas circunstancias una disminución del 0,27 por 100.

POLEO

RENDIMIENTOS.

Se hizo un ensayo para ver el efecto del nitrato sódico sobre la producción de planta de poleo, así como en su riqueza en esencia. El primeraño se hizo una recolección y el segundo dos, obteniéndose los siguientes resultados, que son todos estadísticamente significativos, salvo los correspondientes al último corte del segundo año:

	•	Año primero	Año	segundo
Tra	itamientos	Corte único 26 de agosto	Corte primero 1 de julio	(n. s.) Corte segundo 13 de septiembre
Sin abono		3.+37	9,062	7.140
(100 kgs. por Ha	4.537	13,599	_
Nitrato sódico	100 kgs, por Ha 200 kgs, por Ha	5.891	13,420	7,174
(300 kgs, por Ha	7.745	15.545	10.485

No se ha podido contínuar la experiencia, pues en el invierno de 1942 se heló la plantación, tal vez por lo agotada que estaba ante la gran producción que dió el segundo año.

De estas cifras se deducen las consecuencias indicadas a continuación:

- 1.ª El nitrato sódico ejerce acción favorable sobre la producción de planta, siendo la dosis más conveniente, de las tres ensayadas, la de 300 kgs. por hectárea.
- 2.ª El incremento logrado en el segundo año (dos cortes) con relación al primero (un corte) es de 12.765 kgs. por Ha. para las eras testigos y de 18.285 para las abonadas con 300 kgs. de nitrato.
- 3.ª En el segundo año el descenso del rendimiento del primer corte al segundo es de 1.922 kgs. para las eras testigos y de 5.000 para las abonadas con 300 kgs. de nitrato.

Determinada la riqueza en escucia en la planta obtenida en el primer corte del segundo año, se obtuvieron los siguientes porcentajes, estadísticamente significativos:

Sin abono			0,390
	, 100 kgs., Ha.		Sin aumento.
Nitrato sódico.	200 id		0,396
. (100 kgs., Ha. 200 fd	 	0,411

Los rendimientos en esencia son bajos, debido probablemente a que se hizo la destilación con poca planta y en un alambique de bastante capacidad. No obstante, comparados unos con otros, queda comprobado que el nitrato sódico ejerce influencia sobre la producción de esencia, al menos con el primer corte.

En conclusión: el nitrato sódico ejerce acción favorable, tanto sobre la producción de planta de poleo como sobre su riqueza en esencia.

DATOS CULTURALES

De los datos y experiencias culturales recogidos durante el período 1939-1943 se deduce que el cultivo del poleo debe efectuarse del modo siguiente:

Preparación del semillero durante el mes de enero, en cajonera protegida con zarzos. Cama caliente, hecha a base de una capa de estiércol fresco de caballo de 50 cms. de espesor, recubierto de otra de mantillo de 10 cms.

Cantidad de semilla que hay que sembrar para tener planta suficiente para un área: 4 grs. en 1/2 m.².

Siembra: Segunda quincena de febrero.

Nascencia: A los doce o quince días.

Densidad media: Muy irregular.

Preparación previa del terreno: Una labor en enero y otra en mayo. Abonado: Superfosfato de cal a razón de 300 kgs./Ha., y 200 kgs, de

sulfato potásico. Incorporación en la segunda labor preparatoria.

Transplante: A fines de mayo, al marco de 0,70 \times 0,60 metros.

Reposición de marras: No suele haber.

Abonado en cobertera: A mediados de junio, incorporación del nitrato sódico, en cobertera.

Riegos: Variables, según el año. Por término medio, unos diez.

Binas: Tres.

Escardas: Una, al principio de la vegetación.

Recolecciones: El primer año, una en el mes de agosto, y en años sucesivos, dos: una a primeros y otra a fines de verano.

Peso de mil semillas : 0,053 grs.

Germinación óptima: 65 por 100 en veintiocho días, a la luz, y temperatura alternada de 20° y 30°.

VALERIANA

Como esta planta se desarrolla perfectamente en terrenos húmedos y algo sombreados, pero, en cambio, se reputan como mejores las raíces obtenidas en sitios altos y secos, se planeó una experiencia, con vistas a comprobar el comportamiento de la mencionada especie en una parcela de altitud media, arenosa, con suficiente matería orgánica y con los riegos estrictamente imprescindibles para cubrir sus necesidades, ya que en año anterior se intentó su cultivo en secano y se perdió toda la plantación.

Mil semillas pesan 0,459 grs. Ensayado en el laboratorio su poder germinativo, dió el porcentaje máximo—65 por 100—a la oscuridad y a una temperatura de 20°.

Se realizó la siembra en cajonera acristalada, el 18 de marzo, empleándose 20 gramos en 0,80 m.² de superficie. En la mitad de ésta se cubrió la semilla con mantillo y en el resto se dejó al descubierto, comprimida con una tabla para que quedara bien adherida al terreno. La siembra expuesta a la luz empezó a nacer el 30 del mismo mes, en la parte del semillero más expuesta a la sombra y por los bordes del tablar, junto a la arena que sirve de separación con las siembras de otras especies. En conjunto, la nascencia, como se ve, es desigual, pero en estas manchas aisladas se contaron, término medio, 40 plantitas por dm.².

En días sucesivos continuaron naciendo más plantas, pero siempre formando manchas aisladas en la parte baja y sombreada de la cajonera y en los límites del tablar.

Las semillas que se cubrieron con mantillo iniciaron su nacimiento el 25 de abril, pero en pequeña cantidad y muy diseminadas, con vegetación muy precaria, demostrándose, en consecuencia, que conviene dejar la semilla descubierta, aunque en este caso se da la nota curiosa de mostrar preferencia por la parte más sombreada del semillero.

De las plantitas procedentes de la semilla descubierta se hicieron dos lotes. Uno se repicó el día 15 de abril y después se llevó al terreno definitivo el 15 de mayo, y el otro lote se transplantó directamente el 25 de abril. Ambos se llevaron a una parcela dispuesta en cuadrado latino, 4 × 4 y abonada el 6 de abril con superfosfato de cal y sulfato potásico, del modo siguiente:

1	T PK (3)	2	R (6)	3	PK R (4)	4	T (1)
5	R (7)	6 PK	R (5)	7	T (4)	8	PK (3)
9	PK (3)	10	T (2)	11	PK (1)	12	R (6)
13	T (2)	14 PK	T (4)	15	R (5)	16	PK R (6)

T = Transplante directo.

R = Repicado previo.

P = Abonado con superfosfato de cal, a razón de 500 kgs./Ha.

K = Abonado con sulfato potásico, a razón de 200 kgs./Ha.

El día 30 de mayo se contaron las marras, que están indicadas entre paréntesis en cada parcela. Como se ve, hubo más fallos en las eras con repicado previo que en las de transplante directo e incluso se observó alguna diferencia, aunque pequeña, en la marcha vegetativa a favor de estas últimas plantas.

Aparte de esta experiencia se habían plantado seis eras con trozos de pies de planta procedentes de diez ejemplares que habían quedado de un ensayo frustrado el año anterior. Esta división se hizo en marzo y agarraron perfectamente todas las plantas.

Tanto en un caso como en otro se dispusieron en línea, equidistantes a 60 cms. y dentro de ellas a 40 cms.

De cuidados culturales se dieron de abril a septiembre nueve riegos, tres binas y dos escardas.

Durante el invierno se dió una labor entre calles, en el mes de lebrero, sin tocar los aporcados hechos para proteger cada planta. El 15 de marzo se volvió a abonar con la misma fórmula y distribución indicadas para el año anterior. Se incorporó este abonado con una labor ligera, seguida de un pase de rastrillado. A continuación se deshicieron con cuidado los montones y se vió que ya venían brotando las plantas. Las marras del año anterior se repusieron con plantas procedentes de la división ágama hecha dicho año y a la que antes hemos aludido. Prendieron todas ellas, que se transplantaron con buen cepellón.

Los cuidados que se dieron hasta el 28 de octubre fueron los siguientes: ocho riegos, tres binas y dos escardas. Además, en el mes de junio, día 13, comenzó la floración, extirpándose las flores a medida que aparecían; la última de estas operaciones se hizo el 3 de septiembre. En cada era se dejaron tres plantas con flor para obtener semilla.

Aspecto de un cultivo de valeriana en plena floración. (Foto S. P. M.)

El 28 de octubre se procedió a la recolección de las raíces. Después de desenterrarlas, se sacuden para separarlas de la tierra a ellas adherida y se lavan con agua corriente. Entonces se cuelgan los mechones de raíces o se extienden sobre pavimento seco y lugar cubierto. Las raíces algo gruesas conviene hendirlas en dos. No le conviene a esta planta la desecación, pues disminuye su riqueza en esencia.

El rendimiento ponderado de raíz fresca en kilogramos por era de 14 metros cuadrados fué el siguiente:

1		2		3		+	
	8,65		7,55		10,00		8,60
5		6		7		8	
	6,45		10,30		7,80		9,25
9		10		11		12	-
	7,60		7,00		8,25		8,10
13		14		15		16	
	7,35		10,80		6,85		8,50

Pesados 50 kilogramos de raíz fresca, una vez tomadas las muestras para la determinación del porcentaje en principios activos, fueron desecadas en local cubierto, seco y ventilado, quedando reducidos, a los treinta y dos días, a 19,25 kgs. de droga.

No se ha hecho el cálculo estadístico correspondiente a los rendimientos obtenidos, pues al no poder determinar la riqueza en esencia de las 16 muestras de raíces frescas, por estar ocupado el laboratorio en los análisis de las otras drogas, mencionadas en otros trabajos, quedó truncada la experiencia, que se repite este año. Pero de los resultados cuantitativos obtenidos parece deducirse que es más fácil el transplante directo que con repicado y que el rendimiento es también mayor en aquel caso que en éste, tanto en las eras abonadas (9,26 contra 9,10) como en las testigos (7,69 contra 7,23) En cuanto abonado, parece ser de acción favorable sobre la cantidad de raíces, tanto en las eras de transplante directo (9,26 contra 7,69), como en las de repicado (9,10 contra 7,23).

GRINDELIA ROBUSTA

Esta especie, perteneciente a la familia de las Compuestas, es originaria de California y las sumidades floridas son empleadas en los Estados Unidos como antiasmáticas, expectorantes, diuréticas, sedativas, etc.

Es vulgarmente llamada planta de la goma, porque está toda ella recubierta de una sustancia resinosa que le da un aspecto de barnizado.

Es una planta herbácea, erecta, con un tallo liso y redondo, que alcanza hasta más de un metro de altura. Hojas alternas, verdes, coriáceas y cubiertas de resina. Cada rama termina en una inflorescencia en cabezuela, amarilla, de unos dos centímetros de diámetro. Involucro semiesférico, con varios verticilos de brácteas ásperas, las externas no muy consistentes y reflejas. Fruto en aquenio comprimido. Una vez desecada tiene un ligero olor balsámico y un sabor amargo, aromático.

Para iniciar la aclimatación de esta droga se gestionó la adquisición de semilla por medio de los Agregados Agronómicos en Wáshington y en Roma: al primero, por ser originaria de California, como ya se ha dicho, y al segundo, por estar aclimatada en el Jardín Botánico de Nápoles. Ambos Ingenieros enviaron pequeñas muestras de ocho y diez gramos, respectivamente, en diciembre de 1942 y en febrero de 1943.

Pesadas mil semillas de ambas muestras se obtuvo la cifra de 3,135 gramos para las de procedencia americana y 3,144 para la italiana.

Cinco gramos de cada uno de dichos envíos fueron sembrados en 0,24 m.² de semillero con cama caliente, el 4 de marzo de 1943. Nacen ambas siembras simultáneamente el 14 del mismo mes con regularidad. En el laboratorio no germinaron ni a la luz ni a la oscuridad, a las temperaturas de 15°-20° y 20°-30°, debido sin duda a algún defecto operatorio, ya que en el semillero se logró una germinación media del 58 por 100.

Continuó normalmente la vegetación en el semillero hasta el día 10 de mayo, en que se efectuó el transplante al terreno de asiento, al marco de 60×50 centímetros.

Esta parcela se había preparado con una labor corriente, seguida de

un rastrillado, el día 20 de abril. A continuación se había preparado un ensayo de abonado de la forma siguiente:

	A		В		C		D
16		15		1+		13	
	В		D		A		С
12		11		10		9	
If the party sale sales	С		A		D		В
8		7		6		5 .	
	Ð		С		В		A
+		3		2		1	

A = Testigo.

4,50 kgs./área superfosfato de cal.

1,50 íd. cloruro potásico.

2,25 íd. sulfato amónico.

C = { 1,50 kgs./área cloruro potásico.
 2,25 íd. sulfato amónico.

D = 2.25 kgs./área sulfato amónico.

Distribuído este abono el día 8 de mayo, a continuación se enterró y, a los dos días, se efectuó el transplante, como ya hemos dicho. En las eras 1 a 8 se puso planta italiana y en la 9 a 16 planta americana. Desde el principio se observó un menor desarrollo en la de esta última procedencia, mientras que en el semillero estuvieron muy igualadas ambas, hasta el punto de poder hacer el transplante el mismo día. La hoja quedó pequeña, la planta muy pegada al suelo y no llegó a florecer.

En cambia, la planta italiana adquirió gran desarrollo, llegando a una altura media de un metro. Comenzó la floración el 13 de julio y continuó ya dando flor constantemente. Excepto las plantas que se dejaron para semilla, el 4 de agosto se hizo la recolección de las sumidades floridas, segadas a 15 cms. del suelo. Los rendimientos obtenidos de planta fresca fueron los siguientes, en kilogramos por era de 14 m.²:

Era	núm.	1	 	 	 	 18
Era	núm.	2	 	 		 27
Era	núm.	3	 	 	 	 21
Era	núm.	4	 	 	 	 23
Era	núm.	5	 	 ٠	 	 26
Era	núm.	6		 	 	 24
Era	núm.	7	 	 	 	 20
Era	núm.	8	 	 	 	 22

Grindelia robusta Nutt, Detalle de una planta. (Foto S. P. M.)

Hechos los análisis químicos correspondientes, se obtuvieron los resultados indicados a continuación:

Notes to be seen	PESO EN	GRAMOS		DA POR ION POR'100	EXTR	ACTO	Ceniza
Núm, de la era	En fresco	En seco	Humedad	Materia seco	Etéreo	Alcohólico	
1	695	265	61,90	38,10	7,98	16,34	10,97
2	1.167	440	62,29	37,71	9,52	17,32	8,61
3	446	175	60,76	39-24	10,44	16,00	11,07
4	540	195	63,88	36,12	9,08	15,10	9,03
5	787	290	63,00	37,00	8,00	16,61	9,95
6	706	235	66,74	33-29	7,99	14,09	11,21
7	645	296	60,26	39,74	9,26	15,78	11,17
8	665	240	63,90	36,10	9,99	16,17	10,27

Los cálculos estadísticos de todos estos resultados no estaban termi-

nados el día en que se redactó esta nota, por lo cual no se pueden aún deducir consecuencias de esta experiencia.

Labores se hicieron: dos reposiciones de marras; una cava; dos binas y seis riegos. La semilla de la planta italiana dejada a tal fin se recogió el 15 de octubre. Continúa la experiencia.

TARAXACUM KOK-SAGHYZ

Las dificultades inherentes a la actual contienda mundial han hecho que todas las naciones intensifiquen sus esfuerzos para conseguir la máxima autarquía en los productos necesarios para su economía. Entre ellos adquiere primordial importancia el caucho, y, si bien en Europa no existen extensas zonas que reúnan las condiciones necesarias para el cultivo de la planta productora del verdadero caucho (Hevea), en la cuenca mediterránea sí pueden obtenerse otras especies, de las que se extraen gomas de características parecidas a las de aquél y cuyo empleo permitirá reducir la importación que precisa dicho Continente para atender sus necesidades, cifradas en más de trescientas mil toneladas, o sea la tercera parte de la producción mundial.

Con motivo de la ocupación de Ucrania por las tropas alemanas, se encontraron en dicha zona grandes extensiones dedicadas al cultivo de una planta que los rusos estudiaban desde hacía muchos años, en tal secreto que llegaban a despoblar las tierras destinadas a dicha especie, cuyo cuidado y custodia encargaban a personas de su absoluta confianza.

Conseguida semilla por intermedio de la Legación de España en Rumania, en septiembre de 1942, el 10 del mismo mes se preparó un semillero de cama caliente, bajo chasis. La cama caliente se hizo a base de una capa de estiércol fresco de caballo de 60 cms. de espesor, recubierta de otra de mantillo, de 10 cms. Sembrada el 20 de dicho mes la mitad de la muestra remitida, es decir 1,2 grs., en una superficie de $1,60\times0,40$ metros, nació el 14 de octubre con alguna irregularidad. El 30 del mismo mes se transplantó a 30 cms. en cuadro. Prendieron un 78 por 100, pero fueron posteriormente atacadas por conejos, debido a lo cual se perdió la mayor parte de la plantación. Tres eras menos atacadas fueron protegidas con una red metálica y así pasaron el invierno.

En la primavera siguiente se preparó un semillero de cama caliente, de la forma antes indicada, pero sin estar protegida por chasis. El 18 de marzo se sembró el resto de la semilla recibida. Nació el 29 del mismo mes, con más regularidad que en el semillero de otoño, por lo

cual no se considera necesario el tratamiento previo, aconsejado por Reichart, de tener las simientes cuatro horas en agua y luego veintidós días en cámara frigorifica.

A partir del 12 de abril se comenzó el transplante escalonado, a medida que se desarrollaban las plantitas; pero se observó que si se dejaba adquirir a éstas un tamaño conveniente, se corría el riesgo de que comenzasen la floración en el mismo semillero. Por ello se repicaron las menos desarrolladas, con lo cual se vió que el desarrollo era más lento y la floración también se detenía algo, con respecto a las transplan-

Detalle de una planta de Taraxacum Kok-Saghyz Rodin, al miciarse la floración. (Foto S. P. M.)

tadas directamente, del mismo tamaño y en iguales condiciones, para que sirvieran de comparación.

Los transplantes, directos en algunos casos y pervio repicado en otros, se hicieron: en dos eras al marco de 0.30×0.30 metros, y en otras dos en dobles líneas a 0.15 metros, separadas del par siguiente a 0.60 metros y las plantas dentro de cada una de las líneas a 0.15 metros, aclarando después para dejarlas a 0.30; los pies que se sacaron se utilizaron para la reposición de marras. Se ha comprobado que interesa más el primer distanciamiento que el segundo.

Estudiada morfológicamente esta planta perenne, en el momento de la floración tiene las siguientes características:

Hojas todas radicales, oblongas, de una longitud bastante variable—unos treinta centímetros de media aproximada—y una anchura de unos cinco centímetros. Parece que en sitios de sombra aumenta el tamaño de sus hojas. Los márgenes de éstas son variables, ya que unas veces penetran las divisiones más de la mitad del semilimbo y otras menos, dando lugar a hojas pinnadopartidas o solamente pinnadohendidas. Los lóbulos están, generalmente, orientados hacia abajo, siendo el terminal de mayor tamaño y forma triangular, con la base algo menor que la anchura máxima de las hojas, que son lampiñas, salvo en su base, donde llevan, con frecuencia, pelos escasos, largos y suaves. Por último, la nerviación media de la hoja, patente por las dos caras, es cóncava en casi toda la longitud del envés.

Cabezuelas solitarias en la extremidad, de escapos erectos, de más altura que las hojas, huecos y en mucho mayor número—por término medio unos veinticinco a treinta—que los de la especie oficinal o vulgar «diente de león». El diámetro medio de estos capítulos es de unos cuatro centímetros. Involucro casi acampanado. Brácteas exteriores cortas y reflejas; las interiores, más largas, erectas hasta la maduración del fruto y después también reflejas.

Flores muy numerosas, con lígulas amarillas quinquedentadas, de unos dos centímetros de longitud. Aquenios alargados, con costillas longitudinales, bruscamente adelgazadas en un pico filiforme. Vilano con sedas capilares.

