ALGEBRA 1 PB-Z X. 25 V 2012

Esercizio 1. Sia A un dominio d'integrità unitario e a ideali principali. Si mostri che, per un ideale di A, esser massimale è equivalente a esser primo (1).

Soluzione. La dimostrazione dell'equivalenza tra le nozioni di massimalità e primalità (per ideali) procederà come segue

I. mostreremo che, in un dominio d'integrità unitario e a ideali principali, un ideale è massimale se e solo se è generato da un elemento irriducibile

II.I. mostreremo che, in un dominio d'integrità unitario a fattorizzazione unica, un elemento è irriducibile se e solo se è primo

II.II. mostreremo che un dominio d'integrità unitario e a ideali principali è un dominio d'integrità unitario a fattorizzazione unica.

III. mostreremo che, in un dominio d'integrità unitario e a ideali principali, un ideale è primo se e solo se è generato da un elemento primo

La dimostrazione consiste, dunque, nell'inanellare I., II.I (²) e III. .

Passiamo ora a dimostrare gli enunciati I., II.I, II.II e III.; ognuno di essi sarà dato sotto forma di lemma.

Lemma I. Sia A un dominio d'integrità unitario e a ideali principali. Sia $\langle a \rangle$ un ideale di A. Allora

 $\langle a \rangle$ è massimale \iff a è irriducibile

Dimostrazione. Iniziamo osservando che un ideale principale $\langle a_1 \rangle$ contiene un altro ideale principale $\langle a_2 \rangle$ se e solo se $a_1 | a_2$.

(\Leftarrow) Se $a \in A$ è irriducibile, gli unici divisori di a sono gli invertibili di A e gli elementi di A associati ad a. Dunque, gli unici ideali principali che contengono $\langle a \rangle$ sono $\langle 1 \rangle = A$ e $\langle a \rangle$; ossia $\langle a \rangle$ è massimale.

(⇒) Sia $a \in A$ riducibile; ossia, sia $a \in A$ tale da ammettere una fattorizzazione propria $a = b_1b_2$, con $b_1 \in A$ e $b_2 \in A$ entrambi non unità. Allora

$$\langle a \rangle \subsetneq \langle b_1 \rangle \subsetneq \langle 1 \rangle = A \text{ e } \langle a \rangle \subsetneq \langle b_2 \rangle \subsetneq \langle 1 \rangle = A,$$

1

 $^{^{1}}$ Sugg.: Si inizi mostrando che, per un elemento di A, esser irriducibile è equivalente a esser primo. Dunque, si mostri che, per un ideale di A, esser massimale è equivalente a esser generato da un elemento irriducibile e, parallelamente, che esser primo è equivalente a esser generato da un elemento primo.

 $^{^2{}m Via~II.II}$

così che l'ideale $\langle a \rangle$ non è massimale.

Definizione. Sia A un dominio d'integrità con unità. Diremo che A è un **dominio** a fattorizzazione unica sse per ogni elemento $a \in A$ che sia non nullo e non invertibile esistono $p_1, ..., p_n \in A$ elementi irriducibili tali che

$$\bigstar_{\mathrm{es}}$$
 $a = p_1 \cdot \ldots \cdot p_n$

 \bigstar_{un} dati $q_1,...,p_m \in A$ elementi irriducibili tali che $a=q_1 \cdot ... \cdot q_m$, si ha m=n e, inoltre, esiste una permutazione π dell'insieme $\{1,...,n\}$ tale che, per ogni $\iota \in \{1,...,n\}$, gli elementi p_ι e $q_{\pi(\iota)}$ sian tra loro associati.

Lemma II.I. Sia A un dominio d'integrità con unità. Allora A è un domonio a fattorizzazione unica se e solo se soddisfa le proprietà seguenti

- ogni elemento irriducibile di A è un elemento primo di A (3)
- data una qualsiasi successione $\{a_h\}_{h\in\mathbb{N}}\subseteq A$ di elementi di A tali che, per ogni $h\in\mathbb{N}$, l'elemento a_{h+1} divida l'elemento a_h , esiste un naturale $h_{\mathrm{ass}}\in\mathbb{N}$ tale che, per ogni $h_1,h_2\in\mathbb{N}$ tali che $h_1\geq h_{\mathrm{ass}}$ e $h_2\geq h_{\mathrm{ass}}$, gli elementi a_{h_1} e a_{h_2} son tra loro associati

Dimostrazione. Si veda, di G.M. Piacentini Cattaneo, "Algebra - Un approccio algoritmico", Proposizione 4.8.2., pagine 187-188.

