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Microfluidic device for the generation of droplets containing mixed cell 
populations for long term culture.
Image courtesy of Rohan Thakur, Stott Laboratory

Ex vivo culture of circulating tumor cells from a breast cancer patient.
Image courtesy of Haber/Maheswaran Laboratory

EGF stimulation rapidly triggers actin/ERM- (green) and pAkt (red) rich 
macropinocytic cups on the surface of Nf2-/- cells.

Image courtesy of Christine Chiasson-MacKenzie, PhD, McClatchey Laboratory
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The Center for Cancer 

Research (CCR) is the 

major hub for basic 

and translational 

research within the 

Massachusetts General 

Hospital Cancer Center. 

The CCR includes  

50 primary and affiliated 

faculty members, 

with multidepartmental Harvard Medical School 

appointments, including the Departments of Medicine, 

Pathology, Radiation Oncology, Surgery, Dermatology 

and Pediatrics. These scientists are pursuing every aspect 

of cancer research, from exploring cancer genetics, 

genomics, epigenetics and proteomics to developmental 

biology, cell signaling, molecular therapeutics, 

immunology, metabolism, cell cycle regulation, and 

microRNA biology. We occupy over 80,000 square feet 

of laboratory space in three Mass General research 

facilities, (Charlestown Navy Yard, Simches Research 

Building and the Jackson Building), and our laboratories 

include more than 500 postdoctoral fellows, graduate 

students and technicians. We host seminar series, an 

annual symposium, and a two-day retreat which provide 

opportunities for our investigators to discuss new ideas 

and spark productive collaborations. 

Some of the CCR research highlights from the past  

year include: 

• identifying T cell markers associated with positive 

response to checkpoint immunotherapy in 

melanoma

• targeting ATR response to DNA replication block in 

Myelodysplastic Syndrome

• defining the role of Merlin/ERM proteins in 

macropinocytosis and receptor signaling

• revealing new types of human dendritic cells 

contributing to immune responses

• defining the role of the histone deacetylase SIRT6 in 

orchestrating the Warburg effect

• identifying mutations caused by the APOBEC 

enzyme at DNA stem-loops, as drivers of recurrent 

mutagenesis

• using an RNA-based digital circulating tumor 

cell signature to predict drug response and early 

dissemination in prostate cancer

• linking changes in histone methylation to the 

initiation of gene amplification in cancer cells

• targeting RET fusions that mediate resistance to 

EGFR inhibition in lung cancer

• defining the scale of transcriptome-wide off-target 

hits using CRISPR-guided DNA base editing

• creating novel CAR-T cells secreting bispecific 

antibodies to target brain tumors

This year, we are delighted to introduce four new 

CCR faculty members: Esther Rheinbay, PhD (from 

the Broad Institute); Liron Bar-Peled, PhD (from the 

Scripps Research Institute); Russell Jenkins, MD, PhD 

(from the Dana-Farber Cancer Institute); and Robert 

Manguso, PhD (from the Broad Institute). These young 

investigators have already made important contributions 

in their respective fields and will further expand and 

strengthen our bioinformatics/computational biology, 

cell biology and cancer immunology programs.

Cancer immunology and immunotherapy was the main 

theme of the 2019 Jonathan Kraft Prize for Excellence 

Message from the Director

Daniel Haber photo by Scott Eisen
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in Cancer Research and Symposium presented by the 

Mass General Center for Cancer Research. The Prize, 

which honors an extraordinary scientist who has made 

seminal contributions to cancer research, was presented 

to Carl June, MD from the University of Pennsylvania 

for his breakthrough contributions to the field of CAR-T 

cell therapy. He exemplifies the innovative scientist 

and thoughtful mentor that this award was intended to 

recognize, when established in 2014 by Robert Kraft to 

honor his son Jonathan’s commitment to cancer research. 

Our investigators have successfully competed for funding 

from NIH, NCI and many prestigious foundations 

including the Ambrose Monell Foundation, American 

Cancer Society, Breast Cancer Research Foundation, 

Cancer Research Institute, Conquer Cancer Foundation, 

Damon Runyon Cancer Research Foundation, Ellison 

Foundation, Gray Foundation, National Foundation for 

Cancer Research, Sontag Foundation, and V Foundation 

for Cancer Research, among other generous funders.

We are also grateful to the many individuals and families 

who so generously support our efforts, including donors 

who have established endowed chairs which are vital 

to the success of our investigators and the strength of 

our research program. During the past year Andrea 

McClatchey, PhD was appointed as the inaugural 

incumbent of the Poitras Family Endowed Chair in 

Oncology and David Sweetser, MD is the inaugural 

incumbent of the Leslie Meyer and Lewis Ball Holmes 

Chair in Genetics and Teratology. 

Our goal for the next year is to further advance our 

understanding of fundamental biological processes 

disrupted in cancer. We will continue our focus on 

developing new diagnostic and therapeutic tools that can 

alter the course of the disease at its earliest stages and 

provide improved clinical outcomes for patients treated at 

the Mass General Cancer Center and around the world. In 

addition, we will continue our commitment to fostering 

intellectual exchange and innovation and to training and 

supporting our students and postdoctoral fellows who 

represent the next generation of leaders in cancer research. 

Daniel A. Haber, MD, PhD

Director, Massachusetts General Hospital Cancer Center
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O
n July 18, 2019, Dr. Kurt Isselbacher passed 

after a brief illness at the age of 93. The 

field of Gastroenterology lost one of its 

most influential and respected leaders and the Mass 

General Cancer Center lost its founder, whose insight 

and vision advanced cancer research at our institution 

and beyond.

Kurt was born in Wirges, Germany, where his 

father, Albert, was a merchant. Kurt’s childhood 

changed dramatically after the infamous Kristallnacht 

pogrom in 1938, after which his family fled the 

Nazis and emigrated to the United States, settling in 

Portsmouth, New Hampshire. 

An exceptionally bright student, Kurt enrolled 

at Harvard College and received his M.D. degree 

from Harvard Medical School, then completed a 

residency in Internal Medicine at Massachusetts 

General Hospital in 1953. He then spent three years 

as a Clinical Investigator at the National Institutes 

of Health, before returning to MGH and joining the 

Harvard faculty. 

In 1956, at the age of 31, Kurt was invited by 

the Chief of Medicine, Walter Bauer, to lead the 

Gastroenterology Division. Under Kurt’s direction 

for over 30 years, MGH Gastroenterology became a 

leading center in the country for training, research and 

clinical care of gastrointestinal diseases. 

Kurt’s own research focused on the mechanisms 

involved in the intestinal uptake and transport of 

sugars, amino acids and lipids. At NIH, he identified 

the enzymatic defect responsible for galactosemia, 

leading to the development of a specific test which 

is now used routinely to screen all newborns. He 

subsequently described the pathways of corticosteroid 

metabolism in the liver; mechanisms of intestinal fat 

and sugar absorption; metabolic defects that lead to 

alcohol-induced fatty liver; and malabsorption and 

immunologic defects associated with hepatic disease. 

In 1987, the MGH Board of Trustees established 

the Cancer Center, appointing Kurt as its founding 

Director. Kurt created a research hub in the 

Charlestown Navy Yard, recruiting outstanding basic 

science faculty and fostering an environment of 

scientific excellence and vibrant collaborations. Kurt 

stepped down in 2003, succeeded as Cancer Center 

Director by Daniel Haber. He continued working 

Kurt J. Isselbacher, MD— In Memoriam
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and mentoring faculty in the Cancer Center for the 

remainder of his life, and even at the age of 93, he 

regularly attended lab meetings and scientific lectures. 

Kurt was repeatedly called upon to serve in 

leadership roles at MGH, Harvard and other national 

and international institutions. From 1966 to 1995, 

he served as Chairman of the Executive Committee 

of the Harvard Medical School Departments of 

Medicine. He served as the President of the American 

Gastroenterological Association, receiving the 

Distinguished Achievement Award and the Julius 

Friedenwald Medal; he received the prestigious Kober 

Medal from the Association of American Physicians. 

He received the John Phillips Memorial Award for 

Distinguished Achievement in Clinical Medicine from 

the American College of Physicians and the Bristol-

Myers Squibb/Mead Johns Award for Distinguished 

Achievement in Nutrition Research. Kurt served as 

one of the editors of Harrison’s Principles of Internal 

Medicine, the pre-eminent textbook in medical 

education. He was a member of the National Academy 

of Sciences, the National Research Council, and the 

American Academy of Arts and Sciences. 

As a teacher and mentor, Kurt enriched the lives of 

both colleagues and trainees, setting the standard for 

clinical and scientific excellence, genuine compassion 

and inspiring leadership. He listened more than he 

spoke, and his advice was always thoughtful, kind  

and generous. 

Kurt’s passing was preceded by that of his beloved 

wife Rhoda and daughter Lisa. He is survived by 

his daughters Jody and Kate, and his son Eric, and 

their families. He has also touched the hearts of the 

entire faculty and trainees of the MGH Cancer Center 

and the Center for Cancer Research, which was his 

academic pride and joy. His vision continues to guide 

us as we remain true to his standard of scientific 

excellence combined with respect, friendship and 

collaboration.

He will be greatly missed. 

The field of Gastroenterology lost one of its most influential 

and respected leaders and the Mass General Cancer Center 

lost its founder, whose insight and vision advanced cancer 

research at our institution and beyond.
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2019-2020 Members

Julian Adams, PhD
Gamida Cell, Ltd.

David E. Fisher, MD, PhD 
Massachusetts General Hospital

Darrell J. Irvine, PhD 
Koch Institute 
Massachusetts Institute of Technology

Robert E. Kingston, PhD 
Massachusetts General Hospital

David N. Louis, MD 
Massachusetts General Hospital

Phillip A. Sharp, PhD 
Massachusetts Institute of Technology

Arlene Sharpe, MD, PhD 
Harvard Medical School

Past Members

Spyros Artavanis-Tsakonas, PhD 
Yale University School of Medicine

Joseph Avruch, MD 
Massachusetts General Hospital

David Baltimore, PhD 
California Institute of Technology

Cori Bargmann, PhD 
University of California, San Francisco

Edward J. Benz Jr., MD 
Dana-Farber Cancer Institute

Joan S. Brugge, PhD 
Harvard Medical School

Donald Ganem, MD 
University of California, San Francisco

Walter J. Gehring, PhD 
Biozentrum 
University of Basel

David Hogness, PhD 
Stanford University School of Medicine

David Housman, PhD 
Massachusetts Institute of Technology

Peter Howley, MD 
Harvard Medical School

Richard Hynes, PhD 
Massachusetts Institute of Technology

Tyler Jacks, PhD 
MIT Cancer Center

Alfred G. Knudson Jr., MD, PhD 
Fox Chase Cancer Center

David Livingston, MD 
Dana-Farber Cancer Institute

Scott Lowe, PhD 
Cold Spring Harbor Laboratory

Frank McCormick, PhD 
University of California, San Francisco

Stuart Orkin, MD 
Children’s Hospital and  
Dana-Farber Cancer Institute

Terry Orr-Weaver, PhD 
Whitehead Institute

Anthony Pawson, FRS, PhD 
Samuel Lunenfeld Research Institute,  
Mount Sinai Hospital

Carol Prives, PhD 
Columbia University

Gerald M. Rubin, PhD 
University of California, Berkeley

Gary Ruvkun, PhD 
Massachusetts General Hospital

Jeffrey Settleman, PhD 
Calico, Inc.

Eileen White, PhD 
Rutgers University Cancer Institute of New Jersey

Scientific Advisory Board
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2014
Hans Clevers, MD, PhD
President of the Royal Netherlands Academy of  
Arts and Sciences 
Professor of Molecular Genetics  
University Utrecht, Netherlands 

2013
James Allison, PhD
Chair, Department of Immunology
MD Anderson Cancer Center, Houston, Texas 

2012
Craig Thompson, MD
President and Chief Executive Officer
Memorial Sloan-Kettering Cancer Center, New York

2011
Michael Stratton, MD, FRS
Director, Wellcome Trust Sanger Institute, Cambridge, UK

2010
Charles Sawyers, MD
Chairman of the Human Oncology and Pathogenesis Program
Memorial Sloan-Kettering Cancer Center, New York

2009
Bert Vogelstein, MD
Director of the Ludwig Center for Cancer Genetics & Therapeutics
Sidney Kimmel Comprehensive Cancer Center
Johns Hopkins University, Maryland

2008
Titia de Lange, PhD
Associate Director of the Anderson Cancer Center
Rockefeller University, New York

2007
Joan Massague, PhD
Chairman of the Cancer Biology and Genetics Program
Memorial Sloan-Kettering Cancer Center, New York

2006
Anton Berns, PhD
Director of Research and Chairman of the Board of Directors,
Netherlands Cancer Institute and Antoni van Leewenhoek 
Hospital, Netherlands

2020 (to be presented in May 2020)

Aviv Regev, PhD
Chair of the Faculty and Core Member, Broad Institute 
Director, Klarman Cell Observatory, Broad Institute 
Professor of Biology, MIT

2019
Carl H. June, MD
Professor in Immunotherapy 
Director, Center for Cellular Immunotherapies 
University of Pennsylvania Perelman School of Medicine

2018
Charles Swanton, MD, PhD
Professor and Chair, Personalized Cancer Medicine 
University College London Cancer Institute, London, UK

2017
Kevan M. Shokat, PhD
Professor and Chair, Department of Cellular and Molecular 
Pharmacology, UCSF 
Professor, Department of Chemistry, UC Berkeley 

2016
Joan A. Steitz, PhD
Sterling Professor of Molecular Biophysics and Biochemistry 
Yale School of Medicine 

2015
C. David Allis, MD, PhD
Joy and Jack Fishman Professor, Laboratory of Chromatin 
Biology and Epigenetics, Rockefeller University

The Annual MGH Award in Cancer Research

Jonathan Kraft Prize for Excellence in Cancer Research

In memory of Nathan and Grace Shiff

Presented by the Massachusetts General Hospital Cancer Center
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Charlestown Laboratories
Martin Aryee, PhD 
Assistant Professor of Pathology*

Liron Bar-Peled, PhD 
Assistant Professor of Medicine

Cyril Benes, PhD 
Assistant Professor of Medicine

Priscilla K. Brastianos, MD 
Assistant Professor of Medicine

Ryan Corcoran, MD, PhD 
Associate Professor of Medicine

Shawn Demehri, MD, PhD 
Assistant Professor in Dermatology^
Nicholas Dyson, PhD 
Professor of Medicine

Andrew Elia MD, PhD 
Assistant Professor of Radiation Oncology

David E. Fisher, MD, PhD 
Professor and Chief of Dermatology

Gaddy Getz, PhD 
Professor of Pathology 

Timothy A. Graubert, MD 
Professor of Medicine 

Wilhelm Haas, PhD 
Assistant Professor of Medicine

Daniel A. Haber, MD, PhD 
Professor of Medicine

Nir Hacohen, PhD 
Professor of Medicine

Aaron Hata, MD, PhD 
Assistant Professor of Medicine

Jonathan G. Hoggatt, PhD 
Assistant Professor of Medicine◊ 

Othon Iliopoulos, MD 
Associate Professor of Medicine

Keith Joung, MD, PhD 
Professor of Pathology*

Li Lan, MD, PhD 
Assistant Professor of Radiation Oncology#

David M. Langenau, PhD 
Associate Professor of Pathology*

Michael S. Lawrence, PhD 
Assistant Professor of Pathology 

Shyamala Maheswaran, PhD 
Associate Professor of Surgery

Robert Manguso, PhD 
Faculty Member†

Marcela V. Maus, MD, PhD 
Assistant Professor of Medicine

Andrea I. McClatchey, PhD 
Professor of Pathology

David T. Miyamoto, MD, PhD 
Assistant Professor of Radiation Oncology#

Mo Motamedi, PhD 
Assistant Professor of Medicine

Christopher J. Ott, PhD 
Assistant Professor of Medicine

Shiv Pillai, MD, PhD 
Professor of Medicine ◊ ◊

Luca Pinello, PhD 
Assistant Professor of Pathology*

Esther Rheinbay, PhD 
Assistant Professor of Medicine

Miguel N. Rivera, MD 
Assistant Professor of Pathology*

Dennis Sgroi, MD 
Professor of Pathology*

Toshihiro Shioda, MD, PhD 
Associate Professor of Medicine

David Spriggs, MD 
Professor of Medicine†

Shannon Stott, PhD 
Assistant Professor of Medicine

Mario L. Suvà, MD, PhD 
Assistant Professor of Pathology*

David T. Ting, MD 
Assistant Professor of Medicine

Alexandra-Chloé Villani, PhD 
Assistant Professor of Medicine°

Lee Zou, PhD 
Professor of Pathology

Jackson Laboratories
Nir Hacohen, PhD 
Professor of Medicine

A. John Iafrate, MD, PhD 
Professor of Pathology*

Russell W. Jenkins, MD, PhD 
Assistant Professor of Medicine

Simches Laboratories
Nabeel Bardeesy, PhD 
Associate Professor of Medicine

Bradley Bernstein, MD, PhD 
Professor of Pathology*

Leif Ellisen, MD, PhD 
Professor of Medicine

Konrad Hochedlinger, PhD 
Professor of Medicine**

Hanno Hock, MD, PhD 
Assistant Professor of Medicine**

Raul Mostoslavsky, MD, PhD 
Professor of Medicine

David A. Sweetser, MD, PhD 
Assistant Professor of Pediatrics

Shobha Vasudevan, PhD 
Associate Professor of Medicine

 *  Joint appointment, Massachusetts General 
Hospital Cancer Center and Molecular 
Pathology Unit

 **  Joint appointment, Massachusetts General 
Hospital Cancer Center and Center for 
Regenerative Medicine and Technology

 ^  Joint appointment with MGH Cutaneous 
Biology Research Center

 #  Joint appointment with MGH Molecular 
Radiation Oncology Unit

 ◊  Joint appointment with MGH 
Transplantation Research Center

 ◊ ◊  Joint appointment with Ragon Institute of 
Harvard and MIT

   Joint appointment with MGH Pediatric 
Hematology Oncology Unit

 †  Appointment process initiated

 °  Joint appointment with Center for 
Immunology and Inflammatory Diseases

Daniel A. Haber, MD, PhD
Director, Massachusetts General  
  Hospital Cancer Center
Kurt J. Isselbacher Professor of  
  Oncology

Nicholas Dyson, PhD
Scientific Director
Mary B. Saltonstall Chair  
  in Oncology  
Professor of Medicine

Lee Zou, PhD
Associate Scientific Director
James and Patricia Poitras Chair  
  in Cancer Research  
Professor of Pathology

Nir Hacohen, PhD
Director, Center for Cancer  
  Immunology
David P. Ryan Chair in Cancer  
  Research
Professor of Medicine

Center for Cancer Research Faculty
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Tumor heterogeneity 

We develop statistical methods to improve 

our understanding of cell-to-cell variability 

and its relationship to cancer-related 

phenotypes. Much of this work relates to 

the computational and statistical challenges 

posed by single-cell transcriptome and 

epigenome data. The goal of these methods 

is to characterize the somatic changes 

that occur during tumor development and 

that are ultimately responsible for disease 

progression and resistance to therapy. 

Different tumors, even of the same type, 

can harbor extremely heterogeneous 

epigenetic alterations. To investigate the 

role of epigenetic stochasticity in cancer, 

we recently applied a statistical model to 

study patterns of inter- and intra-individual 

tumor heterogeneity during metastasis. We 

established that metastatic prostate cancer 

patients develop distinctly unique DNA 

methylation signatures that are subsequently 

maintained across metastatic dissemination. 

Further, by quantifying the stability of these 

individualized DNA methylation profiles we 

showed that they were strikingly similar 

to that of copy number alterations, a 

finding with implications for the promise 

of epigenetic alterations as diagnostic and 

therapeutic targets in cancer. 

Epigenome mapping 

Unlike genome sequencing which has well 

established experimental and analytical 

protocols, epigenome mapping strategies 

are still in their infancy and, like other 

high-throughput techniques, are plagued 

by technical artifacts. A central theme of 

our research involves the development of 

methods for extracting signal from noisy 

high-throughput genomic assays. The goal of 

such preprocessing methods is to transform 

raw data from high-throughput assays 

into reliable measures of the underlying 

biological process. 

Until recently, studies of DNA methylation 

in cancer had focused almost exclusively 

on CpG dense regions in gene promoters. 

We helped develop the statistical tools used 

to analyze the first genome-scale DNA 

methylation assays designed without bias 

towards CpG islands. These tools enabled 

the discovery that the majority of both tissue-

specific and cancer-associated variation 

occurs in regions outside of CpG islands. 

We showed that there is a strong overlap 

between genomic regions involved in normal 

tissue differentiation, reprogramming during 

induced pluripotency, and cancer.

The Aryee laboratory develops analysis methods for studying the genetic  

and epigenetic basis of cancer and other diseases. Most of their work is  

focused on improving our understanding of how aberrations in the physical 

and chemical structure of DNA within the nucleus is linked to cancer and  

other common diseases. Projects range from basic biology, probing how  

DNA misfolds in cancer cells, to clinical applications aiming to develop blood 

tests for early detection of cancer. The lab also develops tools that aim to  

enable the safe translation of gene editing techniques such as CRISPR into 

human therapeutics.

Aryee Laboratory

Martin Aryee, PhD 

Caleb Lareau* 

Ayush Raman, PhD

Alejandro Reyes, PhD

*PhD Candidate
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Selected Publications:

Ligorio M, Sil S, Malagon-Lopez J, 
Nieman LT, Misale S, Di Pilato M, 
Ebright RY, Karabacak MN, Kulkarni 
AS, Liu A, Vincent Jordan N, Franses 
JW, Philipp J, Kreuzer J, Desai N, 
Arora KS, Rajurkar M, Horwitz E, 
Neyaz A, Tai E, Magnus NKC, Vo 
KD, Yashaswini CN, Marangoni F, 
Boukhali M, Fatherree JP, Damon LJ, 
Xega K, Desai R, Choz M, Bersani F, 
Langenbucher A, Thapar V, Morris 
R, Wellner UF, Schilling O, Lawrence 
MS, Liss AS, Rivera MN, Deshpande 
V, Benes CH, Maheswaran S, Haber 
DA, Fernandez-Del-Castillo C, Fer-
rone CR, Haas W, Aryee MJ, Ting DT. 
Stromal Microenvironment Shapes 
the Intratumoral Architecture of 
Pancreatic Cancer. Cell. 2019 Jun 
27;178(1):160-175.

Ludwig LS, Lareau CA, Ulirsch JC, 
Christian E, Muus C, Li LH, Pelka K, Ge 
W, Oren Y, Brack A, Law T, Rodman 
C, Chen JH, Boland GM, Hacohen 
N, Rozenblatt-Rosen O, Aryee MJ, 
Buenrostro JD, Regev A, Sankaran VG. 
Lineage Tracing in Humans Enabled 
by Mitochondrial Mutations and 
Single-Cell Genomics. Cell. 2019 Mar 
7;176(6):1325-1339.e22.

Akcakaya P, Bobbin ML, Guo JA, 
Malagon-Lopez J, Clement K, Garcia 
SP, Fellows MD, Porritt MJ, Firth 
MA, Carreras A, Baccega T, Seeliger 
F, Bjursell M, Tsai SQ, Nguyen 
NT, Nitsch R, Mayr LM, Pinello L, 
Bohlooly-Y M, Aryee MJ, Maresca 
M, Joung JK. In vivo CRISPR editing 
with no detectable genome-wide 
off-target mutations. Nature. 2018 
Sep;561(7723):416-419.

Lareau CA, Aryee MJ. hichipper: a 
preprocessing pipeline for calling 
DNA loops from HiChIP data. Nat 
Methods. 2018 Feb 28;15(3):155-156. 

Lareau CA, Aryee MJ. diffloop: a 
computational framework for identi-
fying and analyzing differential DNA 
loops from sequencing data. Bioinfor-
matics. 2018 Feb 15;34(4):672-674. 

Epigenomic studies of 
complex disease 

Despite the discovery of numerous disease-

associated genetic variants, the majority of 

phenotypic variance remains unexplained 

for most diseases, suggesting that non-

genetic factors play a significant role. 

Part of the explanation will lie in a better 

understanding of epigenetic mechanisms. 

These mechanisms are influenced by 

both genetic and environmental effects 

and, as downstream effectors of these 

factors, may be more directly related to 

phenotype. There is hope that epigenetic 

alterations may provide therapeutic targets 

for pharmacological intervention, due to 

their reversible nature. However, the broad 

extent of epigenetic dysregulation in cancer 

and many other diseases complicates the 

search for the small subset of alterations 

with a causal role in pathogenesis. We 

are developing computational methods 

to integrate genome-wide genetic and 

epigenetic data with the goal of identifying 

the subset of functionally important 

epigenetic alterations. 

DNA methylation “Cityscape” 
plots of lethal metastatic prostate 
cancer highlight inter-tumor 
epigenetic heterogeneity.

Genomic cityscapes of so-
matic (A) hypermethylation 
and (B) hypomethylation. Each 
chromosome is folded into 
neighborhoods as shown in 
(C). Each structure represents 
a genomic region showing a 
somatic methylation alteration. 
The height of each structure 
indicates the number of tumors 
showing an alteration at this 
site. The color scale represents 
the degree of stability of these 
alterations across metastases 
within individuals. The magni-
fied region in (A) illustrates a 
representative chromosomal 
segment showing clustering 
of frequently hypermethylated 
regions (skyscrapers).
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Liron Bar-Peled, PhD

Bar-Peled Laboratory

Liron Bar-Peled, PhD 

Franziska Bemmann**

Ben Jiang*

Marion Schweiger*

Abby Smith

Tommy Weiss, PhD

Konstantin Wolf*

Mengyao Xu, MD 

shared with David Spriggs lab  

Junbing Zhang, PhD

*Master’s student

**Graduate student

Cancer cells display remarkable plasticity 
allowing them to adapt to ever changing 
environments. A key feature of this plasticity 
is their ability to rewire core metabolic 
networks to provide a steady source of 
energy and building blocks needed for rapid 
growth. This demand for energy produces 
byproducts, including ROS that alters the 
function of proteins, DNA and lipids, and if 
left unchecked, results in oxidative stress 
and impairs cancer cell viability. To counter 
a rise in oxidative stress, cells activate the 
NRF2 transcription factor leading to the 
expression of a vast network of antioxidant 
and detoxification genes that restore redox 
homeostasis. Multiple cancer cells, including 
~30% of non-small cell lung cancers 
(NSCLCs) activate NRF2 through the genetic 
disruption of its negative regulator KEAP1. 
Despite its clear importance in cancer cell 
proliferation, we know remarkably little about 
how the NRF2/KEAP1 pathway functions 
within cancer cells or how ROS modification 
of proteins alters their function. Our long-
term goal is to understand how cancer 
cells sense and respond to ROS and to 

pharmacologically modulate these pathways 
in cancers where they are deregulated. 

Redox control pathways in  
Lung Cancer 

Our recent studies focus on how the 

intracellular environment generated by 

NRF2 in NSCLCs is required for cancer 

cell proliferation. By employing a chemical 

proteomics platform (isoTOP-ABPP) that 

identifies changes in cysteine reactivity 

mediated by ROS, we demonstrated that 

NRF2 is required for the protection of dozens 

of proteins from ROS modification. We found 

that silencing NRF2 in NSCLCs reduced 

the reactivity of the catalytic cysteine of the 

glycolytic enzyme GAPDH without changing 

GAPDH protein abundance. Concomitant 

knockdown of NRF2 significantly reduced 

GAPDH enzyme activity and glycolytic flux, a 

metabolic pathway required to fuel cancer 

cell proliferation. These results illustrate 

how NRF2 can regulate enzyme and pathway 

activity, not through direct transcriptional 

control, but rather by fostering a favorable 

Research in the Bar-Peled laboratory sits at the interface of cellular 

metabolism and signal transduction and focuses on understanding how cancer 

cells respond to altered metabolic states. Rapidly proliferating cancer cells are 

characterized by increased production of toxic metabolic byproducts known 

as reactive oxygen species (ROS) that at high levels potently block cancer cell 

growth. To neutralize high ROS levels, cancer cells activate the NRF2 pathway, 

which governs the cellular antioxidant response. While the NRF2 pathway is 

critical for cancer growth, the molecular mechanisms by which this pathway 

functions and provides cancer cells with a proliferative advantage remain 

poorly understood. By combining frontier molecular, chemical and proteomic 

approaches, research in our lab has revealed that NRF2 establishes a unique 

cellular environment that protects critical proteins required for cancer cell 

growth from inactivation by ROS. Our studies indicate that these ROS-regulated 

proteins are highly targetable by small molecule inhibitors and may be 

exploited to develop chemical tools to inactivate these dependencies in cancers.
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*These authors contributed equally to  
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†Co-corresponding authors

(Left) A cysteine druggability map identifies proteins exclusively druggable in KEAP1-mutant NSCLC 
cells enabling the development of small molecule inhibitors that disrupt NR0B1 protein interactions 
(middle) and block KEAP1-mutant cell growth (right).  
Images from Bar-Peled et al., 2017.

redox environment required for proper 

enzyme function. Current studies in our lab 

seek to elucidate how other proteins are 

post-translationally regulated by NRF2 and 

feedback into this pathway. To address these 

questions, we are studying the function of 

ROS-regulated sites on proteins as well 

as the identifying reactive metabolites that 

modify them. 

Druggable co-dependencies 

Our investigations suggest that the cellular 

state created by NRF2 may be exploited to 

develop inhibitors targeting proteins whose 

expression and function are stimulated 

by this environment. Because of their 

importance to protein function, cysteines 

are targeted by multiple clinically approved 

inhibitors. To identify pharmacological 

targets of the NRF2 pathway, we use 

powerful chemical proteomic platforms 

(cysteine druggability mapping) to identify 

the landscape of protein druggability (e.g. 

ligand-protein interactions) in genetically 

defined lung cancers. Our studies reveal 

that multiple proteins, including the orphan 

nuclear receptor NR0B1, are exclusively 

druggable in KEAP1-mutant, NRF2-

activated cells. By developing a small 

molecule inhibitor that disrupts NR0B1 

protein interactions we show that NR0B1 

functions as a critical signaling node within 

the NRF2 pathway to support its pro-

proliferative transcriptional output required 

for anchorage-independent growth. Recently 

we uncovered that cysteine residues that 

are sensitive to ROS modification are highly 

targetable by covalent inhibitors. Our current 

studies suggest that these sites may be 

exploited to develop inhibitors that target 

proteins required for the proliferation of 

NRF2- activated cancers. 

Ongoing projects:

1. Determine how cancer proteomes 
respond to changes in the intracellular 
redox environment

2. Elucidate the role of NRF2-regulated 
reactive metabolites on protein function

3. Decipher how cells adapt to anchorage-
independent growth

4. Identify druggable transcriptional 
dependencies in genetically-defined 
cancers
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Pancreatic cancer and biliary cancer are among the most lethal types of 

human cancers. The Bardeesy laboratory has developed a series of genetically 

engineered mouse models and patient-derived models to define the role of 

key gene mutations that drive these cancer types. Current projects focus on 

defining roles for cancer genes in controlling the way cells modulate their 

growth and utilize energy in response to available nutrients, and on identifying 

epigenetic regulators responsible for changes in cellular differentiation states 

that lead to cancer initiation and maintenance. These studies are being used to 

inform improved therapeutic approaches. 

The Bardeesy lab focuses on defining 

the pathways driving the pathogenesis of 

pancreatic and biliary cancers. Our lab has 

developed a series of genetically engineered 

mouse models that has elucidated the 

functional interactions of major gene 

mutations associated with these diseases in 

humans. Specifically, we have characterized 

the roles of key cancer genes in the control 

of cellular differentiation states and in 

metabolic regulation. 