Cuando la cabezuela tiene los frutos maduros, una vez replegadas las brácteas interiores y abiertos los vilanos, toma el aspecto de una esfera. Toda la planta tiene un sabor amargo y es rica en latex.

Por su clasificación botánica resulta ser la especie Taraxacum Kok-Saghyz Rodin, denominada vulgarmente Kok-Sagis, muy afín al T. officinalis o «diente de león» y perteneciente, como ésta, a la familia de las compuestas.

Este primer año no se han sacado raíces, para dejar que éstas se desarrollen más y para multiplicar la actual plantación. Las labores que hubo que dar hasta el otoño consistieron en cuatro binas.

El 2 de septiembre de 1943 se hizo una siembra en semillero de cama caliente bajo chasis, gastando un gramo de semilla en una superficie de 1,60 × 0,30 m.². Nació el 2 de octubre, con bastante uniformidad. Con fecha 24 de marzo del año actual se repicaron las plantitas más desarrolladas en una era convenientemente preparada y al marco de 15 cms. en cuadro.

Con fecha 9 de febrero de este año se hizo también siembra en semillero de cama caliente, al aire libre. Se gastaron dos gramos en una superficie de 0,50 × 1,40 m.². Nació el 28 del mismo mes.

Por último, con fecha 25 de marzo pasado se preparó una era cuida-

dosamente y se hizo una siembra directa a chorrillo, en líneas de 0,40 metros de distancia.

De este modo, este año vamos a comparar siembras directas de primavera, semillero de otoño, semillero de primavera, transplantes directos y transplantes con repicado previo, aparte de iniciar las experiencias sobre abonado.

Hasta ahora parece deducirse que no es planta exigente ni en clima ni en suelo, resistiendo profundamente el secano, todo ello, como no podía por menos de suceder, habida cuenta de su región originaria, que es una zona de elevada altitud de las estepas de Kasakstan.

Además de esta especie existen en Rusia otras dos: una, la T. megalorrhizum Handel Mazetti o Krim-Sagis, con muy poca cantidad de latex; otra, la Scorzonera Tau-Saghyz Lipsch y Bosse o Tau-Sagis, que puede almacenar hasta un 40 por 100 de latex, pero con una elevada cantidad de resinas, lo que disminuye la viscosidad de las soluciones en estado de gel, alterando la estructura del producto comercial. Estas dos especies son oriundas de Crimea y, por tanto, son menos resistentes al frío que la que estudiamos, cuya riqueza media en latex es del 27 por 100, según autores alemanes, pues, como ya hemos dicho, nosotros aún no hemos hecho ninguna recolección.

En muchas de nuestras zonas vegetativas, donde el «diente de león» esté muy generalizado, ello puede ser un inconveniente en el cultivo del Kok-Saghyz, ya que, dada la semejanza de ambas especies, la extirpación de aquélla se hará difícil y será corriente encontrar en la recolección, junto a raíces de riqueza normal en «caucho», otras pobres o desprovistas de él en absoluto. La lucha contra esta mala hierba es tanto más difícil si se considera su copiosa producción de semilla. Se aminora este inconveniente si se emplea la multiplicación vegetativa del Kok-Sagis, en lugar de la sexual, dada su facilidad en reproducirse por trozos de raíz de uno a dos centímetros de longitud. No obstante, esta solución no es aceptable para grandes extensiones, en las que conviene, económicamente, el empleo de semilla, de la que se gasta unos dos kilogramos por hectárea.

CONCLUSIONES.

Iniciado el estudio y aclimatación de la especie Taraxacum Kok-Saghyz Rodin, se ha comprobado este primer año que es planta poco exigente en clima y suelo, que se reproduce bien por semilla sembrada en semillero, en otoño o en primavera, y que el marco de plantación más conveniente es el de 30 cms. en cuadro. Continúa la experiencia.

DRACOCEPHALUM ARISTATUM

(SIN.: LALLEMANTIA IBÉRICA FISCH)

En el año 1942 se recibió, por intermedio de la Embajada alemana, una pequeña cantidad de una semilla desconocida, a la que se atribuía

Un cultivo de Dracociphalum aristatum Benth (sin., Lallemantia Ibérica Fisch), a los dos meses de la siembra.

una gran riqueza en aceite. Sembrada en unos tiestos, germinó con bastante regularidad y dió lugar a una planta que, llegada a floración, se

clasificó como de la tribu Nepeteas, de la familia Labiadas, género Dracocephalum y Grex Moldavica. Posteriormente se ha identificado como Dracocephalum aristatum Benth, sinónimo de Lallemantia Ibérica Fisch.

Con la semilla que se recogió de estas plantas el pasado año se hizo un semillero de cama caliente, sembrando 3,5 grs. el 18 de marzo en una superficie de $0,50\times0,16$ metros. Nació el 25 del mismo mes. El 7 de mayo se realizó el transplante al terreno de asiento, preparado con una labor corriente seguida de un rastrillado. El marco fué de 40×30 centímetros.

La vegetación se desarrolló normalmente, salvo el daño causado por los conejos, por lo cual se protegió posteriormente el cultivo con una tela metálica. A continuación del transplante se dió un riego y luego otros dos. El 28 de julio se hizo la recolección, obteniéndose una producción media de 1.150 kilogramos, referida a la hectárea.

Hecho el análisis químico de la semilla, se han obtenido los siguientes resultados:

Riqueza en aceite	21 %
Densidad	0,935
Grado de acidez	0,84 %
Indice de saponificación	

Este año, con más cantidad de semilla, se continúa el estudio en una extensión suficiente para poder deducir conclusiones más seguras.

ACCION DEL BORO SOBRE LA RUDA CABRUNA, MELILOTO Y ESTRAMONIO

Desde que la mayor pureza de las sales obtenidas por la industria química puso de manifiesto que, además de los diez elementos considerados desde hace mucho tiempo como indispensables para la vida de las plantas, se precisaba la existencia de pequeñas cantidades de otros cuerpos: boro, manganeso, cobre, aluminio, zinc y yodo, denominados micro-elementos o, según Bertrand, elementos catalíticos, la copiosa literatura sobre este tema adolece de falta de datos respecto a la acción de estos elementos sobre los principios activos de los vegetales, en general, y de los de aplicación medicinal, particularmente. Por ello, juzgamos del mayor interés comenzar una serie de ensayos sobre la acción de estos elementos en las especies oficinales e iniciarlos por el más importante de ellos: el boro.

La cantidad de este elemento existente en los terrenos oscila mucho, según el origen de éstos. De las experiencias de Goldschmit y Peters, en 1932, dedujeron los autores un límite mínimo del 0,001 por 100 de B₂O₃, para los suelos graníticos, y uno máximo del 0,1 por 100 para los sedimentarios de origen marino.

La existencia del boro en las plantas ha sido comprobada por multitud de análisis, desde que en 1857 se observó la presencia de este elemento en la primulácea Maesa picta. De dichos análisis se deduce que la mayor riqueza en boro se encuentra en las Solanáceas (tomate, tabaco, patata) y en las Leguminosas (guisantes y habas), mientras que son las Gramíneas las que le poseen en menor cantidad.

Por otra parte, parece existir un marcado poder selectivo de las plantas respecto al boro, si bien muy variable, según la especie y aun el cultivo. En efecto, mientras que Swingle encontró en pies espontáneos de Citrus una mayor resistencia a un exceso de boro en el suelo, Schropp observa en Brassica cultivada una mayor receptividad que en los ejemplares salvajes. Además, para el mismo terreno, unas plantas poseen más riqueza que otras en este elemento, independiente, por otra parte,

de la de la tierra; así, en un suelo con un porcentaje de B₂O₃, de 0,001, se encontró en un ejemplar de Fagus una proporción del 0,5 por 100.

La absorción del boro por los vegetales tiene lugar en cualquier momento de su período vegetativo y los órganos en que se almacena, con preferencia, son los de multiplicación, y entre los vegetativos, los tallos y hojas.

Como consecuencia de las anteriores consideraciones, se plantearon hace dos años tres experiencias relativas a otras tantas especies: dos leguminosas, una bisanual (meliloto) y otra vivaz (ruda cabruna), y una solanácea anual (estramonio), cuyos principios activos—cumarina, ga-

Una planta de ruda cabruna. (Foto S. P. M.)

leguina y l-hiosciamina—radican en la parte aérea de dichas plantas: sumidades para las dos primeras y hojas en la tercera.

Los resultados obtenidos en dichos ensayos fueron negativos y únicamente en la ruda cabruna parecía vislumbrarse un efecto positivo del borato sódico sobre el rendimiento cuantitativo en sumidades de dicha planta, si bien los resultados no eran estadísticamente significativos.

Por ello, el año pasado se repitió la experiencia con esta leguminosa, sembrándola en semillero el 23 de marzo, empleando 20 gramos en un tablar de 0.50×0.80 metros. Nace con regularidad el 2 de abril y continúa su crecimiento normalmente. Se transplantó el 15 del mismo mes

a un terreno que se había preparado previamente con una labor. Dicho transplante se hizo al marco de 0,50 metros en cuadro, dando un riego a continuación. Hubo bastantes marras, que se repusieron el 2 de mayo. El 3 de junio se dió otro riego, el 15 una bina y el 5 de julio otro riego. Se siguen observando algunas marras. El 4 de agosto se inicia la floración y el 10 se efectúa la siega de sumidades. En el cuadro siguiente se indican las cantidades recogidas en cada parcela y la distribución dei ensayo de abonado:

A 16	2,000	D 15	1,750	C 14	2,100	B 18	1,250
B 12	1,500	A 11	1,800	D 10	1,200	c 9	1,250
C 8	1,300	B 7	1,800	A 6	1,250	D 5	1,500
D +	1,650	C 3	1,250	B 2	1,000	A 1	2,650

$$A = 0 \text{ grs./m.}^2$$
. $B = 5 \text{ grs./m.}^2$. $C = 10 \text{ grs./m.}^2$. $D = 20 \text{ grs./m}^2$.

Las cantidades van expresadas en kilogramos de sumidades frescas. Realizado el cálculo estadístico, se obtuvo para Z un valor inferior a los dados en las tablas de Fisher, luego los resultados de la experiencia no son significativos.

Además, de las medias obtenidas tampoco se deduce ninguna consecuencia que, aunque no significativa, pudiera servir de orientación para otras experiencias, pues la de las parcelas testigos—1,925—es superior a las de aquellas a las que se incorporó boro.

Hechas las determinaciones de cenizas y extractos etéreos de las diversas eras, se obtuvieron las siguientes medias:

Tratamientos	Conizas	Extracto etéreo		
A	9,64 •/0	3,70 %		
В	9,64 •/ ₀ 9,43 °/ ₀ 9,16 °/ ₀	3,70 °/ ₀ 3,30 °/ ₀		
C	9,16 %	3,48 % 2,73 %		
D	6,89 %	2,73 %		

Como se ve, tampoco se deduce nada concluyente de las anteriores cifras.

CONCLUSIONES.

De los ensayos realizados durante dos años para ver el efecto del boro sobre la ruda cabruna no se ha sacado ninguna conclusión, tanto en lo relativo a sumidades floridas como en la riqueza en principios activos de las mismas.

PESO Y PODER GERMINATIVO DE 156 SEMILLAS DE ESPECIES MEDICINALES

A igualdad de las demás circunstancias ecológicas en que se desarrolla un cultivo, el cálculo de la cantidad de semilla que requiere por unidad de superficie es función de dos factores: peso y valor real de los granos. Si es siempre conveniente el cálculo del peso de las mil semillas de cualquier especie, procurando prescindir ue esos valores que van pasando de unos libros a otros, con carácter demasiado dogmático, en el caso de simientes medicinales aquella conveniencia se convierte en necesidad, al carecerse de dichos datos para la mayoría de ellas.

A llenar este vacío tiende el presente trabajo, en el que se recoge la labor iniciada por nosotros en el año 1935 en los laboratorios de la Estación Central de Ensayo de Semillas, y proseguida hasta 1944, con la natural interrupción durante los años que duró nuestra guerra.

Cada año la determinación del peso se realizó de acuerdo con las siguientes normas: Se contaron, sin escoger, cuatro lotes, de cien semillas puras cada uno; se pesaron por separado, se halló la media y, multiplicada ésta por diez, se obtuvo el peso de las mil semillas. Las cifras mencionadas en los cuadros adjuntos son la media del número de años indicado en las observaciones.

Tanto para el cálculo de esta media general como en el de las correspondientes a las determinaciones anuales, se han eliminado los lotes cuyos pesos diferían en más del 6 por 100 para las simientes cuyo millar pesaba más de 25 gramos, o del 10, para las restantes.

En cuanto al valor real de las semillas, al ser obtenidas en nuestro campo de experimentación, no interesaba la determinación de la pureza y mucho, en cambio, el de la facultad germinativa, ya que ésta refleja la aptitud que posee un grano de producir gérmenes normales, capaces de continuar su desarrollo posterior en el terreno bajo las condiciones características de cada especie.

Para la determinación de dicho poder germinativo se emplearon tres aparatos Jacobsen, provistos cada uno de 20 germinadores con su cam-


pana de vidrio, y tres estufas de germinación, utilizadas para las experiencias en la oscuridad, provistas, éstas y aquéllos, de reguladores automáticos de temperatura. Cuando ésta tenía que ser baja, se utilizaron cámaras frigoríficas. Las semillas gruesas fueron colocadas en platos con arena esterilizada, puestos en estufas de tres pisos.

Los ensayos de germinación se hicieron con cuatro lotes, de 100 semillas puras cada uno, contadas sin escogerlas y puestas en un germinador, o plato, cuidando de que se repartieran lo suficientemente espaciadas para que no quedaran en contacto durante el proceso germinativo.

Dada la importancia que la temperatura tiene en la germinación de

los granos, se trabajó con las siguientes:

- 1.º Una temperatura baja, oscilando alrededor de los 15º.
- 2.4 Otra media, de unos 20°.
- 3.ª Dos alternadas, de 20º durante doce horas y de 30º durante seis.

Dos vistas parciales de los semilleros del Servicio de Plantas Medicinales. (Foto S. P. M.)

De los métodos empleados para esta alternancia se siguió el de variación brusca, cambiando los germinadores o platos del aparato Jacobsen o termostato, graduados cada uno de los tres a la temperatura de 15°, 20° y 30°, respectivamente.

Se cuidó de que el substrato estuviera suficientemente húmedo para atender las necesidades en agua de las semillas, pero se evitó siempre un exceso de dicha humedad. En cuanto a la velocidad de evaporación del agua de los germinadores o platos, dependía, como es natural, del grado higrométrico del ambiente en el que se realizó el ensayo; en algunos casos, para evitar una desecación muy rápida del substrato y, sobre todo, cuando se empleó la estufa de tres pisos, se colocó en su parte inferior un plato lleno de agua.

En oposición a las semillas que germinan perfectamente en la oscuridad, existen otras que precisan la acción de la luz, en ocasiones en plazos tan cortos, como el grano de la salicaria, que, según Sierp, sólo precisa para germinar una décima de segundo de iluminación. Para estudiar esta acción en las diversas especies medicinales es por lo que se emplearon aparatos Jacobsen y estufas abiertas, expuestos ambos a la luz del día, o termostatos completamente cerrados.

Como capaces de producir plantas de normal desarrollo sólo se consideraron aquellos gérmenes cuyos cotiledones y raíces estaban normalmente desarrollados o, todo lo más, los que uno de sus cotiledones, o los dos, aparecían rotos o heridos en débiles proporciones. Los demás fueron desechados.

El conteo se comenzó a los cinco días y se terminó a los veintiocho. Se halló la media de los cuatro lotes, admitiendo los que tenían una oscilación menor del 5 por 100, y esta cifra es la que figura en los cuadros siguientes, no habiéndose anotado en este caso las medias de varios años, sino la correspondiente al año que se indica en las observaciones.

Los tratamientos especiales dados a algunas semillas (ácidos, enfriamiento previo, incisiones, etc.) se indican en las llamadas a que se refieren las letras inscritas en la casilla de observaciones.

Hubiera sido muy interesante estudiar el decrecimiento del poder germinativo en las diversas especies medicinales, pero no se ha podido realizar esta investigación ante la dificultad de hallar anualmente el poder germinativo de todas las semillas.

Por último, debemos expresar nuestro agradecimiento por las facilidades que nos fueron dadas para realizar este trabajo por la Estación Central de Ensayo de Semillas, la Jefatura Agronómica de Madrid y el Instituto Llorente.

Los resultados obtenidos son los expuestos en los cuadros que a continuación se insertan:

		· · · · · · · · · · · · · · · · · · ·		TA	TANTO	POR C	CIENT	O DE	SEMILLA	LAS	GERMINADAS	INAD	A S		
Hatelin Line Line	DE LA	reso medio			A la	luz					A la osc	uridad		,	Obser-
1.		llas en gramos	15.		, S		70-3	00	15	ے	ន		8	8	vaciones
0,123 28 0 16 94 10 99 28 0 23 90 16 98 95 11 95 12 95 95 12 95 95 95 95 95 95 95 9			Dias	6/ ₀	Dias	0/0	Días	0/0	Días	0/0	Días	0/,0	Días	0/0	
0,129 28 0 16 94 10 99 28 0 28	Achillea Ageratum L.	0.213	28	0	21	82	13	92	78	0	23	8	16	86	3-42
3,647 28 0 28	Achillea Millefolium L.	0,129	38	0	16	46	21	81	28	0	22	8	12	92	5-43
3,547 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 20 28 20 28 29 28 62 28 50 28 50 28 50 28 62 28 62 28 62 28 62 28 62 28 62 28 62 28 62 28 62 28 62 28 60 28 60 28 60 28 60 28 60 28 60 28 60 28 60 28 60 28 60 28 60 60 60 60 60 60 60 60 60 60 60 60 60 60	Achillea ptarmica L.	0,196	28	0	78	0	78	0	78	0	28	0	58	0	1-41
3,230 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 54 28 59 28 62 28 62 28 60 28 59 28 62 28 60 28 10 28 12 28 12 28 12 28 12 28 12 28 12 28 20 28 29 28 29 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28	Aconitum Lycoctonum I	3,647	78	0	28	0	28	0	28	0	28	0	28	0	3-41
6,438 28 0 28 14 28 9 28 62 28 51 28 34 34 1,525 28 0 28 54 28 59 28 0 28 12 28 12 28 28 12 28 12 28 28 12 28 12 28 12 28 12 28 12 28 28 10 28 10 28 28 10 28 10 28 10 28 10 28 10 28 10 28 10 28 10 28 10 28 10 28 11 28 11 28 11 28 11 28 12 28 12 28 12 28 12 28 12 28 12 28 12 28 12 28 12 28 12 28 12 28 12	Aconitum Napellus L.	3,230	28	0	28	0	38	0	78	0	28	0	83	0	2-42.a
1,525 28 0 28 54 28 59 28 0 28 13 28 0 28 28 59 28 13 28 0 28 21 28 28 28 20 28 28 29 28 28 21 28 28 28 29 28 28 20 28 28 20 28 28 20 28 28 20 28 28 30 </td <td>Actora spicata L.</td> <td>6,438</td> <td>28</td> <td>0</td> <td>28</td> <td>14</td> <td>78</td> <td>6</td> <td>8</td> <td>31</td> <td>28</td> <td>51</td> <td>82</td> <td>34</td> <td>1-40</td>	Actora spicata L.	6,438	28	0	28	14	78	6	8	31	28	51	8 2	34	1-40
1,525 28 0 26 62 28 0 26 62 28 0 28 12 28 21 28 59 28 62 28 62 28 70 28 70 28 50 28 50 28 31 28 50 28 31 28 40 48 40<	Adonis Autumnalis I.	<u>.</u>	28	0	28	54	% ا	છા	28	0	28	13	83	0	2 - 42
26,704 28 0 28 21 28 59 28 0 28 59 28 30 28 59 28 30 28 35 28 10 28 31 28 40 4	Aethusa cynapium L.	1,525	28	0	28	30	8	31	58	0	28	12	82	21	1-36
2.487 2.8 4 2.8 3.6 2.8 3.5 2.8 10 2.8 10 2.8 10 2.8 10 2.8 10 2.8 10 2.8 14 4.3 14 4.3 1.7 3 15 5.3 14 4.3 14 4.5 2.8 10 2.8 10 2.8 10 2.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Agrimonia Eupatoria L.	26,704	28	0	78	21	78	59	78	0	87	81	28	26	1-36
1,457 28 0 18 21 16 28 17 5 15 53 14 43 8 8 8 8 8 8 8 9 8 9 8 9 8 9 9 9 9 9 9	Althœa officinalis L.	2,487	78	4	28	36	28	35	78	10	78	31	88	\$1	4-40
flm. 2,101 28 0 28 0 28 0 28 0 28 32 28 36 28 0 28 17 28 22 flm. 2,101 20 78 19 40 14 45 28 0 28 22 23 30 flm. 2,101 20 78 15 98 14 87 21 72 16 99 15 94 marrow 0,394 28 0 28 23 23 69 28 5 28 18 28 11 3	Anethum graveolens L.	1,457	28	0	18	21	16	28	17	10	51	23	14	\$	3-41
ffm. 2.8 0 28 32 28 36 28 0 28 17 28 22 ffm. 2.1 2.1 2.2 2.2 2.3 30	Angelica Archangelica L.	3,734	28	0	28	0	58	0	28	0	28	0	28	0	4-42.b
ffm. 2,101 20 78 15 98 14 45 28 0 28 22 23 30 ffm. 2,101 20 78 15 98 14 87 21 72 16 99 15 94 1 matrix 0,394 28 0 28 23 23 69 28 5 28 18 28 11 3			28	0	28	32	81	81	58	0	28	13	28	55	ì
Iffnu. 2,101 20 78 15 98 14 87 21 72 16 99 15 94 1 0,394 28 0 28 23 23 23 69 28 5 28 18 28 11 3			58	0	19	40	‡1	챵]	78	0	78	22	23	30	i
0.304 28 0 28 23 23 69 28 5 28 18 28 11 3	Anthriscus Cerefolium Hoffm	2,101	50	78	15	86	14	87	71	22	91	81	15	46	1-40
	Apium graveolens L.	0.394	28	0	28	23	ឌា	31	58	ro.	88	8	28	=	3-41