Lemma II.II. Sia A un dominio d'integrità unitario e a ideali principali. Allora A è un dominio d'integrità unitario a fattorizzazione unica.

Dimostrazione. Si veda, di G.M. Piacentini Cattaneo, "Algebra - Un approccio algoritmico", Proposizione 4.8.4., pagine 189-190.

Lemma III. Sia A un dominio d'integrità unitario e a ideali principali. Sia $\langle a \rangle$ un ideale di A. Allora

 $\langle a \rangle$ è un ideale primo \iff a è un elemento primo

Dimostrazione. L'ideale $\langle a \rangle$ è primo se e solo se, dati $c_1, c_2 \in A$,

$$c_1c_2 \in \langle a \rangle \implies c_1 \in \langle a \rangle \text{ oppure } c_2 \in \langle a \rangle;$$

ossia, se e solo se

 $\exists q \in A \text{ tal che } c_1c_2 = qa \implies \exists q_1 \in A \text{ tal che } c_1 = q_1a \text{ oppure } \exists q_2 \in A \text{ tal che } c_2 = q_2a;$ ossia, se e solo se

 $^{^3}$ Equivalentemente, un elemento di A è irriducibile se e solo se è primo.

 $a|c_1c_2 \Rightarrow a|c_1 \text{ oppure } a|c_2;$

ossia, se e solo se a è un elemento primo.

Esercizio 2. Sia $\mathbb{Z}[i]$ 'anello degli interi di Gauß. Si risponda in maniera dettagliata alle seguenti domande a proposito dell'ideale $I = \langle 2i, 6+4i \rangle$

- è forse vero che I è principale (se sì, si esibisca un suo generatore)?
- è forse vero che I è primo?
- è forse vero che I è massimale?

Soluzione. L'anello $\mathbb{Z}[i]$ degli interi di Gauß essendo euclideo, è a ideali principali. Quindi, in particolare, l'ideale I è principale.

Per determinare un generatore di I, procediamo come segue. Sapendo, dai dati del problema, che I è generato da 2i e da 6+4i, possiamo affermare, grazie alla teoria, che I è generato da un massimo comun divisore di 2i e 6+4i. Dunque, non ci resta che determinare un massimo comun divisore di 2i e 6+4i. A tal fine, osserviamo che l'elemento 2i divide l'elemento 6+4i; infatti, abbiamo 6+4i=2i(-3i+2). Quindi, un massimo comun divisore di 2i e 6+4i è 2i e, dunque, $I=\langle 2i \rangle$.

Secondo quanto detto a proposito dell'esercizio 1. (4), l'ideale $I = \langle 2i \rangle$ è primo se e solo se 2i è un elemento irriducibile di $\mathbb{Z}[i]$. Dunque, non ci resta che studiare l'irriducibilità in $\mathbb{Z}[i]$ di $2i \in \mathbb{Z}[i]$. A tal fine, osserviamo che, in $\mathbb{Z}[i]$, 2i ammette una fattorizzazione non banale; essa è la seguente 2i = (1+i)(1+i). Quindi, 2i non è irriducibile e, dunque, l'ideale $I = \langle 2i \rangle$ non è primo.

Infine, l'ideale I, non essendo primo, non è massimale.

Per quanto detto a proposito dell'esercizio 1., sappiamo che, per un ideale di un dominio d'integrità unitario e a ideali principali (dunque, per un ideale di un qualsiasi anello euclideo; per esempio, dell'anello degli interi di Gauß), essere primo è equivalente a essere massimale.