Interplay between metabolism and 
chromatin regulation in pancreatic 
and biliary cancer 

An important area of current focus in our 

lab is to elucidate the metabolic regulators 

of pancreatic cancer and biliary cancers, 

with particular attention paid to factors that 

subvert normal differentiation pathways 

and reprogram cancer cell epigenetics. 

We have linked mutations in LKB1/STK11 

and other important genetic alterations to 

changes in metabolism that ultimately alter 

epigenetic states. Identifying these pathways 

has provided insights in mechanisms of cell 

transformation arising from these mutations 

and predict novel therapeutic vulnerabilities. 

In biliary cancer, there are recurrent 

mutations in the IDH1 and IDH2 genes. 

Mutant IDH proteins acquire a novel enzymatic 

activity allowing them to convert alpha-

ketoglutarate (αKG) to 2-hydroxyglutarate 

(2HG), which inhibits the activity of multiple 

αKG-dependent dioxygenases, including 

the JmjC family histone demethylases. We 

are focusing on how IDH mutations affect 

epigenetic programs and regulation of cellular 

identity in the liver. 

Genetic regulation of metabolic 
reprogramming in pancreatic cancer

In order to couple rapid growth with available 

nutrients, cancers employ profoundly altered 

networks of biosynthetic and catabolic 

pathways. This requirement for metabolic 

reprogramming is particularly acute in 

pancreatic cancer, which is characterized 

by hypoxia and limited nutrient availability, 

and activates anti-oxidant gene expression 

and autophagy (cellular self-catabolism) 

as necessary adaptive metabolic changes. 

Our recent studies demonstrate that 

distinct metabolic programs are activated in 

pancreatic cancer depending on which gene 

mutations are present.  While these pathways 

offer attractive new therapeutic targets, 

the underlying mechanisms driving altered 

PDAC metabolism are unclear. We have 

focused on identifying master transcriptional 

regulators that broadly orchestrate metabolic 

reprogramming in PDAC.
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*Co-corresponding authors

7Principal Investigators

Genetic control of expression of the Mitochondrial Fission Factor (MFF) dictates mitochondrial 
architecture and metabolic phenotypes of cancer cells. The image shows mitochondrial staining 
(Mitotracker) of cancer cells which express high levels of MFF (left panel) or low levels of MFF 
(right panel). The MFF-high cancer cells show hyper-fragmented mitochondria compared to 
the fused mitochondrial network of MFF-low cancers. This differential control of mitochondrial 
dynamics results in distinct metabolic programs and vulnerabilities.

Understanding and targeting FGFR2-
driven biliary cancer 

Genetic alterations that activate Fibroblast 

Growth Factor 2 (FGFR2) signaling are 

common in biliary cancer and predict 

response to pharmacological inhibition of the 

FGFR in patients. However, tumor shrinkage 

is often modest and acquired resistance 

invariably arises. We are investigating 

oncogenic mechanisms controlled by 

FGFR2 in biliary cancer, including direct 

targets of FGFR2 signaling as well as 

downstream impact on cellular metabolism 

and differentiation.  Additionally, we are 

investigating resistance mechanisms 

and approaches to prevent and overcome 

resistance.

Models of biliary cancer 

Recent genetic studies have identified 

multiple recurrent mutations in biliary 

cancers and have indicated considerable 

genetic heterogeneity between individual 

tumors. A key limitation in the field includes 

a paucity of experimental systems with 

which to define the contributions of the 

lesions to biliary cancer progression. We 

have established a series of genetically 

engineered mouse models that incorporate 

combinations of the major mutations found 

in the human disease. In addition, our 

ongoing efforts include the development of a 

human biliary cancer cell line bank and the 

use of this system in large-scale genetic and 

small-molecule screens to systematically 

define targetable vulnerabilities in 

molecularly defined subtypes of this cancer.
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The Benes laboratory, also known as The Center for Molecular Therapeutics, 

is engaged in the design and application of personalized therapies for cancer. 

Targeted cancer treatments have emerged from research studies showing 

that the biology of cancer cells differs from that of healthy cells, and that each 

person’s cancer has a unique genetic signature. Our goal is to pinpoint the 

cancer cells’ biological weak points and then to attack those weak points with 

smart drugs that are specifically designed for such an attack. We use a very 

large collection of previously established tumor cell lines derived from many 

different cancers as well as newly established lines from patients treated at 

MGH. To better understand why some patients respond more favorably than 

others to therapy, we use both cancer cells and other cells found in tumors and 

study their interplay.

We are studying the molecular basis of  

response to anticancer agents. 

Molecular Basis of Cancer 
Therapeutic Response 

Clinical responses to anticancer therapeutics 

are often restricted to a subset of cases 

treated. In some instances, clear evidence 

is available that correlates clinical 

responses with specific tumor genotypes. 

Our goal is to identify tumor cell states that 

predict sensitivity to anticancer agents. To 

accomplish this goal, we use historically 

established cancer cell lines as well as 

cancer cells obtained from tumor biopsies 

and study their response to anticancer 

agents and their combinations using high-

throughput approaches. We collaborate 

with multiple groups at MGH and beyond 

to identify new treatment options for 

rare cancers. We use molecular profiling 

at multiple levels including genetic, 

epigenetic and proteomic to discover the 

mechanistic basis of drug response and 

identify biomarkers predictive of response in 

patients.

Targeting the Tumor 
Microenvironment

Tumors contain fibroblasts, endothelial cells 

and immune cells among others. These cells 

and the extracellular material they produce 

constitute the tumor microenvironment. 

We study how the tumor microenvironment 

influences therapeutic response. In 

particular we culture cancer associated 

fibroblasts from tumor biopsies. Our living 

collection of Patient Derived Fibroblasts 

gives us insights into the functional diversity 

of fibroblasts in tumors, and how they 

influence cancer cells as well as immune 

cells. Through these studies we aim to 

design therapeutic strategies targeting the 

tumor as a whole by perturbing routes of 

communication and cooperation between the 

different cell types present in tumors. 

Resistance to Cancer Therapies 

Even for the most successful anticancer 

therapies, drug resistance invariably 

emerges and limits the impact on patient 

lives. The molecular mechanisms underlying 

acquired resistance to cancer therapeutics 

are not well defined but are likely to be 
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different for each therapy and cancer. We 

are investigating how drug combinations 

could overcome resistance, and within this 

context, studying how changes in intracellular 

signaling pathways affect drug response.

We are tackling the problem of therapeutic 

resistance using cell lines made resistant 

in the laboratory or isolated from resistant 

tumors. Previous results have shown that 

these cell line models do recapitulate at least 

some of the mechanisms of resistance at play 

in patients. We interrogate combinations of a 

panel of clinically relevant anticancer drugs as 

a way to quickly identify candidate therapeutic 

strategies and to jumpstart mechanistic 

studies that will help characterize the 

molecular basis of acquired resistance.

Top: A collection of Patient Derived Fibroblasts (PDF) established from tumor biopsies of 
patients at the MGH. Fibroblasts were isolated from biopsies of a diverse population of non-
small cell lung cancer patients. Bottom: PDFs impact the response to Epidermal Growth 
Factor Tyrosine Kinase Inhibitor (EGFR TKI) through secreted factors: cancer cells sensitive to 
EGFR inhibition are protected by PDFs in co-culture (top) as well as in the presence of culture 
media conditioned by PDFs (bottom). Cancer cells are labelled red and PDFs green.
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A central question in human biology is how 

a single genome sequence can give rise to 

the hundreds of different cell types in the 

body. Scientists understand that differential 

patterns of gene expression underlie the 

many different cellular phenotypes seen 

in multicellular organisms. However, our 

understanding of how these gene expression 

patterns arise during development and how 

they are subsequently maintained in the 

adult organism remains poor. A number of 

studies have indicated that these different 

expression patterns and phenotypes are 

intimately related to the way in which 

genomic DNA is organized into chromatin 

in the cell. This organizational structure 

of proteins and DNA, sometimes referred 

to as the epigenome, helps control which 

genes are expressed in a given cell type and 

is critical to the function of normal cells. 

Moreover, a large body of evidence suggests 

that the epigenome is inappropriately altered 

in most—if not all—human cancers. 

The long-term goal of our research is to 

achieve a comprehensive understanding of 

how the human genome is organized into 

chromatin. Our group is further focused on 

understanding how dynamic alterations in 

chromatin structure contribute to mammalian 

development and how aberrant chromatin 

regulation contributes to cancer progression, 

heterogeneity and therapeutic resistance. We 

are taking a multifaceted approach involving 

stem cell biology, biochemistry, genetics, 

genomics and computational biology. The 

specific areas of research activity in the lab 

are explained below. 

Technologies for mapping histone 
modifications and chromatin proteins 

We are combining tools in cell biology, 

biochemistry and molecular biology, with 

next-generation sequencing to achieve 

genome-wide views of chromatin structure, 

chromatin regulator binding and genome 

organization at single cell and single 

molecule resolution. Integrative analysis of 

such chromatin state maps yields detailed 

annotations of the locations and dynamics 

of functional elements in the human 

The Bernstein laboratory studies how the DNA in the human genome is 

packaged by a structure called chromatin. A central question in human biology 

is how the one genome we inherit at birth can give rise to the hundreds of 

cell types in the body. The genome consists of genes that code for the protein 

machines in our cells as well as regulatory elements that control those genes. 

A liver cell is different from an immune cell or a neuron because it makes 

different proteins. The way a gene is organized into chromatin predicts whether 

it will be turned on or off—and thus make protein or not—in a particular cell 

type. Our lab has identified specific types of chromatin that help determine 

when certain genes are on or off, or that keep a gene poised to be turned on 

later in development. We leverage emerging technologies in genomics and 

computation to study chromatin organization across the genome. We use this 

information to better understand chromatin regulatory processes and how their 

failure contributes to cancer. 
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The machinery of chromatin 
regulation

The Bernstein group is focused 
on understanding the genome-
wide regulation and control 
of chromatin — DNA and its 
associated proteins. Studies in 
this group provide views into 
the ‘machinery’ that regulates 
chromatin in mammalian 
cells, demonstrating that 
Chromatin Regulators (CRs) 
act in a similar manner to 
the way gears function in a 
machine. In the illustration, 
the gears represent CRs that 
may act in concert or alone 
to control different genomic 
environments. 

Artwork by Lauren Solomon, Alon Goren and 
Leslie Gaffney, MGH and The Broad Institute. 
Original photograph from iStockphoto (Maksim 
Toome, photographer).

genome, including promoters, transcripts, 

silencers, insulators and enhancers. Ongoing 

projects are applying these annotations to 

understanding cell circuits and how they  

vary across cell types during development 

and in cancer. 

Epigenetic regulation of stem  
cell differentiation 

Chromatin regulators, such as the Polycomb 

and trithorax complexes, play critical roles 

in controlling the expression and potential of 

genes during development. We identified a 

novel chromatin structure, termed bivalent 

domains, that is subject to simultaneous 

regulation by Polycomb repressors and 

trithorax activators. Bivalent domains 

appear to keep developmental regulator 

genes poised in pluripotent embryonic stem 

cells and may also serve similar functions 

in multipotent progenitor cells. Current 

studies are leveraging a new generation 

of experimental assays to characterize 

the functions of bivalent domains and to 

understand the mechanisms that underlie 

their establishment and function. 

Chromatin regulation in cancer cells 

Genes encoding chromatin regulators are 

frequently mutated in human cancer. In 

specific cases, these alterations appear 

to be major drivers of the malignant state. 

Ongoing studies in the lab seek to apply 

epigenomic technologies to characterize the 

transcriptional and epigenetic landscapes 

of cancer stem cells and to identify 

mechanisms by which epigenetic changes 

contribute to therapeutic resistance.
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Characterizing Genomic Drivers  
of Craniopharyngiomas

Craniopharyngiomas are epithelial tumors 

that arise in the pituitary stalk along the 

path of the craniopharyngeal duct. There are 

two main subtypes of craniopharyngiomas, 

the adamantinomatous form that is more 

common in children, and the papillary 

form that predominantly occurs in adults. 

Craniopharyngiomas can cause profound 

clinical sequelae both through mass effect 

at presentation and through morbidity 

of treatment. No effective treatment 

besides surgery and radiation is known 

for craniopharyngiomas, and incomplete 

knowledge of the molecular mechanisms 

that drive craniopharyngiomas has limited 

the development of targeted therapies for 

this tumor. We recently comprehensively 

characterized the molecular drivers of 

craniopharyngiomas. We identified activating 

mutations in CTNNB1 in nearly all 

adamantinomatous craniopharyngiomas 

and recurrent mutations in BRAF (resulting 

in p.Val600Glu) in nearly all papillary 

craniopharyngiomas (Brastianos et al. 

Nature Genetics 2014). These findings have 

important implications for the diagnosis 

and treatment of these neoplasms. We 

recently treated a patient with multiple 

recurrent papillary craniopharyngioma with 

a BRAF and MEK inhibitor and achieved 

an exceptional therapeutic response. We 

have initiated a national multicenter trial in 

craniopharyngiomas (Alliance A071601) to 

investigate the role of targeted therapies in 

these tumors. Circulating biomarkers and 

genomic analysis of craniopharyngiomas  

will be employed to investigate mechanisms 

of resistance. 

Identifying Molecular Drivers  
of Meningiomas 

Meningiomas are the most common 

primary nervous system tumor with no 

known effective systemic therapy. Recently, 

we comprehensively characterized 

meningiomas. Through whole-genome, 

whole-exome and targeted sequencing, we 

have demonstrated that meningiomas harbor 

recurrent oncogenic clinically actionable 

mutations in AKT1 (E17K) and SMO (W535L) 

(Brastianos et al. Nature Genetics 2013). 

Notably, these mutations were present 

The Brastianos laboratory studies genomic drivers of human brain tumors. 

A lack of understanding of the molecular drivers of many brain tumors has 

hampered the development of novel therapies for many brain cancers. Our 

overarching objective is to characterize molecular drivers of both progression 

in primary brain tumors and brain metastases, and accelerate the development 

of novel therapeutic approaches for these diseases. We recently discovered 

clinically significant genetic drivers in meningiomas, craniopharyngiomas, 

hemangioblastomas, glioneuronal tumors and brain metastases. We are currently 

investigating the role of these genomic drivers as potential therapeutic targets 

in several national NCI-sponsored multi-center clinical trials. Additionally, we 

are expanding our in vitro and in vivo investigations to further elucidate the 

molecular evolution of the metastatic process to the central nervous system.
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Representative phylogenetic tree of a primary tumor and 2 anatomically distinct brain metastases.  
Different regions of the brain metastases shared the same amplifications in CCNE1, AKT2, CDK6, 
MET and MYC, which were not present in the primary tumor biopsy.

in therapeutically challenging tumors of 

the skull base. We also recently identified 

potential genetics drivers of progression 

in meningiomas (BAP1, TERT promoter 

mutations, DMD). Because therapeutic 

targets for SMO and AKT1 mutations are 

currently in clinical use in other cancers, we 

are now conducting a prospective national 

multicenter Phase 2 study (A071401) of 

targeted therapy in patients with recurrent 

or progressive meningiomas harboring 

clinically actionable mutations, respectively. 

The trial is activated at more than 400 sites 

throughout the US. We will be genomically 

characterizing prospectively collected 

samples to identify biomarkers of response 

and mechanisms of resistance. 

Central Nervous System  
Metastasis Program 

Brain metastases are a common 

complication of cancer, with a dismal 

prognosis. There is a limited understanding 

of the oncogenic alterations harbored 

by brain metastases and whether these 

are shared with their primary tumors or 

other metastatic sites. The objectives of 

the Central Nervous System Metastasis 

Program are to (1) identify novel therapeutic 

targets through comprehensive genomic 

characterization, (2) functionally characterize 

candidate drivers through in vitro and in vivo 

models of metastasis, and (3) accelerate 

the application of our scientific findings to 

the clinical setting. In collaboration with 

many national and international institutions, 

currently we are comprehensively 

characterizing the genomics of brain 

metastases to understand the molecular 

pathways that drive these tumors. We have 

demonstrated that brain metastases harbor 

clinically actionable drivers not detected 

in the primary tumors. We are evaluating 

the roles of these genetic alterations using 

various assays of metastasis. Based on 

this work, we have now initiated a national 

genomically guided brain metastasis trial 

(A071701). Our hope is that the findings from 

our genomic and functional investigations 

will allow us to develop more rational 

therapeutic approaches for this disease.
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Targeted therapy strategies for 
gastrointestinal cancers 

Historically, the standard clinical approach 

for patients with advanced cancers has 

been to treat all patients with the same 

tumor type with the same generalized 

chemotherapy strategy. However, even 

among patients with the same type of tumor, 

the genetic mutations driving tumor growth 

in each individual patient can be vastly 

different. As an alternative approach, by 

identifying the key gene mutations present 

in an individual patient’s tumor, we can 

“personalize” therapy by matching each 

patient with specific therapies that target 

those mutations essential for tumor growth. 

Our laboratory focuses on developing 

targeted therapy strategies directed against 

specific mutations commonly found in 

gastrointestinal cancers, including cancers 

with BRAF and KRAS mutations. However, 

while targeted therapy strategies can lead to 

dramatic tumor responses, clinical benefit is 

often limited by the ability of tumor cells to 

evolve and develop resistance to therapy. By 

identifying and understanding the key signals 

driving resistance, our laboratory aims to 

devise combinations of targeted agents that 

can overcome or even prevent resistance. 

BRAF-mutant colorectal cancer 

BRAF mutations occur in 10-15% of 

colorectal cancers and confer poor 

prognosis. While BRAF inhibitors have shown 

dramatic anti-tumor activity in melanomas 

harboring BRAF mutations, these agents 

are ineffective in BRAF-mutant colorectal 

cancers. Therefore, our laboratory has 

focused on determinants of resistance to 

BRAF inhibitors in BRAF-mutant colorectal 

cancers. We have found that reactivation of 

the MAPK signaling pathway (often mediated 

through EGFR), contributes to the relative 

insensitivity of BRAF mutant colorectal 

cancers to BRAF inhibition. However, we 

found that combining BRAF inhibitors with 

EGFR and/or MEK inhibitors can overcome 

resistance, leading to improved efficacy 

(Cancer Discovery, 2012). We have also 

identified multiple mechanisms of resistance 

that can arise to these newer BRAF 

inhibitor combinations, and are utilizing this 

information to develop therapeutic strategies 

to surmount resistance (Cancer Discovery, 

2015; Cancer Discovery, 2018).

The Corcoran laboratory focuses on developing new and effective therapies for 

gastrointestinal cancers, including colorectal, pancreatic, stomach, and esophageal 

cancers, by targeting the specific survival signals that are active in a given patient’s 

cancer. Our research utilizes targeted therapies, which are drugs that inhibit 

signaling pathways activated by the specific mutations that drive individual 

tumors. Since cancer cells often become resistant to these targeted therapies 

by activating alternative signaling pathways, we focus on identifying these key 

resistance signals in cancer cells. We utilize this information to devise effective 

combinations of targeted therapies that anticipate and ultimately overcome 

these mechanisms of drug resistance. Overall, our goal is to develop promising 

therapeutic strategies that can be evaluated in clinical trials for patients whose 

cancers are driven by specific mutations. 
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Response and resistance in BRAF-mutant colorectal cancer. (Left) Example of a dramatic tumor 
response in a patient treated with the combination of a BRAF and a MEK inhibitor. (Right) KRAS 
amplification (red probes) can lead to BRAF inhibitor resistance in BRAF mutant colorectal  
cancer patients.

KRAS-mutant cancers 

KRAS is the most commonly mutated 

oncogene in human cancer, mutated in 

~20% of all cancers, including pancreatic 

(~90%) and colorectal cancers (~40%). 

Currently no effective therapies exist for 

KRAS-mutant cancers, likely because 

KRAS itself has proven difficult to target 

directly with small molecules. Our current 

work focuses on identifying novel target 

pathways in KRAS-mutant cancers through 

hypothesis-based and large-scale pooled 

RNA interference screening approaches, 

with the goal of developing new targeted 

therapy combination approaches for KRAS-

mutant cancers. Recently, through a pooled 

RNA interference drug screen, we identified 

combined targeting of BCL-XL and MEK as 

a promising therapeutic strategy that leads 

to dramatic tumor regressions in KRAS-

mutant mouse tumor models. We have 

also identified adaptive feedback signals 

that impede the ability of MEK inhibitors to 

suppress MAPK signaling. We have expanded 

these approaches to identify other potentially 

effective targets in KRAS-mutant cancers. 

Translational Oncology 

The overall goal of our research is to 

develop improved treatments for patients 

with gastrointestinal cancers and to identify 

molecular markers that may help us identify 

those patients most likely to respond to a 

given therapy. As such, our laboratory takes 

a highly translational approach to bringing 

new therapeutic strategies into the clinic for 

evaluation in novel clinical trials. Based on 

our observations, we have launched several 

clinical trials of BRAF inhibitor combinations 

in BRAF-mutant colorectal cancers that 

are showing increased efficacy (J Clinical 

Oncology, 2015). We have also developed a 

clinical trial combining the BCL-XL/BCL-2 

inhibitor navitoclax with the MEK inhibitor 

trametinib in KRAS-mutant cancers. 

To guide our laboratory investigations, we 

are utilizing key clinical specimens, including 

tumor biopsies and patient-derived tumor 

models to understand how tumors become 

resistant to therapy. We also utilize serial 

blood collections for circulating tumor DNA 

analysis to monitor the tumor heterogeneity 

and clonal dynamics associated with the 

emergence of therapeutic resistance (Cancer 

Discovery 2015, Nature Medicine 2015, Cancer 

Discovery 2016, Cancer Discovery 2017, Cancer 

Discovery 2018.)

Pre-treatment Pre-treatmentWeek 16 Post-progression
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The field of cancer immunology has made 

substantial advances in recent years by 

deciphering the role of the tumor infiltrating 

CD8+ cytotoxic T lymphocytes (CTLs) in 

attacking cancer cells, which have led to 

promising new cancer immunotherapeutics. 

The current immunotherapeutic approaches, 

however, are largely designed to boost the 

anti-tumor immune response that has 

already formed against late-stage metastatic 

cancers. Therefore, the current cancer 

immunotherapies like immune checkpoint 

blockade, which rely on a pre-existing CTL 

infiltrate in the tumor for their effects, are 

proven ineffective to treat cancers that 

frequently lack a significant anti-tumor 

immune infiltrate, especially during the 

early in-situ phases of their development. 

In order to expand the potential of cancer 

immunotherapy, our laboratory studies 

the pathways that lead to immune system 

activation against early phases of cancer 

development. Devising a mechanism to 

activate the immune system against early-

stage cancers has clear immunopreventive 

implications by directly blocking the cancer 

promotion and immunotherapeutic  

benefits by potentiating the immunity  

against late disease.

To pursue this goal, the Demehri laboratory 

is currently focused on three areas of research:

1) Mechanisms of CD4+ T cell activation 

against cancer. Our laboratory has 

studied the mechanism of thymic stromal 

lymphopoietin (TSLP) in evoking tumor 

suppression. TSLP is an epithelial-derived 

cytokine that plays a central role in 

stimulating CD4+ T helper 2 (Th2)-mediated 

allergic diseases like atopic dermatitis and 

asthma. We have shown that high TSLP 

levels establish a dominant anti-tumorigenic 

immune environment preventing cancer 

promotion. Currently, our team investigates 

the detailed mechanism of TSLP anti-tumor 

function against solid cancers and examines 

its application for the treatment of pre-

cancerous skin and breast lesions  

in patients.

2) Mechanisms of natural killer (NK) cell 

recruitment and activation against cancer. 

NK cells are known for their potent anti-

tumor properties. However, their role in 

controlling the cancer development in vivo 

remains unclear. Our laboratory is utilizing 

a virally encoded ligand for NK cells to 

determine the combination of signals 

necessary to activate NK cells against early 

The focus of the Demehri laboratory is to determine the role of the immune 

system in regulating the early stages of cancer development in order to harness 

its anti-tumor potential for cancer prevention and treatment. To date, several 

cancer immunotherapies have been developed with proven efficacy against 

late-stage cancers; however, the role of the immune system in preventing the 

early development of cancer remains uncertain. The research in the Demehri 

laboratory is focused on identifying the immune mechanisms that drive an 

immune activation sufficient to prevent cancer formation from pre-cancerous 

lesions. This approach raises a great opportunity to discover novel immune 

pathways that can be leveraged in cancer therapy and prevention.
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stages of carcinogenesis and to identify the 

mechanism of anti-tumor immunity mounted 

by the activated NK cells in order to block 

cancer promotion and progression. 

3) Mechanisms of tumor promotion by 

the immune system. Although immune 

cells can mount anti-tumor immunity 

against cancer, they are also implicated 

in promoting cancer development under 

certain conditions. Chronic inflammation is 

one of the conditions that can predispose 

patients to cancer; however, the mechanism 

of such immune-mediated tumor promotion 

is unclear. To determine this mechanism, 

our laboratory studies skin and colorectal 

cancer development as ideal cancer 

models in which the spatial and temporal 

relationship between inflammation and 

cancer development can be determined 

with exceptional precision. We are currently 

investigating the immune mechanisms that 

promote skin cancer development in the 

context of chronic allergic contact dermatitis 

and cutaneous lupus and colorectal cancer 

development in the context inflammatory 

bowel disease.

Immune Regulation of Early Cancer Development.
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My laboratory investigates mechanisms that 

limit cell proliferation in normal cells and 

the ways that these controls are eroded in 

cancer cells. Our research focuses on RB, 

the protein product of the retinoblastoma 

susceptibility gene (RB1), and on E2F, a 

transcription factor regulated by RB. RB/E2F 

control the expression of a large number of 

genes that are needed for cell proliferation. 

This transcription program is activated when 

normal cells are instructed to divide but it 

is deregulated in tumor cells, providing a 

cellular environment that is permissive for 

uncontrolled proliferation. RB has multiple 

activities but one of its key roles is to limit 

the transcription of E2F targets. As a result, 

most tumor cells select for changes that 

compromise RB function. Our research 

program spans three areas of RB biology. 

Dissecting the molecular functions of RB 

RB’s precise mechanism of action remains 

an enigma. RB has been linked to hundreds 

of proteins and has been implicated in many 

cellular processes. However, purification of 

endogenous RB complexes has been a major 

challenge and, consequently, it is uncertain 

which proteins physically interact with RB in 

any specific context. We solved this problem 

and, in collaboration with the Haas lab, have 

used Mass Spectrometry to take detailed 

snapshots of RB in action. We used this 

approach to test the hypothesis that RB’s 

activity is tailored by mono-phosphorylation. 

Our data shows that the various mono-

phosphorylated forms of RB interact with 

different cellular proteins, regulate different 

sets of genes and have distinct functional 

properties (Sanidas et al 2019). 

Active RB alters the organization of 
chromosomal domains 

ChIP-seq experiments revealed that RB does 

not simply act at a few cell cycle-regulated 

promoters but targets thousands of sites 

that are distributed in euchromatin and 

heterochromatin. We have taken advantage 

of Oligopaint/FISH technology to visualize 

the impact of active RB on the nuclear 

organization of relatively large chromosomal 

regions (1-2 MB) that contain RB binding 

sites but lack canonical E2F-regulated, 

cell cycle genes. Induced expression of 

ΔCDK-RB (an active mutant protein that is 

impervious to CDK regulation) caused major 

changes in the organization of four different 

regions. Changes were quantified in both 

euchromatin and heterochromatin, but were 

most obvious with heterochromatic probes 

that typically gave a tight focal signal in 

cycling or quiescent cells. Following ΔCDK-

RB expression these focal signals became 

diffuse, dispersed and scattered into multiple 

punctas (see Figure). Similar changes 

occurred following long-term palbocyclib 

treatment and in IMR-90 cells induced to 

enter senescence. These changes were 

time-dependent, and wash-out experiments 

suggest that they correlate with irreversible 

cell cycle exit. Interestingly, analysis of a 

The Dyson laboratory studies the role of the retinoblastoma tumor suppressor 

(RB). RB is expressed in most cell types and its functions enable cells to stop 

dividing. RB is inactivated in many types of cancer. We have three main goals: 

we want to understand the molecular details of how RB acts, we want to know 

how the inactivation of RB changes the cell, and we are using these insights to 

target tumor cells.
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Consistent with the idea that RB is a master regulator of cell proliferation and that its activity 
leads to major changes in transcription, the expression of active RB (ΔCDK-RB) leads to changes 
in the organization of large chromosomal domains. ΔCDK-RB was induced in RPE1 cells, a 
non-transformed cell line, and the organization of a 4MB heterochromatic region (α-satellite) of 
chromosome 7 and 2.3MB euchromatic region of chromosome 19 was detected by FISH.

panel of mono-phosphorylation RB mutants 

revealed that some RB forms strongly 

induce these changes in G1-arrested cells 

while others do not, even though all repress 

E2F-dependent transcription. We infer 

that unphosphorylated RB does not simply 

suppress E2F-dependent transcription but 

drives changes in the nuclear organization of 

large chromosomal regions. 

Targeting tumor cells with RB1 
mutations 

Our long-term goal is to use information 

gleaned from molecular studies to improve 

cancer treatment. RB is functionally 

compromised in most types of cancer, 

but the specific mutation of the RB1 gene 

is a hallmark of just three tumor types 

(retinoblastoma, osteosarcoma and small 

cell lung cancer (SCLC)). This implies that 

the complete elimination of RB function 

is especially important in these tumors. 

Together with Dr. Anna Farago, our clinical 

collaborator, and with help from members 

of the Haber/ Maheswaran laboratories we 

have generated an extensive panel of patient 

derived xenograft (PDX) models of SCLC. 

These PDX models accurately reflect the 

genomic features and the drug sensitivities 

of the tumors from which they were derived 

(Drapkin et al 2018). We are using this panel 

of models to compare the effectiveness of 

different therapies, and to understand which 

SCLC tumors will respond best to each type 

of treatment (Farago et al 2019).
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DNA damage response 

DNA within cells is under continual assault 

from metabolic and environmental sources. 

In response to the ensuing damage, cells 

activate a signaling network called the DNA 

damage response (DDR). Defects in this 

response can lead to numerous hereditary 

cancer syndromes and can underlie the 

genomic instability which is a hallmark of 

many sporadic cancers. The DDR promotes 

genomic integrity by targeting hundreds of 

factors in diverse pathways ranging from 

DNA replication and repair to cell-cycle 

arrest, senescence, and immune regulation. 

While much is known about these core 

pathways, the complex regulatory events 

coordinating them are less well understood. 

Our lab aims to elucidate biochemical and 

genetic relationships between DDR factors 

to understand how they are integrated and 

collectively regulated. 

Quantitative proteomics in  
ubiquitin signaling 

Execution of the DDR relies upon a dynamic 

array of protein modifications, with 

phosphorylation playing a historically central 

role. It is now evident that the DDR also 

depends on ubiquitin signaling. Numerous 

ubiquitin ligases have been implicated in 

the response, yet finding their substrates by 

simple binding techniques can be difficult 

due to weak substrate interactions. To 

circumvent this problem, we have pioneered 

a quantitative proteomic approach to globally 

profile ubiquitination. Initially, we used this 

approach to identify substrates of Cullin- 

RING ubiquitin ligases (Cell 2011), which are 

involved in numerous DNA repair processes. 

Subsequently, we used it to uncover novel 

ubiquitination events directly stimulated by 

DNA damage (Mol Cell 2015a), demonstrating 

the vast breadth of ubiquitin signaling in the 

DDR. We are continuing to use innovative 

proteomic approaches to characterize novel 

and poorly understood ubiquitin ligases in 

DNA damage signaling pathways. 