15 20 21 21 22 22 22 22 22				TA	TANTO	POR C	CIENT	O DE	SEMI	MILLAS	GERMIN	٩V	A S		}
L. list en grando $''_{1}$ $'_{1}$	DE	Peao medio			A la	luz)		A ia osc	uridad			Obser-
L. Spreng. 6,243 28 0, 28 37 28 54 28 0, 28 32 29 28 65 28 35 4 28 4 28 65 28		llas en gramos	15		83	٩	-03	200	14	30	क	0(20-3	.0	vaciones
i,431 20 12 21 32 19 45 15 84 17 84 12 81 si Sprenk. — 28 0 28 37 28 54 28 0 28 22 28 0 28 28 28 28 28			Días	٥/٥	Días	%	Dias	۰/٫۰	Dias	0/0	Días	0/0	Días	. d	
si Sprenst. - 28 37 28 54 28 0 28 27 28 54 28 0 28 20 28 65 28 0 28 <th< td=""><td>Aquilegia vulgaris L</td><td>1,431</td><td>82</td><td>12</td><td>21</td><td>32</td><td>19</td><td>45</td><td>15</td><td>87</td><td>17</td><td>84</td><td>12</td><td>81</td><td>2-42</td></th<>	Aquilegia vulgaris L	1,431	82	12	21	32	19	45	15	87	17	84	12	81	2-42
si Spreng. — 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 29 1 28 0 29 1 28 0 29 1 28 0 29 1 28 0 29 1 28 0 29 1 29 2	Arctium Lappa L	6,243	78	0	78	37	87	54	78	0	87	22	87	:3I	2-40
L. 0,1312 28 0 28 0 27 32 21 58 28 65 45 L. 0,103 20 91 18 94 15 96 18 89 19 93 16 98 16 98 19 99 19 99 19 98 16 98 19 99 19 99 19 98 19 98 19 98 19 98 19 19 98 19 19 10 10 10 28 10 28 0	Arctostaphylos uva-ursi Spreng.	ļ	87	0	83	0	28	0	28	0	78	0	78	0	2-43-c
L. 0,103 20 91 18 94 15 96 18 89 19 93 16 68 15 65 28 32 24 50 21 63 16 68 15 65 28 32 24 59 21 63 21 63 21 63 21 63 21 63 21 63 21 63 21 22 24 25 24 25 24 27 27 27 27 27 27 28 20 28 0 28 0 28 0 28 0 28 0 28 20 28 <td>Arnica montana L.</td> <td>1,312</td> <td>87</td> <td>0</td> <td>28</td> <td>0</td> <td>78</td> <td>0</td> <td>27</td> <td>32</td> <td>21</td> <td>88</td> <td>28</td> <td>45</td> <td>4-42</td>	Arnica montana L.	1,312	87	0	28	0	78	0	27	32	21	88	28	45	4-42
0,432 23 51 16 68 15 65 28 32 24 59 24 59 24 59 24 59 28 65 28 7 27 56 28 83 65 83 66 83 67 28 67 28 90 28 7 27 56 28 83 90 28 7 27 56 28 83 90 28 90 28 90 28 90 28 90 28 90 28 90 28 90 28 90 28 90 28 90 28 90 28 90 28 90 28 90 28 90 28 90 28 90 90 28 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90<	Artemisia Absinthium L.	0,103	20	91	18	94	15	96	18	68	19	93	91	8	5-36
34,375 28 0 28 90 28 7 27 56 28 83 83 34,375 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 2 2 8 2 2 8 0 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 <	Artemisia maritima L.	0,432	ន	51	91	% I	15	65	88	32	54	2ò	21	63	1-43
3,375 28 0 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20	Artemisia vulgaris L.	0,145	87	0	56	47	88	96	28	۲٠	27	26	28	83	4-+0
3,849 28 0 28 0 28 0 28 0 28 29 28 29 28 24 28 31 1,306 28 13 22 64 20 81 8 99 6 97 5 100 1,306 28 13 22 64 20 81 8 99 6 97 5 100 1,306 28 13 28 12 28 25 24 85 10 28 10 28 8 10 28 12 24 87 24 87 24 87 24 87	Arum maculatum L.	34,375	78	0	87	0	82	0	78	0	28	0	28	0	1-41-d
3,840 28 0 28 28 28 28 28 28 30 38 35 25 1,290 28 0 28 6 28 6 28 7 28 7 28 54 1,316 28 0 28 0 28 0 28 0 28 31 1,306 28 13 22 64 20 81 8 99 6 97 5 100 1,306 28 13 22 64 20 81 8 99 6 97 5 100 1,306 28 12 28 12 28 43 25 24 38 18 85 1,5846 28 20 28 43 28 28 24 87 1,5846 28 10 28 29 28 28 24 87		5,849	87	0	78	0	28	0	88	∞	78	2	28	0	1-42
1,290 28 0 28 45 28 0 28 65 28 65 28 67 28 7 28 7 28 31 1,316 28 13 22 64 20 81 8 99 6 97 5 100 1,366 28 13 22 28 40 28 25 24 38 12 89 18 85 1,5846 28 22 28 40 28 43 28 35 24 87 41 87 1,5846 28 20 28 40 28 43 28 35 24 87	Atriplex hortensis L.	3,840	88	0	88	& I	28	78	78	0	78	90	28	25	2-43
1,316 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 13 22 64 20 81 8 99 6 97 5 100 100 28 12 28 25 24 38 12 89 18 85 100 28 22 28 43 28 38 24 12 62 100 28 0 28 0 28 24 12 62 100 28 0 28 0 28 24 87 24 87	Atropa Belladona L.	1,290	82	0	83	0	82	45	78	0	58	?	87	54	5-42-e
15,068 28 13 22 64 20 81 8 99 6 97 5 100 1,366 28 0 28 12 28 25 24 38 12 89 18 85 15,846 28 22 28 40 28 43 28 35 28 24 12 62 15,846 28 0 28 9 21 82 28 35 28 12 62	Atropa Bætica L.	1,316	78	0	58	9	82	20	78	0	78	0	81	<u>ଲ</u> ।	4-42-f
L. 1,366 28 0 28 12 28 25 24 38 12 89 18 85 3 L. 3,366 28 22 28 40 28 43 28 35 28 24 12 62 L. 3,710 28 0 28 0 21 82 28 0 28 35 24 87 3	Borrago officinalis L.	15,068	87	13	77	5	20	81	∞	66	9	26	ام	8	2-36
15,846 28 22 28 40 28 43 28 35 28 24 12 62 2 3,710 28 0 28 0 21 82 28 0 28 52 24 87	Brassica nigra Koch.	1,366	28	0	87	12	87	55	<i>‡</i> 3	38	21	& I	18	85	3-41
8,710 28 0 28 0 21 82 28 0 28 52 24 87 87 87 87 87 87 87 87 87 87 87 87 87	Bryonia dioica Jacq.	15,846	28	ឌ	8	\$	88	43	87	35	78	24	21	31	2-30
	Calendula officinalis L.	8,710	58	•	88	0	77	83	58	0	78	52	7	87	3-+0

	<u> </u>		•	OINV				1				:	:	
CO DE LA	reso medio			A la lus	lus					A la o	A la orcuridad			Obser.
SEMILLA	llas en gramos	15°		.0 z		20-30	30.		150	~	20.	20-30	•	vaciones
		Días	%	Dfas	٥/٥	Días	%	Días	0/0	Días	0/0	Días	0/0	
Caltha palustris L.	1.225	28	. 0	28	c	86	c	8		286	13	Š.	r	-
:	14,892	28	0	88	, 0	8 8	0	28	, es	1 6	:1 %	2 2	. 45	
Capsella Bursa pastoris Med	0,093	28	0	87	10	88	43	78	0	1 8	ا س	87	۲-	3 - 42
Capsicum annuum L	5,782	28	0		13	188	,	24	38	23	59	71	69	1+-1
Carthamus tinctorius L.	33,805	83	0	∞	23	15	53	28	0	9	5.1	110	! ₩	2 – +0
Carum Carvi L	2,645	78	S	23	92	24	73	78	12	21	83	1.7	*	₹ -
Chenopodium ambrosioides L	0,230	28	0	78	31	81	28	28	0	28	4	87	12	3 - +1
Chenopodium Botrys L	0,195	28	0	88	51	81	8	13	9 2	21	19	28	2	1 - +0
Cichorium Intybus L.	1,293	82	0	78	0	88	12	78	0	17	ဆ	21	53	1 - +3
Cimicifuga racemosa Nutt.	1,894	82	0	78	0	82	0	58	0	28	0	78	0	1 - 42
Cnicus Benedictus L.	29,131	88	21	78	8	28	54	28	7.2	<u>8</u> [82	12	92	3 - +0
Cochlearia officinalis L.	0,564	28	0	15	81	17	80	28	0	12	84	121	:3 :3	2 - 43
Colchicum autumnale L.	6,695	88	2	88	13	28	56	28	0	81	35	78	2	1 – 42
Colutea arborescens L.	13,257	88	0	78	12	78	45	78	0	88	17	<u>بر</u>	£.	1 - 4
Cytisus Laburnum L.	21,127	78	4	58	0	28	15	21	39	78	12	8	구 !	1 - 41
Conium maculatum L.	2,678	78	0	82	19	28	36	28	9	78	23	28	3	4 - 42

15° 20° 20°-30°-30° 15° 20°-30°-30° 15° 20°-30°-30° 15° 20°-30°-30° 15° 20°-30°-30°-30°-30°-30°-30°-30°-30°-30°-3				ΤA	OTNAT	POR C	CIENT	0 0 5	SEMILL	LLAS	GERM	MINAD	A S		
Time en gramon 150 300 Dias % of gramon 150 Dias % of gramon % of gramon	DE	Pero medio			A la	luz					A la osc	uridad			Obser-
et Körte. 1,655 75 28 °, Diss °, °, °, Diss °, °, °, °, °, °, °, °, °, °, °, °, °, °, °, °,	SEMILLA	llas en gramos	135	٠	8	9_	20-3	00			83	o_	20-3	<u>ی</u>	vaciones
et Körte 1,665 28 0 28 0 28 34 24 87 21 92 25 89 28 72 5 8 9		,	Días	%	Días	%	Días	0/0	Días	0/0	Días	%	Días	%	
et Körte	Convolvulus Sepium L	25,575	78	•	28	0	28	0	28	0	87	0	28	0	2-41
et Körte. 1,665 28 0 28 30 28 0 28 30 28 24 30 28 21 24 30 28 21 24 30 28 21 24 30 28 24 27 58 4 27 58 4 27 58 4 27 58 4 28 0 12 37 14 37 4 37 4 37 4 38 28 28 0 16 28 10 28 0 16 37 14 37 4 37 4 37 4 38 38 38 38 38 38 38 38 38 38 38 39 38 39 38 39 38 39 38 39 38 39 38 39 38 39 38 39 38 39 39 39 39 39	:		28	18	82	34	24	87	21	ଅ	22	8 6	28	7.5	5-40
3,135 26 21 18 81 21 30 28 64 27 58 4 27 58 4 27 31 30 28 28 28 28 28 28 28 28 28 28 28 28 10 28 12 88 28 28 16 37 14 30 28 30 28 30 16 37 14 30 28 30 16 37 14 30 31 28 28 0 16 37 14 30 31 32<	ŧ	1,665	78	0	87	0	88	S	28	0	88	21	% I	∺ [2-42
1,273 28 42 74 21 80 12 88 8 9 16 90 2 7,650 28 4 19 25 15 84 28 0 16 37 14 87 5 2 38,435 28 0 28 10 28 18 28 59 28 46 28 37 14 87 5 3 4,33 28 9 18 10 28 13 28 59 28 46 28 46 28 35 19 19 19 14 28 64 28 64 28 64 28 64 28 76 48 76 48 76 48 76 48 76 48 76 48 76 48 76 48 76 78 76 48 78 76 48 78 78 76 <td></td> <td>3,135</td> <td>56</td> <td>21</td> <td>81</td> <td>≅I</td> <td>21</td> <td>78</td> <td>24</td> <td>93</td> <td>83</td> <td>64</td> <td>27</td> <td>28</td> <td>4-42</td>		3,135	56	21	81	≅I	21	78	24	93	83	64	27	28	4-42
7,650 28 4 19 25 15 84 28 0 16 37 14 87 5 38,435 28 0 28 10 28 18 28 59 28 46 28 35 18 32 28 46 28 46 28 46 28 46 28 45 35 17 28 17 28 19 19 11 14 28 64 28 64 28 46 28 17 28 19 19 11 11 18 28 64 28 64 28 17 28 19 19 11	Cynoglossum officinale L	21,273	28	42	24	74	21	80	12	88	∞ :	25	16	96	2-41
38,435 28 0 28 10 28 18 28 59 28 10 28 13 28 29 28 10 28 13 28 32 28 17 28 19 19 19 19 19 19 19 19 19 19 19 19 19 19 28 10 28 42 28 14 28 10 28 42 28 14 28 14 28 14 28 14 28	:		28	4	19	52	22	8	28	0	16	37	41	87	5 - 42-g
17,087 28 9 28 10 28 13 28 32 28 17 28 17 28 19	Delphinium Staphisagria L	38,435	78	0	28	10.	87	18	81	62	82	94	28	35	1-43
ch 4,334 28 82 25 74 28 64 28 80 28 76 44 ch 4,334 28 0 15 42 28 0 28 4 28 0 28 4 28 0 28	:		28	6	78	10	78	13	81	81	87	17	28	61	1-36
ch 4,334 28 0 28 0 15 42 28 0 28 0 29 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:		28	82	21	<u>چ</u> ا	23	74	78	49	87	8	28	92	4-42-h
ch 14,624 28 0 28 42 28 54 28 0 24 61 14 80 1 onch. 2,156 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28	:		28	0	78	0	21	31	87	0	28	0	20	34	1-40
önch. 2,156 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 42 1 rs. 1,445 22 78 21 75 20 76 14 93 14 80 16 82 3 rs. 0,019 28 0 18 67 28 0 28 4 28 0 24 50 1 L. 0,225 28 -0 28 0 -28 0 28 0 28 0 1 50 1	Ecballium Elatherium Rich	14,624	28	0	83	42	28	54	8 2	0	24	10	41	≋I	1-36
0,048 28 0 28 0 28 0 28 0 28 31 28 42 1 rs. 1,445 22 78 21 75 20 76 14 93 14 80 16 82 3 rs. 0,019 28 0 18 67 28 0 28 4 28 0 24 50 1 L. 0,225 28 -0 28 0 -28 0 -28 0 28 0 1	Echinacea angustifolia Mönch	2,156	28	0	-88	0	88	0	28	-0	88	0	28	0	140
rs. 0,019 28 0,225 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 24 50 1 L. 0,225 28 0 28 0 28 0 24 50 1	Erigeron Canadensis L	0,048	28	0	28	0	82	0	82	0	82	E	881	31	1-41
rs. 0,019 28 0 18 67 28 0 28 4 28 0 24 50 1 1	:		22	28	21	75	20	92	41	8	14	08	16	8.5	3-43
L 0,225 28 -0 28 0 28 0 28 0 28 0 28 0 1	Erythræa Centaurium Pers.	0,019	87	0	∞ I	29	28	0	82	4	78	0	24	20	1-42
	L		87	P	8 8	0	87	0	82	٥:	28:	0	58	0	1-48

	c		TA	ANTO	PORC	CIENT	0 0 E	SEMI	MILLAB	CERMIN	V D	8		
NOMBRE CIENTIFICO DE LA	medio			4 t	le lus					A la oscuridad	uridad			Obser.
SEMILLA	llas en	31	150	8	500	°0₹-03	. 0.	-	15°	8	30°	8	20-30°	vaciones
		Días	%	Días	0/0	Días	%	Días	0/0	Días	۰/۵	Días	<i>ه/</i> ه	
Eupatorium perfoliatum L.	0,225	78	0	33	83	91	51	78	0	87	19	87	84	2-41
Fæniculum vulgare Gaertn.	4,972	28	0	78	12	8	15	78	0	28	51	ଧ	81	4-43
Fumaria officinalis L.	2,142	88	0	28	0	87	ກ	87	0	87.	0	ا ھ ا	121	3—36
Galega officinalis L	4,853	28	0	28	0	87	24	28	0	78	2	ន្ត	æΙ	4-36
Gaultheria procumbens L.	46,152	87	0	83	0	78	0	28	0	82	0	8	0	2-42
Genista tinctoria L.	2,956	78	0	82	2	83	2	81	\$I	88	4.	78	6	1-40
Gentiana Lutea L	1,012	87	0	28	0	78	0	78	0	28	0	78	0	5-43-1
Glycyrrhiza glabra L.	12,434	87	0	28	7	78	17	28	0	38	11	% 1	ئ ا	2-42
Gratiola officinalis L.	0,063	78	0	21	<u>%</u> ا	18	£3	38	21	22	17	8	=	1-1
Grindelia robusta Nutt.	3,133	28	0	8	0	28	0	28	0	87	0	82	0	3-42
Herniaria glabra L.	0,048	87	0	28	0	78	15	78	0	88	9	81	21	1-40
Hyoscyamus niger L.	0,549	28	0	87	0	78	0	83	0	88	0	88	0	5-43
Hypericum perforatum L.	0,105	78	ıs	87	71	82	33	83	22	%1	35	28	63	3-42
Hissopus officinalis L.	0,895	24	45	56	54	82	35	21	4.	21	≅	83	78	2 . 40
Ilex paraguayensis St. Hil.	6,380	78	0	88	0	78	0	78	0	82	0	88	0	1-41
Inula Helenium L.	1,126	28	0	58	62	28	19	28	6	78	28	%]	ঙা	2 - 2 - 4 2