Avremmo, dunque, potuto procedere altrimenti, mostrando direttamente che I non è massimale e, quindi, neanche primo. Ora, che $I=\langle 2i\rangle$ non sia massimale (e, quindi, non primo) è evidente, 'ché, ad esempio, entrambi gli ideali $\langle 2\rangle$ e, rispettivamente, $\langle i\rangle$ contengono $I=\langle 2i\rangle$ in maniera propria; ossia

 $I = \langle 2i \rangle \subsetneq \langle 2 \rangle \subsetneq \mathbb{Z}[i]$ e, rispettivamente, $I = \langle 2i \rangle \subsetneq \langle i \rangle \subsetneq \mathbb{Z}[i]$.

 $^{^4\}mathrm{Ricordiamo}$ che, essendo euclideo, l'anello $\mathbb{Z}[i]$ è a ideali principali.

Esercizio 3. Si mostri che l'anello $\mathbb{Z}[\sqrt{-7}]$ non è euclideo.

Soluzione. Mostreremo che l'anello $\mathbb{Z}[\sqrt{-7}]$ non è euclideo, provando che esso non è a fattorizzazione unica.

Sarà, dunque, sufficiente esibire un elemento non nullo e non invertibile di $\mathbb{Z}[\sqrt{-7}]$ che ammetta due distinte fattorizzazioni con fattori irriucibili.

Al fine di esibire un tale elemento, iniziamo osservando che le sole unità di $\mathbb{Z}[\sqrt{-7}]$ sono 1 e -1 (⁵).

Proseguiamo, poi, considerando l'elemento $8 \in \mathbb{Z}[\sqrt{-7}]$. Da una parte, abbiamo $8 = (1 + \sqrt{-7})(1 - \sqrt{-7})$ e, da un'altra parte, abbiamo $8 = 2 \cdot 2 \cdot 2$.

Proviamo che 2 è irriducibile in $\mathbb{Z}[\sqrt{-7}]$. A tal fine, supponiamo che 2 sia riducibile in $\mathbb{Z}[\sqrt{-7}]$ e mostriamo che, così facendo, si arriva a una conclusione assurda.

Sia, dunque, 2 riducibile in $\mathbb{Z}[\sqrt{-7}]$; allora esistono $b_1, b_2 \in \mathbb{Z}[\sqrt{-7}]$ tali che $2 = b_1b_2$. D'altro canto, |2| = 4 e, quindi, $4 = |2| = |b_1b_2| = |b_1||b_2|$, così che $|b_1|, |b_2| \in \{1, 2, 4\}$. Ora,

se fosse $|b_1|=1$, allora avremmo $b_1=\pm 1$ e $b_2=\pm 2$ (6) e, quindi, 2 sarebbe irriducibile, contro l'ipotesi;

se fosse $|b_1|=2$ e $b_1=u_1+\sqrt{-7}v_1$, con $u_1,v_1\in\mathbb{Z}$, allora otterremmo la seguente falsa uguaglianza interi $2=|b_1|=u_1^2+7v_1^2$;

se fosse $|b_1| = 4$, allora avremmo $|b_2| = 1$ e, quindi, come poco sopra, $b_1 = \pm 2$ e $b_2 = \pm 1$, così che 2 sarebbe irriducibile, contro l'ipotesi.

Quindi, 2 è irriducibile in $\mathbb{Z}[\sqrt{-7}]$.

Si dimostra che entrambi $1+\sqrt{-7}$ e $1-\sqrt{-7}$ sono irriducibili in $\mathbb{Z}[\sqrt{-7}]$ in maniera del tutto analoga.

Quindi, la presenza dell'elemento $8 \in \mathbb{Z}[\sqrt{-7}]$ con le sue proprietà (per quanto detto, esso è non nullo, è non invertibile in $\mathbb{Z}[\sqrt{-7}]$, ammette in $\mathbb{Z}[\sqrt{-7}]$ due fattorizzazioni distinte con fattori irriducibili) prova che $\mathbb{Z}[\sqrt{-7}]$ non è un dominio a fattorizzazione unica e, dunque, non è euclideo.