Replication stress and cancer 

Replication fork collapse can induce 

chromosome instability and mutagenic 

events that cause cancer. Organisms have 

therefore evolved pathways to stabilize 

stalled replication forks and to repair 

collapsed forks through processes such as 

homologous recombination (HR). Multiple 

In response to DNA damage from environmental or endogenous sources, cells 

evoke an elaborate signaling network known as the DNA damage response 

(DDR). This response functions to preserve genomic integrity, which is 

necessary for normal development and the prevention of cancer. The Elia 

laboratory studies the DNA damage response, with current projects focusing 

on DDR pathways regulated by ubiquitin-dependent signaling and DDR 

pathways that promote the stabilization and repair of stalled replication forks. 

We utilize innovative proteomic and genetic approaches to investigate these 

processes. Our ultimate goal is to understand how DDR disruption influences 

cancer progression and can be exploited to target tumors with specific DNA 

repair defects.
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(Left) Quantitative proteomics identifies RPA ubiquitinaton mediated by the ubiquitin ligase 
RFWD3, which is mutated in the cancer predisposition syndrome Fanconi anemia. (Right) 
Depletion of RFWD3 inhibits the repair of collapsed replication forks, as demonstrated by delayed 
resolution of γH2AX foci six hours after release from hydroxyurea-induced replication fork stalling 
and collapse.

factors involved in HR and replication fork 

stabilization, such as BRCA1 and BRCA2, are 

mutated in hereditary cancer syndromes, 

highlighting the importance of these 

pathways. We have demonstrated that the 

ubiquitin ligase RFWD3, which is mutated in 

the cancer predisposition syndrome Fanconi 

anemia, ubiquitinates the single-stranded 

DNA binding protein RPA to promote 

homologous recombination at stalled 

replication forks and replication fork restart 

(Mol Cell 2015b). We are currently studying 

RFWD3 function in the replication stress 

response and elucidating novel mechanisms 

of replication fork stabilization and repair. 

Targeted cancer therapy 

Defects in the DNA damage response can 

render tumors dependent upon specific 

DNA repair pathways for survival. Moreover, 

targeted modulation of the DDR can affect 

tumor sensitivity to genotoxic chemotherapy 

and radiation. Increased understanding of 

DNA repair pathways will lead to enhanced 

opportunities for developing therapies that 

target cancers with DNA repair defects, 

and for improving the efficacy of genotoxic 

treatments. We are employing methods to 

translate our work to the development of 

such therapies.
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Our group is broadly interested in how genetic 

abnormalities in breast cancer and related 

malignancies influence tumor biology, and 

how that biology can, in turn, be exploited 

to therapeutic advantage. We address these 

questions through basic research studies of 

key cancer drivers including DNA repair defects 

through BRCA1/2 and related pathways, and 

transcriptional reprogramming through the p53 

gene family. Supporting and complementing 

these studies are sophisticated analyses of 

patient-derived precancerous and cancerous 

tissues. Recent innovative tissue-based studies 

have led to our discovery of novel cancer 

drivers, and have provided a unique window 

on early cancer pathogenesis, intratumoral 

heterogeneity and tumor progression. Our 

discoveries in the basic laboratory and through 

human tumor analysis are being applied in 

ongoing clinical trials that seek to identify 

predictive markers of response to specific 

therapeutics for breast and other cancers. Our 

ability to work at the interface of basic tumor 

biology and therapeutic application is strongly 

supported by our network of collaborators and 

by the research and clinical infrastructure of 

the Mass General Cancer Center. 

The p53 family network in cancer 
biology and therapy 

The p53 tumor suppressor is inactivated 

in more than 50% of sporadic human 

cancers, and patients carrying heterozygous 

germline p53 mutations show striking tumor 

predisposition. As a transcription factor 

and key nodal point for integrating cellular 

responses to DNA damage, p53 regulates 

genes involved in diverse cellular processes 

including cell cycle progression, apoptosis 

and angiogenesis. Through analysis of two 

p53-related genes, p63 and p73, we and 

others have defined a functional network 

through which these factors interact in human 

tumorigenesis. We have further defined a 

tissue-specific role for p63 as the enforcer of 

an epigenetically-controlled stem/progenitor 

state. Tumor-selective deregulation of p63 and 

its associated chromatin remodeling factors 

Recent progress in cancer treatment has been made possible through new 

insights into the key genes and pathways that underlie most malignancies. 

Understanding how these central players trigger the early, stepwise progression 

of cancer will be essential to moving beyond incremental steps and toward 

revolutionary advances in cancer treatment and prevention. The Ellisen 

laboratory is broadly interested in identifying such genetic abnormalities, 

understanding how they influence the biology of cancer cells, and discovering 

how biology can inform the selection of the most effective therapy for each 

patient. We address these questions through basic research studies of key 

tumor-cell signaling pathways, and through molecular analysis of patient tumor 

samples conducted in partnership with collaborators in the fields of molecular 

diagnostics and computational biology. Our discoveries in the basic laboratory 

and through tumor analysis have already been translated to clinical trials that 

seek to identify new predictive markers, and new prevention and therapeutic 

strategies for breast and other cancers. 
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The lactating mammary alveolus (shown) requires activation of STAT5 (pSTAT5, green/aqua) in 
luminal cells, which is controlled by paracrine hormonal signaling from basal cells (blue). Loss  
of this signaling may block luminal differentiation and predispose to breast cancer.

reprograms the transcriptome and thereby 

promotes proliferation, inhibits differentiation, 

and contributes to immune evasion. These 

findings are likely to explain the observation 

that p63 is over-expressed in a broad variety 

of epithelial tumors, particularly squamous 

cell and breast carcinomas. Collectively, this 

work serves as a paradigm for analysis of 

transcriptional reprogramming in cancer, 

while potentially providing new therapeutic 

possibilities for multiple treatment-refractory 

malignancies. 

BRCA1/2, hereditary cancer 
predisposition and prevention

Germline mutations in the DNA repair genes 

BRCA1 and BRCA2 confer dramatically 

elevated risk of cancers of the breast, ovary, 

and pancreas, yet the precise pathogenesis 

of BRCA1/2-associated cancer remains to be 

elucidated. Together with an international team 

of collaborators we are carrying out systematic 

studies of early events that give rise to these 

cancers, in part through detailed molecular 

analysis of normal and pre-cancerous tissues 

from BRCA1/2 mutation carriers. Defining the 

altered signaling and early cooperating events 

in this context is likely to reveal new markers of 

breast cancer predisposition and new targets 

for prevention. For example, our recently-

published single-cell genome analysis has 

revealed extensive chromosomal damage in 

BRCA1/2-mutant breast tissues that precedes 

any histological abnormalities. This seminal 

finding implies the existence of early cellular 

defects and associated vulnerabilities that 

could be exploited for cancer prevention in  

this setting. 

Novel drivers of aggressive breast 
cancer subtypes

Our recent work employing advanced tumor 

molecular diagnostics has revealed gene 

fusions as novel drivers of an aggressive 

breast cancer subset. In a distinct aggressive 

breast cancer, triple-negative breast 

cancer (TNBC), extensive intratumoral 

heterogeneity is itself a driver that we have 

characterized through single-cell genomic 

and transcriptomic analysis. Our longstanding 

work on the biology of TNBC is supported by 

the institution-wide Triple-Negative Breast 

Cancer Program, which integrates basic 

research, translational and clinical studies 

together with human tumor propagation and 

high-throughput drug screening, all focused 

on overcoming drug resistance and improving 

outcomes for patients with TNBC.
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David E. Fisher, MD, PhD

The Fisher laboratory focuses on mechanistic studies which underlie the 

biology and pathophysiology of skin and melanoma. Research studies range 

from molecular analyses of pigment cell biology to risk factors responsible for 

the formation of melanoma and other skin cancers. The laboratory utilizes deep 

molecular tools to understand how genes are regulated, how they contribute 

to cancer formation, and how they may be successfully targeted by drugs in 

order to improve disease treatments or to prevent disease formation altogether. 

Several areas of particular focus include 1) the study of redhair, fair skinned 

pigmentation and the manner in which such individuals are at increased risk 

for skin cancer; 2) identification and analysis of oncogenes which control 

melanoma cell survival; 3) discovery of new drugs that affect pigmentation, 

melanoma survival, and other skin-related effects; and 4) examination of the 

ways in which a gene called MITF plays a master-regulatory role in specifying 

the development of pigment-producing cells in the body.

Our group studies cell death/proliferation 

signals in relation to development and 

disease, particularly in cancer of pigment 

cells (melanoma) and tumors of childhood. 

We attempt to understand critical modes of 

cell homeostasis with a goal of molecular 

targeted therapy as well as prevention of 

melanoma and other human cancers. Areas 

of particular focus are explained below.

Lessons for malignancy from normal 
development 

We study the biology of melanocytes as a 

means of identifying pathways which drive 

human melanoma. This area of research 

includes examination of the mechanisms 

underlying the growth/survival of benign 

moles, most of which contain mutations in 

either BRAF or N-Ras oncogenes. We also 

study melanocyte death in hair follicles, a 

process associated with hair graying. Our 

work led to the identification of pathways 

linking graying to melanocyte and melanoma 

survival, offering potential leads for novel 

therapies. Other studies focus on pathways 

modulating melanocytic responses to 

environmental cues and employ oncogene-

transformed melanocytic lines which exhibit 

growth factor independence, mimicking 

human melanoma in a genetically controlled 

manner, and clinical analyses of novel 

melanoma treatments. We also study the 

role of UV in pigmentation responses and 

carcinogenesis.

Control of life and death in melanoma 

Malignant transformation of melanocytes 

produces one of the most treatment-

resistant malignancies in human cancers. 

We have identified a transcriptional 

network that regulates melanoma cell 

survival and proliferation and melanocyte 

differentiation during development. Using 

diverse methods— including mouse models, 

human tumor expression arrays, and cellular 

assays— we examine mechanisms through 

which melanoma cells evade death with the 

goal of improving therapy. Studies include 
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Histologic images of human skin. Left image shows hematoxylin and eosin (H&E) stain. The top 
layer is Stratum Corneum (consisting of dead cell derivatives) followed by the deeper purple 
keratinocyte cell layers constituting the epidermis. Beneath the epidermis is the pink, collagen 
containing dermis. Melanocytes reside at the base of the epidermis and are highlighted by arrows. 
The image to the right shows antibody staining for the melanocytic transcription factor MITF, 
which highlights the melanocytes at the dermal-epidermal junction. 
Histologic images were generated by Dr. Scott Granter. 

preclinical and clinical analyses of novel 

melanoma treatments. We also study the 

role of UV in pigmentation responses and 

carcinogenesis.

MITF transcription factor family in 
development and cancer 

MITF is a helix-loop-helix factor homologous 

to the Myc gene which, when mutated in 

humans, produces absence of melanocytes. 

MITF acts as a master regulator of 

melanocyte development and is targeted 

by several critical signaling pathways. 

Recently, members of the MITF family have 

been identified as oncogenes in a variety of 

human malignancies, particularly sarcomas 

of childhood. We are currently investigating 

their roles in cancer as well as strategies 

to target them therapeutically. Detailed 

mechanistic studies focus on transcription 

factor interactions with chromatin, and 

epigenetic control of gene expression. 

Normal skin α-
MIT
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Characterizing the Cancer Genome 

Cancer is a disease of the genome driven by 

a combination of possible germline risk-

alleles, together with a few ‘driver’ somatic 

mutations that increase fitness and promote 

clonal expansion. Mutations occur at all levels 

and scales, including (i) DNA point mutations; 

(ii) small insertions and deletions; (iii) larger 

genomic rearrangements and copy-number 

alterations; and (iv) epigenetic, transcriptional, 

and proteomic changes. To generate a 

comprehensive list of all germline and 

somatic events that occurred during (and prior 

to) cancer development, we are developing 

and applying highly sensitive and specific 

tools to detect these events in sequencing 

data. The complexity of the underlying cancer 

genomes requires state-of-the-art statistical 

and machine learning approaches to most 

efficiently extract the signal from the noise. 

Detecting Cancer-Associated Genes 

After detecting genomic events, we search for 

genes (and pathways) that show significant 

signals of positive selection (e.g., the number of 

mutations exceeds what is expected by chance) 

across a cohort of samples by constructing a 

detailed statistical model of the background 

mutational processes and detecting genes that 

deviate from it. We developed tools to discover 

genes significantly gained or lost (GISTIC), 

and genes with increased density or irregular 

mutational patterns (MutSig, CLUMPS). 

In these analyses, correctly modeling the 

heterogeneity of mutational processes across 

patients, sequence contexts, and the genome is 

critical. We are constantly improving methods 

and working towards a unified method for all 

types of alterations. We also discovered drivers 

in non-coding regions of the genome in breast 

cancer (e.g., hotspot mutations in FOXA1 

promoter that likely alter its expression) and, 

more recently, across cancer, as part of a large 

international effort. 

Heterogeneity and Clonal Evolution 
of Cancer 

Cancer samples are heterogeneous: non-

cancer cells intermingle with a cancer cell 

The Getz laboratory is focused on cancer genome analysis, which includes 

two major steps: (i) Characterization – cataloging of all genomic events and the 

mechanisms that created them during the clonal evolution of cancer (starting 

from normal cells and progressing to premalignancy, primary cancer, and 

emergence of resistance), comparing events at the DNA, RNA, and protein levels 

between one or more tumor and normal samples from an individual patient; 

and (ii) Interpretation – analysis of the characterization data across a cohort 

of patients with the aim of identifying the alterations in genes and pathways 

that drive cancer progression, drive resistance, or increase its risk as well as 

identifying molecular subtypes of the disease, their markers, and relationship 

to clinical variables. Recently, the Getz lab is also studying the tumor and its 

immune microenvironment using both bulk and single-cell RNA-sequencing 

(RNA-seq) data. In addition to developing tools for high throughput analysis 

of cancer data and experimentally testing the findings, the Getz lab develops 

computer platforms that enable large-scale analytics and visualization.
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Somatic mutation frequencies across cancer.
Each dot represents the total frequency of somatic mutations (in the exome) in each tumor–normal 
pair. Tumor types are ordered by their median somatic mutation frequency, from haematological 
and paediatric tumors (left), to tumours induced by carcinogens such as tobacco smoke and 
ultraviolet light (right). Mutation frequencies vary more than 1,000-fold between lowest and highest 
across different cancers and also within several tumour types. The bottom panel shows the relative 
proportions of the six different possible base-pair substitutions. Taken from Lawrence et al. (2013).

population that typically contains multiple 

subclones. Since cancer is a dynamic 

system, these subclones may represent (i) 

remaining cells of less-fit clones not yet 

overtaken by the expanding the most-fit clone, 

(ii) interacting subclones that co-evolved 

and have reached an equilibrium, or (iii) a 

combination of both. We have developed tools 

(ABSOLUTE, PhylogicNDT) to characterize the 

heterogeneity and dynamics of cancer using 

copy-number, mutational, and other data 

measured on bulk samples and single cells. 

These tools can analyze multiple samples per 

patient to infer clonality of mutations, number 

of subclones, and subclonal evolution over 

time or space. We previously demonstrated 

that subclonal driver mutations are associated 

with outcome, emphasizing the importance of 

including clonal information in clinical trials. 

By analyzing RNA-seq, we recently showed 

that most healthy adult tissues contain 

genetic clones with somatic mutations, some 

in known cancer-associated genes. 

Mutational Processes 

Processes that damage, repair, replicate, 

and deliberately alter DNA create mutations. 

Mutation data can thus be used to study 

these processes, understand their mutational 

“signatures,” infer their molecular 

mechanisms, and identify alterations 

associated with their activity. By studying 

asymmetries in mutational processes, we 

detected a mechanism that acts on the 

lagging DNA strand during replication and 

a new mutational process that generates 

mutations on the non-transcribed strand. 

We also used the association between a 

mutational signature and homologous 

recombination (HR) defects to show that 

epigenetic silencing of RAD51C within the HR 

pathway is an important mechanism for HR 

deficiency in breast cancer. With international 

collaborators, we are mapping all common 

mutational signatures affecting single- and 

di-nucleotide substitutions as well as small 

insertions and deletions (indels). We also 

study indels that occur at microsatellites and, 

in particular, tumors that have microsatellite 

instability (MSI) that may benefit from 

immune checkpoint inhibitor treatment 

(e.g., anti-PD1). We are developing a method 

to computationally detect the presence of 

MSI tumors from cell-free DNA (cfDNA) 

containing DNA shed from tumor cells, easily 

obtained from non-invasive blood biopsies.
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Clonal heterogeneity of 
myelodysplastic syndromes

Myelodysplastic syndromes are the most 

common form of acquired bone marrow 

failure in adults. Despite the ineffective 

hematopoiesis that is characteristic of this 

disease in its early stages, we found through 

whole genome sequencing that nearly all 

cells in the bone marrow of these patients 

are clonally derived (see Figure). When 

patients evolve to acute myeloid leukemia 

(which occurs in approximately one third 

of cases), new subclonal populations 

emerge that are derived from the original 

(“founding”) clone. These findings raise 

the possibility that the prognostic value of 

recurrent mutations in myelodysplastic 

syndrome and the efficacy of therapies that 

target these mutations may depend not 

only on the presence or absence of these 

mutations, but also on their position within 

the clonal hierarchy of this disease. 

RNA splicing defects at the root of 
myelodysplastic syndromes

We and several other groups discovered 

recurrent somatic mutations in genes 

encoding core components of the RNA 

splicing complex (the “spliceosome”) in 

patients with myelodysplastic syndrome. 

Mutations in this pathway tend to be mutually 

exclusive, suggesting that more than one 

splicing gene mutation in a cell provides 

no additional selective advantage, or is 

deleterious to the clone. We have focused on 

U2AF1 which encodes a component of the U2 

snRNP that binds to the AG dinucleotide at 

the 3’ intronic splice acceptor site. Mutations 

in U2AF1 arise early in the pathogenesis of 

myelodysplastic syndromes (in the founding 

clone) and affect almost exclusively two 

codons in predicted zinc finger domains. We 

have shown that the most common mutation 

(S34F) has gain-of-function activity in 

splicing assays. Current work in the Graubert 

laboratory is focused on comprehensive 

analysis of the impact of U2AF1 mutations 

on splicing, the functional consequences of 

these mutations for blood cell development, 

and vulnerabilities created by splicing gene 

mutations that provide opportunities for 

novel therapies.

Inherited predisposition to 
myelodysplastic syndrome/acute 
myeloid leukemia

Acute myeloid leukemia and myelodysplastic 

syndromes are usually sporadic, late-onset 

cancers, but in rare instances (<1%) these 

diseases aggregate in families. In these 

families, predisposition to acute myeloid 

leukemia/myelodysplastic syndrome may 

be a consequence of an inherited bone 

marrow failure syndrome, but in other 

cases these are highly penetrant, autosomal 

dominant, Mendelian disorders. Three 

The Graubert laboratory focuses on the molecular basis of human blood 

cancers, including acute myeloid leukemia and myelodysplastic syndromes. 

The laboratory utilizes a variety of genomic platforms to interrogate primary 

samples from patients with myeloid malignancies to identify inherited and 

somatic mutations that drive these diseases. The goal of these studies is to gain 

insight into the biological basis of myeloid leukemias, and to improve strategies 

for diagnosis, risk stratification, and targeted therapy. 
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genes (RUNX1, GATA2, CEBPA) explain fewer 

than half of these Mendelian cases. The 

genetic basis in the majority of families is 

not yet known. Furthermore, the latency 

and incomplete penetrance of acute myeloid 

leukemia/ myelodysplastic syndrome in 

mutation carriers suggest that acquisition of 

cooperating somatic mutations is required 

for malignant transformation. We have 

accumulated a large panel of samples from 

affected and unaffected members of these 

families. Ongoing studies in the Graubert 

laboratory are focused on identification 

of novel germline variants in families 

that lack known predisposing factors, 

and characterization of the landscape of 

cooperating somatic mutations that arise in 

these cases. This information is important 

for genetic counseling in these families, for 

selection of optimal bone marrow transplant 

donors, and to increase our understanding 

of the biological basis of acute myeloid 

leukemia and myelodysplastic syndromes.

Clonal evolution from myelodysplastic syndrome (MDS) to acute myeloid leukemia (AML). Whole  
genome sequencing at the time of MDS diagnosis (left arrow) in a representative patient identified 
a founding clone comprising ~52% of the bone marrow cellularity and a subclone derived from the 
founding clone in ~22% of cells. When this patient progressed to AML (right arrow), the original 
clones were still present and had spawned three new subclones that were dominant in the bone 
marrow at this time point.
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Cancer is based on dynamic changes of the 

genome that ultimately translate into an 

altered proteome, optimized for uncontrolled 

cell growth and division. In addition, many 

pathways, initially causing cancer further 

promote the propagation of altered genetic 

information, accelerating the adaption 

of cancer cells to new environments. 

This dynamic process becomes even 

more complex if taking into account the 

dynamic state of the cellular proteome 

that is regulated by protein synthesis and 

degradation, posttranslational modifications, 

protein localization, and the interaction 

of proteins with other proteins as well as 

with different classes of biomolecules. 

While the “cancer genome” can now be 

easily accessed due to advances in DNA 

sequencing technology, the information 

contained in the “cancer proteome” has 

remained largely untapped due to technical 

challenges in quantifying the large number 

of proteins expressed in mammalian cells. 

Yet, the proteome holds enormous potential 

to improve our understanding of the basic 

principles underlying cancer to revolutionize 

the early diagnosis of the disease and to 

improve patient care. Up to date, virtually all 

targeted therapeutics in cancer treatment 

are targeting proteins. Understanding how 

these drugs alter the proteome and the 

interactome – the global map of protein-

protein interactions – has the potential 

to help us refine our approaches to drug 

design. 

The core technology used in our research 

group is high-throughput quantitative 

proteomics enabled through multiplexed 

mass spectrometry. This technology allows 

us to map the proteome of a cancer cell line 

or tumor tissue at high throughput. Analyzing 

the proteome maps across a panel of cancer 

cell lines, we recently made the observation 

that the concentration of proteins in known 

complexes are accurately correlated across 

all analyzed cell lines. We showed that 

protein co-regulation analysis allows the 

genome-wide mapping of protein-protein 

interactions with an accuracy ten-times 

larger than when using co-expression 

The Haas laboratory uses quantitative mass spectrometry-based proteomics to 

characterize cancer cells and their vulnerabilities in a comprehensive proteome-

wide manner. This is fueled by recent discoveries that have enhanced the 

depth and throughput of proteomics in quantifying proteins and their post-

translational modification. These improvements have put us at a pivotal point in 

the field of mass spectrometry, where, for the first time, we are able to handle the 

analysis of the large number of samples that have to be examined to generate the 

basis for understanding a disease that displays the heterogeneity found in cancer. 

We are specifically interested in mapping changes in the global landscape of 

protein-protein interactions - the interactome - that occur in cancer cells, and we 

have shown that dysregulations in the interactome are enabling the prediction 

of cancer vulnerabilities. We believe that our proteomics technologies have the 

potential to become a powerful tool in basic and clinical cancer research and may 

be used to diagnose cancer, predict its susceptibility, and monitor its progression.
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A Map of Protein-Protein Interactions Identified Using the IMAHP Technology Based on Protein  
Concentration Co-Regulation across Cancer Cell Lines.

analysis based on RNAseq data. We further 

found that deviations from co-regulation of 

two interacting proteins in specific cancer 

cell lines reflect perturbed cellular circuitry, 

and it remarkably predicts sensitization to 

therapeutics targeting regulatory modules in 

the associated pathway. We have termed this 

approach to fast, in-depth characterization 

of protein-protein interaction landscapes the 

Interactome MApping by High-throughput 

quantitative Proteome analysis (IMAHP) 

technology. This novel method has been 

developed in collaboration with the laboratory 

of Dr. Cyril Benes at the MGH Cancer Center. 

It enables an interactome-wide mapping of 

protein-protein interaction dysregulation and 

inferred cancer vulnerabilities of any cancer 

sample based on a proteome map that is 

acquired at high throughput.

We are further interested in the development 

and application of high-throughput 

proteomics methods to globally map protein 

phosphorylation dynamics in cancer samples 

and to use the data to specifically identify 

new kinase targets as cancer vulnerabilities.

Our goals are to apply this technology to 

(i) identify novel cancer vulnerabilities that 

direct new treatment strategies, to (ii) map 

cancer vulnerability dynamics, such as those 

occurring in the development of therapy 

resistance, to identify novel targets that 

enable to overcome the treatment resistance, 

and to (iii) use our technology in a clinical 

setting for mapping tumor vulnerabilities 

to inform treatment strategies in a patient-

specific manner.
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Daniel A. Haber, MD, PhD

Our laboratory is interested in the genetics 

of human cancer. Current projects include 

the use of a microfluidic device to capture 

circulating tumor cells (CTCs) and its 

application in early detection of invasive 

cancer, molecular-directed therapy, and in 

the study of human cancer metastasis. 

Circulating Tumor Cells and Molecular 
Genetics Underlying Targeted Cancer 
Therapeutics 

Activating mutations in the epidermal growth 

factor receptor (EGFR) were identified in 

our laboratory in the subset of non-small 

cell lung cancer (NSCLC) with dramatic 

responses to the tyrosine kinase inhibitor 

gefitinib. We have studied mechanisms 

underlying such oncogene addiction, as well 

as the pathways that lead to the acquisition 

of resistance to targeted therapies, including 

the application of irreversible kinase 

inhibitors to circumvent mutations that alter 

drug binding affinity. Following these efforts 

to monitor the emergence of drug resistance 

mutations, we established collaborations 

with the Toner and Maheswaran laboratories 

to characterize novel microfluidic devices 

capable of isolating CTCs from the blood of 

cancer patients. Our most advanced version 

of these CTC-Chips relies upon blood flow 

through a specialized chamber, which allows 

the high efficiency depletion of antibody-

tagged leukocytes, thereby enriching for 

intact CTCs without selection bias. We have 

shown that the number of captured CTCs 

correlates with clinical evidence of tumor 

response, and that the cells can be used to 

define molecular markers characteristic of 

the underlying malignancy, including EGFR 

mutations in lung cancer and measurements 

of androgen receptor (AR) activity in prostate 

cancer. We have applied next generation 

single-molecule RNA sequencing and 

RNA-in-situ hybridization to characterize 

the heterogeneous expression profiles of 

individual CTCs in breast, prostate and 

pancreatic cancers, as well as melanoma 

and glioblastoma. To facilitate CTC 

The Haber laboratory focuses on understanding mutations that are acquired 

by tumors and render them susceptible to specific targeted drug therapies. 

In 2004, we identified mutations in the EGFR gene in lung cancers which 

confer dramatic sensitivity to drugs that specifically inhibit that pathway. This 

finding triggered the application of targeted therapies in lung cancer, and more 

generally pointed to the critical importance of mutational analysis for treatment 

selection in common epithelial cancers. Since then, we have collaborated with 

the bioengineering team led by Dr. Mehmet Toner, the molecular biology group 

of Dr. Shyamala Maheswaran, and the MGH Cancer Center clinical disease 

centers to develop, characterize and apply microfluidic devices to isolate rare 

circulating tumor cells (CTCs) in the blood of patients with cancer. Using these 

technologies, our lab seeks to explore 1) blood-based early detection of cancer, 

2) noninvasive monitoring of cancer for the emergence of drug resistance, and 

3) understanding mechanisms of tumor cell dissemination and metastasis, with 

the ultimate goal of suppressing blood-borne spread of cancer.
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Circulating prostate tumor cell cluster stained for PSA (green) along with Ki67 (orange) and  
CD45 (red).

quantitation and provide the sensitivity 

and specificity required for early cancer 

detection, we have established a droplet 

digital PCR readout for CTC-derived RNA, 

with promising applications in the early 

detection of liver cancer.

In addition to noninvasive detecting and 

monitoring of cancer, CTCs provide a 

window to study the process of blood-borne 

metastasis. We demonstrated treatment-

associated epithelial-to-mesenchymal 

transitions (EMT) within CTCs from women 

with breast cancer. Using a combination 

of mouse models and patient-derived 

studies, we observed that tumor-derived 

fragments generate CTC-Clusters, which 

have greatly enhanced metastatic propensity 

compared with single CTCs. CTC-Clusters 

are held together by plakoglobin, whose 

knockdown dramatically suppresses CTC-

Cluster formation and metastatic spread 

of breast cancer cells. We successfully 

established long-term in vitro cultures of 

CTCs from patients with estrogen-receptor 

(ER)-positive breast cancer, identifying 

treatment-associated mutations in the 

estrogen receptor (ESR1), as well as acquired 

mutations in druggable therapeutic targets, 

such as PIK3CA and FGFR. The development 

of such CTC-derived cultures may enable 

functional predictive drug testing, combined 

with detailed genetic analysis of tumor cells 

sampled noninvasively during the course 

of cancer treatment. In cultured CTCs from 

women with advanced ER+ breast cancer, 

we documented dramatic plasticity, with a 

proliferative HER2-expressing subpopulation 

interconverting spontaneously with a 

drug-resistant Notch1-expressing subset. 

Using mouse reconstitution models, we 

demonstrated the consequences of this 

phenotype switch for both tumorigenesis 

and drug response. Ongoing studies are 

directed at using patient-derived CTCs and 

mouse models to understand key steps in 

cancer metastasis, including the shift from 

cell quiescence to proliferation, viability 

during blood-borne transit, and resistance to 

targeted and immune therapies.
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Initiators, resistors and targets of 
tumor immunity 

While cancer immunology has been deeply 

studied in animal models, there remain many 

open questions in human tumor immunology 

due to lack of tools to investigate human 

samples. We have developed genetic and 

genomics approaches to explain the large 

variance in anti-tumor immunity across 

people, and to discover how tumors evolve to 

resist productive immunity. We’ve identified 

somatic mutations in tumors that are 

associated with anti-tumor immunity in 

patients (Rooney et al., Cell 2015), discovered 

mutations in β2m in patients resistant to 

checkpoint therapy (Sade-Feldman et al., 

Nat Comm 2017) and found that TCF7+ T 

cells are associated with a response to 

anti-PD-1 immunotherapy in melanoma 

(Sade-Feldman et al., Cell 2019). We have 

also developed new methods to predict which 

tumor antigens are presented (Abelin et al., 

Immunity 2017, Sarkizova et al., submitted), 

which are now being used to develop novel 

therapeutic approaches and targets for 

immunotherapy, such as a personal tumor 

vaccine targeting multiple HLA-associated 

neoantigens in human tumors (together with 

Dr. Catherine Wu at DFCI, Ott et al., Nature 

2017, Keskin Nature 2018).

Genes and networks underlying  
innate immunitys 

We’ve used genome-wide CRISPR libraries 

to discover mammalian genes mediating the 

sensing of pathogens (Parnas et al., Cell 2015), 

impacting HIV infection (Park et al., Nat Gen 

2017) and affecting influenza infection and 

dendritic cell biology (ongoing projects). We 

have also characterized innate myeloid cells 

(DCs and monocytes) in human blood as part 

of the human Immune Cell Atlas (Villani et al., 

Science 2017).

Genetic basis for inter-individual 
variations in immune responses 

We have also developed genomic strategies 

The Hacohen laboratory consists of immunologists, geneticists, biochemists, 

technologists, physicians and computational biologists working together to 

develop new and unbiased strategies to understand basic immune processes and 

immune-mediated diseases, with an emphasis on the innate immune system  

and personalized medicine. We address three key questions in immunology 

(1) how are immune responses against cancer initiated, maintained and evaded? 