	5		ΤA	ANTO	POR C	CIENT	O DE	SEMILL	8 ¥	CERMIN	9	A S		
NOMBRE CIENTIFICO DE LA	reso medio de semi-			A la	la lus					A la oscuridad	curided			Obser-
SEMILLA	llas en gramos	#	15°	ଷ	20°	20-30	.0	51	15°	08	9	20-30	.0	vaciones
		Días	0/0	Días	0/0	Días	0/0	Dias	0/0	Dias	%	Días	01/0	
Lactuca virosa L.	0,843	58	15	81	2	87	*	28	12	21	28	7.7	87	3-+3
Lavandula officinalis Chaix.	0,875	78	0	8	1~	28	01	58	ဌ	81	E1	28	+	+-+ 3
Lavandula Spica Chaix.	0,984	28	0	8۱	٦I	28	80	28	0	78	1 61	78	7	1-36
Lavandula vera D. C.	0,953	28	0	28	15	28	11	28	က	8	잃!	28	<u>+</u>	3-41
Levisticum officinale Koch.	3,231	78	13	78	27	28	35	28	45	%	51	ន្យ	3 1	2 – 40
Linum usitatissimum L.	6,678	l	1	l	1	1	ı	ı	i	1	1	1	1	_
Lythrum Salicaria L.	0,079	87	0	87	0	78	0	28	0	78	0	87	0	2-+3
Lobelia inflata L.	0,035	87	0	78	গ	78	0	87	0	81	0	78	C	2-42-k
Marrubium vulgare L.	0,885	78	0	87	0	28	0	28	0	78	۲.	77	56	7 +-+
Matricaria Chamomilla L.	0,142	28	0	87	63	87	21	87	0	28	12	89	87	3-+1
Matricaria Parthenium L.	0,151	18	19	4	78	11	75	18	54	# 1	6	12	68	3+0
Melilotus officinalis Lam.	1,450		0	20	8	24	33	78	7,	41	3 1	16	62	3-+1
Melissa officinalis L	0,512	78	0	88	က	27	8	78	2	82	12	7.	:81	4-36
Mentha crispa L	0,068	78	0	78	15	ឌ	81	28	0	38	12	24	17	1-41
Mentha Pulegium L	0,053		က	8	‡	81	31	78	12	28	8	28	4	4-42
Messembryanthemum crystelinum L.	0,387	28	0	78	∞	83	12	28	15	78	46	81	31	3-40
	_			_	_	-	_		_					

			TA	TANTO	POR C	CIENT	ODE	SEMILL	LLAS	GERM	MINAD	Y S		
NOMBRE CIENTIFICO DE LA	reso medio			A la	la lus					A la osc	la oscuridad			Obser-
SEMILLA	lias en gramos	15°		500	o.	°06-08	.0	18	15°	200	2	20.30°	00	vaciones
	,	Días	۰/۵	Días	% ا	Días	٥/٥	Dias	%	Días	°/°	Días	0,	
Nepeta Cataria L	0,655	28		83	52	78	43	78	0	78	15	81	65	4-42
Nicandra physaloides Gaertn.	0,992	88	10	78	- 23	81	គ្នា	28	0	78	23	58	12	3-42
Enothera biennis L	1,423	28	31	23	63	17	92	78	54	19	71	12	& I	2 - 40
Oenothera biennis L.	0,542	28	0	21	21	16	88	28	0	28	51	28	61	2-41
Ononis spinosa L.	5,530	58	24	28	21	28	25	% 1	ક્ષા	87.	19	28	∞	1 - 42
Origanum Majorana L.	0,226	21	74	18	82	23	92	ន្ត	81	19	83	17		3-43
Origanum vulgare L.	0,085	88	2	52	28	27	78	24	7.5	77	85	23	5 i	4-+2
Papaver somniferum L.	0,452	82	12	22	62	19	28	21	85	21	81	7	* 6	5-41
Peganum Harmala L.	3,047	78	0	83	0	82	0	78	0	52	35	23	₩.	2-45
Petroselinum sativum Hoffn	1,434	- 82	45	81	21	26	81	78	63	78	62	28	73	2-36
Physalis Alkekengi L	1,852	88	16	81	81	88	12	82	0	8 8	11	28	8	4-40
Phytolacca decandra L.	6,974	28	0	28	9	81	٦ <u>5</u> ا	78	0	82	0	28	8	3-42
Pilocarpus pennatifolius Lemire	30,692	82	0	88	0	88	0	28	0	88	0	28	0	1-41
Pimpinella Anisum L.	2,435	88	32	28	19	88	23	12	81	11	4 6	10	83	4-42
Pimpinella magna L.	1,128	83	0	87	0.	ন্ত্	9	28	0	78	ಣ	87	o. I	1-42
Pimpinella saxifraga L.	0,436	78	0	24	12	56	53	21	75	10	55	œΙ	83	11
	_		_	_				_						

	,		ΤA	ANTO	POR C	CIENT	O DE	SEMILL	LLAS	CERMIN	QΨ	A S		
NOMBRE CIENTIFICO DE LA	reso. medio			A 18	la luz					A la osc	la oscuridad			Obser-
SEMILLA	liae en gramos	15°		8 3	500	20.30	00	. 11	15°		200	°05-02	۰0،	vaciones
		Días	0/0	Días	%	Días	0/0	Días	%	Días	%	Días	0/	
Plantago lanceolata L	1,454	88	12	21	≅.	24	22	78	24	25	4 8	56	62	2-40
Plantago major L.	0,352	56	4 5	25	69	81	65	21	833	23	+ 9	2+	75	3-42
Plantago Psillium L.	1,180	82	32	38	41	81	8.	28	34	78	39	78	71	2 - 36
Podophyllum peltatum L	19,989	78	0	28	0	78	0	28	0	78	0	78	0	141-1
Polygonum Bistorta L.	7,260	78	0	28	12	78	20	28	32	78	52	81	5	1-42
Portulaca oleracea L.	0,358	78	0	78	0	78	0	28	0	77	62	۱2	35	2-+0
Potentilla Anserina L.	0,092	28	17	78	‡	87	% 1	78	0	82	6	87.	17	2-+1
Primula officinalis Jacq.	0,712	82	0	38	0	28	0	81	~1	28	0	28	က	1-43
Pulmonaria officinalis L	6,032	78	-	28	4	81	9	28	0	78	7	28	0	1-41
Pyrethrum cinerariæfolium Trev.	1,113	78	0	21	44	22	41	28	0	23	45	120	% I	3-42
Rheum officinale Baill.	15,234	28	0	78	14	87	38	27	2 2	81	& I	16	85	4-42
Rheum palmatum L.	13,250	28.	12	28	38	56	62	24	33	16	91	15	\$	2-45
Rheum rhaponticum I.	12,782	78	5	87	41	78	34	23	15	21	93	23	87	2-42
Ricinus communis L.	396,507	28	80	87	જ	.82	62	24	18	14	47	‡	21	3 –36
Rosmarinus officinalis L.	1,038	28	0	56	8	27	35	82	က	12	38	2+	28	1+-+
Rumex Acetosa L.	0,980	- 28	0	8 3	0	58	0 1	7 2	0	‡	88	16	73	5-43
	_					_	_	_	-	-	_	_		_

			TA	TANTO	POR	CIENTO	ODE	SEMI	SEMILLAS	CERM	ERMINADAS	. e 4		
NOMBRE CIENTIFICO DE LA	medio			4 4	le luz					A la oscuridad	uridad			Obser-
SEMILLA	llas en gramos	180		83	30°	°0€-08	00	_	15°	ô		20.30°	.0	vaciones
		Días	"/o	Dias	%	Dias	0/0	Días	%	Dias	°/2	Díes	0/6	
Rumex Acetosella L.	0,534	28	0	88	0	83	0	প্ল	0	81	33	10	95	QF
Rumex obtusifolius L.	2,246	28	0	87	0	8	0	58	•0	17	. 96	1 2	₩	17-1
Rumex Patientia L.	1,543	87	c	28	0	28	0	27	=	1 9) %	13	7.6	1-47
Ruta Graveolens L.	2,275	82	20	83	ဆ	87	9	881	∓ (78	88	8	1 2	3-43
Salvia horminum L.	2,890	87.	89	28	82	21	85	87	8 1	56	28	17	87	2-40
Salvia officinalis L.	6,348	7.7	Ţ,	52	62	ន្យ	æ1	21	3	23	80	19	8	5 - 41
Salvia Sclarea L	3,861	87.	35	81	85	8	1;	28	23	78	34	+7.	6+	3-42
Sanguisorba minor L.	3,645	20	0	35	84	23	63	58	=	6[75	ន	83	$\frac{1}{4} - \frac{1}{43}$
Saponaria officinalis L.	1,585	87.	Э	7.8	9	87	က	82	5]	78	8	87	2	3 - 42
		87.	0	28	83	87	81	58	33	81	<u>ي</u>	82	દ:	1
Satureja hortensis L.	0,654	87	7	22	19	56	89	25	7.5	11	81	25	73	2—36
Satureja montana L.	0,761	87	0	54	19	28	99	78	?l	ឌ	121	28	9:	1+-1
Sedum acre L	0,098	87	79	87	8	20	88	82	84	ឌ	81	78	6+	0+ - 1
Senecio Jacobœa L.	0,235	78	0	28	<u> </u>	8	0	78	.:	87	4 8	821	51	3-43
Silybum Marianum Gaertn.	18,912	82	0	28	9	28	19	87	0	28	34	82	8	3-43
Sinapis alba L.	4,988	28	0	23	23	2	ţ,	15	10	01	81	15	8	1-42
	_		_		_				_		_			

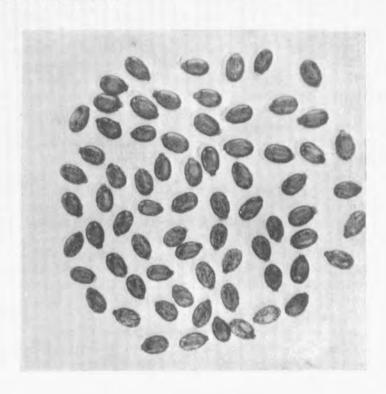
NOMBRE CIENTIFICO DE 1.4	Peso -		TA	TANTO PO	~	CIENTO	O DE	SEMI	MILLAS	GERMIN	INAD	s v		
3	de semi-			e	7 1	:				A 18 OSCUFICAC	curidad			Obser.
SEMILLA	llas en gramos	15°	6	32	200	20-20	06	-	15"	×	.0c	20.30°	°0.	vaciones
		Dias	, e	Días	0 0	Días	, °	Días	0,0	Dias	%	Dias	ě	1
Solanum Dulcamara L	1.565	28	7	78	2	87	83	58	œ	28	 	58	.ee	+++
Symphytum officinale L.	8,+31	87.	0	28	13	88	[유]	58	c	82	=	1 82	12	1-1
Tanacetum vulgare L.	1.092	26	c	ä	4	ន	88	.27	∞	21	<u></u>	77	12	340
Taraxacum Kok-Shagyz Rodin	0,935	20	23	19	20	23	Ŧ	7,	18	92	31	12 J	21	2-43
Teucrium Chamædry. L.	1,537	78	0	78	0	58	0	87	0	33	0	28	0	1-+0
Thymus vulgaris L.	0,265	26	89	25	80	સ	75	83	68	91	೯۱	72	90	+-+2
Thymus Serpyllum 1.	0,126	38	32	82	99	% 1	35	78	æ	28	88	82	5	4+7
Trigonella Fænum-Grecum L.	17,347	82	18	87.	7. 55	នុ	ذ ا	28	0	#	8	15	92	2 – 36
Tussilago Farfara L.	0,156	16	5	+	59	9	52	21	≅	17	<u>3</u> 6	<u>+</u>	#	1-3
Urginea Scilla Stein.	2,831	21	7	ន	9‡	19	33	18	83	ا ت	8	S	98	2-41
Valeriana officinalis L.	0,459	28	0	28	ਰਾ	78	0	70	78	21	છા	21	19	2-47
Verbascum Thapsus L.	0,120	58	0	78	12	81	&	28	0	87	0	28	18	7-
Verbena officinalis L.	0,28+	87	13	81	85	23	25	21	84	*	87	91	& I	
Veronica officinalis L.	0,113	21	18	<u>+</u>	92	12	%I	28	10	78	25	78	80	1-1
Viola tricolor L.	0,534	28	0	28:	0	78	4	₽	5]	ឌា	0	87	0	2-36

Observaciones a los cuadros anteriores

La primera cifra que figura en la casilla de observaciones corresponde al número de años de los que se tomó la media para determinar el peso de las mil semillas. Las dos cifras que van a continuación, separadas por un guión de la anterior, indican el año en el que se hizo la determinación del poder germinativo que figura en el cuadro. Las letras que, en determinados casos, siguen a las mencionadas cifras son las líamadas que indican, a continuación de esta explicación, los tratamientos previos a que se sometieron las simientes. Por ejemplo, en el acónito se leen las siguientes observaciones: 2-42-a, que quiere decir que el peso de las mil semillas es la media de dos años, que el ensayo de germinación que figura en el cuadro se hizo el año 1942 y que se consulte aquí el párrafo a.

- a. Sometida la semilla de acónito durante noventa días a la temperatura de 0° en cámara frigorífica y colocada después a 10°, siempre a la oscuridad, se consiguió en veintiocho días una germinación del 25 por 100.
- b. El primer ensayo germinativo fué realizado con semilla alemana importada y de edad desconocida; el segundo se hizo con grano de tres meses, y el tercero con semilla de ocho días de edad. Se ve, pues, que en la angélica baja en seguida el poder germinativo.
- c. Se ha tratado la semilla de gayuba con ácido sulfúrico, ácido nítrico, en cámara frigorífica a 0°, calentada a 30° y frotada con arena, no consiguiéndose su germinación de ningún modo.
- d. Ensayado este año el poder germinativo de una pequeña cantidad de semilla almacenada desde 1941, dió un 23 por 100 a la oscuridad.
- e. Se trataron 50 gramos de semilla de belladona con 100 cm.³ de agua oxigenada de concentración al 10 por 100 durante veinticuatro horas y otros 50 gramos durante doce horas. Comparadas con la testigo se observa una mayor rapidez de germinación en la semilla tratada con el agua oxigenada, incluso con la inmersión durante doce horas, y más elevado porcentaje de granos germinados, que para 20°-30° y a la oscuridad, llegó al 60 por 100.
- f. Iguales tratamientos y parecidos resultados que para la belladona.
- g. De estramonio se sumergieron 100 gramos de semilla durante dos horas en ácido nítrico al 1 por 100; después se lavaron tres veces con agua y se dejaron secar durante veinticuatro horas y luego se pusieron a germinar. A los dieciocho días comienza la germinación de los granos tratados y a los veinte la del testigo. Después se iguala bastante dicha nascencia, deduciéndose, por tanto, que la aceleración del poder germinativo es tan pequeña que no interesa el tratamiento.

h. Repetido este año el ensayo germinativo, se ha visto que mientras la semilla de digital puesta a la luz no experimentaba grandes variaciones con respecto al año pasado, en cambio las sometidas a la oscuridd tenían un descenso brusco, que, en el mejor de los casos, supuso el 13 por 100.


i. Habida cuenta que se trata de una planta que soporta fuertes heladas, se dispuso la semilla de genciana en una cámara frigorífica a cinco grados bajo cero, durante quince días, sin obtener ningún resultado.

j. En los ensayos de laboratorio hechos con el beleño no se consiguió su germinación, ni tratado con agua caliente durante seís horas, ni con agua oxigenada durante doce, ni con ácido nítrico durante una hora, ni con ácido sulfúrico durante quince mínutos. No obstante, en pleno campo germina, aunque con gran irregularidad.

k. En la lobelia parece deducirse que con la semilla de dos años de edad se consigue un poder germinativo más elevado que el mencionado,

que es el obtenido con grano de un año.

 Se sometieron los granos de podofilo a la acción de ácidos sulfúrico y nítrico, agua oxigenada y a cero grados de temperatura. No germinó una sola simiente.

LA CALONCOBA WELWITSCHII GILG, CHOLMUGRA AFRICANA

Por I. Nosti

Ingeniero Agrónomo Director de Agricultura de los Territorios Españoles del Golfo de Guinea

Preámbulo.

El clevado número de leprosos existentes en nuestra Colonia ha preocupado constantemente al Gobierno general, tanto más cuanto que el exacto número de enfermos es desconocido en algunas demarcaciones, y cllo daba lugar a que por simple observación se hiciera quizá una exagerada apreciación del problema, dando así al peligro de la lepra un gran alcance social que, en general, en los países civilizados y en comparación con otras muchas enfermedades, no tiene.

Para la lucha contra la lepra hay dos sistemas que se complementan: el aislamiento y confinamiento del enfermo, que va dirigido contra el peligro social que entrañaría su extensión, y la lucha directa contra la enfermedad en el cuerpo del paciente. La primera es harto difícil en la Colonia, porque aun existen zonas sin verdadero y profundo control administrativo y, en segundo término, porque el aislamiento en las leproserías es muy relativo; de ahí los proyectos y realizaciones de residencias para enfermos en las Islas del Muni, en que la vigilancia sería mucho más perfecta. La segunda forma de lucha completa la primera y tiene limitaciones de orden económico y principalmente escasez de remedios terapéuticos.

Para obviar esta última dificultad, la Dirección de Agricultura de los Territorios Españoles del Golfo de Guinea acometió, a partir de 1938, el ensayo cultural de una especie indígena productora de aceite de cholmugra, aun a sabiendas de que existían antecedentes de que clínicamente eran ventajosas otras especies asiáticas, cuyo ensayo hubiera convenido iniciar simultáncamente; pero las circunstancias de aquella época, como las de hoy, no son nada favorables para un activo intercambio científico, y por esto fuimos forzados al cultivo sólo de Caloncoba Welwitschii Gilg, cuya experimentación clínica, a partir de semillas de plantas espontáncas, ha-

bía empezado ya a ser efectuada por el Dr. Cascón en la leprosería de Ebebeyin.

En este trabajo presentaremos el resultado de las experiencias llevadas a cabo en la Granja de Santa Isabel con la especie indígena Caloncoba Welwitschii Gilg, así como los ensayos de obtención de un producto final que sirviera de materia prima inmediata para la obtención de más perfectos preparados farmacéuticos, con la sana intención de que aquél constituyera el producto de exportación, cosa conveniente, tanto por la economía de fletes como por la inalterabilidad, que no existiría en el caso de exportarse semilla fresca.

Nuestro deseo sería que se demostrara sin género de dudas la superioridad o igualdad en los resultados terapéuticos de estos preparados con respecto a los procedentes de otras plantas, y así ofrecer la posibilidad de un cultivo extenso y remunerador que animara a los colonos y empresarios metropolitanos a su implantación, cubriendo una necesidad colonial y nacional. En caso contrario, habría que aprovechar la oportunidad de importación de semillas o plantones del género Hidnocarpus, cosa hoy bien dificil, por estar afectados directamente por la guerra los países productores, o bien adquirir ejemplares en las plantaciones experimentales que existen en algunas colonias africanas.

Ciertamente que la experiencia de tipo agronómico no puede darse por terminada, puesto que quedan aún muchos extremos ignorados, como son longevidad, cosechas en plena producción, efecto de los abonos, estudio completo de plagas y enfermedades y, en caso de resultar un remedio sin precedentes, hay que acometer los trabajos de selección, mecanización de cultivo, perfección en los métodos industriales de beneficiado, etcétera, etcétera. Sin embargo, hemos creído conveniente dar un anticipo de los resultados obtenidos ante la actualidad del tema, para satisfacer las consultas realizadas por presuntos cultivadores de esta planta.

Las Caloncobas.

Este género de flacourciáceas, creado por Gilg, y cuyas especies recogidas en él habían sido denominadas anteriormente con distintos sinónimos o designación genérica, como Ventenatia, Oncoba, Chlamis, Heptaca, Lindackeria, Lundia, Mayna y Xilotheca, comprende en la actualidad las siguientes especies, todas africanas:

Ciplia (Africa Tropical), Grotei (Usambara), Aristata (Afr. Tropical), Brevipes (Afr. Occidental), Crepiniana (Afr. Tropical), Dusenii (Nigeria), Echinata (Afr. Occidental), Gigantocarpa (Mozambique), Gilgiana (Africa Tropical), Glauca (Afr. Occidental), Longipetiolata (Africa Tropical), Lophocarpa (Camerún), Mannii (Afr. Occidental), Schweinfurhii (Gasall), Subtomentosa (Mambuttu), Welwitschii (Afr. Occidental), Angolensis (Angola), Cauliflora (Tanganyka) y Grotei (Tanganyka), que se distribuyen, según Warburg, en las secciones Euoncoba, Maynoncoba y Lepidoncoba, esta última la más importante, pues comprende las espe-

l

cies estudiadas como fuentes de cholmugra: echinata, glauca y Welwitschii.