⁵Infatti, siano $a_1, a_2 \in \mathbb{Z}[\sqrt{-7}]$ tali che $a_1a_2=1$, con $a_1=x_1+\sqrt{-7}y_1$, $a_2=x_2+\sqrt{-7}y_2$ e $x_1, x_2, y_1, y_2 \in \mathbb{Z}$. Allora, da un lato, $1=|1|=|a_1a_2|=|a_1||a_2|$ e, da un altro lato, $|a_1|=x_1^2+7y_1^2$ e $|a_2|=x_2^2+7y_2^2$. Quindi, da $1=x_1^2+7y_1^2$ e $1=x_2^2+7y_2^2$, con $x_1, x_2, y_1, y_2 \in \mathbb{Z}$, abbiamo $x_1=\pm 1$, $y_1=0$ e $x_2=\pm 1$, $y_2=0$.

⁶Si confronti con quanto scritto nella nota 3.

Esercizio 4. Per ogni $n \in \mathbb{N}$ sia $n\mathbb{Z}[i] = \{a_0 + ia_1 \in \mathbb{Z}[i] \mid a_0, a_1 \in n\mathbb{Z}\}$ l'anello degli interi di Gauß con coefficienti multipli di n.

Si mostri che $4\mathbb{Z}[i]$ è un ideale di $2\mathbb{Z}[i]$ e si descriva l'insieme quoziente $2\mathbb{Z}[i]/4\mathbb{Z}[i]$.

Soluzione. Verificare che, per ogni $n \in \mathbb{N}$, l'insieme $n\mathbb{Z}[i]$ è un ideale di $\mathbb{Z}[i]$ è semplice. Tale verifica, ad esempio, può esser fatta, mostrando che $n\mathbb{Z}[i]$ è un sottogruppo additivo di $\mathbb{Z}[i]$ che, inoltre, verifica sia la proprietà di assorbimento a sinistra sia la proprietà di assorbimento a destra.

Ora, da $4\mathbb{Z}[i] \subset 2\mathbb{Z}[i]$, segue che $4\mathbb{Z}[i]$ è un ideale di $2\mathbb{Z}[i]$.

Al fine di descrivere l'insieme quoziente $2\mathbb{Z}[i]/4\mathbb{Z}[i]$, osserviamo che due elementi $a_1 + b_1 i$ e $a_2 + b_2 i$ di $2\mathbb{Z}[i]$ appartengono alla stessa classe di equivalenza modulo la relazione indotta da $4\mathbb{Z}[i]$ se e solo se la loro differenza appartiene a $4\mathbb{Z}[i]$; ossia, se e solo se $(a_1 - a_2) + (b_1 - b_2)i \in 4\mathbb{Z}[i]$; ossia, se e solo se $a_1 \equiv_4 a_2$ e $b_1 \equiv_4 b_2$.

Ora, essendo a_1, a_2, b_1, b_2 elementi di $2\mathbb{Z}$, abbiamo $\overline{a_1} = \overline{a_2} \in \{\overline{0}, \overline{2}\} \subseteq \mathbb{Z}_4$ e $\overline{b_1} = \overline{b_2} \in \{\overline{0}, \overline{2}\} \subseteq \mathbb{Z}_4$. Quindi,

$$2\mathbb{Z}[i]/4\mathbb{Z}[i] = \{ 4\mathbb{Z}[i], 2+4\mathbb{Z}[i], 2i+4\mathbb{Z}[i], 2+2i+4\mathbb{Z}[i] \}$$

Esercizio 5. Si mostri che, in $\mathbb{Z}[\sqrt{-6}]$, gli elementi dell'insieme

$$E \ = \ \{2, -2, 5, -5, 2 + \sqrt{-6}, 2 - \sqrt{-6}\} \ \subseteq \ \mathbb{Z}[\sqrt{-6}]$$

sono irriducibili ma non sono primi $(^{7})$.

Soluzione. Per mostrare che gli elementi di E non sono irriducibili si può procedere ragionando sulle loro norme, come descritto nella soluzione dell'esercizio 3.

Per mostrare che gli elementi di E non sono primi, procediamo come segue.