(2) what are the immune circuits that sense and control pathogens, such as viruses 

and bacteria? (3) how does immunity against the body develop, in particular, 

in patients with autoimmune lupus? In addition to discovering and studying 

specific molecular and cellular mechanisms, we also address how and why the 

immune response (to tumors, pathogens or self) varies so dramatically across 

individuals. Finally, we are adapting our unbiased analytical strategies into 

real-world therapeutics, having initiated clinical trials (with our collaborator Dr. 

Catherine Wu), in which patients are vaccinated against their own tumors with a 

fully personal vaccine that is designed based on a computational analysis of their 

personal tumor genome.
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Immunofluorescence staining of T cells found in human melanoma biopsies from a patient 
who responded (left) and a patient who did not respond (right) to checkpoint anti-PD-1 therapy. 
Staining: nuclei (blue), CD8 (green) and TCF7 (red).

to analyze human immune responses and 

explain immune phenotypes with germline 

genotypes. We characterized the genetic basis 

for inter-individual variation in the innate 

immune response to viruses and bacteria (Lee 

et al., Science 2014; Raj et al., Science 2014; 

Ye et al., Science 2014). For example, we found 

that common alleles of IRF7 tune the strength 

of an individual’s anti-viral response, and that 

genetic control of splicing is prevalent and 

important for the immune response (Ye et al., 

Genome Res 2018). Building on these studies, 

we have recently developed and are now  

using systematic methods to analyze the role  

of genetic and non-genetic variations in  

human immunity.

Drivers of autoimmunity 

Deficiencies in nucleases that degrade DNA 

lead to accumulation of self DNA, activation of 

innate immune responses and development 

of autoimmune disorders, including systemic 

lupus erythematosus and Aicardi-Goutières 

syndrome in humans, and autoimmune 

arthritis, nephritis and myocarditis in mice. 

We have been interested in understanding 

how autoimmunity develops upon triggering 

of innate immunity by self DNA (rather than 

pathogen-derived DNA). In studying this 

question, we made the surprising observation 

that immunostimulatory DNA can arise from 

host damaged DNA that is exported from the 

nucleus to the lysosome (Lan et al., Cell Rep 

2014). We hypothesize that this cellular process 

is a source of inflammation in autoimmunity, 

cancer, chemotherapy and aging (Lan et al., 

Aging Cell 2019). To deepen our understanding 

of pathways that drive autoimmunity, we have 

been analyzing immune responses in lupus 

nephritis patients, with an emphasis on cellular 

and molecular analysis of kidney biopsies and 

blood samples from lupus patients (Arazi et al., 

Nat Imm 2019).
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Mechanisms of acquired drug 
resistance to targeted therapies 

Lung cancers that harbor activating EGFR 

mutations and ALK-translocations are 

exquisitely sensitive to small molecule 

EGFR and ALK tyrosine kinase inhibitors, 

respectively. However, even though most 

patients experience dramatic responses, 

drug resistance invariably develops leading 

to disease relapse. Similar patterns 

of sensitivity and acquired resistance 

are also observed in other subsets of 

oncogene-addicted lung cancers treated 

with molecularly targeted therapies (e.g. 

ROS1 translocations, RET fusions, BRAF 

mutations, MET exon 14 skipping mutations). 

We work closely with oncologists in the 

MGH Center for Thoracic Cancers to identify 

and characterize mechanisms of acquired 

resistance in lung cancer patients treated 

with targeted therapies. By analyzing tumor 

biopsies or tumor DNA isolated from blood, 

we are often able to detect mutations and 

other genomic alterations that cause drug 

resistance. We also culture tumor cells from 

biopsies as cell lines or PDX models in order 

to functionally interrogate pathways that 

contribute to drug resistance. These models 

also allow us to test novel therapies and 

select the most promising for clinical trials.

Targeting apoptotic regulators to 
overcome intrinsic resistance to 
targeted therapies 

Despite the success in targeting oncogenic 

kinases such as EGFR and ALK, effective 

therapies for KRAS mutant lung cancers 

have remained elusive to date. The recent 

discovery of covalent inhibitors of the KRAS 

G12C oncoprotein have renewed hope that 

effective targeted therapies for this subset 

of lung cancer may be within reach. Work 

by our group and others has suggested that 

the many KRAS mutant lung cancers may 

exhibit decreased oncogenic dependency and 

a dampened apoptotic response that may 

lead to intrinsic resistance to KRAS targeted 

therapy. To overcome this limitation, we 

are exploring the use of BH3 mimetics that 

The research goal of the Hata laboratory is to advance targeted therapies to 

benefit patients with lung cancer. Our research focuses on understanding the 

biological underpinnings of sensitivity and resistance of oncogene-addicted lung 

cancers (those with activating genetic alterations EGFR, ALK, KRAS, etc.) to small 

molecule inhibitors of growth and survival signaling pathways. Our studies are 

highly translational, integrating assessment of clinical specimens with generation 

and analysis of patient-derived cell culture and mouse tumor xenograft (PDX) 

models, and are performed in close collaboration with clinicians in the MGH 

Thoracic Oncology group. This has enabled us to identify a number of promising 

therapeutic approaches for overcoming mechanisms of intrinsic and acquired 

drug resistance. More recently, we have begun to focus on understanding how 

cancer cells adapt and evolve during the course of therapy in order to identify 

vulnerabilities of persistent drug tolerant cancer cells that can be exploited 

to prevent resistance from developing. Our ultimate goal is to translate these 

findings into clinical trials.
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EGFR mutant lung cancers can develop acquired resistance to EGFR inhibitors (e.g. acquisition of 
the gatekeeper EGFRT790M mutation) by selection of pre-existing EGFRT790M cells, or via evolution of 
initially EGFRT790M-negative drug tolerant cells that then develop the mutation during the course 
of treatment. EGFRi denotes EGFR inhibitor treatment, such as gefitinib or erlotinib. Reproduced 
from Hata and Niederst, et al. Nature Medicine 2016.

inhibit pro-survival BCL-2 family proteins 

such as MCL-1 and BCL-XL to increase 

sensitivity to inhibitors of KRAS-driven 

signaling pathways. In addition, we are 

focused on understanding how apoptotic 

dependencies may be shaped by the interplay 

between primary oncogenic driver and 

co-occurring genetic alterations in order 

to rationally deploy BH3 mimetic drug 

combination strategies in the clinic.

Tumor adaptation and evolution  
during treatment

The identification of secondary drug 

resistance mutations in EGFR and ALK 

patients progressing on first-generation 

TKIs has led to the development of next-

generation TKIs to overcome them. However, 

acquired resistance develops to these new 

agents as well. To halt this perpetual cycle of 

drug resistance, novel strategies designed to 

alter the evolution of resistance mechanisms 

are needed. We recently demonstrated that 

genomic mechanisms of resistance can 

arise via evolution of drug tolerant clones 

that survive initial therapy and then acquire a 

secondary genomic alteration. This suggests 

that drug tolerant cells that survive initial 

treatment may comprise a cellular reservoir 

from which heterogeneous mechanisms 

of resistance may arise. We have ongoing 

efforts focused on characterizing persistent 

tumor cells that survive during drug 

treatment in both experimental models 

and patients. By identifying targetable 

vulnerabilities of these cells, we hope to 

develop novel therapeutic strategies that 

will disrupt this perpetual cycle of acquired 

resistance.

Patient-specific experimental 
modeling of oncogene addicted lung 
cancers 

To facilitate our studies on drug sensitivity 

and resistance, we have developed a robust 

infrastructure for generating patient-

derived cell lines and mouse patient-derived 

xenograft (PDX) models from lung cancer 

patients treated at the MGH Cancer Center. 

This effort is enabled by a close collaboration 

with clinicians in the MGH Center for 

Thoracic Cancers, Interventional Radiology, 

Interventional Radiology and Thoracic 

Surgery, and a team of dedicated research 

assistants and laboratory technicians. These 

models have allowed us to identify novel 

mechanisms of acquired resistance in EGFR 

and ALK lung cancers and test potential new 

therapies to overcome them.
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The Hochedlinger lab is studying the 

mechanisms underlying cell fate transitions 

by using transcription-factor-mediated 

conversion of somatic cells into induced 

pluripotent stem (iPSCs) as a tractable 

tool. iPSCs are typically derived by viral 

transduction of the embryonic transcription 

factors Oct4, Sox2, c-Myc and Klf4, which 

reset the differentiation state of an adult cell 

into that of a pluripotent cell. The underlying 

transcriptional and epigenetic changes 

remain largely elusive due to the low efficiency 

of reprogramming and the heterogeneity of 

cell cultures. Importantly, iPSCs have been 

derived from different species—including 

human patients—and therefore provide 

a unique platform to model degenerative 

disorders such as Alzheimer’s disease, 

Parkinson’s disease and diabetes. Moreover, 

iPSCs could be ultimately used in regenerative 

medicine to replace damaged cells and 

tissues with genetically matched cells. 

We have identified biomarkers to track and 

prospectively isolate rare intermediate cell 

populations that are poised to become iPSCs, 

and we are currently using these populations 

to understand the transcriptional, epigenetic 

and proteomic changes in cells undergoing 

reprogramming. Additionally, our lab has 

conducted unbiased shRNA screens for 

barriers to reprogramming, uncovering 

new mechanisms that safeguard somatic 

cell identity. For example, we identified 

components of chromatin assembly (CAF-

1), protein sumoylation (SUMO-2, UBC9) 

and alternative polyadenylation of RNA 

(NUDT21) as novel safeguard mechanisms 

and we are currently exploring the underlying 

mechanisms as well as their role in tissue 

homeostasis and cancer. More recently, we 

discovered that MAPK signaling is critical to 

preserve the epigenetic and genomic stability 

as well as full the developmental potential of 

mouse pluripotent stem cells. Mechanistically, 

we showed that MAPK signaling is critical to 

fine-tune global DNA methylation levels and 

maintain genomic imprinting. Importantly, we 

extended these observations to human cells, 

allowing us to provide more stable and thus 

safer embryonic stem cell and iPSC models.

We hypothesized that the manipulation 

of safeguard mechanisms we previously 

identified in the context of iPSC 

reprogramming might endow somatic cells 

The Hochedlinger laboratory explores the molecular mechanisms underlying 

pluripotency, which is the ability to produce all mature cell types of the body. 

Previous groundbreaking discoveries have shown that adult cells can be 

reprogrammed into pluripotent stem cells by activating a handful of embryonic 

genes. The resultant cells, called induced pluripotent stem cells (iPSCs), have 

tremendous therapeutic potential; they can be derived from any patient’s skin 

or blood cells. In the laboratory, iPSCs can be coaxed into many specialized  

cell types. Our lab has contributed to a better understanding of the process  

of cellular reprogramming, which allowed us to elucidate basic mechanisms 

that maintain cellular identity and prevent aberrant cell fate change. Our 

ultimate goal is to utilize these mechanistic insights for the development of  

new strategies to treat cancer and other complex diseases.
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with increased plasticity and could facilitate 

the derivation of adult stem cell types 

that have been difficult to capture using 

conventional approaches. Indeed, we recently 

provided proof-of-principle evidence for 

this idea by showing that pharmacological 

inhibition of defined safeguard mechanisms, 

together with overexpression of the 

muscle-specific transcription factor MYOD, 

reprograms fibroblasts to muscle stem cell-

like cells. The reprogrammed cells share 

key molecular and functional characteristics 

with bona fide muscle stem cells including 

dependence on PAX7, self-renewal, 

differentiation and the ability to engraft in the 

muscles from a dystrophic mouse model. 

Ongoing efforts include dissection of the 

underlying mechanisms and an attempt to 

recapitulate these findings in human cells.

Induced myogenic progenitor cells (iMPCs) derived from fibroblasts. Immunostaining for markers 
of muscle stem cells (Pax7, red) and differentiated cells (MyoD, green; MyHC, purple)(see Bar-Nur 
et al., Stem Cell Reports 2018 May 8;10(5):1505-1521). 
Image: Ori Bar-Nur, PhD
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Our laboratory is interested in the molecular 

control of normal and malignant stem cells 

with an emphasis on the hematopoietic 

system. Blood cells need to be continuously 

replenished by a small population of 

hematopoietic stem cells (HSCs) that have 

the capacity to both self-renew and mature 

stepwise into all known blood lineages. 

HSCs are also the ancestors of leukemia 

and lymphoma cells. As HSCs mature, 

they undergo successive changes in gene 

expression. The transcriptional apparatus 

must ensure that genes specific to immature 

cells are repressed as differentiation 

proceeds, while genes that are necessary 

for mature cells become activated. This 

activating and inactivating of genes is 

achieved by cooperative action of a variety of 

lineage-specific and general transcription 

factors and the complex molecular 

machinery that regulates the accessibility 

of different regions of the genome in 

chromatin. We investigate how transcription 

factors establish differentiation-specific 

transcriptional programs and how such 

programs can become derailed in cancer, 

leukemia and lymphoma. 

Transcriptional control of normal and 
malignant hematopoietic stem cells in 
the adult bone marrow 

Hematopoiesis in the bone marrow emanates 

HSCs. We are studying the basic biology of 

HSCs. Specifically we explore how a network 

of transcription factors that includes Tel- 

Etv6, Gfi1, Gfi1b and Gata2 maintains HSCs 

in the bone marrow (Hock et al. 2004, Genes 

& Development; Hock et al. 2004, Nature). The 

goal is to exploit the biology of transcriptional 

regulation of HSCs to maintain, expand, 

and possibly even generate HSCs ex vivo so 

that more patients will have the option of 

bone marrow transplantation. In a closely 

related effort, we are exploring the molecular 

programs of stem cells in leukemia and 

lymphoma to identify differences in their 

molecular regulation compared with normal 

HSCs. Such differences may allow us to 

specifically target tumor stem cells while 

sparing normal blood formation.

The Hock laboratory explores the molecular basis of blood cell formation 

and the pathogenesis of leukemia and lymphoma. Specifically, we study the 

transcription factors that regulate gene activity during normal blood cell 

development and how the transcriptional apparatus goes awry in cancer. For 

example, we have developed important insights into a network of transcription 

factors that help maintain blood stem cells in the bone marrow; this work could 

lead to new strategies for increasing the yield of stem cells for bone marrow 

transplantation. Another project in our laboratory focuses on deciphering the 

multistep process that leads to lymphoblastic leukemia of childhood, with the 

goal of identifying new drug targets for this devastating disease. Finally, we 

are interested in how DNA packaging affects the interaction between genes 

and transcription factors, especially with regard to oncogenes and tumor 

suppressor genes important in human cancer. 
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Dr. Hock’s laboratory works 
on molecular mechanisms 
of normal differentiation and 
malignant transformation. 
The image shows normal 
blood cells and leukemic 
cells (arrows) from a novel 
experimental model generated 
in the lab.

Deciphering the molecular events 
leading to acute lymphoblastic 
leukemia of childhood 

About one in 2000 children develops this 

catastrophic illness, most often with 

a t(12;21) translocation. Despite very 

aggressive treatments, not all children 

can be cured, and some suffer from long-

term side effects of their therapy. Rational 

development of more specific, less toxic 

treatments requires a precise understanding 

of the molecular mechanisms that cause the 

disease. We have discovered that TEL-AML1, 

the first hit in childhood leukemia, generates 

a preleukemic, latent lesion in HSCs. We 

are now exploring how additional genetic hits 

cooperate to derail normal blood development 

and generate leukemia. Deciphering the 

multistep pathogenesis of this entity is likely 

to serve as a paradigm for the development of 

other malignant diseases.

Exploration of novel epigenetic 
regulators in stem cells 

Our understanding of how specialized 

cells of the body establish their identity by 

regulating access to genes continues to 

increase. For example, a large fraction of 

the genes active in brain cells are inactive 

in blood cells and, therefore, are stored in 

a very dense, inaccessible state. As most 

molecules involved in the regulation of 

gene accessibility have only recently been 

identified, studying their biology is likely 

to provide unique opportunities for the 

development of entirely novel therapies. 

We are investigating the utility of a group of 

proteins termed MBT-proteins, which is very 

important for condensing DNA and modifying 

histones. Evidence suggests that this protein 

family may play important roles in normal 

and malignant blood formation, but its 

precise functions remain poorly understood. 

Our laboratory has recently discovered an 

entirely novel, essential function of the family 

member L3mbtl2 in pluripotent stem cells.
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Macrophage Regulation of Tissue 
Regeneration

Macrophages are ancient cells of the innate 

and adaptive immune system. My old 

microbiology textbook defines macrophages 

as “scavengers and sentries – routinely 

phagocytizing dead cells and debris, but 

always on the lookout, ready to destroy 

invaders, and able to call in reinforcements 

when needed.” Our laboratory believes they 

are so much more. 

Tissue resident macrophage populations 

exist in virtually every tissue, whether 

they are Kupffer cells in the liver, alveolar 

macrophages in the lung, microglia in the 

brain or Langerhans cells in the skin. Some 

of these macrophages have been recently 

reported to specify hepatic progenitor cell 

fate, regulate epithelial progenitor niches 

in the colon and drive oligodendrocyte 

differentiation during remyelination in the 

central nervous system. After depletion of 

macrophages, an adult salamander is unable 

to regenerate an amputated limb. However, 

when macrophage levels were allowed to 

replenish, full limb regeneration capacity 

of failed stumps was restored upon re-

amputation. Macrophages, therefore, may be 

a common cellular regulator across a diverse 

repertoire of stem cell niches. The problem 

that exists today is that macrophages 

are extraordinarily diverse and plastic, 

necessitating the need to identify specific 

subsets responsible for stem cell and tissue 

regeneration, in both homeostatic and 

disease scenarios. 

We have created a unique mouse model 

that allows tracking of macrophages with 

deferring embryonic origins with specific, 

genetic-fluorescent markers, aiding in 

de-convoluting this heterogeneous cell 

population. Our laboratory is exploring 

several clinically relevant applications for 

stem cell transplantation, and will broadly 

use these macrophage tools and knowledge 

to delineate macrophage regenerative 

signals in multiple tissue stem cell niches, 

organ transplantation, and disease. 

Hematopoietic Stem Cell Biology 

Hematopoietic stem cell (HSC) 

transplantation is used to treat a number 

of malignant and non-malignant diseases. 

Over the last decade, there has been 

increasing evidence that the HSC pool is 

heterogeneous in function; with identification 

of HSCs with differing lineage outputs, 

kinetics of repopulation, length of life-span, 

and perhaps differences amongst HSCs 

contributing to homeostatic blood production 

from those that are the engraftable units in 

The Hoggatt laboratory is broadly interested in the stem cell niche regulatory 

mechanisms that govern tissue regeneration, particularly regulation by 

macrophages, and we have a specific interest in translational science for bone 

marrow transplantation and other treatments. Our laboratory identified a 

unique “highly engraftable” hematopoietic stem cell that we are currently 

investigating which has applications for further probing of stem cell niche 

biology, and clinical applications in transplantation, gene therapy, and other 

fields. We have also developed unique genetic mouse models allowing us to 

dynamically explore macrophage heterogeneity in a variety of disease settings.
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Shown are sinusoidal vessels (green) within the calvaria bone of mice during live, in vivo imaging 
of the hematopoietic stem cell niche.

transplantation. Delineating the mechanisms 

of these functional differences has the 

potential to increase the efficacy of stem cell 

transplantation. 

Currently, there are no great methods 

for prospectively isolating differing HSC 

populations to study heterogeneity; much of 

the data that has been acquired is based on 

clonal tracking, single cell transplantation, 

etc. We have developed a rapid mobilization 

regimen as a new method to acquire HSCs. 

Fifteen minutes after administering a single 

subcutaneous injection in mice, stem cell 

mobilization to the blood is greater than five 

days of granulocyte-colony stimulating factor 

(G-CSF) treatment; the current gold standard 

for hematopoietic mobilization. Surprisingly, 

when equivalent numbers of highly-purified 

HSCs from the blood of mice treated with 

the rapid regimen versus G-CSF were 

subsequently competitively transplanted 

into lethally irradiated recipients, the HSCs 

mobilized by the rapid regimen substantially 

outperformed those mobilized by G-CSF. 

The rapid regimen mobilizes a “highly 

engraftable” hematopoietic stem cell 

(heHSC) compared to those mobilized 

by G-CSF. 

Much like panning for gold, we have used 

the differential mobilization properties of our 

regimen and G-CSF as a “biologic sieve” to 

isolate the heterogeneous HSC populations 

from the blood. Our laboratory will continue 

to leverage this approach to analyze the 

transcriptomic and epigenetic differences 

between the two populations of HSCs to 

determine the specific gene(s) that account 

for the heHSC phenotype, and to further 

explore the biologic potential of this new 

population of stem cells. These efforts have 

the potential to substantially increase our 

knowledge of heterogeneity and increase 

efficacy of HSC based clinical therapies.
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We have developed and deployed 

next generation sequencing to detect 

chromosomal rearrangements in tumor 

tissue, with on-going studies that assess the 

relative sensitivity in much larger clinical 

cohorts. The method we have developed, 

termed “anchored multiplex PCR” or 

AMP, is an efficient target enrichment 

technology, allowing for 100s of targets to be 

simultaneously analyzed from small tissue 

samples (3). We have used AMP to screen 

thousands of tumor samples, and have 

uncovered numerous novel driver fusion 

genes. Our lab is now focused on modeling 

novel fusions in vitro and developing 

therapeutic approaches to screening these 

fusions. We have also initiated studies of 

tumor heterogeneity; these efforts focus 

on gene amplification of receptor tyrosine 

kinases in glioblastoma (4). This work has 

revealed a new subclass of brain tumors 

with mosaic gene amplification of up to 

three kinases in distinct but intermingled 

cell populations within the same tumor, 

forming a mosaic pattern. We found that 

each subpopulation was actively proliferating 

and contributing to tumor growth. Detailed 

genetic analysis found that different 

subpopulations within a particular tumor 

shared other gene mutations, indicating that 

they had originated from the same precursor 

cells. Mapping the location of different 

subpopulations in the brain of a glioblastoma 

patient suggested that each subpopulation 

may serve a different function in the growth 

and spread of the tumor. Our lab has 

developed novel highly-multiplexed FISH 

technology to address how many genes show 

copy number heterogeneity, and to study 

the spatial distribution of such populations 

(5), see image. We are exploring the 

therapeutic implications of such driver gene 

heterogeneity in cell line model systems of 

glioblastoma using genome-wide CRISPR 

knock out screens.

More recently we have adapted the AMP 

sequencing technology in other areas, 

including (1) mapping off-target rates for 

CRISPR-CAS genome editing; (2) sequencing 

and mapping the distribution of IgH and 

TCR rearrangements in tumor samples; and 

(3) ultra-high sensitive mutation calling in 

The Iafrate laboratory has focused efforts on developing highly complex 

molecular analyses of tumor genetics using novel technologies. We have a strong 

interest in the clinical implementation of genetic screening technologies that can 

help direct targeted therapies, focusing on lung, breast and brain tumors. Our 

recent contributions in the treatment of a subset of non-small cell lung carcinoma 

(NSCLC) with rearrangements of the ALK tyrosine kinase, rearrangements of the 

ROS1 tyrosine kinase and MET exon 14 skipping with a small molecule kinase 

inhibitor (crizotinib), underscore the promise of personalized cancer care  

(1, 2).  We currently are focusing on detecting tumor DNA in blood samples  

(“liquid biopsies”) to allow for efficient and convenient tracking of cancer 

progression. In additional we are developing new techniques to allow for early 

detection of cancers by detecting tumor-specific DNA in circulation.
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Cancer. N Engl J Med. 2014; Sept. 27. 

Heist RS, Shim HS, Gingipally S, 
Mino- Kenudson M, Le L, Gainor JF, 
Zheng Z, Aryee M, Xia J, Jia P, Jin H, 
Zhao Z, Pao W, Engelman JA, and 
Iafrate AJ. MET Exon 14 Skipping in 
Non-Small Cell Lung Cancer. Oncolo-
gist. 2016; 21(4):481-486. 

Zheng Z, Liebers M, Zhelyazkova B, 
Cao Y, Panditi D, Chen J, Robinson 
HE, Chmielecki J, Pao W, Engelman 
JA, Iafrate AJ*, Le LP*. Anchored 
multiplex PCR for targeted next-
generation sequencing. Nat Medicine. 
2014; Nov. 10. 

Snuderl M, Fazlollahi L, Le LP,  
Nitta M, Zhelyazkova BH, Davidson 
CJ, Akhavanfard S, Cahill DP,  
Aldape KD, Betensky RA, Louis DN,  
Iafrate AJ. Mosaic amplification of 
multiple receptor tyrosine kinase 
genes in glioblastoma. Cancer Cell. 
2011; 20:810-7. 

Onozato ML, Yapp C, Richardson 
D, Sundaresan T, Chahal V, Lee J, 
Sullivan JP, Madden MW, Shim HS, 
Liebers M, Ho Q, Maheswaran S, 
Haber DA, Zheng Z, Clancy B, Elliott 
HL, Lennerz JK, Iafrate AJ. Highly 
Multiplexed Fluorescence in Situ 
Hybridization for in Situ Genomics. 
J Mol Diagn. 2019; 21(3):390-407.

Cheng J, Cao Y, MacLeay A, Lennerz 
JK, Baig A, Frazier RP, Lee J, Hu K, 
Pacula M, Meneses E, Robinson H, 
Batten JM, Brastianos PK, Heist RS, 
Bardia A, Le LP, Iafrate AJ. Clinical 
Validation of a Cell-Free DNA Gene 
Panel. J Mol Diagn. 2019; 21(4): 
632-645.

*Co-corresponding authors

circulating tumor cells and cell free plasma 

samples. Using AMP we have developed 

tissue-specific cell-free DNA (cfDNA) 

panels to examine the most important 

cancer genes in common tumors, including 

lung, melanoma, breast and colon cancer. 

Such panels are allowing us to track, with 

a simple blood draw, the tumor burden in 

patients. We are able to use cfDNA analysis 

in metastatic patients to see if they are 

responding to therapy, and also can track the 

development of resistance mutations. This 

allows a real-time dynamic optimization of 

therapy. Most recently we have developed 

a methylation-based sequencing assay to 

allow efficient analysis of tumor-specific 

methylation patterns in cfDNA samples. 

We hope that such an approach can be a 

lot more sensitive in the detection of small 

amounts of circulating tumor DNA, allowing 

potential early detection of tumors before 

they are clinically symptomatic. In addition, 

the methylation patterns are actually specific 

to the type of tumor the DNA is derived from, 

potentially allowing us to determine the 

actual anatomic site of origin.

Multiplex FISH to detect copy number changes in circulating tumor cells.
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Discovery and development of hypoxia 
inducible factor 2a (HIF2a) inhibitors 
for treatment of renal cell carcinoma 
and other HIF2a-dependent cancers 

We screened libraries of chemical 

compounds and discovered chemical 

molecules that significantly and specifically 

decrease the expression of HIF2a (Zimmer 

M. et al. Molecular Cell 2008; 32(6): 838-

48). We used these HIF2a inhibitors as 

chemical biology probes and discovered 

that they suppress the expression of 

HIF2a by activating IRP1. We thus proved 

a crosstalk between the iron and oxygen 

sensing mechanisms within the cell. We 

demonstrated that the HIF2a inhibitors 

discovered are “active” and that they reverse 

the consequences of VHL protein loss 

(Metelo AM. Journal Clinical Investigation 

2015; 125(5): 1987-97). Our chemical HIF2a 

inhibitors are very promising agents for 

treating RCC.

Targeting the metabolic reprogramming 
of RCC and HIF2a expressing tumors; 
from the lab to the bedside 

We used metabolic flux analysis to show 

that hypoxic cells use glutamine as a 

carbon source for anabolism. We showed 

that low oxygen levels or HIF2a expression 

reprogrammed cells to use glutamine 

in a “reverse” TCA cycle to produce the 

metabolites required for anabolic reactions, 

a process called Reductive Carboxylation. 

These observations provided insights into 

a mechanism by which hypoxic and HIF2a 

expressing cancer cells compensate for the 

Warburg phenomenon (Metallo et al. Nature 

2012; 481(7381): 380- 4). We delineated the 

mechanism driving Reductive Carboxylation 

and proved that reductive carboxylation 

does not only happen in cultured cells, but 

can also be detected in human RCC tumors 

growing as xenografts in mice. We therefore 

provided for the first time, in vivo evidence 

for the utilization of glutamine in tumors 

through reductive carboxylation (Gameiro 

et al. Cell Metabolism 2013; 17(3): 372-385). 

Recently, we showed that inhibition 

of Glutaminase 1 (GLS1) decreases 

significantly the intracellular pyrimidines  

and results in DNA replication stress in  

HIF-hypoxia driven cancer cells. Treatment of 

cancer cells with GLS1 and PARP inhibitors 

resulted in dramatic suppression of RCC in 

xenograft models (J Clin Invest. 2017; 127(5): 

1631-1645). 

The Iliopoulos laboratory works on the main mechanisms underlying the 

reprogramming of cancer cell metabolism and cancer angiogenesis with the 

goal to develop mechanism-based strategies for selectively killing cancer 

cells. We use Renal Cell Carcinoma (RCC) as a model disease of altered 

cancer metabolism and angiogenesis mechanisms. Cancer cells transform 

their metabolism to adapt to the needs of fast growth and to compete with 

the surrounding normal cells for nutrients and oxygen. In addition to a 

reprogrammed metabolism, cancer cells stimulate the growth of new blood 

vessels that bring blood to them, a phenomenon known for many years as 

“cancer angiogenesis”. The laboratory identifies and validates therapeutic 

targets that disrupt these processes.
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Nephrology. 2017; 13, 320.

Laviolette LA, Mermoud J, Calvo IA, 
Olson N, Boukhali M, Steinlein OK, 
Roider E, Sattler EC, Huang D, Teh BT, 
Motamedi M, Haas W, Iliopoulos O. 
Negative regulation of EGFR signalling 
by the human folliculin tumour 
suppressor protein. Nat Commun. 2017; 
28;8: 15866. 

Metelo AM, Noonan HR, Li X, Jin  
YN, Baker R, Kamentsky L, Zhang Y, 
van Rooijen E, Shin J, Carpenter AE, 
Yeh JR, Peterson RT, Iliopoulos O. 
Treatment of VHL disease pheno-
types with small molecule HIF2a 
inhibitors. Journal Clinical Investigation. 
2015; 125 (5):1987-97. 

Gameiro PA, Yang J, Metelo AM, 
Pérez-Carro R, Baker R, Wang Z, 
Arreola A, Rathmell WK, Olumi A, 
López-Larrubia P, Stephanopoulos 
G and Iliopoulos O. HIF mediated 
reductive carboxylation occurs in vivo 
through regulation of citrate levels 
and sensitizes VHL-deficient cells to 
glutamine deprivation. Cell Metabolism. 
2013;17 (3): 372-385. 

Metallo CM, Gameiro PA, Bell EL, 
Mattaini KR, Yang J, Hiller K, Jewell 
CM, Zachary R. Johnson JR, Irvine DJ, 
Guarente G, Kelleher JK, Vander Heiden 
MG, Iliopoulos O*, Stephanopoulos G*. 
Reductive glutamine metabolism 
by IDH1 mediates lipogenesis under 
hypoxia. Nature. 2011; 481 (7381): 
380-4, Nov 20. 

Zimmer M, Ebert BL, Neil C, Brenner 
K, Papaioannou I, Melas A, Tolliday 
N, Lamb J, Pantopoulos K, Golub T, 
Iliopoulos O. Small-molecule inhibitors 
of HIF-2a translation link its 5’UTR iron-
responsive element to oxygen sensing. 
Molecular Cell. 2008; 32(6): 838-48.

*Co-corresponding authors

Expression of Hypoxia Inducible Factor HIF2a rewires the central carbon metabolism in renal  
cell cancer.