Este género tiene flores polígamas, monoicas o dioicas, 3-5 sépalos imbricados; 4-10 pétalos mayores que los sépalos y también imbricados, infinitos estambres, casi siempre libres, y frutos en cápsulas dehiscentes. Las especies de nuestra colonia y vecinas son examinadas a continuación:

Clave para la clasificación de las Caloncobas de Guinea Española y Colonias vecinas:

	 A) Flores en racimos axilares o extra-axilares. B) Flores terminales no en racimos, solitarias o fasciculadas 	Mannii.
	α.—Peciolos 2-3 cms. largo:	
	a) Frutos con espinas. 1.—Pedicelos 2 cms. largo	echinata.
Caloncoba sp.	b) Frutos sin espinas. 1.—Pedúnculos 4 cms. largo	
	β.—Peciolos 3-5 cms. largo. Fruto sin espinas. γ.—Peciolo de más de 10 cms. largo	Dusenii.
	a) Frutos con espinas	Welwitschii.
	1.—Ramas defoliadas en la floración. 2.—Ramas no defoliadas en la flora-	
	ción	glauca.

He aquí otros caracteres de las especies anteriormente señaladas: C. mannii (Oliv.) Gilg.

Oncoba mannii Oliver. Flora of tropical Africa I. 117.

Flores pequeñas 4 cms. diámetro, hojas elípticas y obtusamente acuminadas 17-28 cms. largo, 8-14 cms. ancho, pétalos blancos 1,5-2 cms. largo, anteras lineales; árboles de 15 metros de altura y madera roja. Calabar, Victoria, Fernando Póo en Balacha de Concepción.

C. echinata (Oliv.) Gilg.

Oncoba echinata Oliv. Fl. Tr. Afr. I. 118.

Hojas oval-oblongas de base redondeada y ápice bruscamente acuminado, de 10-30 cms. largas y 4-10 anchas, 5-6 nervios laterales principales a cada lado, madera muy dura; flores blancas, pequeñas; fructificación en ramas jóvenes; dehiscencia longitudinal de las anteras. Arbol de 6 metros altura, muy poco frecuente. Sierra Leona, Liberia, Costa de Oro. C. brevipes Gilg.

Oncoba brevipes Stapf. Journ. Linn. Soc. XXXVII. 84.

Hojas obovado-oblongas con ápice bruscamente acuminado, 12-20 centímetros largas y 4-7 ancho, 7-8 nervios laterales a cada lado; sépalos 3 cms. largo, 2 cms. ancho; pétalos 6 cms. largo, 2,5 cms. ancho; anteras con dehiscencia longitudinal; frutos elipsoideos apuntados, fructificando en las ramas jóvenes. Sierra Leona, Liberia, Guinea Portugesa.

C. lophocarpa (Oliv.) Gilg.

Oncoba lophocarpa. Oliv. Fl. Tr. Afr. I. 118.

Hojas ovalado-oblongas de base obtusa y ápice brevemente acuminado de 10-18 cms, largo, 4-8 cms. ancho, 6-7 nervios laterales a cada lado del central; sépalos 1 cm. largo; pétalos blancos de 3 cms.; anteras lineales sin apéndice terminal y que se abren por poros; estigma obtuso, indiviso o denticulado; frutos con bordes longitudinales ondulados, fructificación en el tronco. Arbol de 9-12 metros de altura. Monte Camerún, a 1.700 metros altura.

C. Dusenii Gilg-Engler Botanische Jahrbücher. 1908, p. 459.

Hojas ovadas u obovadas con largos ápices delgados y base redondeada, 13-18 cms. largas y 5-8 cms. ancho; 5-6 nervios laterales principales

Plantación de C. welwitschii de seis años. (Foto Nosti.)

a cada lado; flores blancas con pedúnculos densamente escamosos; sépalos redondos, escamosos por fuera, de 2,5 cms. largo; 12 pétalos, a veces el doble de largos como los sépalos. Anteras con dehiscencia longitudinal. Fructificación en ramas jóvenes. Arbol de 14 metros de altura. Sur de Nigeria y Río Mene (Camerún).

C. welwitschii (Oliv.) Gilg.

Oncoba welwitschii Oliv. Tr. Afr. I. 118. Trans. Linn. Soc. XXVII. t. 3. Oncoba spireana Pierre, Bull. Soc. Linn, Paris N 51, 117.

Véase descripción posterior.

C. gilgiana Gilg.

Oncoba Gilgiana Sprague en Bull. Herb. Boiss. Ser. II. v. 1.164.

Pedúnculos 1,5-2 cms.; sépalos no caedizos; ramas estigmales linealoblongas, anteras con dehiscencia longitudinal; flores blancas, polígamas 10 cms. diámetro; fruto aplastado en el ápice. Arbol 6 metros altura. Sierra Leona, Liberia, Costa de Oro y Sur de Nigeria.

C. glauca (P. Beauv.) Gilg.

Ventenatia glauca. P. Beauv. Flor Owariensis et Benin. p. 30 t. 17, con una magnifica làmina en color.

Oncoba glauca Hook, Fl. Nigrit, 222, Oliv. Fl. Tr. Afr. I. 117. Oncoba Klainii Pierre en Bull. Soc. Luin. París N. S. p. 118.

Hojas elípticas, glaucas por el haz; ápice agudamente acuminado 17-24 cms. largo; 7-8 nervios laterales a cada lado; pedúnculos 3-11 cms.; sépalos caedizos; pétalos blancos 3-6 cms. largos; anteras con dehiscencia longitudinal, estigmas con 5 lóbulos, fruto brevemente acuminado, comestible, con fructificación en ramas jóvenes. Arbol de 12-18 metros de altura, de madera roja. Costa de Oro, Sur de Nigeria, Guinea Continental. Fernando Póo, Camerún, Gabón.

Especies de Guinea Española.

No puede decirse, ni mucho menos, que nuestra Colonia, a pesar de . lo diminuta, sea conocida botánicamente, pues existen extensas zonas completamente inexploradas, como la región de bosque monzónico de Ureka, las faldas del pico de Santa Isabel, posiblemente habitat de la Coloncoba lophocarpa (que Gustav Mann sólo exploró en su zona superior, correspondiente al bosque y matorral subalpino), y el bosque inundable de aguas dulces y de aguas marinas de Guinea Continental, todas las cuales indudablemente encierran aún tesoros botánicos incalculables, como que no habrá familia que se monografíe que no ofrezca sorpresas, de manera análoga a lo que ocurre con los estudios entomológicos. Basta citar que las aráceas, única familia cuyo estudio se ha iniciado sistemáticamente por la Sección de Botánica de la Dirección de Agricultura de la Colonia, ha ofrecido apenas comenzada especies aun indeterminadas, y eso que precisamente por la pequeñez de Guinea española forzosamente quedan incluídas o asimiladas sus regiones botánicas a las vecinas. Así, el bosque monzónico tiene su semejante en las faldas occidentales del Camerún; el pico de Santa Isabel se puede asimilar al Monte Camerún, el resto de la Isla al Sur de Nigeria, y nuestro Continente queda totalmente incluído en el inmenso bosque húmedo que se extiende por el Sur de Camerún, Gabón y se adentra en el Congo, países todos muchísimo más estudiados que el nuestro, por todos los sistemas, como son el de Misiones científicas metropolitanas de los franceses, el de exploradores aislados y centros coloniales de los ingleses y el más eficaz de los belgas, pues que supone la íntima colaboración de los centros coloniales con las instituciones metropolitanas.

Por esto, la citación que hacemos de las Caloncobas coloniales no se puede considerar definitiva y sí sólo una relación de aquellas cuya existencia ha sido confirmada por el Servicio Agronómico Colonial, y que son: Caloncoba Glauca, en Basakato del Oeste e interior del Continente, en zonas húmedas; C. welwitschii, en el interior del Continente, en terrenos llanos u ondulados, y C. mannii, en el Este de Fernando Póo, en la zona inmediata a la de nieblas permanentes.

Nos interesa hacer constar, por figurar en nuestra publicación «Notas geográficas», que C. echinata, contra lo que allí afirmamos, no lo hemos encontrado en toda la Colonia, aunque así lo aseguran posteriormente Gómez Moreno, para el Continente, y del Val, que asegura haberlo encontrado en el camino de Riasaka, hecho este dudoso, por la considerable altura a que se halla; pero en ambas publicaciones aparecen sendas láminas y fotografías que reproducen ejemplares cultivados en la Granja de Santa Isabel con el pie C. echinata, siendo en realidad C. welwitschii.

Botánica.

Se trata de un árbol de hasta 10 metros de altura, con un diámetro del tronco que alcanza en los ejemplares viejos 40 cms., el cual aparece muy ramificado desde el suelo, por la gran tendencia a producir chupones verticales; corteza de color gris claro, finamente rugosa; madera dura, blanco amarillenta, con una densidad, una vez seca, de 0,885; medula blanda, bien manifiesta hasta las ramas de dos años; cambium rojizo de gran actividad regenerativa. Ramificación principal en pirámide invertida.

Hojas acuminadas en el ápice, revueltas ligeramente hacia el envés, hase obtusamente cuneada de 15-35 cms. de longitud por 12-25 cms. de ancho; peciolos de 10-20 cms. longitud; 6-7 nerviaciones laterales insertas sobre el nervio principal con un ángulo de 40°; en conjunto, muy semejantes a las especies echinata y subtomentosa, pero se diferencian de estas últimas por la ausencia de vellosidad, y de las primeras por la mayor anchura de la hoja, en relación con su longitud.

Flores polígamas de color blanco, aromáticas, con un penetrante olor, que recuerda al de rosas y nardos. Se encuentran formando grupos de 2-5 flores reunidas, dispuestas sobre las ramas y troncos en toda la longitud de los mismos.

Las flores son pedunculadas, con pedúnculos de 2 a 3 cms. de longitud. Las masculinas constan de un cáliz verdoso, con prefoliación imbricada y con los bordes frecuentemente petaloideos, sépalos de 1,5-2 cms. de longitud por 8-10 mms. de anchura.

Los pétalos son blancos, en número de 10, aunque a veces suelen quedar reducidos a 8-9. Son prematuramente caedizos, cuneiformes, espatulados y redondeados, con arrugas profundas en el ápice, de 4-5 cms. de longitud por 1-1,5 cms. de anchura. Los estambres son infinitos, estando dispuestos en series circulares, con los filamentos de color blanco amarillento y de un tamaño que oscila, entre los del centro y los de la periferia, de 1 a 2,5 cms.; anteras basiformes de color amarillo ocráceo, con los bordes doblados y orientados por la parte del ápice hacia el centro de la flor, con dehiscencia de los sacos longitudinal, iniciándose por el ápice, a manera de poros.

Las flores hermafroditas aparecen en muchísimo menor número que las masculinas, poseyendo la misma estructura anatómica en los tres verticilos externos que aquéllas; presentan, además, un ovario unilocular,

formado por varios carpelos abiertos y soldados, generalmente en número de 5-8. El estilo es largo y relativamente grueso y el estigma es lobulado en tantos lóbulos como tiene el ovario. Tanto el estilo como el estigma son acrescentes y concrescentes con el fruto, al que acompañan hasta la com-

Ramificación aérea y radicular de C. Welivitschii. (Dibujo Nosti.)

pleta madurez del mismo. Los óvulos son numerosos, con placentación parietal.

El fruto es una cápsula dehiscente con un pericarpio espínoso, de espinas blandas, excepto en la madurez, que se hacen rígidas. Maduro, es de color anaranjado, dehiscente por tantas valvas como carpelos, conteniendo en su interior una pulpa anaranjada viva, de estructura fibrosa y mucilaginosa, que embebe numerosas semillas, perfectas o abortadas.

Las semillas, de forma groseramente elipsoidal, con un vértice más aplastado, tienen un perispermo de color negro mate, de superficic áspera y de un tamaño aproximado de 3-4 mms. de longitud por 1,5-2 de anchura.

Habitat.—La C. welwitschii vive en suelos lateríticos o amarillos, generalmente en zonas llanas u onduladas, huyendo de los lugares húmedos y cursos de agua, lo que la diferencia de C. glauca, así como también de suelos muy pendientes o en los que la roca aparece muy en la superficie. Es propia de bosque primitivo o degenerado en primer grado, formando parte del piso medio; se presenta asociada a especies arbóreas mucho mayores, que le suministran abundante sombra, cosa que parece le es esencial para su buen desarrollo y permanencia, pues en bicoros nuevos no suelen verse plantas jóvenes de Caloncoba welwitschii, mientras que en los desbosques, en que es respetada casi siempre por los indígenas, rápidamente se depaupera y defolia.

Las especies arbóreas a las que más frecuentemente se halla asociada son leguminosas, de madera dura, como Piptadenia africa, Albizzia Brownei, Pentaclethra macrophylla, Erytrophleum guineense, Copaifera Tessmanni, Tetrapleura tetraptera, etc., pero también se encuentra, con menor frecuencia, junto con otras especies de distintas familias que forman la variada población del bosque de Guinea, como son Irvingia sp, Mimusops, Aukumea, etc. El sotobosque correspondiente suele estar formado por palmáceas (Sclerosperma mannii), aráceas (Rhektophyllum). rubiáceas arbustivas, ciertos helechos, Begoniáceas, etc., que sólo prosperan en terrenos frescos y umbríos.

No forma esta especie asociaciones puras, ni siquiera manchas, sino que se halla muy diseminada, lo que indudablemente es debido a la rápida destrucción de las semillas, cuyo poder germinativo es poco duradero. Se encuentra en pleno bosque ecuatorial del Sur del Camerún, Gabón, Congo belga y Angola, y en nuestro Continente no se encuentra por doquier ni con igual frecuencia, estando prácticamente excluída de la faja costera, de formación moderna y paleógena. Tiene preferencias por los suelos de origen granítico más que por los gneisícos y los lugares en que con más abundancia lo hemos hallado corresponden a las zonas de los Bimbiles, Momgomo, Nsang y Evinayong.

Sus usos por los pámues y otras aplicaciones.—Los pámues llaman a esta especie Miamongomo, aludiendo a las espinas de que está provisto el fruto, que recuerda a las de puerco espín (ngomo = puerco espín = Atherura africana), y para ellos es planta cuyo uso contra la lepra era desconocido, pero hoy casi todos saben que los blancos han hecho una medicina de él contra el «cham».

Dos usos diferentes tiene entre los indígenas; uno, en construcción, pues la tendencia a dar chupones rectos hace muy propios éstos, una vez adquirido cierto grueso, para formar el entramado vertical de sus casas; pero ha de ser madera seca, pues la fresca hincada en el suelo parece que

se pudre con bastante rapidez. Tiene la gran ventaja de su rigidez y que, en general, es poco atacada por insectos taladradores y comején.

El segundo empleo es en la lucha contra los parásitos del cuero cabelludo de las mujeres. El peinado complicado de éstas, que ha de durar largas temporadas, o simplemente la longitud de su ensortijado y entrelazado cabello, hace muy difícil la limpieza con los peines indígenas de madera, de largas y cónicas púas, más que nada hechos a proposito para la parcelación del pelo en figuras geométricas según rayas, dificultad de limpieza solventada por los peines europeos, hoy de uso general; pero aun quedan mujeres con costumbres no perdidas, en que la falta de limpieza obliga a matar los insectos con este largo preparado.

Se descorteza el árbol en tiras, y éstas se colocan arrolladas sobre el pelo; se envuelve la cabeza por la frente y nuca con hojas secas y flexibles de plátano, de forma de dejar una especie de recipiente cuyo fondo es el cuero cabelludo; se echa agua y se atan las hojas por encima de la cabeza. Otras machacan la corteza algo con agua para darle una consistencia pastosa, sujetando el preparado sobre la cabeza de la misma manera.

Un medicinero de Alén indicó que se utiliza contra los gusanos intestinales, tomando una decocción de la corteza del tronco; pero no se ha podido aclarar si ello es de uso general o una patraña de su invento.

Sea como fuere, el empleo de la corteza del tronco de Caloncoba welwitschii es muy general y extendido, como lo demuestra el estado lastimoso del tronco de los árboles próximos a caminos y poblados, en que un descortezado violento ha destruído el cambium sin poder dar lugar a una cicatrización de la lesión. En la Granja de Santa Isabel se hallan algunos ejemplares de la plantación descortezados, y sólo lo hacen esto los pámues. Aquí se ha observado que a los cuatro años de verificarse el descortezamiento aparece el tronco de nuevo completamente regenerado en su lesión, e incluso cuando la destrucción de cambium no ha sido muy extensa, la regeneración de éste por los bordes llega a originar una soldadura, con ligero contacto levantado, que recubre la madera dejada al descubierto.

Aunque no se han realizado estudios sobre la corteza y sus propiedades, parece que ellas están relacionadas con la existencia de principios cianogenéticos, cosa, por demás, general en las flacourciáceas, pues las especies de Taraktogenos, Hydnocarpus y, en especial, Caloncoba glauca, tienen estos principios en las semillas y en sus derivados no purificados, como aceites y turtos, por cuyo motivo estos últimos, de no eliminarse el principio, seguramente un glucósido, no son aptos para la alimentación del ganado, perdiendo así un gran valor como subproductos, pues sólo resultan utilizables en el caso de una explotación agrícola, en el abonado de la misma plantación, reintegrando así al suelo una elevada proporción de principios minerales.

Tihon ha determinado éstos en Caloncoba glauca, con el siguiente resultado sobre el turto seco y desengrasado:

TURTO.

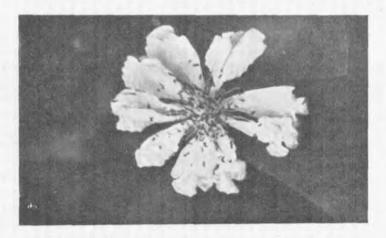
Nitrógeno total	4,39 %	Sílice Oxidos de hierro y alu-	7,45	%
Materias nitrogenad a s totales	27,44 %	minio Cal	7,75	%
Extractivos no nitrogenados	32,79 %	Magnesia Potasa Sosa		%
Celulosa	33,92 %	Anhídrido fosfórico		,
Cenizas	5,85 %	Cloro	2,22	%

De este análisis se destaca que hay una gran riqueza en fosfórico y potasa y que fabricado un compost con los residuos de cáscara, pulpa del fruto y residuo de extracción del aceite, se reintegra de nuevo al sue-lo casi la totalidad de los principios exportados con el cultivo, en forma mucho más apta de ser asimilada que como se encuentra en el terreno. Esto no deja de ser importante en los suelos de Guinea continental, que responden tan bien a la incorporación de los abonos fosfatados y potásicos, como se demuestra en los terrenos en que la vegetación espontánea ha sido quemada.

Con Caloncoba Welwitschii se han de hacer próximamente determinaciones análogas, aunque lógicamente no se han de separar grandemente de las anteriores, y provisionalmente pueden aceptarse sin duda alguna las mismas conclusiones.

Justificación del cultivo de Caloncoba Welwitschii.—Los motivos a que obedece la elección de la Caloncoba Welwitschii son varios, aparte de que tampoco era posible ensayar otras especies exóticas por la dificultad de su adquisición en 1938, y que hoy continúa.

