

Linley, T. D.¹, Stewart, A², McMillan, P.³, Clark, M³., Ichino, M.⁴ and Jamieson, A. J.¹

- 1. Oceanlab, University of Aberdeen t.linley@abdn.ac.uk, a.jamieson@abdn.ac.uk
- 2. Te Papa Collection, Wellington, NZ andrews@tepapa.govt.nz
- 3. NIWA, Wellington, NZ <u>peter.mcmillan@niwa.co.nz</u>, <u>malcolm.clark@niwa.co.nz</u>
- 4. National Oceanographic Centre, Southampton matteo.ichino@noc.soton.ac.uk

The South Fiji basin

- Large depth range
 - ->10km
- Abyssal plain surrounded by trenches
- Potential species barriers:
 - Topographic
 - Environmental

Data collection

- Data collected using autonomous free-fall landers
- Mackerel bait attracts animals within view of the camera
- Data is from a stills system 2m above the seabed
- Data from a video system is included when relevant

Deployments

- 22 deployments in the Kermadec Trench
 - Depth range from 1,000 6,068m
 - Along and across axis
- 11 deployments in the South New Hebrides Trench
 - Depth range from 2,086-6,898m
 - Across the axis
- 3 deployments in the South Fiji Basin
 - Depth range from 4,078 to 4,100m

Character synopsis

Coryphaenoides armatus

- Ubiquitous
- Scavenger
- Very active

Coryphaenoides yaquinae

- Close relative
- Generally deeper
- Lower metabolic rate

Character synopsis

Bassozetus levistomatus

- Has managed to elude us
- Appears attracted to bait but disinterested
- restricted globally to abyssal depths
- 3,965-5,200m

Is there a physical barrier?

Is there a thermal barrier?

What is different about these fish?

- Video of fish of approximately equal size was accessed
- The cuskeel had a significantly lower tail-beat frequency, less than half that of the rattails.
 - B. levistomatus 29.8 ± 6.6
 - Coryphaenoides sp. 77.4 ± 21.0
- The cuskeel had a significantly lower speed (body lengths min⁻¹)
 - B. levistomatus 2.8 \pm 2.3
 - Coryphaenoides sp. 12.6 ± 4.3

Is energetic input the key factor?

- Kermadec: 1.637 gC m⁻² y⁻¹
- New Hebrides 0.864 gC m⁻² y⁻¹

Conclusions

- There is a switch from a scavenger to a predatory fish community
- This appears dependent on surface input. Below a certain threshold the fish community becomes a predatory one.
- Vertebrate scavengers can no longer exist, relying on scavenging invertebrates to consolidating surface input
- This switch often coincides with depth but that may be a symptom of the dropping input with increasing depth and therefore flexible

Thank you

Any questions?

- 1. Johnson, N. a., Campbell, J.W., Moore, T.S., Rex, M. a., Etter, R.J., McClain, C.R., Dowell, M.D., 2007. The relationship between the standing stock of deep-sea macrobenthos and surface production in the western North Atlantic. Deep Sea Res. Part I Oceanogr. Res. Pap. 54, 1350–1360.
- 2. Lutz, M. J., Caldeira, K., Dunbar, R. B., & Behrenfeld, M. J. (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. *Journal of Geophysical Research*, 112(C10)
- 3. Nielsen, J., Merrett, N.R., 2000. REVISION OF THE COSMOPOLITAN DEEP-SEA GENUS BASSOZETUS (PISCES : OPHIDIIDAE) WITH TWO NEW SPECIES. Galathea Rep. Issued by Galathea Comm. 18, 7–56.
- 4. Wilson, R.R., Waples, R.S., 1983. Distribution, morphology, and biochemical genetics of *Coryphaenoides armatus* and *C. yaquinae* (Pisces: Macronridae) in the central and eastern North Pacific 30.
- 5. Wolff, T. (1959). The hadal community, an introduction. *Deep Sea Research (1953)*, 6(0), 95–124.