We brought these fundamental observations 

of my laboratory on glutamine metabolism 

to the clinic. We initiated a Phase 1 trial with 

Glutaminase 1 (GLS1) inhibitors for patients 

with RCC and triple negative breast cancers 

nationwide. We are now opening a new 

clinical trial of GLS1 inhibitor CB-839 and 

PARP inhibitor combination treatment for 

patients with RCC, prostate, triple negative 

and ovarian cancer. 

Modeling Renal Cell Carcinoma 
in the zebrafish 

Zebrafish with homozygous inactivating 

mutations in VHL gene recapitulate aspects 

of the human VHL disease, including 

abnormal proliferation of their kidney 

epithelium. We are using the zebrafish 

as a model system to model the diverse 

pathways that lead to renal cell carcinoma 

development.
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Ajaykumar Ramawatar  
  Vishwakarma, DDS, MS Precision cancer medicine currently focuses 

on knowledge of the cancer mutation 

repertoire and the tailored application of 

drugs that target altered genes or pathways 

in individual patients, such as use of BRAF 

inhibitors in patients with BRAF mutant 

melanoma. Immune checkpoint inhibitors 

targeting the PD-1/PD-L1 pathway have 

shown dramatic and durable clinical 

responses in melanoma and others cancers, 

but robust predictive biomarkers are lacking 

and innate resistance is common. Thus, a 

critical need exists for more sophisticated 

ex vivo functional testing modalities that 

recapitulate human tumor biology to predict 

response to targeted and immune-based 

therapies and to develop personalized 

treatment plans in real-time. 

Major focus areas of the Jenkins lab 

include (1) identifying and characterizing 

mechanisms of response and resistance 

to PD-1 blockade, (2) discovering novel 

therapeutic strategies to overcome 

resistance to PD-1 blockade, and (3) using 

the MDOTS/PDOTS as a functional precision 

medicine platform for the development 

of novel combinations, and ultimately, 

personalized immunotherapy to tailor 

immunotherapy treatment to individual 

patients. Improved understanding of the 

response to immune checkpoint inhibitors 

within the tumor microenvironment will 

facilitate efforts to identify predictive 

biomarkers/models for immune 

checkpoint blockade in real-time, as well 

as future efforts to screen for therapeutic 

combinations that enhance the response 

to immune checkpoint blockade, and 

may ultimately provide a platform for the 

‘personalization’ of immunotherapy.

Our novel approach for evaluating ex 

vivo response to PD-1 blockade utilizes 

murine- and patient-derived organotypic 

tumor spheroids (MDOTS/PDOTS) cultured 

in a 3-dimensional microfluidic system. 

Our study which was recently published 

Immunotherapy has transformed the treatment of metastatic melanoma and 

other cancers, allowing a new avenue of therapeutic options and prolonging 

lives of many patients. Unfortunately, while immunotherapy is highly effective in 

some patients, it does not work for every patient and there are no available tests 

to determine whether or not a patient will respond to immunotherapy before 

treatment begins. To understand why immunotherapy works for some patients 

and not others, the Jenkins laboratory uses sophisticated tools and techniques 

to study and investigate the complex and dynamic interactions between cancer 

cells and the immune system. Our solution to this problem involves a specialized 

3-dimensional culture of a patient’s own tumor enabling researchers to examine 

interactions between tumor cells and immune cells. The integration of this novel 

approach with other emerging technologies is helping us navigate the complex 

landscape of the tumor immune microenvironment and learn which patients will 

respond to immunotherapy as well as how to effectively treat cancer patients that 

do not respond immunotherapy alone.
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M, Freeman SS, Reuben A, Hoover PJ, 
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MR, Vitzthum H, Blackmon SM, Li B, 
Gopalakrishnan V, Reddy SM, Cooper 
ZA, Paweletz CP, Barbie DA, Stemmer-
Rachamimov A, Flaherty KT, Wargo 
JA, Boland GM, Sullivan RJ, Getz G, 
Hacohen N. Defining T Cell States As-
sociated with Response to Checkpoint 
Immunotherapy in Melanoma. Cell. 
2018 Nov 1;175(4):998-1013.

Aref AR, Campisi M, Ivanova E, Portell 
A, Larios D, Piel BP, Mathur N, Zhou 
C, Coakley RV, Bartels A, Bowden M, 
Herbert Z, Hill S, Gilhooley S, Carter J, 
Cañadas I, Thai TC, Kitajima S, Chiono 
V, Paweletz CP, Barbie DA, Kamm RD, 
Jenkins RW. 3D microfluidic ex vivo 
culture of organotypic tumor spheroids 
to model immune checkpoint blockade. 
Lab Chip. 2018 Oct 9;18(20):3129-3143.

Cañadas I, Thummalapalli R, Kim JW, 
Kitajima S, Jenkins RW, et al. Tumor 
innate immunity primed by specific 
interferon-stimulated endogenousa 
retroviruses. Nat Med. 2018 Aug;24(8): 
1143-1150. 

Jenkins RW, Aref AR, Lizotte PH, et al. 
Ex Vivo Profiling of PD-1 Blockade Using 
Organotypic Tumor Spheroids. Cancer 
Discov. 2018;8(2):196-215.

Deng J, Wang ES, Jenkins RW, et al. 
CDK4/6 Inhibition Augments Antitu-
mor Immunity by Enhancing T-cell Acti-
vation. Cancer Discov. 2018;8(2):216- 33.

Kim JW, Abudayyeh OO, Yeerna H, 
Yeang CH, Stewart M, Jenkins RW, Kita-
jima S, Konieczkowski DJ, Medetgul- Er-
nar K, Cavazos T, Mah C, Ting S, Van Al-
len EM, Cohen O, Mcdermott J, Damato 
E, Aguirre AJ, Liang J, Liberzon A, Alexe 
G, Doench J, Ghandi M, Vazquez F, 
Weir BA, Tsherniak A, Subramanian 
A, Meneses-Cime K, Park J, Clemons 
P, Garraway LA, Thomas D, Boehm 
JS, Barbie DA, Hahn WC, Mesirov JP, 
Tamayo P. Decomposing Oncogenic 
Transcriptional Signatures to Generate 
Maps of Divergent Cellular States. Cell 
Syst. 2017 Aug 23;5(2):105- 118.e9.

Live/Dead analysis (Acridine Orange – Green-Live; Propidium Iodide – Red-Dead) of murine-
derived organotypic tumor spheroids (MDOTS) from PD-1 sensitive (MC38) and resistant (B16F10) 
syngeneic mouse models treated ex vivo with IgG or anti-PD-1 (10 μg/mL) for 6 days in 3D 
microfluidic culture (ref: Jenkins et al. Cancer Discovery 2018). 

in Cancer Discovery (Jenkins et al., Cancer 

Discovery 2018; PMID: 29101162), has shown 

that organotypic tumor spheroids isolated 

from fresh mouse and human tumor 

samples retain autologous lymphoid and 

myeloid cell populations, including antigen-

experienced tumor infiltrating CD4 and CD8 T 

lymphocytes, and respond to PD-1 blockade 

in short-term ex vivo culture. Furthermore, 

we have demonstrated that tumor killing was 

recapitulated ex vivo using MDOTS derived 

from the anti-PD-1 sensitive MC38 syngeneic 

mouse cancer model, whereas relative 

resistance to anti-PD-1 therapy was preserved 

in the CT26 and B16F10 syngeneic models. 

Our focused evaluation of rational therapeutic 

combinations to enhance response to PD-1 

blockade using ex vivo profiling of MDOTS 

revealed TBK1 inhibition as a novel strategy to 

enhance sensitivity to PD-1 blockade, which 

effectively predicted tumor response in vivo. 

Our findings demonstrated the feasibility of 

ex vivo profiling of PD-1 blockade and offer a 

novel functional approach for the selection 

of immunotherapeutic combinations. The 

ultimate goals of these efforts are to identify 

and characterize novel features of response/

resistance to PD-1 blockade and to identify 

novel therapeutic strategies to overcome 

resistance to anti-PD-1 therapy, ultimately to 

bring forward into human clinical trials.

MC38

B16F10

IgG αPD-1
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The Joung Laboratory develops technologies 

for genome and epigenome editing of living 

cells and organisms using engineered zinc 

finger, transcription activator-like effector 

(TALE), and RNA-guided CRISPR-Cas9-based 

systems and explores their applications for 

biological research and gene therapy. 

Genome Editing Using Targeted 
Nucleases and Base Editors 

Genome editing technology using CRISPR-

Cas nucleases was named “Breakthrough 

of the Year” for 2015 by Science magazine. 

We and our collaborators were the first 

to demonstrate that these nucleases can 

function in vivo (Hwang & Fu et al., Nat 

Biotechnol. 2013) to modify endogenous 

genes in zebrafish embryos and the first 

to show that they can induce significant 

off-target mutations in human cells (Fu et 

al., Nat Biotechnol. 2013). We have led the 

field in development of unbiased, genome-

wide strategies for profiling the specificities 

of CRISPR-Cas nucleases including the 

widely used cell-based GUIDE-seq method 

(Tsai et al., Nat Biotechnol. 2015) and the in 

vitro CIRCLE-seq method (Tsai et al., Nat 

Biotechnol. 2017). We have recently shown 

that CIRCLE-seq can be used to identify 

Cas9-induced off-targets in vivo (Akcakaya 

& Bobbin et al., Nature, 2018). In addition, 

we have engineered “high-fidelity” Cas9 

variants (Kleinstiver & Pattanayak et al., 

Nature 2016) and Cas9 variants with novel 

DNA binding specificities (Kleinstiver et al., 

Nature 2015; Kleinstiver et al., Nat Biotechnol. 

2015; Kleinstiver et al., Nat Biotechnol. 2019). 

More recently, we have developed a novel 

CRISPR base editor architecture that shows 

improved precision and reduced off-target 

effects (Gehrke et al., Nat Biotechnol. 2018) 

and described and minimized base editor-

induced transcriptome-wide RNA off-target 

mutations (Grunewald et al., Nature 2019; 

Grunewald et al., Nat Biotechnol. 2019).

Epigenome Editing Using Targeted 
Transcription Factors 

We have also performed work showing that 

the Transcription Activator-Like Effector 

(TALE) and CRISPR-Cas platforms can also 

be utilized to create artificial transcription 

The Joung laboratory is developing strategies to reprogram the genomes and 

epigenomes of living cells to better understand biology and treat disease. We 

have developed and continue to optimize molecular tools for customized 

genome editing including engineered zinc finger, transcription activator-like 

effector (TALE), and RNA-guided CRISPR-Cas-based systems. These platforms 

enable scientists to alter the DNA sequence of a living cell—from fruit flies to 

humans—with great precision. These technologies are based on designer DNA-

binding and RNA-guided proteins engineered to recognize and cleave specific 

genomic sequences. We also use these targeting methodologies to direct 

various other regulatory elements to enable activation, repression, or alteration 

of histone modifications of specific genes. These tools have many potential 

uses in cancer research and may lead to more efficient gene therapy capable of 

correcting disease-related mutations in human cells.
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Transcriptome-wide off-target RNA 
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DNA base editors. Nature. 2019 May; 
569(7756): 433-437.

Kleinstiver BP, Sousa AA, Walton RT, 
Tak YE, Hsu JY, Clement K, Welch 
MM, Horng JE, Malagon-Lopez J, 
Scarfò I, Maus MV, Pinello L, Aryee 
MJ, Joung JK. Engineered CRISPR-
Cas12a variants with increased 
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editing. Nat Biotechnol. 2019 Mar; 
37(3): 276-282. 

Akcakaya P, Bobbin ML, Guo JA, 
Malagon-Lopez J, Clement K, Garcia 
SP, Fellows MD, Porritt MJ, Firth 
MA, Carreras A, Baccega T, Seeliger 
F, Bjursell M, Tsai SQ, Nguyen 
NT, Nitsch R, Mayr LM, Pinello L, 
Bohlooly-Y M, Aryee MJ, Maresca 
M, Joung JK. In vivo CRISPR editing 
with no detectable genome-wide 
off-target mutations. Nature. 2018 
Sep;561(7723):416-419.

Gehrke JM, Cervantes O, Clement 
MK, Wu Y, Zeng J, Bauer DE, 
Pinello L, Joung JK. An APOBEC3A-
Cas9 base editor with minimized 
bystander and off-target activities. 
Nat Biotechnol. 2018 Nov; 36(10): 
977-982.. 

Tak YE, Kleinstiver BP, Nuñez JK, Hsu 
JY, Horng JE, Gong J, Weissman JS, 
Joung JK. Inducible and multiplex 
gene regulation using CRISPR-Cpf1- 
based transcription factors. Nat 
Methods. 2017; 14(12):1163-1166. 

factors that can robustly alter expression 

of endogenous human genes (Maeder et 

al., Nat Methods 2013a; Maeder et al., Nat 

Methods 2013b). We have also developed 

fusions of engineered TALE domains with 

the catalytic domain of the TET1 enzyme, 

enabling the targeted demethylation of CpGs 

in human cells (Maeder et al., Nat Biotechnol. 

2013). More recently, we have shown that 

the CRISPR-Cpf1(Cas12a) platform can be 

modified to engineer robust transcriptional 

activators that can efficiently increase 

endogenous gene expression in human cells 

(Tak et al., Nat Methods 2017).

Schematic illustration of RNA 
off-target edits induced by 
CRISPR DNA base editors.
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The ongoing research of my lab is focused on 

transcription-coupled oxidative DNA damage 

response and cancer. A growing body of 

evidence suggests that oxidative stress plays 

an important role in tumorigenesis, aging, 

and neurodegenerative diseases. Oxidative 

stress caused by environmental insults 

and endogenous metabolites induces DNA 

base modifications and strand breaks. DNA 

strand breaks have detrimental effects not 

only on actively proliferating cells, but also 

on slowly proliferating cells and terminally 

differentiated cells. At active transcription 

sites, RNA Polymerase II can bypass DNA 

base modifications, but not strand breaks. 

Given the heterogeneity of cancer cells in 

tumors, it is critical to understand how 

dividing and non-dividing cells respond to 

oxidative DNA damage. One of the main 

research interests of the Lan laboratory is 

to understand how oxidative DNA damage 

response is differentially regulated in 

transcribed and un-transcribed regions, 

and in dividing and non-dividing cells. We 

discovered a novel mRNA-dependent and R 

loop-mediated homologous recombination 

(HR) mechanism that specifically promotes 

repair in the transcribed genome. Thus, our 

work has revealed an unexpected role for 

mRNA in HR. Importantly, we show that this 

mRNA-mediated HR mechanism is able to 

operate even in G0/G1 cells, challenging the 

current view that HR only occurs during the 

S/G2 phase of the cell cycle. Our findings 

may likely lead to a new paradigm in DNA 

repair, and to a better understanding of how 

actively proliferating and slowly proliferating 

cancer cells respond to oxidative damage. In 

the near future, we plan to address several 

important questions on this new pathway 

that we discovered: (1) Whether and how 

is the RNA-mediated HR pathway distinct 

from the canonical HR pathway? (2) How is 

repair “channeled” into the RNA-mediated 

HR pathway in transcribed regions? (3) Is 

the RNA-mediated HR pathway important 

for tumor suppression? In our ongoing 

studies, we are exploring the function of 

RNA modifications in the RNA-mediated HR 

pathway, and are using advanced super-

resolution imaging techniques (STORM and 

PALM) to study DNA-RNA structural changes 

at specific sites of DNA damage within the 

genome. We are also using the zebrafish 

Oxidative DNA damage is a major source of genomic instability during 

tumorigenesis and aging. The main research interests of the Lan laboratory 

are centered on the mechanisms by which human cells maintain genomic 

stability against oxidative stress. With a strong appreciation for how human 

health conditions, especially cancer and neurological maladies, are connected 

to the loss of genome integrity, ranging from intrinsic genetic predispositions 

to environmental factors that inflict DNA damage, my lab has developed the 

first single-cell assay to interrogate the molecular mechanisms of oxidative 

DNA damage response at specific loci in the genome. By combining this 

innovative assay with state-of-the-art imaging techniques, we have opened 

new avenues to understanding the oxidative DNA damage response in different 

chromosomal environments.
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The Lan laboratory developed the DNA Damage at RNA Transcribed sites (DART) method to 
precisely introduce oxidative DNA damage at specific transcribed loci in a dose-dependent 
manner. This is achieved by site-specific positioning of the photo-excitable and ROS-releasing 
protein KillerRed (KR). This unique method provides a tool to understand how oxidative DNA 
damage response is differentially regulated in transcribed and un-transcribed regions, and in 
dividing and non-dividing cells.

model to assess the functional significance 

of RNA-mediated HR in vivo. Going forward, 

we would like to expand our studies to 

investigate the status of this new RNA-

mediated HR repair pathway in cancer cells, 

its potential function in tumor suppression, 

and its value as a therapeutic target. 

A second research priority of my lab is 

to understand how telomeres respond 

to oxidative DNA damage. Telomere 

dysregulation is a major source of genomic 

instability and a potential target for cancer 

therapy. Due to G/C-rich telomeric repeats, 

telomeres are particularly vulnerable to 

oxidative stress. Interestingly, telomeres are 

protected by specific “capping” proteins, 

making DNA damage response at telomeres 

significantly different from elsewhere in 

the genome. More specifically, we are 

investigating whether and how oxidative 

damage at telomeres triggers telomere 

attrition, senescence, and the promotion 

of tumorigenesis. My lab has established a 

new method to introduce oxidative damage 

to telomeres in a highly controlled manner, 

allowing us, for the first time, to specifically 

follow the oxidative damage response at 

telomeres. In several projects, we have 

investigated how HR factors are regulated 

by shelterin proteins at telomeres during the 

oxidative damage response. The recruitment 

of repair factors to telomeres is coordinately 

regulated by poly-ADP-ribosylation, 

phosphorylation, SUMOylation, and 

ubiquitylation of TRF1 to protect cancer cells 

from telomere damage. Our future goal is to 

investigate whether and how the mechanisms 

orchestrating oxidative damage response at 

telomeres may contribute to the suppression 

of tumorigenesis and aging, and how we can 

exploit this specific vulnerability of cancer 

cells in therapy.
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Identifying molecular pathways  
that drive progression and relapse  
in pediatric cancer

The Langenau laboratory research 

focus is to uncover progression and 

relapse mechanisms in pediatric cancer. 

Utilizing zebrafish models of T-cell acute 

lymphoblastic leukemia (T-ALL) and 

embryonal rhabdomyosarcoma (ERMS), 

we have undertaken chemical and genetic 

approaches to identify novel modulators of 

progression, therapy-resistance, and relapse.

Uncovering progression-associated 
driver mutations in T-cell acute 
lymphoblastic leukemia 

T-ALL is an aggressive malignancy of 

thymocytes that affects thousands of 

children and adults in the United States each 

year. Recent advancements in conventional 

chemotherapies have improved the five-

year survival rate of patients with T-ALL. 

However, patients with relapse disease are 

largely unresponsive to additional therapy 

and have a very poor prognosis. Ultimately, 

70% of children and 92% of adults will die 

of relapse T-ALL, underscoring the clinical 

imperative for identifying the molecular 

mechanisms that cause leukemia cells 

to re-emerge at relapse. Utilizing a novel 

zebrafish model of relapse T-ALL, large-

scale trangenesis platforms, and unbiased 

bioinformatic approaches, we have 

uncovered new oncogenic drivers associated 

with aggression, therapy resistance and 

relapse. A large subset of these genes exerts 

important roles in regulating human T-ALL 

proliferation, apoptosis and response to 

therapy. Discovering new relapse-driving 

oncogenic pathways will likely identify drug 

targets for the treatment of T-ALL. 

Visualizing and killing cancer stem 
cells in embryonal rhabdomyosarcoma

ERMS is a common soft-tissue sarcoma of 

childhood and phenotypically recapitulates 

fetal muscle development arrested at early 

stages of differentiation. Microarray and 

cross-species comparisons of zebrafish, 

mouse and human ERMS uncovered the 

finding that the RAS pathway is activated in a 

majority of ERMS. Building on this discovery, 

our laboratory has developed a transgenic 

zebrafish model of kRASG12D-induced ERMS 

that mimics the molecular underpinnings 

of human ERMS. We used fluorescent 

Most pediatric patients whose sarcoma or leukemia recurs will succumb 

to their disease. The focus of the Langenau laboratory is to uncover the 

mechanisms that drive progression and relapse in pediatric tumors with the 

long-term goal of identifying new therapeutic drug targets to treat relapse and 

refractory disease. One approach we have used is to add drugs to the water of 

novel zebrafish models of pediatric sarcoma and leukemia that mimic human 

malignancy. We then imaged tumor growth in the zebrafish and utilized 

detailed imaging studies to visualize tumor cells in live animals to assess how 

cellular heterogeneity drives continued tumor growth. Capitalizing on insights 

gained from our zebrafish models of cancer, we are now extending our findings 

to human T-cell acute lymphoblastic leukemia and rhabdomyosarcoma.
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Visualizing cancer stem cells in live zebrafish affected with embryonal rhabdomyosarcoma. 
GFP expression is confined to the myf5+ ERMS-propagating cells, while differentiated nontumor 
propagating cells are labeled with a nuclear histone-RFP fusion and membrane associated Cyan.

transgenic zebrafish that label ERMS cell 

subpopulations based on myogenic factor 

expression to identify functionally distinct 

classes of tumor cells contained within the 

ERMS mass. Specifically, the myf5+/vangl2+ 

self-renewing cancer stem cell drives 

continued tumor growth at relapse and is 

molecularly similar to a non-transformed, 

activated muscle satellite cell. Building on 

the dynamic live cell imaging approaches 

available in the zebrafish ERMS model, 

our laboratory has undertaken chemical 

genetic approaches to identify drugs that 

kill relapse-associated, self-renewing ERMS 

cells. Using genetic approaches, we have 

also identified important roles for Myod, 

Myf5, Myogenin, Vangl2, and Notch1 in 

driving continued RMS growth. 

Zebrafish Avatars of Human Cancer

The Langenau Lab has generated a number 

of immunocompromised zebrafish strains 

that efficiently engraft zebrafish, mouse, and 

human tumors. These models are amenable 

to real-time imaging of cancer hallmarks at 

single cell resolution and have been used in 

preclinical modeling experiments to identify 

drug combinations for the treatment of 

human rhabdomyosarcoma. These models 

are now being assessed for engraftment of 

a wider array of human cancers, ES and iPS 

cells, and regenerative tissues.
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Tumor DNA Sequencing

High-throughput DNA sequencing is a 

workhorse of biomedical research. There are 

many challenges in processing the raw DNA 

sequencing reads from a patient’s resected 

tumor or biopsy material, aligning them 

accurately to the reference human genome, 

and then scanning for loci where the tumor 

DNA differs from the patient’s bulk “normal” 

DNA (e.g. from a blood draw). Distinguishing 

true somatic mutations from sequencing or 

alignment artifacts can be tricky, especially 

for subclonal events present in only a fraction 

of tumor cells. We are refining a “panel of 

normals” (PoN) approach, which combats 

stochastic artifacts seen in the patient’s 

tumor sample, and not in the patient’s normal 

sample but widespread however in many other 

patients’ normal samples. We are continually 

discovering new artifact modes, making this a 

highly challenging and unpredictable area of 

research. Isolating true somatic mutations is 

crucial for downstream analyses of mutational 

signatures and driver events.

Analyzing Mutational Signatures

Cancers vary over many orders of magnitude 

in their total background mutation burden, 

ranging from very quiet tumor types such 

as leukemias and childhood tumors, which 

may have fewer than 10 somatic mutations in 

their exome, to carcinogen-associated tumor 

types such as lung cancer and melanoma, 

which may have over 1000. Mutations have 

many causes, and each mutagen can leave a 

telltale signature. For instance, spontaneous 

deamination of methylated CpG’s causes the 

transition mutations that dominate many 

tumor types. Mutagens in tobacco smoke 

cause G-to-T transversions. Ultraviolet 

radiation causes C-to-T at dipyrimidines. 

Agitated APOBEC enzymes cause mutations 

at C’s preceded by T. Loss of mismatch repair 

causes microsatellite instability (MSI), marked 

by expansion and contraction of simple-

sequence repeats, as well as characteristic 

types of single-base changes. Tumors 

carrying mutations in the proofreading 

exonuclease domain of polymerase epsilon 

(POLE) tend to accrue C-to-A mutations at 

the trinucleotide TCT. Very rare “MSI+POLE” 

cancers show the highest yet known somatic 

mutation burdens, with upwards of 10,000 

coding mutations per patient. Patients 

Cancer results from alterations to DNA that lead to the activation of oncogenes 

or the inactivation of tumor suppressors. The Lawrence laboratory focuses on 

understanding the many ways this can happen, using computation as a powerful 

microscope to study the processes of DNA damage and repair, gene expression 

and genome replication, and cancer driver genes. Over our lifetimes, DNA slowly 

accumulates mutations due to environmental toxins and radiation, as well as 

from naturally occurring copying errors. The vast majority of mutations have 

little or no effect on a cell, but out of all possible mutations, a few may hit exactly 

the right place in the genome, where they can act as a “driver mutation,” pushing 

the cell toward aggressive growth and tumor formation. Sequencing the DNA in 

a tumor reveals not only its driver mutations, but also all the other “passenger 

mutations” that were present in the tumor-initiating cell. We seek insights about 

cancer from both driver and passenger mutations.
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The mutational landscape of a cancer cell 
across size regimes. At the smallest scale, 
local DNA trinucleotide sequences (lower-left 
foreground) correlate with the “mutational 
signatures” induced by various mutagens. 
At the largest scale (background of image), 
chromatin is organized into multi-megabase 
domains comprising Compartment B (tightly 
packed, gene-poor DNA lining the nuclear 
periphery) and Compartment A (gene-rich 
open DNA in the nuclear interior). Mutations 
induced by APOBEC enzymes (yellow 
points) are distributed equally across the 
two compartments, but most other types of 
mutations (blue points) are concentrated in 
Compartment B. Between the large and small 
extremes lies the “mesoscale” regime, where 
genomic features like hairpin-forming ability 
are determined. DNA exposed in a hairpin 
loop is vulnerable to attack by the enzyme 
APOBEC3A (center), giving rise to highly 
recurrent passenger mutations in cancer.

affected by MSI and/or POLE mutagenesis are 

known to experience better clinical outcomes, 

probably thanks to their high neoantigen loads 

which attract a powerful immune response. 

Our most recent research has focused on a 

less well-studied signal in somatic mutation 

datasets, mutational asymmetries between 

the two DNA strands. These illuminate 

transcriptional or “T-class” mutational 

patterns, associated with exposure to tobacco 

smoke, UV radiation, and a yet-unknown 

agent in liver cancer, as well as replicative 

or “R-class” patterns, associated with MSI, 

APOBEC, POLE, and a yet-unknown agent in 

esophageal cancer.

APOBEC Mutations and Mesoscale 
Genomic Features

Statistical approaches for distinguishing 

driver mutations from passenger mutations 

have relied on the gold standard of recurrence 

across patients. Seeing exactly the same DNA 

base-pair mutated recurrently across patients 

has been taken as proof that the mutation 

must be under functional selection for 

contributing to tumor fitness. The assumption 

is that mutational processes, being essentially 

random, are unlikely to hit the exact same 

base-pair over and over again. Our recent 

discoveries about APOBEC mutagenesis 

have cast doubt on this assumption. We have 

shown that APOBEC3A has a very strong 

preference for mutating cytosines presented 

in a short loop at the end of a strongly paired 

DNA hairpins. DNA hairpins occupy the 

genomic “mesoscale” regime, being larger 

than the trinucleotides that define mutation 

signatures, yet smaller than chromatin 

topological domains. Our results indicate 

that there are multiple routes to cancer 

mutational hotspots. Driver mutation hotspots 

in oncogenes can rise to prominence through 

positive selection, and are not restricted to 

the “favorite” sites of any particular mutagen. 

In contrast, special DNA sites (like hairpins) 

that happen to be optimal substrates for 

a mutagen (like APOBEC) can give rise to 

“passenger hotspot mutations” that owe 

their prevalence to substrate optimality, 

not to any effects on tumor fitness. These 

findings mean we need to be careful not 

to assume that all mutation hotspots are 

cancer drivers.
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Mechanisms of Breast Cancer 
Metastasis

The research in my laboratory is focused 

on defining the molecular mechanisms 

that drive breast cancer progression and 

metastasis. Cancer, initially confined to the 

primary site, eventually spreads to distal 

sites, including lung, liver, bone and brain, by 

invading into the bloodstream. Upon reaching 

these distal sites, the tumor cells continue 

to grow and evolve well after removal of the 

primary tumor resulting in overt metastasis 

and disease recurrence, the leading causes 

of cancer-related deaths. Using cell culture 

and mouse models, patient derived tissues, 

and circulating tumor cells (CTCs) enriched 

from the blood of women with breast 

cancer, we characterize the contribution of 

oncogenic-and tumor-microenvironment-

derived signals to cellular states including: 

epithelial to mesenchymal plasticity, 

senescence, and how these aspects of tumor 

heterogeneity influence cancer progression 

and therapeutic responses. 

Metastasis through the Prism of 
Circulating Tumor Cells 

I am also collaborating with Drs. Daniel 

Haber and Mehmet Toner to define cancer 

biology across several tumor types including 

breast, prostate, liver, and lung cancers 

as well as melanoma using CTCs isolated 

from the blood of cancer patients. CTCs 

represent an extremely rare population 

of cells in the blood and their isolation 

presents a tremendous technical challenge. 

The CTC-iChip developed in Dr. Toner’s 

laboratory enables enrichment of live 

CTCs through selective removal of blood 

components; red and white blood cells as 

well as platelets. Characterizing CTCs has 

far-reaching implications for both clinical 

care and defining cancer biology. They 

enable real time monitoring of tumor cells 

during disease progression and therapeutic 

responses, and could possibly be used for 

early detection of disease. Viable CTCs 

cultured from patients provide tremendous 

insight into the molecular heterogeneity 

Metastasis, the leading cause of cancer-related deaths, is governed by multiple 

steps, which are not well understood. Using cell culture and mouse models, as 

well as patient-derived tumor tissues and tumor cells circulating in the blood 

(Circulating Tumor Cells/CTCs), the Maheswaran laboratory has uncovered 

novel tumor cell characteristics that promote metastasis in breast cancer 

patients. Our findings show that cancer cells exist in multiple cellular states, 

each state exhibiting different characteristics. As such, each breast cancer 

patient harbors a mixture of tumor cells with different functional properties. 

We intend to define the functional and molecular properties of different 

subclasses of tumor cells and their contribution to metastasis, tumor evolution 

and drug sensitivity using appropriate experimental models and patient-

derived samples. These findings will provide insight into the contribution of 

heterogeneous cancer cell populations to metastasis and their significance as 

biomarkers and therapeutic targets.
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Confocal images of cells stained with tubulin (green) and DAPI (magenta) show that SETD1A-KD 
cells escaping senescence harbor chromosome segregation defects visualized as micronuclei 
(circled). The scale bar represents 50 µm. 

and cellular plasticity of tumors that govern 

differential biological characteristics and 

responses to therapy. Characterization of 

CTCs ties in well with the overall goal of the 

lab to study cancer metastasis.

shGFP escape shSETD1A escape
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The Manguso lab is working to improve the efficacy of cancer immunotherapy. 