En primer lugar, era una especie indígena, abundante y, por consiguiente, perfectamente adaptada al suelo y clima de la mayor parte de la colonia, cosa común con C. glauca, pero no así con C. mannii, que necesita mayor humedad y altura para su buen crecimiento y fructificación. Además, estaba el hecho fundamental de que con semillas de esta especie se iniciaron los primeros ensayos clínicos en la leprosería de Ebebeyin e interesaba, de tener éxito el ensayo, estar preparados a producir grandes cantidades de materia prima, pues que la simple recogida de las semillas en el bosque no era capaz de cubrir una gran demanda que posiblemente se extendería también a la Metrópoli, y ello por razones obvias derivadas de dos hechos, que son comunes en nuestra colonia a cualquier otro tipo de aprovechamiento de productos espontáneos del bosque (caucho, cola, nipas, melongo, estrofanto, etc., etc.), como se demostrará al aplicar las Ordenanzas que regulan estas actividades. Estos hechos son, por una parte, la gran diseminación de las especies, cuyo recorrido supone para el indígena una labor de búsqueda trabajosa y de poco rendi-


miento; por consiguiente, poco atractiva y en que ni siquiera la coacción gubernativa es capaz de obtener elevados resultados, y, en segundo y principal lugar, el nivel medio de vida de nuestros indígenas es mucho más elevado que en las Colonias vecinas, ya que en éstas todavía hay extensas poblaciones que se ven forzadas a vivir del bosque, recogiendo aceite de palma, caucho o simplemente obteniendo las pieles de su caza, para una venta a precios muy bajos que asegura estrictamente—y en años de crisis con dificultad—cubrir las incipientes necesidades del negro en ropa, sal, petróleo y enseres domésticos. Pero en la nuestra, una política, no por no ser legislada menos aparente, ha hecho del indígena en general un agricultor, primero asalariado en las fincas europeas, después pequeño empresario independiente de infinitas finquitas con muy bajos rendimientos unitarios, a consecuencia de la falta de una dirección sobre su débil voluntad de trabajo. Así, sus ingresos son mucho más elevados, se hallan viviendo una economía superior a la de los pueblos cazadores y errabundos, y sólo violentándoles se les puede hacer que vuelvan a explotar el bosque, con la contrapartida de que los productos que recogen hay que pagárselos a previos elevadísimos, imposibles de sostener después de esta guera. Como confirmación de esto, baste decir que en 1940, después de una activa propaganda gubernativa, no llegaron a recogerse 2.000 kilogramos de semillas, aunque bien es verdad que tampoco favorece esta recogida el largo período de producción del árbol y el gran porcentaje de semillas perdidas y averiadas, al cosecharse sólo los frutos caídos y a intervalos muy separados.

Otra razón que justifica la elección era el porte más pequeño de C. welwitschii en comparación con Hydnocarpus y Taraktogenos, con la facilidad de mantener el árbol con menor altura que en la selva, por una poda adecuada, hecha posible por la tendencia que tiene a echar chupones como por su forma de fructificar, incluso en madera vieja. Los gastos de recolección han de ser, pues, mucho más reducidos, así como los propios del cultivo: poda y lucha contra enfermedades y enemigos. Los marcos de plantación más pequeños podrían dar lugar a unas producciones mayores, a juzgar por los datos que existían de las cholmugras asiáticas.

La decisión entre C. welwitschii y C. glauca fué más dudosa, pues si C. welwitschii da más rendimientos por árbol y el contenido de grasa con relación al peso de semilla es mayor que en C. glauca, tiene, en cambio, un contenido menor en ácidos activos, como parece indicar el poder rotatorio inferior de la grasa de C. welwitschii; a igualdad de resultados terapéuticos, nos parece que deberá ser el grado de humedad del terreno el que decidirá por una u otra especie. Sabiendo que la C. welwitschii se adaptará mejor a grandes variaciones de humedad, muy comunes en Guinea Continental, en suelos no recubiertos de espesa masa arbórea, no hay duda que tiene mucho mayor campo de empleo que su congénere.

La mayor inferioridad—que puede ser decisiva y obligar al abandono de su cultivo—de Caloncoba welwitschii con relación a las cholmugras asiáticas está en la falta de concluyentes resultados terapéuticos, al menos publicados, de los preparados derivados de sus grasas, pero las seguridades dadas por mis queridos amigos los Drs. Cascón y Martínez, del Servicio Sanitario Colonial, fueron suficientes para que el ensayo se acometiera.

Suelos.—En su condición natural, ya dijimos que C. welwitschii prefería los suelos profundos y drenados, sean de origen granítico o gnéisico, pero principalmente los primeros. Al estar prosperando en suelos forestales, siempre con un contenido mucho mayor en materia orgánica y principios minerales asimilables, se tratará de igualar, o aun mejorar, dichas condiciones en el cultivo, con la seguridad de una buena respuesta por parte de la planta, lo que se ha demostrado en los suelos volcánicos de la Isla, mucho mejor dotados que la generalidad de los continentales,

Flor masculina de Caloncoba Welwitschii. (Foto Nosti.)

por lo que el desarrollo de Caloncoba en semillero y primeras fases de plantación es más vigoroso que en Evinayong, otro punto de Guinea Continental en que se ha acometido su cultivo.

Resumiendo y concretando, podríamos decir que las condiciones óptimas del terreno para el cultivo de esta planta son : fértiles, a ser posible con espesa capa de materia orgánica producida por incorporación de composts o toda clase de residuos, incluso «mulching» (palabra inglesa muy empleada en agricultura tropical y que indica la cubrición del terreno por una manta de residuos vegetales, como hierba de chapeo, residuos del beneficiado de café, cacao, cocos, etc., etc.), o bien por una cobertura de leguminosas rastreras, si se tiene abundante mano de obra, o erectas si escasea; fosfórico y potasa, por consiguiente, muy fácilmente asimilable y abundante; perfiles uniformes homogéneos y profundos, que faciliten la penetración de la raíz pivotante, proporcionalmente más desarrollada que en especies gigantescas; estructura estable; suclo arci-

lloso, arcilloso-limoso o areno-limoso, es decir, un suelo de compacidad media, que retenga la humedad, poco alterable por variaciones de ésta y, sin embargo, sano y bien drenado, por lo que no le perjudicarían los terrenos como los isleños, con abundante canto suelto, sin formar masas impermeables.

Clima.—Lógicamente el clima de la región en que vegeta espontáneamente debe considerarse como el más a propósito y su mayor o menor semejanza con el de zonas diferentes dará una indicación preciosa sobre la posibilidad de cultivo, pero hay que aclarar que su clima es el ecuatorial modificado que aparece bajo el bosque virgen en zonas de 150 a 700 metros de altura, cuya principal variante está constituída por la escasa luminosidad y atmósfera sin grandes alteraciones de humedad, incluso en el período más álgido de la estación seca que, como se sabe, es bastante pronunciado en Guinea Continental.

El clima reinante en la región geobotánica que le corresponde se caracteriza por la existencia de una estación seca bastante pronunciada de junio a septiembre, pero, especialmente julio, presenta años en que no registra ninguna precipitación; y dos estaciones lluviosas brevemente separadas por una sequilla en enero o diciembre, a veces poco manifiesta, pero otros años lo suficientemente intensa para notarla sin necesidad de ningún registro. Precipitaciones anuales de 1.500 a 2.500 mms. y humedad relativa nunca por debajo del 60 por 100, que en el ambiente forestal no descenderá del 70 por 100.

Temperaturas máximas al aire libre de 40° y mínimas no inferiores a 16°, con medias anuales de 24°; oscilación amplísima y demasiado grande para Caloncoba Welwitschii cultivada sin sombra alguna y que, probablemente, por los datos tomados a la sombra de árboles, quedará reducida en tres grados para los máximos y 0,5 para los mínimos, formando así las temperaturas óptimas a la sombra.

Luminosidad reducida, pues el sol directo no favorece para nada la fructificación, reuniendo en esto exigencias semejantes al cacaotero y padeciendo como éste los mismos perjuicios con los mismos síntomas.

Semilleros.—Los semilleros para estos ensayos fueron obtenidos por don Jorge Menéndez, Ingeniero Agrónomo, procedentes de árboles espontáneos en la demarcación de Mikomeseng, y el semillero se preparó haciendo una cama de unos dieciocho cms. de altura por 60 cms. de ancho y de la longitud que el tamaño y forma del espacio utilizable para semilleros permita. A ser posible, la tierra empleada en esta cama será tamizada groseramente y rica en materia orgánica, para lo que se puede emplear tierra superficial de bosque desprovista de restos sin descomponer. Se colocarán unos pies derechos que sostengan nipas que cubran ampliamente el semillero, colocados a 1,50 ms. de altura y con suficiente pendiente para evitar el efecto del sol, no pudiéndose sustituir esta sombra por la de árboles u hojas de palmera de aceite sin preparar, porque la lluvia y agua que escurre erosiona y destruye la cama.

La semilla que se emplee será sana y limpia, desprovista de su pul-

pa y seca externamente, evitándose la fallida, que abunda bastante; será también lo más fresca posible, pues es condición que influye grandemente en la germinación, tanto que la semilla de un año es raro que ofrezca más de 0,5 por 100 de poder germinativo, y ello tardando un tiempo del orden de los tres meses. En cambio, siendo fresca la semilla, empieza a germinar a los quince días, pero el mayor número de germinaciones se produce al mes, prolongándose en las más tardías otro mes más. Como dato curioso anotaremos que semillas enviadas al Jardín de Aclimatación de la Orotava, de Santa Cruz de Tenerife, procedentes de árboles cultivados, y cuya recogida se hizo tres meses antes, se sembraron a mediados de mayo de 1944 y han empezado a germinar a finales de julio, o sea a los dos meses y medio, haciéndose al aire libre, pero en terreno soleado y protegido de vientos.

Con semillas frescas no es necesario sembrar más de una en cada golpe, por lo que se pueden colocar enterradas a 1 cm., a marco real de 20 centímetros, sin necesidad de aclareo posterior.

Al principio, el terreno del semillero se tendrá cubierto con una capa de hierba seca, que contribuya a mantener una humedad constante y evita el nacimiento de malas hierbas; en lo sucesivo los riegos se regularán, de forma de impedir la desecación y descalce de las jóvenes plantitas.

El gran número de floraciones y fructificaciones sucesivas de la planta nos consiente realizar los semilleros en la época que más nos convenga, que será tal que estén las plantas en condiciones de transplantarse en el período más oportuno: abril-mayo, o septiembre-octubre, en que se contará con futuras y seguras lluvias, que facilitarán el enraizamiento. Cada agricultor elegirá uno u otro de estos períodos, según sus propias conveniencias, que suelen depender principalmente de las necesidades de mano de obra.

Semilleros hechos a mediados de julio dan en abril siguiente, por lo tanto a los ocho meses, unas plantas de 0,70 ms. en condiciones de trasn-plantar. Para transplantar en septiembre, las semillas han de proceder de la última cosecha del año, o sea octubre, y las plantas serán algo mayores, pero también muy aptas.

No es recomendable la siembra de asiento, más si hay prisas puede hacerse, sembrando 4-5 semillas por golpe, y aclarando cuando tienen 30 cms. de altura para dejar una sola planta, que se señalará con una estaca suficientemente alta, que evite sea cortada en el chapeo.

Crecimiento.—Es un árbol de rápido crecimiento, y en las fotografías que se publican puede seguirse su desarrollo. Midiendo el tronco a ras del suelo, tiene en el momento de transplantarse un diámetro de 1 centímetro y una altura de 70-80 cms. A los dos años ha formado ya su cruz, que se mantiene en lo sucesivo, impidiendo la formación de otra principal más alta en chupones; a los tres años del transplante el diámetro es de 3,5-4,5 cms., con una altura de 1,80, y a los cinco años se tiene la altura definitiva, que procuraremos no aumente por medio

de las podas necesarias, alcanzando 4-5 ms., y un diámetro de tronco de 11-14 cms.; su copa, muy amplia ya por la horizontalidad de las ramas, cubre una superficie de 30-40 cms m.², o sea casi igual que un árbol adulto espontáneo, que forzosamente se hace alargado y de poca amplitud.

La marcha siguiente del desarrollo, así como sus cambios de forma, como consecuencia del crecimiento contenido, nos son desconocidos, aunque confiamos poderlo mantener en los límites máximos anteriores, por conveniencias de cultivo.

El desarrollo aéreo y radicular.—El árbol ideal ha de tener una forma de copa invertida, con un armazón principal de 3-5 ramas, que nacen aproximadamente con un ángulo de inserción en el tronco de 40°; estas ramas primarias emiten otras secundarias, generalmente muy horizontales, a causa de su temprana fructificación, realizada antes de haber adquirido rigidez. Ramas y tronco emiten considerables chupones verticales, útiles para la renovación del árbol y sustitución de ramas agotadas o deformes.

La foliación tiende a ir desapareciendo de la base de las ramas, con lo que las hojas se acumulan en las extremidades jóvenes aun herbáceas, y así resulta que el árbol adulto cultivado tiene una copa esférica, cuyo interior, completamente desprovisto de hojas, sólo está ocupado por abundante madera cuajada de flores y frutos, cosa que facilita las operaciones de recolección, poda y tratamiento de enfermedades.

El sistema radicular tiene, como en casi todas las especies arbóreas tropicales, un desarrollo preferentemente en sentido horizontal y la raíz pivotante, que en principio es la más importante, va perdiéndola, al par que raíces potentes y someras se extienden inmediatamente debajo del cuello, en todas direcciones.

Al contrario que en otras especies, no es posible definir sistemas o písos de raíces, pues éstas se hallan distribuídas sin orden aparente a lo largo de toda la raíz principal, que a los cinco años llega a alcanzar 1,50 metros de profundidad. La figura de la página 166 representa el aspecto de los sistemas aéreo y radicular de un árbol de cinco años.

Preparación del terreno y transplante.—No parece que en la Colonia sea oportuno modificar la forma de preparar el terreno para una plantación arbórea, mecanizando lo más posible todas sus distintas faenas: apeado de árboles, destoconado, arrastre de trozas y apertura de hoyos, y esto es por causas económicas, que no han sido superadas, aunque haya un factor decisivo favorable a esa orientación, cual es la escasez y carestía de la mano de obra.

En general, la aportación de capitales a una empresa colonial no es grande, le que impone limitación de gastos iniciales, como serían adquisición de tractores, descepadores gigantescos proporcionados al tamaño ingente del árbol, etc. A más, el motocultivo normal en plantación adulta queda excluído en casi toda la Isla por su topografía y en donde es posible por el relieve y la C. welwitschii es apta sin necesidad de aumen-

tar los marcos de plantación, no ha habido facilidades para su ampliación por escasez de combustible, carestía de los tractores y principalmente por no estar resuelto positivamente el problema del laboreo superficial de un suelo tropical de gran desarrollo herbáceo, a menos de prodigar los pases de cultivador, grada, arado o máquina de chapear, con elevación de costo de cultivo y, sobre todo, sin seguridades respecto al mantenimiento de la fertilidad del suelo.

Por esto se seguirá la práctica más sencilla, semejante a la que se lleva a cabo en las plantaciones de cacao, que excluye todo gran movimiento de masa vegetal. En el caso de que se parta de un bosque virgen, al desboscar se dejarán cierto número de árboles grandes, que darán sombra desde el primer momento a la plantación, eligiéndolos del modo que se indicará posteriormente, limpiando todo el sotobosque, pero sin quemarlo ni sacarlo de la parcela, sino simplemente apilándolo o agrupándolo de modo que no ocasione estorbos a la alineación o plantación posterior.

Si se trata de un bicoro o terreno ya desboscado, conviene proceder inmediatamente a la apertura de hoyos y plantación de bananos para sombra temporal, mejor que plátanos, pues los primeros son mucho menos exigentes en cuanto a calidad del terreno y en suelos no fértiles prosperan más rápidamente.

En la primera plantación experimental que se realizó, se eligió el marco real de 4 metros, que a los cuatro años se mostró completamente insuficiente, puesto que plantas vigorosas cubrían ya completamente el terreno; por ello se entresacó, resultando el marco definitivo actual de 8 metros que, por lo hasta ahora observado, estimamos será el más oportuno.

A causa de la rapidez de puesta en producción de esta planta no hay ventaja apreciable en aprovechar el terreno, con un marco reducido en los primeros años, y luego entresacar, por lo que recomendamos desde el primer momento el marco de 7-8 metros, pudiéndose producir cosechas intercalares, como maíz, malanga, country-tea, añil, Tephrosias, etcétera, en los dos primeros años, siempre que el terreno no esté sombreado.

Los hoyos previamente abiertos serán de tamaño medio de $40 \times 40 \times 50$, pero se ha de tener en cuenta que, cuanto mayor el hoyo, es mejor y el efecto será particularmente notable en los terrenos gastados.

La planta se arrancará de los semilleros regando éstos previamente con mucha abundancia, para facilitar la operación, podando todas las largas y delgadas raicillas, así como la principal, que se dejará reducida a 40-45 cms. de longitud, llenándose el hoyo hasta un tercio de altura con tierra superficial sin apelmazar, sobre la cual se colocará la joven planta, cuidando sobremanera que la raíz principal no quede doblada o apelotonada, pues si así sucediera, lo mismo que para con cafetos o cacaoteros, la planta se detiene en su crecimiento. Se acabará rellenando el hoyo con el resto de la tierra, apretando ligeramente y echando la

suficiente para que después de asentada con las lluvias quede el terreno raso, sin hacer pozo ni elevación, cuidando de colocar la planta de forma que el cuello de la raíz del semillero quede ligeramente enterrado bajo el nivel definitivo. Por último, se dará un pequeño tirón hacia arriba para asegurarse de que no queda la raíz doblada. La planta del semillero se la podará, de forma que tenga un solo tallo, y si el tiempo no es muy lluvioso, se le quitarán todas las hojas, para impedir la inútil desecación de la madera, asegurándose así la raigambre.

Sombreado.—A la conclusión de que sea una planta que necesita de sombra para mantener su buen aspecto y productividad no se ha lle-

Izquierda: Un ejemplar de C. welwitschii de un año. Derecha: C. welwitschii aislada después de un desbosque en la Granja de Evinayong, (Foto Nosti.)

gado como resultado de deducciones estadísticas de unas experiencias, pues que no es posible plantear en tan breve espacio de tiempos tantos aspectos completamente desconocidos en un cultivo totalmente nuevo.

Su forma de vivir espontánea y algunas observaciones dan, a nuestro juicio, la suficiente seguridad a este respecto. No sólo es una planta que va asociada en su forma natural de presentarse a otras mucho más altas y dominantes, sino que su misma especial manera de florecer y fructificar demuestra su carácter umbrófilo, pues flores y frutos son llevadas incluso en madera vieja y nunca en las terminaciones de las ramas, recatándose aquéllas tras la profusa cortina de sus grandes hojas, que ofrecen una segunda pantalla a la penetración de los rayos luminosos.

Ni más ni menos le sucede al cacaotero, con su cosecha principalmente en el trunco y ramas viejas, y como el Coloncoba, aun aparece en los bosques de América Central y Guayana asociado espontáneamente a gigantes vegetales que le cobijan.

Los ejemplares aislados que es posible observar en Guinea Continental, a consecuencia del desbosque, muestran un aspecto totalmente decrépito, pobres de ramificación, con las hojas amarillentas y escasas sólo en los extremos de las ramas; cosechas reducidas y frutos pequeños; en conjunto, dan la sensación de plantas enfermas (fig. 7).

Por último, en la parcela que en la Granja de Santa Isabel se dedico a Caloncoba aparecen siempre más vigorosas y no ha habido absolutamente ninguna falta en los árboles de la línea sometida a la sombra de Albizzia Lebbec, de un paseo que forma uno de los límites de la parcela. El resto de las líneas expuestas al efecto directo de los rayos solares ha sufrido muchas bajas, por muerte a causa de enfermedad de tipo fisiológico y, en general, tienen peor aspecto.

En el caso de hacer la plantación en bosque virgen, dijimos podían utilizarse algunos de los árboles existentes, que se dejarán lo suficientemente espaciados para originar una cobertura de hojas homogénea, sin grandes claros ni excesiva densidad y lo suficientemente alta para que la circulación del aire sea fácil y no haya exceso de humedad favorable a muchas enfermedades, pues no hay que olvidar que cualquier planta en el bosque tropical, según Eidmam, sacrifica una parte elevada de sus frutos y hojas a insectos y otros enemigos, en una proporción del 20 por 100.

No es indiferente la clase de árbol que se respete. En general, son las leguminosas las mejores, por varios motivos: la existencia de numerosos nódulos en las raíces, que en algunos géneros es verdaderamente notable; la copa ligera y aparaguada; la madera dura, muchas veces útil y que parece va asociada, seguramente por lentitud de crecimiento, a un menor agotamiento del suelo. Sin embargo, hay especies de leguminosas que no interesan, bien por sus costillares y enormes y largas raíces superficiales, que inutilizan una gran superficie de terreno a su alrededer, bien por su copa excesivamente densa; lo primero sucede con Poinciana y lo último con Pentacletra macrophylla, una de las especies más abundantes y más frecuentemente asociada con C. welwitschii.

Otras especies no leguminosas, incluso de madera muy blanda, pueden ser conservadas, como las gigantescas especies de Ficus de Fernando Póo, bajo las cuales los cacaotales tienen un seguro de larga vida, según se puede comprobar en todas las plantaciones viejas, pues es tener una frescura y luz uniformemente tamizada, sombra alta, incorporación anual de gigantescas cantidades de materia orgánica por medio de sus frutos, aunque con el inconveniente de sus costillares, que eliminan del uso cierta superficie, aunque en sus rincones se ven árboles productores.

Si la plantación se ha de hacer en terreno desboscado, hay que proveer de sombra desde el primer momento, y nada mejor que la de banano o plátano, por su rapidez de formación y posible renta obtenible. La única preocupación es que, a partir del segundo año, y a causa del crecimiento de Caloncoba, como del gran número de hijos del bananar, conviene hacer un aclareo, puesto que la proximidad del bananar a Caloncoba deforma éstas, tendiendo a crecer en sentido opuesto. Entre cada cuatro Coloncobas, un pie de banano es suficiente, y si se quieren utilizar las entrelíneas en uno de sus dos sentidos, para un cultivo intercalar, los bananos se plantarán alineados con los árboles principales.

En el primer ensayo de cultivo que se realizó se plantaron, como sombra definitiva, Pentacletras o ebein, por la simple razón de su predominio en el bosque, pero al cuarto año se arrancaron, por ser su crecimiento excesivamente lento, tanto que no tenían una altura superior a 1,50 metros. Por varias razones se eligió Pithecolombium saman, a marco de 16 ms., que en terrenos fértiles crece bastante de prisa, aunque no como Caloncoba en el mismo período; pero a partir de los cinco años puede dar una sombra apreciable, sin más cuidados que la progresiva elevación de la misma con la edad mediante podas convenientes. La regularidad de su ramificación, de forma perfecta de sombrilla japonesa; su gran resistencia a los tornados; la posible utilización de la madera; el no ser atacada por un gran número de taladros, como a Albizzia y Eritrina; la sombra ligeramente tamizada y muy uniforme; el grandísimo cúmulo de nódulos en sus raíces; el quizá útil empleo como pienso de sus hojas y azucarados frutos, que recuerdan por su melosidad y aroma a los del algarrobo; su éxito precedente con el cacaotero, y la adaptación a suelos muy húmedos y secos, son razones que abonan en pro de su elección, y que el futuro seguramente confirmará.

Fenología y cosechas.—Bajo este título se encierran una serie de importantísimos datos, que son los que más busca el futuro agricultor, y que desgraciadamente no suelen verse prodigados en libros y revistas, por lo que, como hemos hecho en otras monografías publicadas y aun notas sueltas (tabaco, hevea, cafeto, cacaotero), daremos el mayor número de detalles con este título relacionados.

Las floraciones son abundantísimas y continuadas durante grandes períodos, aunque su distribución mensual varía notablemente de un año a otro. Las floraciones de los primeros meses del año dejan el árbol completamente cuajado de atrayentes flores, que convierten a Caloncoba en un bellísimo árbol de adorno, que atrae a un sinfín de himenópteros polinizadores, entre ellos dos hermosas especies de Sylocopas, que sólo se observan en esta planta y en Crotalarias. En las primeras floraciones del año es raro encontrar alguna flor hermafrodita, pero posteriormente van aumentando, aunque nunca pasan del 10 por 100 del total existente.

A continuación registramos las floraciones desde enero de 1942 a enero de 1944:

5 enero a 22 mayo 1942	Grande y continua floración,
22 mayo a 26 agosto 1942	Sin flores o algunas aisladas.
26 agosto a 13 septiembre 1942	Grande y continua floración.
13 septiembre a 16 octubre 1942	Flores aisladas.
16 octubre a 17 febrero 1943	Sin flores.
17 febrero a 1 mayo 1943	Grande y continua floración.
1 mayo a 2 octubre 1943	Flores aisladas o ausencia de flores.
2 octubre a 18 diciembre 1943	Grande y continua floración.
18 diciembre a l enero 1944	Sin flores.

No puede observarse una distribución semejante en los dos años, pues aparte la influencia que la distribución de las lluvias haya podido tener, ha debido ser mayor la de la juventud de la planta, pues son datos de cuarto y quinto años de edad, a partir de la germinación, y por lo común los ejemplares jóvenes tienen una floración menos definida, en cuanto a duración y época de presentarse, que los árboles adultos en casi todas las especies cultivadas en el trópico.

Sin embargo, de estos datos se deduce que hay un período de gran floración en los primeros meses del año, que como mínimo comprende febrero, marzo y abril; otro período de gran floración, muy variable en cuanto a su situación, en los últimos meses del año y de mucha menor duración; otro gran período sin flores o flores sueltas, a veces una o dos flores en un solo árbol, en los meses centrales del año, y, por fin, un período total de descanso de unos dos meses, al pasar de un año a otro.

La labor de los insectos polinizadores es verdaderamente magnífica, pues es rara la flor hermafrodita que queda sin fecundar. A los tres días de abrirse la flor suele quedar fecundada, cayéndose los pétalos en su totalidad; en cambio, el desarrollo del capullo es lentísimo, pues han de transcurir unos cincuenta días desde que es notada la yema floral hasta que aparace la floración. El fruto crece luego rápidamente, alcanzando una semana después de caerse los pétalos un desarrollo medio de $2\times1,5$ centímetros, y hasta que empieza a amarillear transcurren tres meses, apareciendo completamente maduro, de color anaranjado e iniciándose la dehiscencia a los cuatro meses y medio.

El tamaño de éstos es muy variable, pero siempre mayor que los frutos salvajes, oscilando en la amplitud siguiente:

	Frutos grandes		Fentos pequeños	
Longitud, sin espinas	93	mms.		mms.
Anchura, ídem	86	mms.	37,6	mms.
Longitud media de las espinas	50	mms.	36,0	mms.
Espesor del epicarpio	8	mms.	5,2	mms.
Peso total	279	grs.	62,5	grs.
Peso de la pulpa y semilla	87	grs.	6,25	grs.
Peso de la semilla completa	14,94	grs.	1,30	_
Número de semillas completas	391		53	
Número de semilles sin desarrollar	25		152	

Hay, pues, una gran variabilidad y se comprende haya interés en producir frutos grandes, que tienen menor número de semillas abortadas y proporcionalmente un peso mucho mayor de granos útiles, aunque, en el conjunto de la cosecha, los frutos de la pequeñez extremada que se ha indicado no llegan al 8 por 100.

Refiriéndonos a una cosecha completa, 631,5 kilogramos de fruto maduro han originado 182,7 kilogramos de pulpa y grano y 32 kilogramos de semilla sana, seca y limpia; es decir, un rendimiento de semillas comercial sobre el peso del fruto de 5,06 por 100 a 5 por 100.

Las semillas tienen las siguientes características físicas y químicas, que se ofrecen en comparación con la de C. glauca:

·	C. welwitsch	aii	C glauca
Peso de 1 dm. de semillas	606	grs.	
Peso de 100 semillas	2.900	grs.	5.964 grs.
Número de granos en dm."	20.895		
Porcentaje de cáscara	34,48	%	35,14 %
Porcentaje de albúmen	$65,\!52$	%	64,86 %

Composición química de las semillas sin descascarar y secas al aire:

	C, welw tschil	t , glanca
Grasa	38,98 %	31,47 %
Materia nitrogenada	15,74%	15,53 %
Celulosa	20,17 %	19,19 %
Cenizas	3,42 %	3,31 %
Extractivos no nitrogenados	11,17 %	18,55 %
Humedad	10,52 %	11,95 %
	100,00	100,00

De la comparación desde el punto de vista comercial sale gananciosa la C. welwitschii, cuyo contenido en grasa es notablemente mayer, e incluso que el Taraktogenos, pero no iguala a Hidnocarpus, planta aceptada hoy como la mejor de las cholmugras asiáticas.

La floración, tan continuada, trae por consecuencia un mayor número de vueltas en la cosecha, que no se pueden reducir, porque si no se perderían un gran número de semillas en el suelo; esto, en cierta manera, es una ventaja, porque no es necesario una mano de obra supletoria para la recolección o, a falta de ésta, tener recargada la nómina de la explotación, como sucede en el cafetal.

Los primeros frutos se recogen a los tres años de transplantado el árbol, pues árboles transplantados en 8 de septiembre de 1938 han dado fruto maduro en 7 de agosto de 1941.

La distribución de cosechas de 1942 y 1943 ha sido, por árbol (media de 70 ejemplares), la siguiente, expresada en kilogramos de frutos madaros:

1942 (uatro años de edad)		943 (cinco años de edad)	
25 junio	0,030	8 marzo	0,030
29 junio	0,360	l 5 abril	0,420
•	0,790	18 mayo	1,820
7 julio	0,790	1 junio	1,320
16 julio	2,130	26 junio	4,030
27 julio	2,540	6 julio	3,240
	1,140	19 julio	3,000
31 julio	1,140	28 julio	2,420
8 agosto	1,300	9 agosto	3,700
15 agosto	0,460	18 agosto	0,370
_	,	27 agosto	5,550
29 agosto	0,240	14 septiembre	0,820
7 septiembre	0,040	18 octubre	0,030
Total	9,030	Total :	26,750

Las cosechas registradas en 1944, hasta l marzo, han sido de 7,870 kilogramos por árbol, en 5 de febrero, y de 0,740 kilogramos en 19 de febrero.

Obsérvese, pues, un rápido crecimiento en la producción, cuyo aumento se conservará probablemente hasta los diez-doce años, pero son suposiciones que deberán ser confirmadas por la experiencia. En este período de cosecha aparece el árbol materialmente cubierto de frutos, que le dan un aspecto muy atractivo.

Hay una gran cosecha de junio a agosto, que corresponde a la gran floración de los primeros meses del año, y varias vueltas en el resto del año, en correspondencia con las floraciones y en relación estrecha con el porcentaje de flores hermafroditas.

Si nos referimos a la hectárea, las cosechas en frutos maduros y semilla, supuesto un marco de 8 metros, son las siguientes:

	Frutos	semilla limpia y seca
Al tercer año de transplante	150 kgs.	7,50 kgs.
Al cuarto	1.410 »	70,50 »
Al quinto	4.180 »	209,00 »
Al sexto	8.200 »	410,00 »

No creemos sea exagerada la esperanza de que en plena producción lleguemos a 1.000 kilogramos de semilla limpia y seca por hectárea, que originaría, haciendo la extracción por disolventes químicos, unos 400 ki-

logramos de manteca de Caloncoba; mas queda como cifra positiva la de 156 kilogramos de manteca por hectárea a los seis años de edad.

Labores de cultivos y poda.—Por ahora, el laboreo del suelo en que se cultiva esta planta no tiene diferencia alguna con el de cualquier otro cultivo arbóreo del trópico, salvo en la intensidad de algunas labores, debido a la naturaleza del terreno.

La primera parcela en que se ensayó había dado lugar anteriormente a grandes fracasos con el kapok enano de Java, hasta el punto de tener que abandonarlo por el gran número de faltas que había anualmente y el escaso crecimiento de las restantes plantas, lo que no se podía atribuir a otra cosa que a agotamiento del suelo, como demostraba su rala vegetación herbácea, con predominio de las dos gramíneas Paspalum y Eleusine. El terreno original fué un palmeral natural a las mismas puertas de Santa Isabel, desboscado de ellas en la época de la Internación Ale-

Rama florifera de C. welwitschii. (Foto Nosti.)

mana para cultivar la yuca; terminada aquélla, su misma proximidad al poblado hizo que fuera reiteradamente cultivado por los indígenas, hasta que se dedicó a Granja. Con estos antecedentes no es difícil comprender lo sucedido, y las Caloncobas, a los tres meses de transplantadas, tenían las hojas cloróticas y escasas, y los bananos llegaron al año raquíticos, casi sin haber ahijado y amarillentos.

Más que la incorporación de abono mineral era necesario volver al terreno alguna de sus cualidades primitivas, suministrándole materia orgánica vegetal, gran reservorio de elementos minerales fácilmente asimilables y, sobre todo, regulador de una porción de actividades, una de las principales la del grado de humedad del suelo, y ello se logró con el enterramiento reiterado en verde de leguminosas de cobertera.

Para empezar, la más apropiada era la Mucuosa utilis, que aunque anual y dando lugar a un coste de entretenimiento grande, porque se apodera en seguida de las jóvenes plantas, a las que cubre totalmente y ahoga, necesitando cuidados constantes de corta, tiene las dos grandes ventajas de su rapidez de crecimiento y abundante fructificación y su mejor adaptación a terrenos gastados y secos. Tres cosechas se enterraron en el momento de la floración, previo chapeo y troceado, éste forzosamente necesario, porque la intrincada red de tallos rastreros hace muy difícil su enterramiento en el corte de la caya.

El buen resultado obtenido con Indigofera arrecta en el cafeto, aconsejó plantar entre líneas esta leguminosa, que alcanza a los ocho meses una altura de 2 metros y da cierta sombra a las plantas, superando así a los bananos, también con posterior enterramiento, antes de la lignificación de todos sus tallos.

Desde entonces, una cobertera permanente de Pueraria javanica y Centrosemma pubescens, plantas trepadoras que viven varios años, mantiene el suelo fresco, incluso en plena seca, facilitando un estado parecido al del suelo forestal. Estas coberteras se seguirán manteniendo hasta que la sombra definitiva de Pithecolombium Saman las vaya eliminando progresivamente.

En un terreno nuevo, este costoso tipo de cultivo se puede excluir, reduciéndolo a los consabidos chapeos y, en todo caso, sólo algunos perfeccionamientos del sistema serán necesarios, como la obtención de composts o el enterramiento en pequeñas zanjas.

El enterramiento de las coberteras no ha dejado de afectar al somero sistema radicular de Caloncoba que, al sufrir una poda en la cava, le ha obligado desde joven a ir más profundo, lo que supone una ventaja no despreciable. Sin que pueda considerarse como experiencia de obonado, sino como práctica que se impuso en el caso particular del ensayo, diremos que se aplicó durante los dos primeros años, en que más sufrieron por la deficiencias del terreno, una fórmula de abono por árbol, a razón de 125 gramos de superfosfato de cal y 125 gramos de cloruro potásico, en dos veces, a finales de las dos épocas principales de lluvia, extendiéndolos en anillo a 40 cms. de distancia del tronco.

De considerarse necesaria esta práctica, y es de desear aumentar el rendimiento en cultivos viejos o suelos deficientes, la cantidad podría ser notablemente forzada, pero también la amplitud del anillo será mucho mayor, como que prácticamente se convierte en abonado uniforme de toda la superficie de la parcela; pero muchas experiencias serán necesarias aún, antes de establecer una correlación práctica entre abonado y rendimientos, aunque la realidad es que en Africa tropical el abonado es todavía una aplicación localísima y aun individual para árboles o rodales que muestren señas de atraso o desnutrición.

Hasta ahora no puede hablarse de una poda de producción en Caloncoba Welwitschii, sino sólo de formación y limpieza, aunque éstas no dejen de influir de manera notable en la fructificación, al dar formas regulares, homogéneas en la distribución de ramas, y suprimir madera innecesaria, aparte de la mayor ventilación, supresión de ramas enfermas, etcétera, que directamente influyen en el rendimiento. El hecho importantísimo de que C. welwitschii fructifique en toda clase de ramas, a partir de su segundo año, simplifica la poda. Parecen ser las ramas de más abundante fructificación las de tres y cuatro años de edad, y lógicamente se debe tender a que haya el mayor número de esta clase, lo cual sólo es obtenible con una poda de sustitución, pero hay que tener en cuenta que, para ejecutarla, es absolutamente imprescindible que ya existan ramas jóvenes, pues si en una rama de cuatro años, que sólo tiene hojas en un extremo, se corta la terminación, con la intención de originar el crecimiento de las yemas de madera durmientes, no se consigue otra cosa que la muerte de la rama despuntada; en todo caso, el despunte o corte se dará por encima de una de las ramas laterales existentes.

Desde el primer momento ha de darse importancia a la formación del árbol, que se hará aprovechando y respetando su forma natural, de copa invertida de 3-4 brazos, con la cruz a 1,25-1,50 metros de altura, que serán en lo sucesivo las ramas de armazón, portadoras de las ramas fructíferas en mayor grado, limitándose la altura del árbol a 5-6 metros.

Los chupones tienen gran tendencia a formarse en el tronco principal, cruz de las ramas de armazón y, sobre todo, en los tramos horizontales de estas mismas ramas principales, así como en las fructíferas, y rara vez, salvo las de tronco, se podrán utilizar en la renovación de ramas, pues se trata de tallos muy ahilados, como nacidos en la espesa sombra de la copa, y débiles, por lo que más que nada interesa la supresión periódica de todos, en absoluto.

El cultivo ha introducido ligeras modificaciones en algunos órganos de la planta, pues se observa un mayor tamaño de flores y frutos y las hojas, aparte de su mayor tamaño, sobre todo en los dos primeros años de la planta, se hacen proporcionalmente más anchas.

Enfermedades y plagas.—Hasta ahora sólo han aparecido daños en los órganos vegetativos, quedando exentas de ataque las flores y frutos; pero no por ello puede decirse que sea una especie fuerte, pues sufre de die-back y podredumbre de raíz, por un lado, y, por otro, un lepidóptero y un coleóptero taladradores son muy ávidos de su madera.

El die-back es una enfermedad de tipo fisiológico, muy estudiada en los cacaoteros, donde hace grandes estragos en Costa de Oro y también en Fernando Póo, pero cuya etiología es muy dudosa, pues mientras unos lo atribuyen a deficiencias alimenticias en el suelo o a falta de humedad, otros alegan falta de sombra. El hecho es que abunda en los cacaotales viejos y en los jóvenes cuando el terreno no es fértil, lo que también sucede en Caloncoba.

La enfermedad en Caloncoba se caracteriza inicialmente porque el aspecto colgante ordinario de las hojas se convierte en flácido y con el pedúnculo sin consistencia, adquiriendo cada vez más acusado tono amarillo; la enfermedad tiene, en general, una marcha bien definida de abajo a arriba, cayéndose las hojas rápidamente y terminando por caer las de la extremidad en último término, la rama queda desnuda, e inclu-

so la parte herbácea, que antes era flexible, se hace frágil y rompe, dejando ver una medula rojiza en lugar de blanquecina. Los frutos, aunque no estén desarrollados, también amarillean y caen. El fin, bastante rápido, pues no dura el proceso más de tres meses, conduce a la muerte de la planta.

Una vez presentados los síntomas, la defensa, mediante poda de las ramas enfermas, el abonado con sulfato amónico y el riego, no ha sido suficiente a detener el proceso, que se manifiesta de manera principal en los primeros meses del año, en que la sequía es más intensa.

En cambio el mejoramiento progresivo del suelo, según se explicó en lugar anterior, ha hecho desaparecer al quinto año la presentacion de casos, lo que, en comparación con el tercero, en que hubo un 35 por 100 de faltas por esta causa, es lo suficientemente demostrativo de que la causa determinante era la especial naturaleza del suelo.

La podredumbre de raíz, común a todas las especies arbóreas cultivadas en el trópico, puede ser originada por innúmeras especies de hongos parásitos y aun saprofitos (Rosellinia sp., Phomes sp.). En Caloncoba la única especie hasta hoy encontrada es perteneciente al género Rosellinia, cuyo micelio cubre progresivamente de una red blanquecina la corteza de la raíz atacada, y al progresar la enfermedad, la estructura leñosa desaparece, convirtiéndose en una masa fibrosa, seca, frágil, de color ocre.