We use a range of approaches including mouse models, functional genomics, 

cellular immunology, and single-cell profiling to understand how cancers 

evade the immune system. Our lab has pioneered the use of in vivo genetic 

screens with CRISPR to identify new immunotherapy targets and resistance 

mechanisms. Using these approaches, we identified the tyrosine phosphatase 

PTPN2, a critical regulator of immunotherapy sensitivity in tumor cells. We also 

identified the dsRNA-editing enzyme ADAR1 as a checkpoint that regulates 

the sensing of self-dsRNA by tumor cells. Our results indicate that there are 

dozens of ways that cancers can be targeted by the immune system, and we 

are working to understand the new mechanisms revealed by our studies. In 

the long term, these approaches will enable a new understanding of how the 

immune system interacts with cancerous tissue and how the interaction can be 

manipulated to destroy tumors.

Over the last decade, critical discoveries 

in immunology and cancer biology have 

revealed how tumors are shaped by the 

immune system and how they evolve to evade 

it. We now know that disrupting immune 

checkpoints such as CTLA-4 and PD-1/PD-

L1 can lead to T cell-mediated elimination 

of tumors. However, there is still a critical 

unmet need, as the vast majority of patients 

with cancer do not benefit from current 

immunotherapies. Our most pressing 

challenge is to discover the next generation 

of immunotherapies that can bring clinical 

benefit to the majority of patients.

To discover immunotherapy targets and 

resistance mechanisms in high throughput, 

we have developed an in vivo, CRISPR-

based genetic screening system to identify 

genes that regulate tumor cell sensitivity 

to immunotherapy (Manguso et al, Nature 

2017). We genetically modify mouse cancer 

cell lines that can be transplanted into 

animals and used as immunotherapy 

models. After delivery of Cas9 and libraries 

of single guide RNAs (sgRNAs), we implant 

pools of modified tumor cells into animals 

that are treated with immunotherapy. In a 

single experiment we can determine genes 

that, when deleted, increase or decrease 

sensitivity to immunotherapy (Figure 1). 

This strategy has enabled the rapid and 

simultaneous identification of new targets 

and resistance mechanisms that are potent 

regulators of anti-tumor immunity.

This powerful, unbiased discovery system 

allows us to identify targets and resistance 

mechanisms with no previously identified 

roles in immunotherapy. Three examples 

illustrate the power of this system for 

discovery: 1) we found that deletion of the 

phosphatase PTPN2 enhanced tumor cell 

sensitivity to immunotherapy. While PTPN2 

was known to negatively regulate T cell 

receptor activation, our screens determined 

that it is also the most potent suppressor of 

interferon-gamma sensing in tumor cells; 

2) we discovered that the non-classical 

MHC-I gene HT-T23/Qa-1 (HLA-E) is a 
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Diagram of in vivo CRISPR screening system. Pools of Cas9-expressing, sgRNA library-
transduced tumor cells are implanted into either wild-type or immunocompromised mice. 
After 2 weeks, tumors are harvested and genomic DNA is extracted from tumor tissue. Next 
generation sequencing of the sgRNA library is used to identify resistance mechanisms or 
immunotherapy targets.

major immune checkpoint that limits anti-

tumor immunity by T cells and NK cells; 

3) our screens identified that deletion of 

ADAR1, an adenosine deaminase acting 

on RNA unmasks endogenous dsRNA that 

can be recognized by the cytosolic pattern 

recognition receptors PKR and MDA5, and 

can overcome resistance to immunotherapy 

caused by loss of antigen presentation 

(Ishizuka & Manguso et al, Nature 2018). 

Previously, these genes were not known or 

prioritized targets in immuno-oncology, but 

our unbiased approach enables discoveries 

that would have otherwise been unlikely.

We have demonstrated that in vivo CRISPR 

screens are a powerful way to discover 

new targets and probe the interaction of 

tumor cells with the host immune system. 

We can now broadly apply these genetic 

tools to advance our understanding of how 

immunotherapy works, why it may fail, and 

how we can improve it. Ongoing projects in 

the lab include:

1. Discover novel immunotherapy targets 

and mechanisms of resistance across 

several well-characterized mouse 

cancer models

2. Identify pathways that can overcome 

acquired resistance to immunotherapy

3. Understand how we can manipulate 

antigen presentation to enhance 

immunotherapy

 These projects will define new ways to 

generate anti-tumor immune responses, 

reveal pathways that can be targeted to 

enhance these responses across cancer 

types, and anticipate and overcome the 

mechanisms by which tumors will become 

resistant. More broadly, these studies 

will improve our understanding of how 

tumors evolve under the selective pressure 

of immune surveillance and enable the 

development of more effective therapeutics.



62 MGH Center for Cancer Research   ANNUAL REPORT 2019-2020

Maus Laboratory 

Stephanie Bailey, PhD 

Amanda Bouffard 

Wilfredo Garcia Beltran,  
  MD, PhD

Genevieve Gerhard**

Max Jan, MD, PhD 

Michael Kann

Rebecca Larson* 

Mark Leick, MD 

Marcela V. Maus, MD, PhD 

Pedro Ojedao†

Maria Cabral Rodriguez 

Irene Scarfo, PhD 

Andrea Schmidts, MD 

Maegan Sheehan

Emily Silva

Aarti Ambike Svirastavao†

Sonika Vatsa

†Masters candidate 
*PhD Candidate 

**MD candidate

Marcela V. Maus, MD, PhD

Immune therapies that engage T cells have 

the potential to induce long-term durable 

remissions of cancer. In hematologic 

malignancies, allogeneic hematopoietic stem 

cell transplants can be curative, in part due 

to T-cell mediated anti-tumor immunity.

In solid tumors, checkpoint blockades with 

anti- CTLA-4 or anti-PD-1 monoclonal 

antibodies can mediate long-term responses 

by releasing T cells from tightly controlled 

peripheral tolerance. Chimeric antigen 

receptors (CARs) are synthetic molecules 

designed to re-direct T cells to specific 

antigens. Re-directing T cells with CARs 

is an alternative method of overcoming 

tolerance, and has shown great promise in the 

clinical setting for B cell malignancies such 

leukemia and lymphoma. However, successful 

application of this form of therapy to other 

cancers is likely to require refinements in the 

molecular and clinical technologies. 

The goal of the Maus lab is to design and 

evaluate next generation genetically-

modified (CAR) T cells as immunotherapy in 

patients with cancer. 

Specifically, next generation T cells that the 

Maus lab intends to develop includes CAR-T 

cells that:

1. Contain molecular improvements in 

receptor design to enhance specificity, 

potency, and safety.

 Most chimeric antigen receptors used 

to re-direct T cells to a new target 

are based on enforcing expression of 

either murine single-chain antibody 

fragments, natural ligands, or natural 

T cell receptors. However, novel types 

of antigen receptors are in development 

and could be exploited to re-direct T 

cells such that they can distinguish 

between antigen expressed on the 

tumor and the same antigen expressed 

in healthy tissues. In liquid tumors,  

it will also be important to improve 

the safety of CAR T cells, while in  

solid tumors, the focus is on increasing 

their potency. 

2. Are administered in combination 

with other drugs delivered either (a) 

systemically or (b) as payloads attached 

to T cells to sensitize tumors to T cell 

mediated killing and/or potentiate T 

cell function.

 Some recently developed targeted 

therapies have effects on T cells or 

Using the immune system as a cancer treatment has the potential to induce 

long-term, durable remissions, and perhaps even cures for some patients. The 

T cells of the immune system are able to specifically kill the target cells they 

recognize. T cells are also able to persist in the body for many years, and form 

immune ‘memory,’ which enables the possibility of long-term protection.  

The Maus laboratory is interested in using genetic engineering techniques to 

re-direct T cells to find and kill tumor cells, while sparing healthy tissues. We aim 

to develop new ways to design molecular receptors to target T cells to liquid and 

solid tumors; use T cells as delivery vehicles for other drugs, and use drugs to 

help T cells work against tumors; and understand how T cells can work as “living 

drugs” to treat patients with cancer.
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tumor cells that potentiates the tumor-

killing effects. Alternatively, T cells can 

be chemically or genetically loaded with 

drugs to potentiate T cell function, such 

as cytokines or antibodies to checkpoint 

inhibitors. In this case, re-directed 

T cells could be used as a delivery 

mechanism to target an otherwise toxic 

drug specifically to the tumor.

3. Have additional modifications that make 

CAR T cells (a) resistant to inhibitory 

mechanisms, (b) imageable, or (c) more 

feasible to manufacture and administer.

 Control of T cell function is a complex 

process orchestrated by a variety of 

molecules, some of which deliver 

inhibitory signals. Tumors often express 

ligands to inhibit T cell function. Using 

a single vector, genetically modified 

T cells can be re-directed not only to 

recognize a new antigen on tumor cells, 

but also to be resistant to the inhibitory 

tumor micro-environment. 

4. We aim to understand the basic biology 

and mechanisms that drive engineered 

T cell function.

 The MGH Cellular Immunotherapy 

Program directed by Dr. Maus aims 

to generate a pipeline of genetically 

engineered CAR T cells to use as “living 

drugs” in patients with cancer. The 

program is composed of a “research 

and discovery” arm, “a regulatory/

translational” arm to be able to test 

genetically-modified T cells in human 

subjects, and a “clinical/ correlative” 

sciences arm of immune profiling to 

examine the engraftment, persistence, 

and bioactivity of T cell products infused 

into patients. The Immune Monitoring 

Laboratory is directed by Dr. Kathleen 

Gallagher.

CAR-T Cell Targeting a Glioblastoma Cell Expressing EGFRvIII, Scanning Electron Micrograph; 
Credit: Bryan D. Choi, Mark B. Leick, and Marcela V. Maus. 
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Understanding morphogenesis 
and tumorigenesis 

The vast array of forms and functions 

exhibited by different cell types is enabled 

by the organization of specialized domains 

within the cell cortex such as the neuronal 

growth cone, immunological synapse and 

microvillus-studded apical surfaces of 

epithelial cells. Indeed, epithelial cells work 

together to establish discrete basal, lateral 

and apical surfaces as they organize into 

three dimensional structures that carry out 

organ-specific functions, such as the tubular 

networks of the lung, kidney, breast and liver. 

The spatial organization of cortical domains 

provides an essential layer of regulation to 

both biochemical and adhesive receptors 

on the cell surface, thereby limiting both 

proliferation and migration of cells in 

mature tissues. Alterations in the exquisite 

organization of epithelial structures are the 

earliest evidence of a developing tumor and 

signatures of tumor invasion and metastasis.

The assembly of cortical domains requires 

the coordination of processes occurring 

at the plasma membrane and underlying 

cytoskeleton, and in particular, the formation 

of protein complexes that position membrane 

receptors, control their abundance and 

activity, and link them to the cortical 

cytoskeleton, which they modulate. The 

overarching goal of my laboratory is to 

understand how the dynamic organization 

of this cellular compartment contributes 

to morphogenesis and tumorigenesis. 

We have focused particular attention on 

the neurofibromatosis type 2 (NF2) tumor 

suppressor and closely related ERM 

proteins (Ezrin, Radixin and Moesin) - 

membrane:cytoskeleton linking proteins 

that simultaneously influence membrane 

complexes and the cortical actomyosin 

cytoskeleton, with the goals of delineating 

the molecular function of Merlin, identifying 

therapeutic targets for familial and sporadic 

NF2-mutant tumors and broadly examining 

the roles of Merlin/ERMs in development and 

cancer. 

The McClatchey laboratory focuses on understanding how cells organize 

their outer surface – an important cellular compartment created by the 

interface between the cell membrane and underlying cortical cytoskeleton. 

This compartment governs the shape, identity and behavior of individual 

cells, as well as how they interact biochemically and mechanically with 

the extracellular environment. Normal cells modulate the features of the 

membrane:cytoskeleton interface to carry out key developmental processes 

and build functioning tissues. On the other hand, cancer cells exploit this 

compartment to interact inappropriately with other cells and with their 

environment during tumor initiation, invasion and metastasis. Our research 

stems from a longstanding quest to understand the molecular basis of a familial 

cancer syndrome caused by mutation of the neurofibromatosis type 2 (NF2) 

tumor suppressor gene. The NF2-encoded protein, Merlin, and closely related 

ERM proteins (Ezrin, Radixin and Moesin) are central architects of the cell 

cortex that have important roles in development and in many human cancers.
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Using mouse and bioengineered tissue 

culture models, we have identified important 

functions for Merlin and the ERM proteins 

in morphogenesis and tumorigenesis in 

many tissues. Cellular and molecular 

studies reveal that these phenotypes are 

driven by key, interdependent roles for 

Merlin and the ERM proteins in governing 

the dynamic and mechanical properties 

of the cortical cytoskeleton and, in 

particular, the inter-relationship between 

receptor tyrosine kinases (RTKs) and 

cortical cytoskeleton. Ongoing projects 

focus on the function of Merlin/ERMs and 

the membrane:cytoskeleton interface in 

establishing normal tissue architecture 

and contributing to tumor initiation and 

progression in biliary and mammary 

epithelial tubes, and in Schwann cell:axon 

relationships; complementary studies focus 

on how dynamic membrane:cytoskeleton 

remodeling of the cell surface triggers 

macropinocytosis, a form of bulk endocytosis 

that is exploited by some tumors for nutrient 

scavenging and a preferred conduit for 

the entry of many therapeutics into tumor 

cells. Thus far, our studies have provided 

novel insight into how the organization 

of the cell cortex governs the individual 

and collective behavior of cells and drives 

morphogenetic processes, how defective 

cortical organization contributes to tumor 

initiation and progression, and yielded 

unexpected therapeutic targets and avenues 

of translation for cancer therapy.

It is increasingly clear that cancer 

fundamentally reflects the aberrant re-

enactment of developmental processes. 

We believe that the continued partnering of 

discovery-based science and translational 

studies will lead to novel therapeutic 

avenues while continuing to advance our 

understanding of the basic cellular activities 

that contribute to many human cancers.

Left: Biliary cells form tubes with an actin- and ERM-rich (red) apical surface; Image credit: Evan 
O’Loughlin, PhD Student. Right: EGF stimulation rapidly triggers actin/ERM- (green) and pAkt 
(red) rich macropinocytic cups on the surface of Nf2-/- cells (the nucleus is stained blue in both 
images). Image credit: Christine Chiasson-MacKenzie, PhD.
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The mission of our translational research 

laboratory is to discover and develop 

molecular biomarkers that inform clinical 

decisions in the management of patients 

with genitourinary malignancies. We aim 

to develop circulating and tissue-based 

biomarkers in a variety of clinical contexts 

in order to actualize the concept “real-time 

precision medicine”, integrating genomic 

analyses of liquid and tissue biopsies to 

guide the personalized care of patients with 

genitourinary malignancies.

Prostate cancer is the most common cancer 

in men and the second leading cause 

of cancer-related death in men. There 

is a critical unmet need for predictive 

biomarkers to guide prostate cancer 

therapy in settings ranging from localized 

to metastatic disease. In localized prostate 

cancer, reliable biomarkers are sorely 

needed to guide the rational selection of 

appropriate management options tailored 

to each patient’s tumor, including active 

surveillance, radical prostatectomy, or 

radiation therapy. In metastatic prostate 

cancer, multiple FDA-approved therapeutic 

options that increase survival are now 

available, including androgen receptor (AR) 

targeted therapies, cytotoxic chemotherapy, 

and PARP inhibitors. However, we lack 

non-invasive biomarkers that can reliably 

predict treatment responses and precisely 

guide selection of the most appropriate 

therapy for each individual patient. A major 

focus of our laboratory is the investigation 

of circulating tumors cells (CTCs), which 

are rare cancer cells shed from primary and 

metastatic tumors into the peripheral blood. 

CTCs represent a type of “liquid biopsy” that 

may be performed repeatedly and non-

invasively to monitor treatment efficacy and 

study tumor evolution during therapy. In 

collaboration with a multidisciplinary team 

at MGH, we have developed novel molecular 

assays using microfluidic technologies to 

isolate and analyze CTCs from the blood of 

cancer patients. Our recent studies include 

the interrogation of androgen receptor 

(AR) signaling status to predict therapeutic 

response in patients receiving AR-targeted 

therapies, and the use of single cell 

RNA-seq to nominate noncanonical Wnt 

signaling as a contributor to enzalutamide 

resistance. Most recently, we derived CTC 

RNA signatures that predict resistance to 

AR-targeted therapy in metastatic cancer 

The Miyamoto laboratory focuses on the discovery and development of novel 

biomarkers to guide the personalized treatment of patients with prostate 

and bladder cancer. We focus on two general classes of biomarkers, namely 

those based on the molecular profiles of tumor biopsies, and those based 

on circulating tumors cells (CTCs) in the blood that can be sampled non-

invasively and repeatedly. By analyzing these patient-derived specimens, we 

have identified new molecular predictors of response to therapy and potential 

mechanisms of treatment resistance. Our overall aim is to develop tools for “real-

time precision medicine” to probe the molecular signatures of cancers as they 

evolve over time, and to guide the precise and rational selection of appropriate 

therapies for each individual patient with prostate or bladder cancer.
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A dividing circulating tumor cell isolated from a prostate cancer patient, immunostained for PSA 
(red), PSMA (orange), and DNA (blue), adjacent to a leukocyte immunostained for CD45 (green) 
and DNA (blue).

and early dissemination in localized cancer. 

Ongoing projects include the development of 

CTC molecular signatures for the prediction 

of clinical outcomes after radiation therapy, 

and for the early detection of clinically 

significant prostate cancer. Another focus 

of the laboratory is the development of 

novel tissue-based biomarkers. We utilize 

technologies including microfluidic real-time 

PCR, next-generation sequencing, and RNA 

in situ hybridization (RNA-ISH) to evaluate 

molecular signatures in limited quantities of 

tumor biopsy tissues. Our past and ongoing 

efforts are directed at correlating molecular 

findings with clinical outcomes in order 

to identify novel biomarkers predictive of 

treatment response.

Bladder cancer is the fifth most common 

cancer in the US, causing 18,000 deaths 

per year. Muscle-invasive bladder cancer 

is aggressive and has a high propensity 

for metastasis, but can often be treated 

effectively with either radical cystectomy 

or bladder-sparing trimodality therapy 

(transurethral tumor resection followed 

by chemoradiation). However, the decision 

regarding which treatment to pursue is often 

made based on arbitrary factors including 

patient or physician preference. There 

is an urgent unmet need for molecular 

biomarkers to guide patients towards the 

most appropriate therapy based on the 

biology of their tumor. We recently performed 

gene expression profiling of bladder 

tumors from patients treated with bladder 

preservation therapy, and identified immune 

and stromal molecular signatures predictive 

of outcomes after chemoradiation therapy. 

We are currently evaluating these and other 

candidate biomarkers as predictors of 

treatment response in prospective clinical 

trials and carefully defined retrospective 

clinical cohorts.
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The DNA and the histones are arranged in the 

nucleus in a highly condensed structure known 

as chromatin. Cellular processes that unwind 

the double helix—such as transcription, 

replication and DNA repair—have to overcome 

this natural barrier to DNA accessibility. 

Multicellular organisms also need to control 

their use of cellular energy stores. Glucose 

metabolism plays a crucial role in organismal 

homeostasis, influencing energy consumption, 

cell proliferation, stress resistance and 

lifespan. Defective glucose utilization causes 

numerous diseases ranging from diabetes to 

an increased tendency to develop tumors. For 

cells to respond appropriately to changes in 

energy status, they need a finely tuned system 

to modulate chromatin dynamics in order 

to respond to metabolic cues. Reciprocally, 

chromatin changes necessary for cellular 

functions need as well to be coupled to 

metabolic adaptations. 

Our lab is interested in understanding the 

influence of chromatin on nuclear processes 

(gene transcription, DNA recombination and 

DNA repair) and the relationship between 

chromatin dynamics and the metabolic 

adaptation of cells. One of our interests 

includes the study of a group of proteins 

called SIRTs, the mammalian homologues 

of the yeast Sir2. Sir2 is a chromatin silencer 

that functions as an NAD-dependent histone 

deacetylase to inhibit DNA transcription and 

recombination. In the past few years, we 

have been exploring the crosstalk between 

epigenetics and metabolism. In particular, 

our work has focused on the mammalian 

Sir2 homologue, SIRT6. In recent years, we 

have identified SIRT6 as a key modulator of 

metabolism. Mice lacking SIRT6 exhibit severe 

metabolic defects, including hypoglycemia and 

hypoinsulinemia. SIRT6 appears to modulate 

glucose flux inside the cells, functioning as a 

histone H3K9 deacetylase to silence glycolytic 

genes acting as a coexpressor of Hif1alpha, 

in this way directing glucose away from the 

TCA cycle to reduce intracellular ROS levels. 

This function appears critical for glucose 

homeostasis, as SIRT6 deficient animals die 

early in life from hypoglycemia. Remarkably, 

Research in the Mostoslavsky laboratory focuses on the crosstalk between 

chromatin dynamics and cellular metabolism. In particular, we have focused 

on sirtuins, a family of proteins first discovered in yeast that plays a critical 

role in many human diseases, including cancer. The yeast protein Sir2 enables 

yeast cells to survive under conditions of nutrient stress and functions 

as a modulator of lifespan. While recent studies indicate that some of the 

mammalian sirtuin (SIRT) homologues also play a role in stress resistance 

and metabolic homeostasis, their precise molecular functions remain unclear. 

Most of our work involves the Sir2 mammalian homolog known as SIRT6. Our 

research indicates that SIRT6 modulates glucose metabolism and DNA repair 

and functions as a strong tumor suppressor gene. Using transgenic mouse 

models and other experimental systems, we are exploring the role of SIRT6 and 

metabolism in tumorigenesis and other disease processes, as well as trying to 

understand the crosstalk between metabolism and epigenetics.
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SIRT6: A Chromatin Modulator of 
Glucose Homeostasis.

SIRT6 acts as a tumor suppressor in colon 

cancer, regulating cancer metabolism through 

mechanisms that by-pass known oncogenic 

pathways. Cancer cells prefer fermentation 

(i.e., lactate production) to respiration. Despite 

being described by biochemist and Nobel 

laureate Otto Warburg decades ago (i.e., the 

Warburg effect), the molecular mechanisms 

behind this metabolic switch remain a 

mystery. We believe SIRT6 may function 

as a critical modulator of the Warburg 

effect, providing a long-sought molecular 

explanation to this phenomenon. We have 

also uncovered key roles for SIRT6 in DNA 

repair (anchoring the chromatin remodeler 

SNF2H to DNA breaks) and early development 

(acting as a repressor of pluripotent genes), 

indicating broad biological functions for this 

chromatin deacetylase. More recently, we 

identified SIRT6 as a robust tumor suppressor 

in pancreatic cancer, where it silences the 

oncofetal protein Lin28b, protecting against 

aggressive tumor phenotypes. As such, 

SIRT6 represents an example of a chromatin 

factor modulated by cancer cells to acquire 

“epigenetic plasticity”. 

Our current studies are directed at 

determining how the DNA repair and 

metabolic functions of SIRT6 may be related 

to each other. We are exploring novel 

metabolic liabilities in cancer, as well as 

broader chromatin roles in DNA repair.  

We use a number of experimental systems, 

including biochemical and biological 

approaches, as well as genetically engineered 

mouse models. 

Projects: 

1. Deciphering how SIRT6 regulates 

chromatin structure

2. Determining the role of SIRT6 in 
tumorigenesis using mouse models

3. Elucidating the role of histone 

modifications and chromatin dynamics in 
DNA repair

4. Determining molecular crosstalk between 
epigenetics and metabolism

5. Assessing metabolic liabilities in cancer 

and metastases
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Epigenetic changes are heritable, phenotypic 

alterations which occur without mutations 

to the underlying genes. Once triggered, 

these phenotypic changes persist through 

numerous cell divisions independently of the 

original inducing signal. Epigenetic changes 

are critical for the stable formation of cellular 

identities, upon which all developmental 

processes depend. Disruption to epigenetic 

regulation underlies a variety of human 

maladies, including cancers. In fact, epigenetic 

pathways can contribute to all stages of cancer 

progression, including initiation, metastasis, 

resistance and recurrence. Therefore, 

understanding the molecular mechanisms 

that establish epigenetic states is fundamental 

to the development of therapies that target the 

epigenetic components of cancers. 

Often, but not always, epigenetic changes 

are concomitant with alterations to the 

chromatin state of underlying genes. Most of 

what is known about how chromatin states 

are altered in response to epigenetic triggers 

comes from decades of research in model 

organisms. These studies have revealed highly 

conserved protein families, which are now 

used for therapeutic or diagnostic purposes 

in cancers. The Motamedi lab uses the fission 

yeast as a model to understand how changes 

to eukaryotic chromatin are made, maintained 

and propagated, and how these changes 

establish alternative transcriptional programs 

particularly in response to persistent stress. 

Noncoding RNAs and chromatin – 
partners in epigenetic regulation 

One of the first models for how long and 

small noncoding RNAs regulate chromatin 

states was proposed in the fission yeast. 

It posits that noncoding RNAs, tethered to 

chromatin, provide a platform for the assembly 

of RNA-processing and chromatin-modifying 

proteins (Motamedi et al 2004), leading to 

transcriptional regulation of the underlying 

genes. In addition to acting as platforms, 

RNA molecules also can function as trans-

acting factors, targeting chromatin regulatory 

proteins to specific chromosomal regions. 

These principles now have emerged as 

conserved mechanisms by which noncoding 

RNAs partake in chromatin regulation in 

eukaryotes including in humans.

Research in the Motamedi Laboratory focuses on a molecular memory system, 

called epigenetics, which allows cells to develop distinct identities during 

development. Cells develop identities when groups of genes are turned on and 

off at a given time in a given cell. A focus of the lab is studying the molecular 

machinery that transmits this gene regulatory information to progeny cells 

upon division. Another focus for the lab is cellular dormancy. Recently, scientists 

have discovered that a major reason for cancer resistance and recurrence is that 

a small number of dormant cancer cells originating from the primary tumor 

disperse throughout the body. These cancer cells are long-lived and can exit 

dormancy forming tumors years after remission. None of the existing therapies 

target dormant cancer cells. By studying dormancy, we have identified a pathway 

that specifically neutralizes these cells. We believe this discovery will help in 

addressing this unmet need in cancer therapy.
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A focus of the lab is cellular quiescence 

(or G0). G0 is a ubiquitous cellular state 

in which cells exit proliferation and 

enter a state of reversible dormancy. 

Developmental programs, such as wound 

healing, or exposure to a variety of stress, 

such as starvation, can trigger entry into 

or exit from G0. G0 cells have distinct 

transcriptional programs through which 

they acquire new properties compared to 

their proliferative selves, including long life, 

thrifty metabolism and resistance to stress. 

Loss of G0 regulation results in defects in 

developmental and adaptive programs. How 

cells enter, survive and exit G0 is a critical 

question in basic biology, which is largely 

unexplored. To address this knowledge gap, 

we modeled G0 in fission yeast and showed 

that when cells transition to G0, new ncRNAs 

emerge which coopt and deploy constitutive 

heterochromatin proteins (histone H3 lysine 

9 methyltransferase, Clr4/SUV39H) to several 

euchromatic gene clusters to regulate 

the expression of a set of developmental, 

metabolic and cell cycle genes. We show that 

this pathway is critical for survival and the 

establishment of the global G0 transcriptional 

program. This work revealed a new function 

of heterochromatin proteins and noncoding 

RNAs, which orchestrate the genome-wide 

deployment of heterochromatin factors 

in response to long-term stress. It also 

led to the proposal of several hypotheses 

that we are currently testing. Moreover, in 

collaboration with several groups, we have 

begun to test whether this pathway also plays 

an important role in cancer dormancy and 

treatment resistance.

The image depicts cells as they enter quiescence (moon), and load Ago1 (ships) with euchromatic 
small RNAs to mediate Quiescent-induced Transcriptional Repression (Q) of a set of euchromatic 
genes. Exosome activity separates heterochromatic (dark blue) from euchromatic (yellow) regions. 
When entering quiescence, the exosome barrier opens, permitting euchromatic transcripts 
(differently colored dots) to become substrates for RNAi degradation. Ago1, acquiring new color 
(sRNAs) as it crosses the exosome barrier, targets Q to the corresponding color in euchromatin.
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Chemical modulation of 
bromodomains

Gene control factors bind to regions of 

transcriptionally active chromatin called 

enhancers. Enhancers are critical for 

driving cell-type specific gene expression, 

and their chromatin structures are typically 

marked with specific histone modifications. 

Among the most distinctive is lysine side-

chain acetylation, recognized (or ‘read’) by 

histone modules called bromodomains. 

Recently, novel chemical compounds have 

been advanced that selectively target the 

bromodomains of the bromodomain and 

extra terminal domain (BET) family. These 

compounds efficiently displace BET proteins 

from active enhancer chromatin, and we and 

others have found them to be active agents 

in models of acute leukemia, lymphoma, and 

several solid tumor types. Using a suite of 

genome-wide chromatin and transcriptomic 

assays, we aim to understand principles 

of bromodomain dependency in cancer. 

Efforts are ongoing to establish biomarkers 

for response and resistance, and realize 

promising rationales for combination 

therapies with other targeted agents. 

Essential enhancers 

Classic studies have described oncogenic 

enhancers in leukemia and lymphoma 

cells. This aberrant enhancer activity can 

occur by chromosomal translocation of 

proto-oncogenes such as MYC and BCL2. 

In addition to chromosomal translocations, 

cancer-specific enhancers have been 

described at proto-oncogene loci like TAL1 

and MYC, which are aberrantly bound by 

transcription factors through direct somatic 

mutation of enhancer DNA elements or focal 

amplification. We have generated high-

resolution enhancer landscapes derived 

from primary patient samples, including a 

large cohort of chronic lymphocytic leukemia 

samples (Ott et al, Cancer Cell 2018). 

Current projects include construction of core 

regulatory transcription factor circuitries, 

and the discovery of inherited and somatic 

Mutations in cancer cells lead to malfunctioning control of gene expression. 

The Ott laboratory is dedicated to discovering the gene expression control 

factors that are essential for cancer cell survival. Discovery of these factors 

prompts further efforts in our group to design chemical strategies for 

the synthesis and deployment of prototype drugs targeting the aberrant 

mechanisms of gene control. Biologically, gene control factors represent 

compelling therapeutic targets for these cancers, as they are master 

regulators of cell identity. Yet despite this clear rationale, most are perceived 

as intractable drug targets owing to their large size, disordered shapes, and 

involvement in complex cellular circuits. Recent advances in gene editing 

technologies and discovery chemistry have advanced our capability to 

rapidly identify targetable aspects of gene control and methods to disrupt 

their function. We use these genetic and chemical tools to probe cancer cell 

circuitry and inform therapeutic hypotheses.
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Expanding the chromatin chemical probe toolbox with high throughput bead-based proximity 
assays, cellular target engagement assessment, cell line viability profiling, and in vivo 
pharmacology.

variants leading to aberrant gene expression. 

Using genetic and epigenetic genome editing 

techniques, we are functionally dissecting 

malfunctioning enhancers and their 

cognate bound factors to derive mechanistic 

understanding of the essential enhancers 

principally responsible for maintaining 

leukemia and lymphoma cell states. 

Expanding the chromatin chemical 
probe toolbox 

The successful discovery of chemistry efforts 

that yielded efficient BET bromodomain 

inhibitors has revealed chromatin reader 

domains broadly, and bromodomains 

specifically, as protein modules amenable 

for small molecule ligand development. 

Used experimentally, enhancer-targeting 

compounds enable precise disruption of 

chromatin features and can be used to 

identify and validate discrete biophysical and 

biochemical functions of target proteins. 

Paired with an understanding of integrated 

epigenomics, these probes enable the 

elucidation of fundamental insights into 

genome structure and function. We use high-

throughput protein-protein interaction assays 

and cellular assays of chromatin reader 

activity to identify reader domain inhibitors. 