Si el ataque no tiene lugar en las proximidades de la raíz principal y cuello, el descalce para investigar la parte dañada y su poda, echando cal abundante en la tierra removida, corta muchas veces la marcha del daño; pero si el ataque se produce cerca del cuello o ha progresado hasta él, no hay que hacer nada, pues ya el árbol es imposible que se recupere, pues presenta los síntomas con el mayor grado de gravedad: todas las hojas simultáneamente amarillean, se arrugan y caen, sin que en el sentido longitudinal de las ramas se aprecie preferencia de lugar, como en el die-back.

Las plantas enfermas en alto grado se arrancarán, dejando el hoyo abierto hasta la próxima época de transplante, después de haberle incorporado abundante cal, cuya cantidad estará en relación con el hoyo abierto y, por tanto, con el tamaño del árbol enfermo. En zonas húmedas o con abundantes troncos en putrefacción es donde más se presenta esta enfermedad, por lo que se huirá de lugares bajos o inundables.

Los dos insectos que hasta ahora atacan al árbol son ambos taladradores de ramas. El Eulophonotus myrmeleon no se encuentra atacando a la especie espontánea en Guinea Continental, sino sólo a las cultivadas de Fernando Póo, donde tal lepidóptero hace daños, afortunadamente no muy importantes, en las ramas de cacaoteros jóvenes, y hasta los cuatro años de edad en el mismo tronco, atacando también a los coláteros. Los daños en Caloncoba son idénticos y la rama joven atacada presenta las hojas, por encima del taladro, colgantes y faltas de rigidez, para luego secarse totalmente, quedando adheridas así mucho tiempo. El orificio de salida, de un diámetro de 5 mms., es muy aparente y por él salen

también numerosos detritus y serrín. El único medio práctico de lucha es la ablación y quema de la rama que presenta los primeros síntomas, para impedir la eclosión de la mariposa que hace las puestas en otras ramas.

Más daño, y a veces irreparable, ocasiona un coleóptero cerambicido no clasificado aún, que penetra por pequeños orificios en la base de los pedúnculos florales y desde allí desciende largo trecho; no es raro encontrarlo atacando el tronco grueso de árboles de más de cinco años, pero en este caso no parece que el árbol sufra mucho si no es más que uno el individuo atacante.

La lucha directa por asfixia en su cámara no es fácil, ya que la pequeñez del orificio de entrada, la ausencia de orificios respiratorios y la presencia del de salida sólo a última hora, no facilita la inyección de sustan-

Frutos de C. welwitschii, (Foto Nosti.)

cias tóxicas volátiles, de manera análoga a como se verifica contra el Bixadus del cafeto.

Cuando se trata de ramas secundarias, sin duda alguna se cortarán y quemarán las ramas atacadas, teniendo en cuenta que a veces hay galerías descendentes por el mismo corazón de la rama hasta de 50 cms. de longitud.

En tronco y ramas de armazón puede intentarse llegar a la galería mediante un taladro exterior, por el que se inyecta gasolina, nicotina, carburo de calcio o sulfuro de carbono, cerrando a continuación; pero, en general, el árbol no suele acusar el daño cuando se trata de ramas de 8 cms. de diámetro o más.

Beneficiado de la cosecha.—En el caso de grandes cosechas será imprescindible la utilización de maquinaria conducente a la separación de la semilla de la pulpa que la envuelve, lo que puede hacerse mecánicamente o mediante una fermentación previa, que disgregando la pulpa haga que la semilla se separe, por su placenta fibrosa, de la masa.

En pequeñas cantidades, dejando el fruto amontonado, se abren las valvas y fermenta la pulpa, separando las primeras a mano y la segunda se lava en una bandeja—cuyo fondo es una tela metálica de malla menor que el tamaño de las semillas—introducida en el agua y restregando la pulpa contra el fondo, secando la semilla al sol. Este método se comprende es de muy poco rendimiento.

Una descascaradora, quizá de sistema centrífugo, y una lavadora hidráulica o mecánica que actúe sobre la pulpa fresca o ya ligeramente disgregada por la fermentación, junto con un secadero mecánico de tambor, serían las máquinas imprescindibles en una instalación de beneficiado. Varios modelos comerciales existentes y dedicados a otros productos agrícolas podrían adaptarse a este fruto con pequeñas modificaciones que tuvieran en cuenta el volumen y consistencia pastosa de la pulpa contenida en un fruto y el diminuto tamaño de la semilla, así como su forma. Porteriormente, una aventadora eliminaría todas las semillas fallidas, cuticulas y semillas rotas, polvo, fragmentos de pulpa, materias extrañas, etc., con lo que la semilla queda en condiciones de ser entregada al mercado.

QUIMICA DE LOS ACEITES DE CHOLMUGRA.

Generalidades.—Los aceites de cholmugra se caracterizan por el poder rotatorio que poseen, debido a la presencia de ácidos grasos no saturados de cadena cíclica, derivados del ciclopenteno y de fórmula general $C_n H_{2\,n-4} O_2$. Estos ácidos, presentes en los aceites en forma de esteres glicéricos, se agrupan en una serie llamada cholmúgrica, a la que pertenecen el ácido cholmúgrico, hydnocárpico y górlico y de la que queda excluído el inexistente ácido gynocárdico. De los tres ácidos citados, el de mayor índice de yodo es el górlico, siguiéndole el cholmúgrico, lo que indica que éstos son menos saturados que el hydnocárpico y, en cierto modo, que el grado de saturación está en relación inversa con su eficacia como remedio contra la lepra.

Los ácidos cholmúgrico e hydnocárpico.—Al ácido cholmúgrico se le admite la fórmula

$$\begin{array}{ccc} \mathrm{CH} &=& \mathrm{CH} \\ \downarrow & & \\ \mathrm{CH}_2 &=& \mathrm{CH}_0 \end{array}$$
 CH (CH₂)₁₂ . COOH

cuyo anillo explica la formación del ácido tricarboxílico C₁₈ H ₃₂ O₅, pero las investigaciones de Power acerca de los productos de oxidación con permanganato potásico que originaban dos isómeros del ácido dihidroxy-dihidrocholmúgrico, de fórmula C₁₈ H₃₂ ()₂ (OH)₂, le llevaron a la conclusión de que el ácido cholmúgrico era una forma de tautomerismo entre estas fórmulas:

en que el anillo del ciclo penteno de la primera forma se convierte en la segunda en el del biciclopentano.

Power aisló este ácido del Taraktogenos Kurzii, a partir de los ácidos totales liberados del producto de la hidrólisis con potasa alcohólica, cristalizándolos fraccionadamente en alcohol, purificando por destilación a baja presión y ulterior recristalización en alcohol. Así se obtiene el ácido en forma de laminillas brillantes e incoloras, fundiendo recién destilado a 68°,8 y [α]_D + 62°,1 en solución de cloroformo; con el tiempo disminuye su poder rotatorio y se vuelve amarillo, volviendo a su estado primitivo por redestilación, pero entonces deja un residuo pardo oscuro, formado por polimerización.

Es un isómero del ácido linólico (que, como todos los de la serie linólica, fija cuatro átomos de halógenos por dos dobles enlaces contenidos en su cadena lineal), pero sólo absorbe dos átomos de halógenos.

El choulmograto de metilo destila a 227° bajo la presión de 20 mms. y toma el aspecto de un aceite incoloro que se solidifica formando masas aciculares, que funden a 22°.

El ester etílico es un aceite incoloro que destila a 275°, a la presión de 15 mms.

El ester propílico es un aceite incoloro y viscoso que destila a 260°-270°, a la presión de 15 mms. Análógamente, el ácido hydnocárpico es un estado de tautomerismo entre las formas:

El ácido hydnocárpico lo separó Power del cholmúgrico por un proceso de precipitación fraccionada y cristalización de sus sales de bario. El ácido libre y cristalizado se presenta en forma de laminillas incoloras brillantes que funden a 60° , con $[\alpha]_{\rm D}$ + 68° en solución de cloroformo. Como el ácido cholmúgrico se altera con el tiempo, pero con más rapidez que aquél, descendiendo también su punto de fusión; redestilado para volverlo a su condición primitiva, deja un residuo resinoso pardo.

Su ester metilico es incoloro y hierve a 200°-203° bajo la presión de 19 mms., tomando al solidificarse la forma de una masa cristalina incolora. El ester etilico es incoloro y hierve a 211° bajo la presión de 19 mms.

Caracteres físico-químicos de la grasa, ácidos grasos y ésteres etílicos brutos de C. welwitschii.—La grasa o manteca obtenida de las semillas de esta planta es sólida a la temperatura ordinaria, compacta y de color

crema, que al fundirla toma color caramelo, con un olor que recuerda al jugo de carne y olor especial nauseabundo.

Las determinaciones realizadas por el autor en los laboratorios del Instituto Nacional de Investigaciones Agronómicas (gracias a la amabilidad de mi querido maestro Exemo. Sr. D. Juan Marcilla Arrazola y mi distinguido compañero don Jesús Navarro de Palencia) son las siguientes:

Peso específico a 50°		0,9550	
Indice de refracción a 400°			
Punto de solidificación.	Principia	40°,4	
Punto de sondineación.	termina	37°,6	
Punto de fusión. / Principia		37°,6	
Termina	52° , 5		
Indice de iodo		96,774	
Indice de saponificación		197,4	
Indice de acidez		3,64	
Indice de éster		193,76	
Rotación específica en c.c.	relerma	50°,1 (1)

Hay que notar que las semillas tenían seis meses cuando se extrajo la grasa, lo que justifica la acidez relativamente alta obtenida, pero, sin embargo, inferior al límite señalado por la Farmacopea Británica para el aceite de Hydnocarpus. Todas las demás cifras están fuera de los límites señalados por la misma farmacopea, en especial el índice de iodo y la rotación específica, las que también son inferiores a las de Caloncoba glauca, señalando en este sentido inferioridad manifiesta por menor proporción de ácido cholmúgrico en su grasa.

Los ácidos grasos, separados por el método ordinario, forman una masa sólida a la temperatura ordinaria, de color crema muy claro, que fundidos son de color caramelo, conservando casi el mismo sabor y aroma que la manteca; las determinaciones han sido las siguientes:

Punto de solidificación Principia Termina (Titer)	47°,2 46°,2
Punto de fusión. Principia Termina	46°,2
Termina	583,6
Peso específico a 60°	0,9390
Indice de refracción a 50°	
Indice de neutralidad	200
Peso molecular medio	280,5

Es digno de notarse el peso molecular bajo, que atribuímos al imperfecto aislamiento de los ácidos grasos en su mayor parte, lo que se ha

⁽¹⁾ Agradecemos esta determinación a don Ignacio Sotelo, Perito agrícola del Estado y farmacéutico, que también ha realizado el poder rotatorio de los ésteres.

verificado por el método que más adelante se detallará, sin deshidratación ni destilación posterior. Aparte de esto, no es ajena a este menor peso la existencia de ácidos diferentes que los de la serie cholmúgrica, de menor peso molecular.

Los ésteres brutos, sin destilar ni redestilar, es decir, obtenidos como materia prima bruta lista para exportar, son líquidos y de aspecto aceitoso, con un color caramelo que va oscureciendo con el tiempo en contacto con la luz natural; las determinaciones realizadas arrojan estos resultados:

Peso específico a 25º	0,9775
Indice de refracción a 20°	1,4580
Indice de acidez	0,0084
Indice de iodo	92,3
Indice de saponificación	183,4 8
Rotación específica en cloroformo	

La misma observación respecto a la impureza del producto que se hizo acerca de los ácidos grasos se puede repetir para los ésteres, cuyo índice de iodo es más bajo que lo especificado por la Farmacopea Británica para los ésteres de Hydnocarpus, y, lógicamente, a esto casi exclusivamente es debida la diferencia, ya que entre las grasas y aceites respectivos no había gran variación.

MÉTODOS DE OBTENCIÓN

Métodos de laboratorio.—La extracción de la manteca se realiza en Soxhlet con éter sulfúrico, moliendo la semilla previamente y extrayendo durante tres horas, al cabo de las cuales el contenido del cartucho se revuelve y se continúa la extracción. La manteca retiene enérgicamente trazas de éter sulfúrico, cuyo olor, aun expuesta la manteca al aire, continúa durante mucho tiempo; se elimina arrastrando el éter por corriente de carbónico producida en un Kipp y burbujeando enérgicamente a través de la manteca fundida mediante un baño maría a 52º durante una hora; una vez solidificados se someten al análisis realizado.

Por presión, manteniendo la semilla caliente a 50° por baño en agua y con prensa de laboratorio, el rendimiento de grasa de 38,98 por 100 obtenido por disolventes, desciende a 7,9 por 100, aunque bien es verdad que la presión por centímetro cuadrado, realizada con una pequeña prensa de mano, fué sólo del orden de 2 kgs./cm.².

La separación de los ácidos grasos totales se realiza previa saponificación y aislamiento de los ácidos en el jabón resultante.

Para ello una cantidad determinada de la manteca se coloca en un matraz con refrigerante de reflujo, al que se añade potasa alcohólica, formada por unos 20 grs. de potasa (por cada 100 grs. de manteca que se trate, ya que previamente el índice de saponificación arrojó 197 miligra-

mos de KOH por gramo de grasa), disuelta en muy poca agua y añadidos 500 c. c. de alcohol de 96°.

La mezcla se calienta al baño maría en el matraz, hasta observar la formación de espuma, trasvasando después a un gran vaso, lavando reiteradamente el matraz con agua caliente hasta tener aproximadamente un litro de líquido por cada 100 grs. de grasa tratada; el conjunto se hará hervir durante el tiempo preciso para expulsar el alcohol.

Todo el conjunto se acidula con ácido sulfúrico diluído, que descompone el jabón, hirviendo hasta que la capa de ácidos grasos que sobrenada aparezca completamente límpida y sin ninguna partícula blanca de jabón.

Se deja enfriar, con lo que la capa de ácidos grasos se solidifica, separándolos entonces. A continuación se hierven tres veces con agua destilada para lavarlos, se dejan enfriar y una vez sólidos se separan, secan y pesan, siendo en este estado, y extraídos de esta forma, como se someten al análisis realizado. Este sistema no obtiene los ácidos tan puros como con la serie de extracciones de los ácidos liberados con éter sulfúrico, lavado, desecación química y destilación verificados por Tihon, pero es más simple y más apto para industrializarse en la Colonia.

La obtención de los ésteres brutos se realiza introduciendo los ácidos grasos en un matraz con refrigerante de reflujo, haciéndolos hervir con alcohol sulfúrico en la proporción de 150 c. c. de alcohol etílico y 4 c. c. de ácido sulfúrico. La ebullición se continúa durante dos horas, pasadas las cuales se neutraliza el ácido sulfúrico con hidrato potásico disuelto en alcohol, destilando rápidamente el alcohol sobrante.

Una vez eliminados los últimos restos de alcohol, se deja enfriar a 35°, con lo que se separan dos capas: una formada por los ésteres etílicos y otra por el sulfato de potasa. Los ésteres se separan y se lavan repetidamente con agua destilada para eliminar el sulfato de potasa. Posteriormente se hace la extracción de los ésteres con éter sulfúrico en un lixiviador y se elimina en el extracto las trazas de éter, con lo que obtenemos los ésteres etílicos brutos utilizados en las diferentes determinaciones realizadas.

Esta marcha puede tener una ligera modificación, consistente en que una vez realizada la esterificación, después de las dos horas de ebullición, se extraen los ésteres ya directamente con éter sulfúrico en el lixiviador, adicionando a continuación solución de carbonato potásico hasta que cese el desprendimiento de carbónico. Se lava seguidamente y numerosas veces con agua destilada, hasta que, separadas las dos capas, aparezca la superior límpida y transparente, dejando salir el agua y capa inferior. La solución etérea de ésteres brutos presenta una coloración parduzca. Se evapora el éter al baño maría hasta que no quede residuo, obteniéndose así los ésteres etílicos brutos, de apariencia aceitosa, color pardo rojizo e inodoros. Con esta modificación, los ésteres resultan algo más puros, pero es mayor el inevitable consumo de éter sulfúrico.

Los ésteres también pueden obtenerse directamente de la manteca, sin

el aislamiento previo de los ácidos grasos, mediante alcohólisis con alcohol absoluto y ácido sulfúrico mezclados en la proporción antes indicada; pero es un proceso de larga duración y el rendimiento de trabajo disminuye considerablemente, sobre todo si se espera a que la separación de los ésteres se realice espontáneamente. Una última purificación se realiza destilando los ésteres brutos al vacío.

Para ello se instala un aparato de destilación conectado con bomba de vacío y manómetro de mercurio, recibiéndose el destilado en uno de dos Kitasatos, a voluntad, mediante una llave de tres pasos en que termina el tubo del refrigerante, para separar las cabezas de la primera destilación, pues las primeras tienen aspecto lechoso y límpido y el resto es transparente.

En la primera destilación se calienta hasta 170°, recogiendo el escaso producto resultante en un matraz, y llegada a la temperatura indicada se hace funcionar la bomba hasta una depresión de 3 mm., calentando a continuación hasta 180°, a partir de cuyo momento se recoge el líquido en el otro Kitasato.

Se realiza una segunda destilación con las mismas precauciones, pero descendiendo la presión a 1 mm., y recogiéndose en el segundo matraz sólo entre los límites 175-160°.

A la depresión tan considerable producida no resisten los matraces de vidrio ordinario, por lo que se necesitan especiales o repicientes apropiados de hierro esmaltado.

Por el método seguido, por cada 100 grs. de manteca se obtienen unos 93 grs. de ácidos grasos, que dan lugar a unos 104 grs. de ésteres brutos y a unos 75 grs. de ésteres etílicos límpidos y transparentes, que no han sido aún analizados.

Industrialización.—Creemos que para el uso local pueden obtenerse ésteres etílicos o de otro tipo, en cantidad suficiente, con un pequeño laboratorio oficial exprofeso; pero para su exportación a España, la industrialización exigiría una más costosa instalación, en que, a no dudarlo, los gestos de administración serían notablemente elevados para una empresa, aparte de la creencia particular de que realizar en una Colonia de las características de la nuestra el ciclo completo de un proceso industrial, hasta su último producto, tiene graves inconvenientes, por diversas razones que no es del caso tratar aquí, creyendo más oportuno realizar la transformación y preparados farmacéuticos en la metrópoli, integrando actividades de laboratorios farmacéuticos de más amplitud comercial.

En este sentido estimamos que la mejor forma de exportar la materia prima es en estado de manteca, envasada en bidones, cuya tapa o fondo sea enteramente desprendible y sujeto por un aro a presión y precintado, para su fácil vaciado, limpieza y retorno a la Colonia.

Es más ventajoso este sistema que la exportación de semilla, por la gran alterabilidad de ésta, el peso tres veces mayor a transportar, los superiores derrames que la mercancía tendrá, la poca utilidad del turto de Caloncoba como subproducto y la imposibilidad de utilización de una estiba en cubierta, cosa corriente en la Colonia por la falta de fletes.

Seguir el proceso hasta la obtención de los ésteres tampoco lo creemos interesante, pues, aparte de la instalación precisa, etc., puede interesar más la manteca como materia prima para mayor número de preparados, como jabones, sales, emulsiones, grajeas, etc., etc.

En el caso de exportación de manteca, y habiendo escasez de producción, es claro que interesa el agotamiento total de las semillas, y a ello sólo se presta la extracción por disolventes químicos; pero en casos de abundancia, simples prensas hidráulicas de gran potencia harán la presión en caliente, con economía indudable, pues se podrían utilizar para otros menesteres corrientes en la agricultura tropical. Pero estas orientaciones las dará el precio que el producto obtenga y como en toda explotación colonial recomendamos el sístema de sucesiva ampliación de instalaciones, previo un plan de conjunto, más que la inversión prematura de un gran capital, que no responde a las primeras necesidades, en principio pequeñas y lentamente crecientes, parece de antemano que debe inclinarse a la segunda solución indicada cualquier agricultor que pretenda acometer la empresa.