Lead compounds are iteratively optimized 

for potency and selectivity, followed by 

functional assessments on epigenome 

structure. Leukemia and lymphoma cell 

viability profiling and in vivo pharmacokinetic 

and pharmacodynamic studies enable the 

nomination of next-generation inhibitors 

of essential chromatin readers. Ongoing 

projects seek to expand our current toolbox 

of bromodomain inhibitors, with a particular 

focus on ‘orphan’ factors for which selective 

compounds have yet to be developed.
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Pathogenesis of fibrosis  
(NIAID Autoimmune Center of 
Excellence at MGH) 

In studies on the immunology of IgG4 

related disease and scleroderma, performed 

in collaboration with John Stone (MGH 

Rheumatology) and Dinesh Khanna, (U. of 

Michigan, Rheumatology), we have identified 

an unusual, clonally expanded and potentially 

“fibrogenic” human CD4+ effector T cell 

subset in affected tissues. The differentiation 

and protective role of these CD4+ CTLs 

in cancer and chronic viral infections are 

currently being investigated using chromatin 

accessibility mapping, DNA methylation 

studies and single cell RNA-seq approaches. 

We have also discovered unusual B cell 

populations that are potentially fibrogenic 

both in the context of autoimmune fibrotic 

diseases and pancreatic cancer.

Studies on murine and human B cell 
development and activation 

We are using a number of single cell 

transcriptomic, epigenetic and genetic 

approaches to examine the heterogeneity 

and development of murine and human B 

cells, as well as the molecular bases of the 

processes of T-B collaboration and germinal 

center formation. 

DNA methylation, B cell self-renewal 
and chronic lymphocytic leukemia 

We have long been interested in cell fate 

decisions in B cell development and in the 

development of self-renewing B cell subsets. 

The roles of DNMT3a in B-1a B cell self-

renewal and of specific methylation events 

in chronic lymphocytic leukemia are being 

investigated. The contributions of DNA 

methylation and demethylation to the  

biology of CD4+ CTL and TFH cells are also 

being investigated. 

The Pillai laboratory asks questions about the biology of the immune 

system and susceptibility to disease. Some of these questions are 1) can we 

manipulate the immune system to treat autoimmunity and cancer and to 

increase immunological memory? 2) can we understand how genetics and the 

environment affect lymphoid clones to drive common diseases? and 

3) can this latter information be used to better understand and develop new 

therapies for chronic inflammatory human diseases such as systemic sclerosis 

and IgG4-related disease? Our discovery of the role of an enzyme called Btk 

in the activation of B cells has contributed to the generation of Btk inhibitors 

that are effective in B cell malignancies and in trials of autoimmunity. One 

of the pathways we are currently studying suggests new approaches for the 

treatment of autoimmune disorders. We are also exploring novel ways to 

strengthen immune responses and enhance helper T cell memory that provide 

hope for developing more effective personalized immune-system based 

treatments for cancer.
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A model for the evolution of CLL.

Studies on Human CTLA4 mutations 
and early B cell development

The underlying mechanism for the human B 

cell developmental defect in individuals with 

CTLA4 mutations has been studied helping 

us to better understand how regulatory T 

cells can influence early B cell development 

and humoral autoimmunity.

Polyclonal B-1 
cell expansion

Monoclonal B 
lymphocytosis

CLL

Principal Investigators 67

Epigenetic 
changes

in B-1a B cells
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Epigenetic variability in cellular 
identity and gene regulation 

We are studying the relationship between 

epigenetic regulators, chromatin 

structure and DNA sequence and how 

these factors influence gene expression 

patterns. We recently proposed an 

integrative computational pipeline called 

HAYSTACK (https://github.com/lucapinello/

Haystack). HAYSTACK is a software tool 

to study epigenetic variability, cross-cell-

type plasticity of chromatin states and 

transcription factor motifs and provides 

mechanistic insights into chromatin 

structure, cellular identity and gene 

regulation. By integrating sequence 

information, histone modification and gene 

expression data measured across multiple 

cell-lines, it is possible to identify the 

most epigenetically variable regions of the 

genome, to find cell-type specific regulators, 

and to predict cell-type specific chromatin 

patterns that are important in normal 

development and differentiation or potentially 

involved in diseases such as cancer.

Computational methods for  
genome editing 

Recent genome editing technologies such as 

CRISPR/Cas9 are revolutionizing functional 

genomics. However computational methods 

to analyze and extract biological insights 

from data generated with these powerful 

assays are still in an early stage and without 

standards. We have embraced this revolution 

by developing cutting-edge computational 

tools to quantify and visualize the outcome 

of CRISPR/Cas9 experiments. We created a 

novel computational tool called CRISPResso2 

(http://github.com/pinellolab/CRISPResso2), an 

integrated software pipeline for the analysis 

and visualization of CRISPR-Cas9 and base 

editor outcomes from deep sequencing 

experiments, as well as a user-friendly 

web application that can be used by non-

bioinformaticians (http:// crispresso.rocks). 

In collaboration with Daniel Bauer’s and 

Stuart Orkin’s groups, we recently applied 

CRISPResso and other computational 

strategies to aid the development of an in 

situ saturation mutagenesis approach for 

dissecting enhancer functionality in the blood 

system with the aim of developing potential 

therapeutic genome editing applications for 

hemoglobin disorders.

Exploring single cell gene expression 
variation in development and cancer

Cancer often starts from mutations 

occurring in a single cell that results in a 

The focus of the Pinello laboratory is to use innovative computational 

approaches and cutting-edge experimental assays, such as genome editing and 

single cell sequencing, to systematically analyze sources of genetic and epigenetic 

variation and gene expression variability that underlie human traits and diseases. 

The lab uses machine learning, data mining and high performance computing 

technologies, for instance parallel computing and cloud-oriented architectures, 

to solve computationally challenging and Big Data problems associated with 

next generation sequencing data analysis. Our mission is to use computational 

strategies to further our understanding of disease etiology and to provide a 

foundation for the development of new drugs and novel targeted treatments.
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STREAM on transcriptomic data from the mouse hematopoietic system. A) Dimensionality 
reduction, reconstructed hierarchical structure composed of curves approximating the inferred 
trajectories. Single cells are represented as circles and colored according to the FACS sorting 
labels. B) Flat tree representation at single cell resolution; branches are represented as straight 
lines, (cells are represented as in A). The length of the branches and the distances between cells 
and assigned branches are proportional to the original representation in the 3D space. C) Rainbow 
plot: intuitive visualization to show cell type distribution and density along different branches. D) 
Single cell resolution expression pattern of GATA1, each circle is red filled proportionally to the 
relative expression of GATA1 in the whole population. E) Relative expression of GATA1 in each 
branch using the representation in C.

heterogeneous cell population. Although 

traditional gene expression assays have 

provided important insights into the 

transcriptional programs of cancer cells, 

they often measure a combined signal 

from a mixed population of cells and 

hence do not provide adequate information 

regarding subpopulations of malignant 

cells. Emerging single cell assays now offer 

exciting opportunities to isolate and study 

individual cells in heterogeneous cancer 

tissues, allowing us to investigate how genes 

transform one subpopulation into another. 

Characterizing stochastic variation at the 

single cell level is crucial to understanding 

how healthy cells use variation to modulate 

their gene expression programs, and how 

these patterns of variation are disrupted in 

cancer cells. We have developed a method 

called STREAM to model the variability of 

gene expression at single cell resolution, and 

to reconstruct developmental trajectories 

(see illustrative image) using data from 

single cell assays such as scRNA-seq, 

multiplexed qPCR or sc-ATAC-seq. This 

method can be used for disentangling 

complex cellular types and states in 

development, cancer, differentiation or in 

perturbation studies.
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Regulatory driver mutations in  
cancer genomes 

Genomic cancer driver discovery has 

traditionally focused on protein-coding 

genes (the human exome), and large-scale 

sequencing of these genes in thousands 

of tumors has led to the discovery of novel 

frequently altered genes. However, exome 

sequencing focused only on coding genes 

does not allow analysis of non-coding 

regions in the human genome. Protein-

coding genes are regulated by several types 

of genomic elements that control their 

expression (promoters, distal enhancers and 

boundary elements), translation (5’UTRs) 

and mRNA stability (3’UTRs). Alterations 

in the DNA sequence of these elements 

thus directly affect the expression and 

regulation of the target gene. Several such 

non-coding elements have been identified 

as recurrently altered in human cancer, 

and functionally characterized, although 

these non-coding drivers appear infrequent 

compared to protein-coding oncogenes 

and tumor suppressors. One reason might 

be that gene regulation is highly tissue-

specific, and therefore driver alterations in 

non-coding regions might create a fitness 

advantage in only a single tumor type. 

Finding such a specific driver requires a 

sufficient number of whole genomes from 

this tumor type. With recent advances 

in DNA sequencing technology and an 

increasing number of whole cancer genomes 

available for analysis, we are just starting 

to map out and characterize regulatory 

driver alterations. The Rheinbay laboratory 

works on the development of novel methods 

to identify non-coding driver candidates 

using genomic and epigenomic sources 

of information, and to understand their 

impact on tumor initiation, progression and 

treatment resistance through collaborations 

with experimental colleagues. We have 

Most known genomic drivers of cancer are in coding genes, affecting 

the encoded protein’s interaction with other proteins, DNA or biological 

compounds. Recent advances in DNA sequencing technology have made 

it possible to study non-coding regions that regulate these protein-coding 

genes. Several cancer drivers have been identified and characterized in 

these regulatory regions, however, this genomic territory remains relatively 

unexplored in human tumors. The Rheinbay laboratory concentrates on 

identifying and functionally characterizing these non-coding drivers in the 

sequences of tumor whole genomes through development of novel analysis 

strategies and collaborations with experimental investigators. 

We are also interested in tumors, especially breast cancers, for which no 

known protein-coding driver alterations have been found. In the age of 

targeted therapy, these tumors pose a special challenge in that they leave few 

treatment options for patients beyond conventional chemotherapy. We believe 

that finding novel genomic and epigenomic, protein-coding and regulatory 

therapeutic targets in these tumors will have significant clinical implications.
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Hotspot mutation in the FOXA1 promoter in breast cancer and proposed mechanism of action.

recently identified a recurrent mutation in 

the promoter of the breast cancer oncogene 

FOXA1. This mutation increases expression 

through augmenting a binding site for 

E2F, leading to E2F protein recruitment. 

In addition, FOXA1 overexpression leads 

to resistance to the breast cancer drug, 

fulvestrant. We are now investigating the 

implications and mechanism of action of this 

mutation in breast cancer progression and 

treatment resistance. 

Finding targetable vulnerabilities in 
cancers without known drivers 

From recent large genome and exome 

sequencing studies of different cancer types, 

it has become apparent that there are almost 

always patients whose tumors harbor no 

common driver alteration such as BRAF 

mutation in melanoma, HER2 amplification, 

or hormone receptor expression in breast 

and prostate cancer. In an era of treatments 

targeting such alterations specific to a 

patient’s cancer cells, a lack of potentially 

druggable cancer drivers severely limits 

the repertoire of available therapy options. 

Rather than being truly without any drivers, 

these tumors are likely driven by yet 

uncharacterized protein-coding or regulatory 

genomic alterations, or an oncogenic state 

induced and maintained by epigenetic 

changes. Our research is focused on finding 

the drivers and vulnerabilities of these 

particular tumors by integrating genomics 

and epigenomics data, with the ultimate goal 

of connecting patients to effective targeted 

treatments.
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Epigenomic approaches for the 
identification of novel pathways 
in cancer 

While genetic studies have led to the 

development of important cancer therapies, 

most genetic alterations in cancer do not 

point to specific therapeutic targets. In the 

case of pediatric cancers, which are often 

driven by low numbers of recurrent mutations, 

the identification of therapeutic targets 

through genetic studies has been particularly 

challenging. In order to discover new 

pathways involved in these tumors, we are 

using new genomic technologies to identify 

abnormalities in the mechanisms that regulate 

gene expression programs controlling cell 

proliferation and differentiation. 

One of these technologies is genome-

wide chromatin profiling, which combines 

chromatin immunoprecipitation and high-

throughput sequencing. This approach has 

been used to study how genes are activated 

or repressed by regulatory elements in the 

genome such as promoters and enhancers. 

As a complement to gene expression studies, 

chromatin profiling provides a unique view 

of gene regulation programs by allowing the 

identification of both active and repressed 

genomic domains based on patterns of 

histone modification. Several studies have 

shown that prominent active histone marks 

are associated with genes that play key roles 

in cell identity and proliferation, including 

oncogenes that promote the growth of tumor 

cells. In contrast, repressive marks are found 

at loci that are maintained in an inactive state 

to prevent cellular differentiation. 

In recent studies we have applied chromatin 

profiling to Wilms tumor, Ewing sarcoma and 

medulloblastoma, three pediatric tumors 

that are thought to arise from stem cell 

precursors and that have been linked to 

abnormalities in transcriptional regulation. 

Our work has uncovered novel genes and 

pathways involved in these diseases by 

comparing chromatin patterns in primary 

tumor samples and normal tissue specific 

stem cells. In addition, we have identified 

gene regulation mechanisms that play critical 

roles in tumor formation through functional 

studies of transcription factors and chromatin 

regulators. We are now characterizing 

these pathways in detail and extending our 

epigenomic analysis to other tumor types 

where oncogenic pathways are poorly defined.

Role of the WTX gene family in  
cancer and development 

Wilms tumor, the most common pediatric 

kidney cancer, is a prime example of 

Research in the Rivera laboratory focuses on using genomic tools to identify 

and characterize gene regulation pathways that are altered in cancer. An 

important feature shared by most tumors is the dysregulation of complex gene 

expression programs that control cell proliferation and differentiation. Our 

work combines the use of genomic technologies for the direct identification 

of gene regulation abnormalities in tumors with functional analysis of critical 

pathways in several model systems. Given that the mechanisms that drive 

changes in gene expression programs are poorly understood, we anticipate that 

our work will point to new therapeutic approaches.
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Immunofluorescence image of a developing mouse kidney. The transcription factor Pax2 (red) is  
present in the stem cells that can give rise to Wilms tumor (adjacent to the surface of the organ) 
and in precursors to collecting ducts.

the connection between cancer and 

development, because it arises from kidney-

specific stem cells and is composed of 

several cell types that resemble the earliest 

stages of kidney formation. We identified 

WTX, an X-linked tumor suppressor gene, 

which is inactivated in up to 30% of cases 

of Wilms tumor, by comparing the DNA of 

primary tumor samples with that of normal 

tissues using array comparative genomic 

hybridization (CGH). More recently, large 

tumor sequencing studies have shown that 

WTX is also inactivated in several other 

tumor types. WTX is the founding member 

of a new protein family (FAM123/AMER) 

and is expressed in the stem cells of the 

developing kidney, as well as in a variety 

of other tissues during embryogenesis. In 

collaboration with the Haber and Bardeesy 

laboratories, we have demonstrated that 

inactivation of WTX in mice leads to profound 

alterations in the development of several 

organs including kidneys, bones and fat 

by causing changes in the differentiation 

programs of mesenchymal stem cells. In 

particular, we observed an expansion of 

mesenchymal kidney stem cells, suggesting 

that WTX regulates the balance between 

proliferation and differentiation in these 

cells. We are now using a combination of in 

vitro and in vivo approaches to elucidate the 

molecular mechanisms by which WTX and 

related proteins regulate stem cells. Given 

that the same mechanisms are likely to be 

operative in tumors where WTX is inactivated, 

we expect that our studies may reveal new 

therapeutic opportunities for a variety of 

tumor types.
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Our research focuses on understanding the 

molecular genetic events associated with 

the pathogenesis of human breast cancer. 

My laboratory has developed technological 

approaches to study gene expression in the 

earliest microscopic precursor lesions as 

well as in the latest stages of human breast 

cancer. Specifically, we have been successful 

in combining laser capture microdissection, 

high-density cDNA array, and real-time 

quantitative PCR (RTQ-PCR) technologies 

to identify novel gene expression patterns in 

human breast cancer. Using this approach, 

we have demonstrated for the first time that 

atypical intraductal hyperplasia and ductal 

carcinoma in situ are direct precursors to 

invasive ductal carcinoma. More specifically, 

we have shown that the various pathological 

stages of breast cancer progression are 

highly similar at the transcriptional level, 

and that atypical intraductal hyperplasia—

the earliest identifiable stage of breast 

cancer—is a genetically advanced lesion 

with an expression profile that resembles 

that of invasive breast cancer. More recently, 

we have studied the gene expression 

changes of the stromal microenvironment 

during breast cancer progression, and 

we have demonstrated that the transition 

from preinvasive to invasive breast cancer 

is associated with distinct stromal gene 

expression changes. 

Presently, my laboratory is focused on 

applying high-throughput molecular 

technologies to identify biomarkers that will 

predict the clinical behavior of human breast 

cancer in the setting of specific hormonal 

and chemotherapeutic regimens. 

We have independently developed two 

complementary biomarkers—the Molecular 

Grade Index (MGI) and the HOXB13/ IL17BR 

(H/I). MGI is a molecular surrogate for 

histological grade and a highly precise 

biomarker for risk of breast cancer 

recurrence. The HOXB13:IL17BR index, on 

the other hand, is a biomarker of endocrine 

responsiveness in ER+ breast cancer, as it 

has been shown to predict for benefit from 

The overarching goals of research in the Sgroi laboratory are to develop 

better ways to identify patients who are at risk for the development of breast 

cancer and to identify those breast cancer patients who are likely to benefit 

from targeted drug therapies. We are taking several different approaches to 

achieving these goals. First, we are deciphering specific molecular events 

that occur during the earliest stages of tumor development and using this 

knowledge to develop biomarkers that will predict for increased risk of 

progression to cancer. Second, using DNA microarray technologies, we 

are searching for novel breast cancer biomarkers to identify patients with 

hormone-receptor-positive breast cancer who are most likely to benefit from 

extended hormonal therapy. Finally, we are taking a combined approach—

based on analysis of tissue from breast cancer patients and various laboratory 

studies—to identifying biomarkers that will predict how individual breast 

cancer patients will respond to novel targeted therapeutics.
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The comparative analysis of the transcriptome and proteome of normal breast epithelium and 
malignant breast epithelium (top panel) combined with a proteome network analysis has led to 
the discovery of a novel robust network-based biomarker (center) with clinical relevance (right).

adjuvant tamoxifen and extended adjuvant 

aromatase inhibitor therapy. Most recently, 

we demonstrated that the combination 

MGI and H/I, called the Breast Cancer 

Index (BCI), outperforms the Oncotype Dx 

Recurrence Score for predicting risk of 

recurrence. As a result of our collective data, 

we anticipate assessing BCI in clinical trials 

of extended adjuvant hormonal therapy. 

Given that HOXB13 expression in clinical 

breast cancers is associated with endocrine 

therapy responsiveness, we are currently 

investigating the functional activity of 

HOXB13 and assessing its possible role as a 

surrogate marker for a nonclassical estrogen 

receptor signaling pathway.
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Epigenetically Provoked Multi-
generational Disease Predispositions 
Involving Aberrant Germline 
Epigenetic Reprogramming in 
Primordial Germ Cells

The germline is a series of specialized cell 

population destined for gametogenesis – 

i.e., production of sperm and eggs. Thus, 

germline cells are solely responsible for 

conveying genetic and epigenetic information 

to the subsequent generation. All heritable 

genetic aberrations, including mutations 

causing familial cancer predispositions, 

occur exclusively in the germline. Recent 

studies, including ours, showed that in utero 

exposure of mammalian germline cells to 

various types of stresses such as therapeutic 

drugs, toxic environmental chemicals, or 

malnutrition may create trans-generationally 

heritable epigenetic aberrations that could 

cause adult-onset diseases such as cancers 

or metabolic disorders. In the third week 

of gestation, human primordial germ cells 

(PGCs), the earliest-stage germline cells, 

are observed in the embryonic yolk sac 

as a cluster of only 40 cells. While rapidly 

proliferating, PGCs migrate towards genital 

ridges, where they differentiate into sex-

specific germline stem cells. Genomic DNA of 

PGCs lose cytosine methylation globally and 

almost completely except for a few specific 

elements such as regions encoding the 

Human Endogenous Retroviruses (HERVs). 

We presume that this robust epigenetic 

reprogramming occurring uniquely in PGCs 

may make PGCs especially vulnerable to 

epigenetic aberrations that cause disease 

predispositions. Since activation of HERVs 

are linked to various human diseases such 

as cancers, autoimmune diseases, and 

resistance to cancer immunotherapy, our 

current hypothesis is that stress-induced 

relaxation of epigenetic machineries silencing 

HERVs in PGCs may predispose a subset 

of HERVs to accidental activation and thus 

increase risks of diseases observed in the 

The Shioda laboratory is interested in the biology and diseases of human 

germline cells, which are committed to producing gametes (sperm or eggs). 

Primordial germ cells (PGCs) are the first germline cells emerging in human 

embryos during the third week of gestation. Malignant transformation of 

male PGCs results in testicular cancers, the most common cancers in young 

US men between the ages of 15 and 35. Whereas the DNA of PGCs loses most 

of its gene-silencing machinery to reset its gene expression program, DNA 

regions encoding the Human Endogenous Retroviruses (HERVs), which are 

remnants of ancient retroviral infection, selectively remain silent. Activation 

of HERVs may cause various disorders such as autoimmune diseases and 

cancers. Although mechanisms of HERV activation in diseases are largely 

unknown, we hypothesize that relaxed HERV silencing in PGCs under stresses 

may predispose HERVs to be activated beyond fertilization. Because access 

to human embryonic PGCs is extremely challenging, our laboratory takes 

advantage of human iPSC-derived PGC-like cell culture models to study  

normal biology and mechanisms of diseases involving PGCs.
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subsequent generations.

Experimental testing of the above hypothesis 

faces multiple hurdles. Access to human 

embryonic PGCs is extremely challenging 

due to technical and ethical reasons. 

Molecular mechanisms of PGC commitment 

and differentiation are significantly different 

between human and the conventional 

laboratory rodents. HERVs are unique to 

humans although the genome of mice 

harbors IAPs (Intra-cisternal A Particle), 

a rodent-specific group of endogenous 

retroviruses that are known to cause various 

epigenetically provoked diseases. To overcome 

these hurdles, my laboratory takes advantage 

of PGC-LCs (PGC-Like Cells), a cell culture 

model of PGCs generated from iPSCs. In 

contrast to other protocols that produce 

PGC-LCs inside iPSC aggregates, our protocol 

produces PGC-LCs exclusively on the surface 

of embryoid bodies. This is an important 

advantage to study effects of exposures to 

drugs or toxic chemicals on PGC-LCs. In our 

initial studies, we have shown robust and 

global DNA demethylation in the genome 

of mouse PGC-LCs whereas a few types of 

repetitive elements such as IAPs escaped 

the erasure, resembling late-stage mouse 

embryonic PGCs. We also demonstrated that 

aberrant DNA hypermethylation artificially 

introduced in mouse iPSCs was effectively 

repaired in PGC-LCs during the course of 

germline epigenetic reprogramming. Our 

recent studies produced PGC-LCs from 

human iPSCs using our own protocol for 

improved robustness and experimental 

reproducibility and showed that human 

PGC-LCs produced in our lab as well as other 

labs reflect an earlier stage of embryonic 

PGCs than mouse PGC-LCs. Thus, global 

DNA demethylation in the current version of 

human PGC-LCs was still in its early initiation 

state and weak. Nonetheless, we were able 

to detect activation of a specific subset of 

HERVs in human PGC-LCs that were strictly 

silenced in the precursor iPSCs, suggesting 

the existence of a group of HERVs that are 

especially prone to activation in human 

germline. Our current research focuses on the 

molecular mechanisms that silences HERVs 

in PGCs and their vulnerabilities to stresses. 

Attempts are also being made to determine 

whether germline activation of HERVs is 

involved in mechanisms of the epigenetically 

inherited disease predispositions to cancers 

and other human diseases.

Emergence of human PGC-LCs on the surface of embryoid bodies. Human PGC-LCs are 
visualized by anti-OCT4 immunohistochemistry of FFPE slides. Most PGC-LCs are localized in the 
outermost surface layer of embryoid bodies (left). PGC-LCs often form dense clusters (arrows; 
right), which may mimic the embryonic niche involved in germline commitment of precursor cells.
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Our research group is actively examining 

the role of glycosylation, especially on 

mucins in tumor specific behaviors 

including uncontrolled growth, oncogene 

activation, invasion, immune system evasion 

angiogenesis, and metastatic spread. This 

work includes potential therapeutic antibodies 

against MUC16 and Galectin-3 in cancer.

Anti-MUC16 biology

Our current MUC16 work concentrates 

on development of our human MUC16 

antibodies for targeting ovarian cancer. Our 

antibodies uniquely target the most proximal, 

retained portion of the MUC16 following 

cleavage and release of the CA125 antigen 

into the circulation. This retained ectodomain 

is a 58 amino acid peptide, linked to the 

membrane via a short transmembrane 

domain and a 31 amino acid cytoplasmic tail 

which is linked to the cellular cytoskeleton 

for mobility. We have shown that most of 

the adverse consequences relate to MUC16 

expression. As little as 114 amino acids from 

the carboxyl terminal of the intact MUC16 

sequence is sufficient to promote increased 

soft agar colony formation, Matrigel invasion 

with increased MMP2/MMP9 expression, 

activation of both AKT and ERK proto-

oncogenes, and enhanced growth in nude 

mice. Deletion experiments demonstrate 

that the 58 amino acid MUC16 ectodomain is 

required for this effect. If one examines the 

ectodomain in greater detail, the portion of 

the sequence containing 2 N-glycosylation 

sites is the essential element. We (esp. Dr. 

Lee) are now actively examining the structure 

of the MUC16 – antibody interaction 

to improve the therapeutic efficacy of 

antibodies. 

MUC16-directed Chimeric Antigen 
Receptor (CAR) T Cells

Chimeric Antigen Receptor (CAR) T cells 

have not been successful in the management 

of solid tumor malignancies. Reasons 

for this include: poor trafficking, the 

presence of an immunosuppressive tumor 

microenvironment, CAR T-cell dysfunction 

and immune escape via antigen-loss. In 

conjunction with Dr. Oladapo Yeku, from our 

junior faculty, we are using our antibodies 

as MUC16 targeted CAR T cells. We are 

developing strategies to further modify CAR 

The Spriggs laboratory has been focused on proteins present on the ovarian 

cancer cell surface and how those proteins regulate function in health and 

cancer. In particular, we are interested in MUC16 and Galectin 3. Our studies 

over the past several years have provided insights into the function of MUC16. 

It is now apparent that the MUC16 regulates functions like cancer growth 

and spreads through changes in the structure of sugars (glycosylation) on the 

surface of cancer cells. This regulation requires interaction with specialized 

sugar binding proteins called Galectins, which are key components of the tumor 

microenvironment. We are actively developing new antibodies against MUC16 

and Galectin 3 for diagnosis, imaging and treatments. Our work has shown that 

antibodies which inhibit these cell – cell interactions can slow tumor growth and 

block the spread of cancer cells locally and inhibit the spread to new organs.
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T cells to optimize their efficacy for ovarian 

cancer and gynecologic malignancies. Our 

approaches to further engineering these CAR 

T cells with Human Artificial Chromosomes 

(Dr. Kononenko) are informed by the ovarian 

cancer tumor microenvironment. Using 

syngeneic immune competent mouse models 

and subsequent validation in genetically 

engineered and xenograft models, we are 

able to effectively evaluate these rationally 

optimized CAR T cells as monotherapy or in 

combination with other immunomodulatory 

agents prior to initiation of clinical trials.

Glycosylation Dependence

Our work has been the first to show that the 

oncogenic effects of MUC16 require MGAT5 

dependent tetra-antennary glycosylation 

of the MUC16 ectodomain and interaction 

with Galactin 3 (LGALS3). This complex then 

binds to glycosylation sites on growth factors 

including EGFr, Integrins, and immune 

receptors like CTLA4. This has provided us 

with new opportunities for MUC16+ cancer 

cell targeting. 

Galectin 3 Targeting

LGALS3 regulates the interaction of surface 

proteins with the extracellular membrane 

domain and mediates a signal cascade 

leading to invasion, oncogene activation and 

growth. While anti-MUC16 glycosylation 

site antibodies inhibit oncogenic properties, 

LGALS3 represents a more general strategy 

for targeting glycosylation dependent 

oncogenesis. We have developed high-affinity 

antigalectin-3 antibodies directed at the 

carbohydrate recognition domain (CRD) of the 

galectin-3 carboxyl-terminus (to block sugar 

binding). These antibodies are able to block 

the oncogenic effects of MUC16 expression 

including invasion, oncogene activation (AKT, 

ERK, SRC) and reduced growth in nude mice. 

In addition, these antibodies appear able 

to decrease metastatic behaviors in lung 

metastasis models. Dr. Xu is focused on  

the functions of Galectin 3 in cancer while  

Dr. Lee has been producing a structural 

model of binding to the Galectin-3 surgery 

binding elements. 

MUC16 is an example N-glycosylation - rich molecule which can regulate the cellular location 
and signal transduction mediated by TK receptors like EGFr or adhesion molecules (integrins) 
through Galectin 3 mediated interactions.
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Rapid technological advances in 

microfluidics, imaging and digital gene-

expression profiling are converging to 

present new capabilities for blood, tissue 

and single-cell analysis. Our laboratory is 

interested in taking these advances and 

creating new technologies to help build 

understanding of the metastatic process. 

Our research focus is on 1) the development 

and application of microfluidic devices 

and biomaterials for the isolation and 

characterization of extracellular vesicles, 

2) the enrichment and analysis of CTCs 

at a single cell level, and 3) novel imaging 

strategies to characterize tumor tissue, 

cancer cells, and extracellular vesicles. 

Extracellular Vesicle Isolation 
and Characterization 

Extracellular vesicles (EVs), such as 

exosomes, microvesicles, and oncosomes, 

are small particles that bud off of cancer 

cells, with some cancer cells releasing up 

to thousands of EVs per day. Researchers 

have hypothesized that these EVs shed from 

tumors transport RNA, DNA and proteins 

that promote tumor growth, and studies have 

shown that EVs are present in the blood of 

most cancer patients. Ongoing work in my 

lab incorporates microfluidics and novel 

biomaterials to enrich cell-specific EVs from 

cancer patients, using as little as 1mL of 

plasma. Once isolated, we are exploring their 

protein and nucleic acid content to probe their 

potential as a less invasive biomarker. Droplet-

based microfluidics are being developed to 

probe the EVs at a single vesicle level. 

Microfluidics for Circulating Tumor 
Cell Analysis 

One of the proposed mechanisms of cancer 

metastasis is the dissemination of tumor 

cells from the primary organ into the 

blood stream. A cellular link between the 

primary malignant tumor and the peripheral 

metastases has been established in the form 

of CTCs in peripheral blood. While extremely 

rare, these cells provide a potentially 

accessible source for early detection, 

characterization and monitoring of cancers 

that would otherwise require invasive serial 

biopsies. Working in collaboration with Drs. 

The Stott laboratory is comprised of bioengineers, biologists and chemists 

focused on translating technological advances to relevant applications in clinical 

medicine. Specifically, we are interested in using microfluidics, imaging, and 

biopreservation technologies to create tools that increase our understanding 

of cancer biology and of the metastatic process. The Stott laboratory has co-

developed innovative microfluidic devices that can isolate extraordinarily rare 

circulating tumor cells (CTCs) and extracellular vesicles (EVs) from the blood of 

cancer patients. New microfluidic tools are being developed to both manipulate 

and interrogate these cells and vesicles at a single particle level. We also look at 

tumor specimens using multispectral imaging, hoping that the exploration of 

the spatial relationships between immune cells and tumor tissue will help us 

better predict treatment response. Ultimately, we hope that by working in close 

partnership with the clinicians and cell biologists at the Mass General Cancer 

Center, we can create new tools that directly impact patient care.
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Droplet based microfluidics for the selective merging of encapsulated cells. Different cell 
populations can be sorted at a single cell level and then selectively placed into droplets, creating 
custom culture ‘microdrops’ for long term culture and monitoring. 
Image courtesy of Rohan Thakur

Mehmet Toner, Shyamala Maheswaran 

and Daniel Haber, we have designed a 

high throughput microfluidic device, the 

CTC-Chip, which allows the isolation and 

characterization of CTCs from the peripheral 

blood of cancer patients. Using blood from 

patients with metastatic and localized 

cancer, we have demonstrated the ability 

to isolate, enumerate and molecularly 

characterize putative CTCs with high 

sensitivity and specificity. Ongoing projects 

include translating the technology for early 

cancer detection, exploring the biophysics 

of the CTC clusters, and the design of 

biomaterials for the gentle release of the 

rare cells from the device surface. We are 

also developing new strategies for the long 

term preservation of whole blood such that 

samples can be shipped around the world for 

CTC analysis. 

High-Content and High-Throughput 
Imaging of Tumor Specimens 

Tumors can be highly heterogeneous, and 

their surrounding stroma even more so. 

Traditionally, the tumor and surrounding 

cells are dissociated from the tissue matrix 

for high throughput analysis of each cell. 

While this allows for important information 

to be gained, the spatial architecture of the 

tissue and corresponding interplay between 

tumor and immune cells can be lost. The 

Stott lab is developing quantitative, robust 

analysis for individual cells within the tumor 

and neighboring tissue using multispectral 

imaging. We are using this technology 

alongside downstream imaging processing 

algorithms to interrogate signaling activity 

in cancer cells, immune cell infiltration 

into to the tumor and pEMT in cancer 

cells. These data will be used to gain an 

increased understanding in the relationship 

between pharmacologic measurements and 

clinical outcomes, ultimately leading to the 

optimization of patient therapy.
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Gliomas are heterogeneous disease in which 

intra-tumoral heterogeneity contributes to 

disease progression and therapeutic failure. 

Glioma cells vary in stemness, proliferation, 

invasion, chemoresistance, apoptosis, and 

metabolism. Various factors contribute 

to this heterogeneity, on the one hand, 

branched genetic evolution of cancer cells 

generates distinct tumor sub-clones; on the 

other hand, it is also becoming increasingly 

clear that gliomas cells display functional 

properties related to developmental 

pathways and transcriptional programs, such 

as those associated with the self-renewal 

of tissue stem cells and their differentiation 

into specialized cell types. In order to dissect 

those influences and obtain a comprehensive 

view of gliomas biology, my laboratory is 

leveraging single-cell expression profiling 

across the spectrum of human gliomas, 

directly in patient samples. Analysis of 

transcriptomes of individual cells from 

human malignancies offers a compelling 

approach to dissect the cellular state and 

infer partial genetic information from cancer 

cells in an unbiased way. We seek to discover 

novel therapies for gliomas. 

Assessing Malignant Cells 
Heterogeneity at the Single-Cell 
Level in Gliomas

Tumor heterogeneity poses a major 

challenge to cancer diagnosis and treatment. 

It can manifest as variability between tumors, 

or within cells from the same tumor, that 

may harbor different mutations or exhibit 

distinct phenotypic or epigenetic states. Such 

intra-tumoral heterogeneity is increasingly 

appreciated as a determinant of treatment 

failure and disease recurrence. The Suvà 

Lab is performing large-scale single-cell 

RNA-seq analyses in IDH-mutant gliomas, 

histone H3-mutant midline gliomas, IDH-

wildtype glioblastoma, and medulloblastoma 

to assess tumor cell lineages, stem cell 

programs and genetic heterogeneity at an 

unprecedented scale and depth. Our work 

in IDH-mutant gliomas highlighted a rare 

subpopulation of actively dividing stem/

progenitor cells, solely responsible for 

fueling tumor growth in patients. Single 

cell profiling of H3K27-mutant pediatric 

gliomas highlighted specific vulnerabilities 

and revealed a differentiation block, 

maybe explaining the more aggressive 

The Suvà laboratory is primarily focused on developing and applying single-

cell genomic technologies to dissect the biology of brain tumors, in particular 

adult and pediatric high-grade gliomas and medulloblastoma. We study patient 

samples at single-cell resolution and establish genetically and epigenetically 

relevant cellular models directly from clinical tumors. We model how brain 

cancer cells exploit their plasticity to establish phenotypically distinct 

populations of cells, with a focus on programs governing glioma stem cells. 

We seek to redefine tumor cell lineages and stem cell programs across all types 

of gliomas, and to leverage the information for renewed therapeutic attempts 

targeting cellular states. The laboratory is also invested in single-cell genomics 

efforts to dissect the immune system of gliomas, and in charting the cellular 

programs in sarcomas.
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Model for the cellular 
states of glioblastoma 
and their genetic and 
micro-environmental 
determinants. Mitotic 
spindles indicate cycling 
cells. Lighter/darker 
tones indicate strength 
of each program. 
Intermediate states are 
shown in between the 
four states and indicate 
transitions.

nature of this cancer type. More recently, 

we provided a comprehensive model 

of glioblastoma biology that integrates 

single-cell expression programs, genetic 

composition and tumor subtypes (see figure). 

Our study of medulloblastoma single-cell 

programs provided clarifications on tumor 

histogenesis and classification. Overall, our 

goal is to identify both lineage-defined and 

somatically-altered therapeutic targets in 

brain cancer in both children and adults.

Dissecting the Ecosystem of Gliomas 

The composition of the tumor micro-

environment (TME) has an important 

impact on tumorigenesis and modulation 

of treatment responses. For example, 

gliomas contain substantial populations of 

microglia and macrophages, with putative 

immunosuppressive functions but whose 

precise programs remains uncharted at 

single-cell resolution. In addition, very little 

is known about the functional state of T cells 

in human gliomas. As is the case in diverse 

other conditions, the CNS may create a 

unique microenvironment that impacts 

T cell function by distinct mechanisms. 

The laboratory leverages single-cell analyses 

in clinical samples to dissect the functional 

programs of immune cells in gliomas that 

can be used to elucidate mechanisms 

relevant to immuno-oncology. We profile 

both dysfunctional T cells that express 

multiple inhibitory receptors and T cells 

that are functional based on expression of 

multiple genes required for T cell cytotoxicity. 

We find these modules to be distinct from 

observations in other types of tumors (such 

as melanoma), underscoring the necessity to 

perform these analyses directly in gliomas. 

By analyzing modules of co-expressed 

genes in subsets of T cells in patients with 

glioma we seek to shed light on mechanism 

of activation and exhaustion in patient 

tumors and to highlight candidate novel 

regulatory programs that can be exploited for 

therapeutics.
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Genetics of Acute Myeloid Leukemia 

Our laboratory is working to elucidate 

cooperating networks underlying 

leukemogenesis and to develop novel 

targeted therapies for cancer. Current 

projects are detailed below. 

Evaluation of the Role of the Groucho/ 
TLE Family of Corepressors in Cancer 
and Development

Our laboratory has defined TLE1 and TLE4 

as members of a novel family of tumor 

suppressor genes, the TLE/Groucho proteins, 

the inactivation of which appears to be a key 

cooperating event with other oncogenes in 

the development of a subset of acute myeloid 

leukemias and other cancers including 

melanoma. 

The Groucho/TLE family of corepressor 

proteins can modulate many of the major 

pathways involved in development and 

oncogenesis, including Wnt/β-catenin, 

Notch, Myc, NFκB, and TGFβ. However, 

we are only beginning to understand their 

potential role in oncogenesis. These genes 

appear to behave as tumor suppressor 

genes in the pathogenesis of other myeloid 

malignancies and lymphomas. However, 

the role of this gene family in malignancies 

is complex. For example, in synovial cell 

sarcoma, TLE1 is over-expressed and 

behaves as an oncogene by pairing with 

the SS18-SSX fusion oncogene and ATF2 

to silence other tumor suppressor genes. 

Current work in the lab seeks to clarify the 

role these proteins play in malignancy as 

well as in normal development. TLE1 and 

TLE4 are potent inhibitors of the AML1-ETO 

oncogene in the most common subtype 

of AML. The mechanism of this inhibition 

appears to involve both regulation of gene 

transcription and chromatin structure. In 

The Sweetser laboratory investigates how leukemia and other cancers develop 

with the goal of developing novel, safer, and more effective therapies. We have 

two major lines of research - the first investigating the function of a novel family 

of tumor suppressor genes and the second investigating the supportive role of 

the bone marrow niche in leukemia. Our lab has identified how the Groucho/TLE 

family of co-repressors function as potent tumor suppressors of acute myeloid 

leukemia, and has been defining their roles in normal development and cell 

function. Knock-out mice for Tle1 and Tle4 have identified critical roles for these 

proteins in hematopoiesis, bone, lung, and brain development, as well as a critical 

role in limiting inflammation. It is this ability to regulate inflammatory pathways 

that appears to underlie their tumor suppressor activity. We have defined critical 

inflammatory signaling pathways mediating cell proliferation and synergistic 

cross talk within the cancer niche that stimulated the proliferation and survival of 

leukemia. The laboratory is also involved in characterizing cancer predisposition 

genes and genes influencing therapy toxicity. As the MGH site director for the 

Undiagnosed Diseases Network and Chief of Medical Genetics and Metabolism 

at MGH, Dr. Sweetser is also leading a group of clinicians and researchers actively 

engaged in elucidating the underlying basis of a wide variety of human diseases.
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Schematic diagram summarizing proposed TLE4 regulation of AML1-ETO/COX/Wnt axis. 
The TLEs have potent anti-inflammatory effects and inhibitory effects on oncogene pathways 
involving AML1-ETO and B-catenin, which also underlie their tumor suppressor activity. 

large part this cooperative effect appears 

to involve regulation of Wnt signaling and 

inflammatory gene pathways. This work has 

led to the demonstration that specific anti-

inflammatory agents can have potent anti-

leukemic effects. We have also been studying 

the role of TLE1 in melanomas. In this 

context TLE1 appears to have a critical role 

in inhibiting the oncogenicity of oncogenic 

BRAF. The mechanism of this inhibition is 

being investigated.

Our laboratory is also working to understand 

the role these proteins play in normal 

development. To assist in this evaluation, 

we have generated conditional Tle1 and Tle4 

knockout mice and are characterizing the 

role these proteins play in the development 

of a variety of tissues. Our studies to date 

indicate TLE1 is a potent repressor of 

inflammation via its ability to repress NFKB, 

while TLE4 is a critical modulator of neuronal 

and B-cell and T-cell differentiation, and 

is required for hematopoietic stem cell 

maintenance, as well as bone development. 

The Role of the Bone Marrow Niche in 
Nurturing Leukemia

The bone marrow niche is remodeled in the 

process of leukemia development to provide 

a supportive environment that contributes 

to leukemic cell proliferation, survival, 

and resistance to chemotherapy. Our lab 

is working to define the critical cells and 

components of this niche with an eye towards 

designing targeted adjunctive therapies.

The Undiagnosed Diseases Network 

The Harvard Medical School hospital 

consortium of MGH, Brigham and Women’s 

Hospital and Children’s Hospital together 

with 10 other clinical sites around the US 

comprise the NIH sponsored Undiagnosed 

Diseases Network. As Chief of Medical 

Genetics at MGH, and the MGH site director 

for the UDN, Dr. Sweetser is coordinating a 

team of expert clinicians and researchers, 

using comprehensive clinical phenotyping, 

whole exome/whole genome sequencing, 

paired with RNASeq and metabolomics 

profiling, and in collaboration with zebrafish 

and Drosophila model organism cores to 

identify the underlying basis of a variety 

of challenging human diseases. Over a 

dozen new genetic disorders have been 

characterized with these efforts. The 

Sweetser lab also participates in the 

functional characterization of identified 

candidate genes.
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The Ting laboratory has utilized RNA-

sequencing and RNA in situ hybridization 

technology to understand the complex 

transcriptional landscape of cancers. We 

have used these technologies to characterize 

non-coding repeat RNA expression across 

cancer and normal tissues. This has provided 

novel insight into the role of the repeatome 

in cancer development and offers a method 

to identify novel biomarkers and therapeutic 

targets. In addition, we have been able to 

capture circulating tumor cells (CTCs) with 

an innovative microfluidic chip technology 

and successfully applied RNA-sequencing 

to these cells to understand their role in the 

metastatic cascade and to develop novel 

early detection biomarkers. 

Repeat Non-coding RNAs 

RNA sequencing of a broad spectrum 

of carcinomas demonstrated a highly 

aberrant expression of non-coding repeat 

RNAs emanating from regions of the 

genome previously thought to be inactive 

due to epigenetic silencing. Analysis of 

all human repeats identified the HSATII 

satellite as being exquisitely specific for 

epithelial cancers, including carcinomas 

of the pancreas, colon, liver, breast, and 

lung. HSATII expression was confirmed by 

RNA in situ hybridization (RNA-ISH), and 

was present in preneoplastic lesions in 

mouse models and human specimens of 

the pancreas and colon suggesting satellite 

expression occurs early in tumorigenesis, 

which provides for a potential biomarker 

for early detection and a novel therapeutic 

avenue. Recently, we have discovered that 

HSATII is reverse transcribed in cancer cells 

and can integrate back into the genome 

and expand these pericentromeric regions. 

These expansions were found to be a poor 

prognostic marker in cancer. Moreover, 

work with others has found that these 

satellite repeats can affect the local tumor 

microenvironment with implications for 

immunotherapies. We are now trying to 

identify the HSATII reverse transcriptase 

and better understand the biological role of 

satellites in cancer progression.

Gastrointestinal cancers are highly lethal cancers where the vast majority of 

patients are diagnosed too late and conventional therapies have largely been 

ineffective, making early detection and novel drug targets greatly needed.  

The Ting laboratory has been utilizing innovative technologies to characterize 

RNA expression patterns in cancer. Using single molecule sequencing, we have 

discovered a significant amount of “non-coding” repeat RNAs to be produced 

in high amounts at the earliest stages of cancer development, but not in 

normal tissues. These repeat RNAs can serve as a novel early detection cancer 

biomarker and they can be targeted as a new therapeutic avenue. In parallel, 

we have used microfluidic chip technologies to capture circulating tumor cells 

(CTCs), the cells that disseminate to distant organs. Using single cell RNA-seq 

we have gained unprecedented insight into the programs that drive metastatic 

spread. We are using these studies to develop blood based “liquid biopsy” 

biomarkers and generate new therapies to stop the spread of cancer.
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Image of a preneoplastic pancreatic intraepithelial neoplasm (P) positive for the HSATII 
ncRNA (Red dots).Normal adjacent reactive stroma (N) with minimal expression. Counterstain 
hematoxylin (blue). Scale bar = 100 μm.

Circulating Tumor Cells:  
The Liquid Biopsy 

The temporal development of circulating 

tumor cells (CTCs) in tumorigenesis is 

not well understood, but evidence for CTC 

shedding in early localized cancers suggests 

that these cells are heterogeneous and 

that only a small subset of CTCs have the 

biological potential to metastasize. Using a 

novel microfluidic device developed at MGH, 

we have isolated pancreatic and liver CTCs 

and perform RNA sequencing on these rare 

cells. This has revealed the opportunity 

to develop a novel early detection blood 

based biomarker and study the metastatic 

cascade. Using single cell RNA-sequencing, 

we have characterized the heterogeneity of 

pancreatic CTCs into three major subclasses, 

and note that over half of the CTCs are not 

viable. This illustrates that not all CTCs have 

the full capacity to metastasize, and that 

there are likely multiple paths for cancer 

cell dissemination. In addition, single cell 

RNA-seq has provided unprecedented 

transcriptional resolution of CTCs that has 

revealed significant enrichment for stem 

cell and epithelial mesenchymal transition 

markers of these metastatic precursors. 

Notably, we have also found that CTCs 

express a significant amount of extracellular 

matrix proteins normally found in the stroma 

of primary tumors. This suggests that the 

seeds of metastasis are in fact producing 

their own soil during the metastatic 

cascade. We have recently identified the 

stromal microenvironment is responsible 

for generating a significant amount of 

heterogeneity in pancreatic cancer and drive 

the development of these CTC phenotypes in 

both mouse models and patients. The early 

emergence of CTCs and the opportunity 

to understand the biology of metastasis in 

transit offers the potential for developing 

non-invasive, early detection tools and new 

strategies to target metastasis.
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Shobha Vasudevan, PhD Quiescent (G0) cells are observed as a 

clinically relevant population in leukemias and 

other tumors associated with poor survival. 

G0 is a unique, nonproliferative phase that 

provides an advantageous escape from harsh 

situations like chemotherapy, allowing cells 

to evade permanent outcomes of senescence, 

differentiation, and apoptosis in such tumor-

negative environments. Instead, the cell 

is suspended reversibly in an assortment 

of transition phases that retain the ability 

to return to proliferation and contribute 

to tumor persistence. G0 demonstrates a 

switch to a distinct gene expression program, 

upregulating the expression of mRNAs and 

regulatory non-coding RNAs required for 

survival. Quiescence regulators that maintain 

the quiescent, chemoresistant state remain 

largely undiscovered. 

Our studies revealed that specific post-

transcriptional regulators, including AU-rich 

elements (AREs), microRNAs, RNA-protein 

complexes (RNPs), ribosome factors and RNA 

modifiers, are directed by G0- and chemother-

apy-induced signaling to alter expression of 

clinically important genes. AU-rich elements 

(AREs) are conserved mRNA 3’-untranslated 

region (UTR) elements. MicroRNAs are  

small noncoding RNAs that target distinct 

3’UTR sites. These associate with RNPs,  

ribosome associated factors and their modi-

fiers to control post-transcriptional expression 

of cytokines and growth modulators. Their 

deregulation leads to a wide range of diseases, 

including tumor growth, immune and develop-

mental disorders. 

We identified post-transcriptional effectors 

associated with mRNAs and noncoding 

RNAs by developing in vivo crosslinking-

coupled RNA affinity purification methods 

to purify endogenous RNPs. Our recent 

studies revealed mechanistic changes in 

The Vasudevan laboratory focuses on the role of post-transcriptional 

mechanisms in clinically resistant quiescent cancer cells. Tumors demonstrate 

heterogeneity, harboring a small subpopulation that switch from rapid 

proliferation to a specialized, reversibly arrested state of quiescence that 

decreases their susceptibility to chemotherapy. Quiescent cancer cells resist 

conventional therapeutics and lead to tumor persistence, resuming cancerous 

growth upon chemotherapy removal. Our data revealed that post-transcriptional 

mechanisms are altered, with modification of noncoding RNAs, associated 

complexes and ribosomes—molecules that control vital genes in cancer—which 

are important for the persistence of quiescent cancer cells. The primary goal of 

our research is to characterize the specialized gene expression and their post-

transcriptional regulators that underlie persistence of resistant cancer cells. A 

complementary focus is to investigate the modification of post-transcriptional 

regulators and their mechanisms in response to quiescent conditions and 

chemotherapy-induced signaling. Our goal is to develop a comprehensive 

understanding of the versatile roles of regulatory RNAs in cancer as a basis for 

early detection of refractory cancers and for designing new therapies.
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Regulation of quiescence & 
chemoresistance in cancer by 
ncRNAs and specialized translation 
mechanisms.

G0: uncovering inhibition of conventional 

translation and its replacement by non-

canonical mechanisms that enable 

specific gene expression in G0 to elicit 

chemoresistance. These specialized 

mechanisms are driven by modifications 

of mRNAs, associated regulator RNAs and 

proteins, and ribosomes, which are induced 

in G0- and chemotherapy-induced signaling. 

These investigations reveal gene expression 

control by RNA regulators and non-canonical 

translation mechanisms that cause tumor 

persistence. Based on our data demonstrating 

altered RNPs, modifications, and specific 

translation in G0, we propose that transiently 

quiescent, chemoresistant subpopulations 

in cancers are maintained by specialized 

post-transcriptional mechanisms that permit 

selective gene expression, necessary for 

chemotherapy survival and tumor persistence. 

The primary goal of our research is to 

characterize the specialized gene expression 

program in quiescent, chemoresistant 

cancers, and its underlying post-

transcriptional and translational regulators 

that contribute to G0 and tumor persistence. 

A concurrent focus is to investigate RNA 

modifications and mechanisms of noncoding 

RNAs, RNPs, and ribosomes in G0 that 

contribute to chemoresistance, using cancer 

cell lines, in vivo models, patient samples, 

and stem cells. An important direction is to 

identify unique G0-specific RNA markers 

and develop novel therapeutic approaches to 

block selective translation in G0, of targets 

that encode for critical immune and tumor 

survival regulators—and thereby curtail 

chemoresistance. 

The lab has four core directions: 

1. To characterize microRNAs and noncoding 

RNAs, and their cofactors that control the ex-

pression of tumor survival regulators, using 

in vivo biochemical purification methods. 

2. To investigate the mechanisms of post-

transcriptional and translational regulation 

by noncoding RNAs, RNPs, and ribosome 

regulators. 

3. To elucidate the modification and regulation 

of key mRNAs and ribosomes, by G0- and 

chemotherapy-induced signaling. 

4. To develop therapeutic approaches that 

interfere with selective translation, and ma-

nipulate interactions of noncoding RNAs with 

targets that encode for critical tumor survival 

regulators. These studies should lead to a 

greater understanding of the versatile role of 

post-transcriptional mechanisms in cancer 

persistence and to novel approaches in  

RNA-based therapeutics.

Stress signals & mTOR/Akt 
inhibition by chemotherapy & 
Quiescence (GO)
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Leveraging single-cell ‘omics’ to 
unravel new insights into the human 
immune system 

Achieving detailed understanding of the 

composition and function of the immune 

system at the fundamental unit of life 

— the cell — is essential to determining 

the prerequisites of health and disease. 

Historically, leukocyte populations have been 

defined by a combination of morphology, 

localization, functions, developmental 

origins, and the expression of a restricted set 

of markers. These strategies are inherently 

biased and recognized today as inadequate. 

Single-cell RNA sequencing (scRNAseq) 

analysis provides an unbiased, data-driven 

way of systematically detecting cellular 

states that can reveal diverse simultaneous 

facets of cellular identity, from discrete cell 

types to continuous dynamic transitions, 

which cannot be defined by a handful of 

pre-defined markers or for which markers 

are not yet known. We combine scRNAseq 

strategies together with in-depth follow-

up profiling, phenotypic and functional 

characterization of prospectively isolated 

immune subsets defined by scRNAseq data 

to overcome such limitations. Our analyses 

of the human blood mononuclear phagocyte 

system resulted in the identification of six 

dendritic cell (DC), four monocyte, and one 

DC progenitor populations, thus revising 

the taxonomy of these cells (Villani et al., 

Science 2017). Noteworthy, five of these 

subsets had never been reported, illustrating 

the power of our integrative strategies to 

reopen the definition of these cell types. Our 

study highlighted the value of embarking 

on a comprehensive Human Cell Atlas 

initiative and offered a useful framework 

for conducting this kind of analysis on other 

cell types and tissues. We are currently 

contributing to the immune cell atlas effort 

by charting at high-resolution the human 

blood cellular landscape, and are studying 

paired human tissues with blood to better 

The Villani laboratory seeks to establish a comprehensive roadmap of the 

human immune system by achieving a higher resolution definition and 

functional characterization of cell subsets and rules governing immune 

response regulation, as a foundation to decipher how immunity is dysregulated 

in diseases. We use unbiased systems immunology approaches, cutting-

edge immunogenomics, single-cell ‘multi-omics’ strategies, and integrative 

computational frameworks to empower the study and modeling of the immune 

system as a function of “healthy” and inflammatory states, disease progression, 

and response to treatment. Our multi-disciplinary team of immunologists, 

geneticist, computational biologists, and physicians work towards answering 

several key questions: Do we know all existing blood immune cell subsets? 

How do circulating immune cells mirror those in tissue microenvironment in 

the context of health and disease? Can we identify targets that would improve 

immunotherapy efficacy by increasing specificity? Collectively, our groundwork 

is paving the way for developing a human immune lexicon that is key to 

promoting effective bench-to-beside translation of findings.
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Establishing a human blood dendritic cell and monocyte atlas. We isolated ~2400 cells enriched 
from the healthy human blood lineage− HLA-DR+ compartment and subjected them to single-cell 
RNA sequencing. This strategy, together with follow-up profiling and functional and phenotypic 
characterization, led us to update the original cell classification to include six DCs, four monocyte 
subtypes, and one conventional DC progenitor.

establish how circulating immune cells 

mirror those in tissue microenvironment in 

the context of health and disease.

We also continuously support development 

of in-depth expertise in single-cell ‘omics’ 

approaches, including single-cells strategies 

to map X-chromosome inactivation (Tukiainen, 

Villani, Nature 2017), new enrichment method 

targeting individual cell transcriptome in pooled 

library (Ranu, Villani, Nucleic Acid Res 2019), 

method’s development to study single-T cells 

(Villani, Methods Mol Biol 2016) and application 

to study T cells infiltrates in tumor lesions (Izar 

Science 2016; Sade-Feldman,Cell 2019; Di Pilato, 

Nature 2019) and myeloid cell infiltrates (Olah 

M, Nat Commun 2018; Balan S, Cell Rep 2018; 

Chapuy L, Mucosal Immunol 2019).

Deciphering immune-related adverse 
events (irAEs) induced by immune-
checkpoint inhibitor (ICI) therapy. 

While ICI therapy is revolutionizing the 

treatment of solid cancers, its success is 

currently being limited by treatment-induced 

irAEs resembling autoimmune diseases 

that are affecting nearly every organ system. 

With ICI becoming first- and second-line 

of cancer treatments, it is expected that 

the number of irAEs will continue rising 

and limit immunotherapy efficacy unless 

we find solutions. Our multi-disciplinary 

translational group of scientists and 

clinicians are working towards developing a 

better understanding of the biological players 

and underlying molecular and cellular 

mechanisms involved in driving irAEs by 

directly studying patient blood and matched 

affected tissue samples using a range of 

systems immunology, immunogenomics 

and single-cell ‘omics’ strategies. Our 

translational research program may result 

in identifying putative cellular components 

and mechanisms that could be (i)targeted in 

a ‘primary-prevention’ approach to prevent 

irAE development, or (ii)targeted after onset 

of irAEs, without reducing the efficacy of the 

immunotherapy.
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Sensing of DNA Damage, Replication 
Stress, and Transcription Problems 

ATM and ATR are two master checkpoint 

kinases in human cells. In particular, ATR is 

the key responder to a broad spectrum of DNA 

damage and DNA replication problems. To 

understand how ATR is activated, we sought 

to identify the key DNA structural elements 

and sensor proteins that activate ATR. We 

have developed unique biochemical and cell 

biological assays to dissect the process of ATR 

activation. Our recent studies have revealed 

that ATR is important not only for sensing 

DNA damage and replication stress, but also 

for problems associated with transcription. 

R loops, which arise from stable DNA:RNA 

hybrids during transcription, are a major 

source of genomic instability. We found that 

ATR is activated by R loops and plays a key 

role in suppressing R loop-induced genomic 

instability, thus, uncovering a new function of 

ATR in safeguarding the genome.

Checkpoint, DNA Replication, DNA 
Repair, Telomeres, Centromeres and  
the Cell Cycle 

The ATR checkpoint plays a key role in 

regulating and coordinating DNA replication, 

DNA repair, and cell cycle transitions. 

During the past few years, our studies have 

identified a number of novel roles that ATR 

plays in protecting the genome, such as: 

suppressing single-stranded DNA (ssDNA) 

accumulation during DNA replication, 

regulating homologous recombination (HR), 

and promoting alternative lengthening 

of telomeres (ALT). Recently, we have 

discovered a surprising function of ATR 

in mitosis. We have shown that ATR is 

localized to centromeres in mitosis, where 

it is activated by centromeric R loops. The 

activation of ATR at centromeres is critical 

for faithful chromosome segregation,  

thus revealing the unexpected importance  

of ATR in suppressing chromosomal 

instability (CIN).

RNA, DNA repair and Genomic 
Integrity

Non-coding RNAs are important components 

and regulators of chromatin. We are 

interested in understanding how non-coding 

RNAs affect DNA repair and genomic 

stability in specific chromosomal regions. 

Cancer is a complex disease driven by genetic and epigenetic alterations in 

the genome. To prevent these detrimental alterations, cells have evolved an 

intricate signaling network, called the DNA damage checkpoint, to detect and 

signal problems in the genome. During cancer development, the activation 

of oncogenes and loss of tumor suppressors leads to genomic instability, 

rendering cancer cells increasingly dependent upon specific DNA repair and 

checkpoint signaling proteins to survive. The Zou laboratory is particularly 

interested in understanding how the checkpoint detects DNA damage and 

genomic instability, and how the checkpoint can be targeted in cancer therapy. 

Our current studies are focused on the activation of ATR and ATM, the master 

sensor kinases of two major checkpoint pathways. Furthermore, we are 

developing new strategies to exploit the genomic instability and checkpoint 

addiction of different cancer cells in targeted cancer therapy.
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For example, the telomere non-coding 

RNA TERRA is upregulated in ALT-positive 

tumors, and may regulate the lengthening 

of telomeres through a unique DNA repair 

pathway. Moreover, centromeric RNAs 

form R loops in mitotic cells, promoting 

ATR activation and accurate chromosome 

segregation. In addition to non-coding 

RNAs, our recent studies also suggest that 

even coding RNA transcripts may directly 

participate in the repair of DNA breaks, 

revealing another function of RNA in the 

regulation of genomic integrity. 

Cancer Genomics, Tumor evolution 
and Targeted Cancer Therapy 

During the evolution of tumors, cancer 

cells acquire mutations through a variety 

of mechanisms. We recently discovered 

that APOBEC3A/B proteins, two cytidine 

deaminases that are aberrantly expressed 

in multiple types of cancers, induce DNA 

replication stress and render cancer cells 

susceptible to ATR inhibition. Working with 

the team of Dr. Michael Lawrence, we find 

that APOBEC3A prefers substrate sites in 

DNA hairpins, leading to the discovery of 

passenger hotspot mutations in cancer. 

Furthermore, in collaboration with Dr. Tim 

Graubert, we find that the splicing factor 

mutations associated with myelodysplastic 

syndromes (MDS) and acute myeloid 

leukemia (AML) induce R loops and trigger 

an ATR response. Cells that express these 

splicing factor mutants are sensitive to 

ATR inhibitors, providing a new strategy for 

the treatment of MDS and possibly other 

malignancies associated with RNA splicing 

defects.

This image shows that GFP-tagged RNaseH1 (green) localizes to sites of R loops (red) through 
binding to RPA. R loops are transcription intermediates that contain RNA:DNA hybrids and single-
stranded DNA (ssDNA). RPA is a protein complex that recognizes ssDNA. RNaseH1 is an enzyme 
that suppresses R loops by cleaving the RNA in RNA:DNA hybrids. Wild-type RNaseH1 recognizes 
R loops through binding to RPA, but the R57A mutant of RNaseH1, which is defective for RPA 
binding, fails to recognize R loops. 

R loops
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Microfluidic device for the generation of droplets containing mixed cell 
populations for long term culture.
Image courtesy of Rohan Thakur, Stott Laboratory

Ex vivo culture of circulating tumor cells from a breast cancer patient.
Image courtesy of Haber/Maheswaran Laboratory

EGF stimulation rapidly triggers actin/ERM- (green) and pAkt (red) rich 
macropinocytic cups on the surface of Nf2-/- cells.

Image courtesy of Christine Chiasson-MacKenzie, PhD, McClatchey Laboratory
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