Iniziamo, osservando che 10, in $\mathbb{Z}[\sqrt{-6}]$, ammette le due seguenti fattorizzazioni con fattori irriducibili

$$10 = 2 \cdot 5$$
 e $10 = (2 + \sqrt{-6}) \cdot (2 - \sqrt{-6})$

Ora, concludiamo, osservando che

$$2 \mid 10 = (2 + \sqrt{-6}) \cdot (2 - \sqrt{-6}) \text{ ma } 2 \text{ } \text{ //} (2 + \sqrt{-6}) \text{ e } 2 \text{ } \text{ //} (2 - \sqrt{-6})$$

5 | 10 =
$$(2+\sqrt{-6})\cdot(2-\sqrt{-6})$$
 ma 5 // $(2+\sqrt{-6})$ e 5 // $(2-\sqrt{-6})$

$$(2+\sqrt{-6}) \mid 10 = 2 \cdot 5 \text{ ma } (2+\sqrt{-6}) \text{ } \text{ } \text{ } \text{ } 2 \text{ } \text{e} \text{ } (2+\sqrt{-6}) \text{ } \text{ } \text{ } \text{ } \text{ } 5$$

$$(2-\sqrt{-6}) \mid 10 = 2 \cdot 5 \text{ ma } (2-\sqrt{-6}) \text{ } \text{ } \text{ } \text{ } 2 \text{ } \text{e} \text{ } (2-\sqrt{-6}) \text{ } \text{ } \text{ } \text{ } 5$$

Quindi, nessuno degli elementi di E è un elemento primo.

 $^{^7 \}mathrm{Sugg.:}$ Per provare che gli elementi di Enon sono primi, si considerino due diverse fattorizzazioni di $10\dots$

Esercizio 6. Determinare gli ideali dell'anello $\mathbb{Z}_3[X]/\langle X^3 + X + \overline{1} \rangle$.

Soluzione. Si scriva $Q[X] = X^3 + X + \overline{1}$ e $I = \langle X^3 + X + \overline{1} \rangle = \langle Q[X] \rangle$.

Ricordiamo che l'insieme Ideali $\mathbb{Z}_3[X]/I$ i cui elementi sono gli ideali dell'anello $\mathbb{Z}_3[X]/I = \mathbb{Z}_3[X]/\langle X^3 + X + \bar{1} \rangle$ è in corrispondenza biunivoca con l'insieme Ideali $\mathbb{Z}_3[X](I)$ i cui elementi sono gli ideali di $\mathbb{Z}_3[X]$ che contengono $I = \langle X^3 + X + \bar{1} \rangle$; ossia,

$$\operatorname{Ideali}_{\mathbb{Z}_3[X]/I} \stackrel{\sim}{\longleftrightarrow} \operatorname{Ideali}_{\mathbb{Z}_3[X]}(I)$$

Sia $\pi_I : \mathbb{Z}_3[X] \to \mathbb{Z}_3[X]/I$ la proiezione canonica di $\mathbb{Z}_3[X]$ sul quoziente $\mathbb{Z}_3[X]/I$. Ricordiamo, allora, che una biezione tra gli insiemi Ideali $\mathbb{Z}_3[X]/I$ e Ideali $\mathbb{Z}_3[X]/I$) è data da π_I ; ossia,

$$\pi_I : \mathrm{Ideali}_{\mathbb{Z}_3[X]}(I) \stackrel{\sim}{\longleftarrow} \mathrm{Ideali}_{\mathbb{Z}_3[X]/I}$$

Quindi, al fine di determinare gli ideali di $\mathbb{Z}_3[X]/\langle X^3+X+\bar{1}\rangle$ (ossia, gli elementi di Ideali $\mathbb{Z}_3[X]/I$), procederemo, dapprima, individuando gli elementi di Ideali $\mathbb{Z}_3[X](I)$ e, poi, considerando le loro immagini in Ideali $\mathbb{Z}_3[X](I)$ secondo π_I .

Ricordando, ora, che l'anello $\mathbb{Z}_3[X]$ è un dominio a ideali principali, abbiamo che un ideale $J = \langle P[X] \rangle$ di $\mathbb{Z}_3[X]$ contiene $I = \langle X^3 + X + \overline{1} \rangle$ se e solo se $P[X] \mid X^3 + X + \overline{1}$.

Dunque, il problema della determinazione degli ideali di $\mathbb{Z}_3[X]/\langle X^3+X+\bar{1}\rangle$ è equivalente a quello della riducibilità, in $\mathbb{Z}_3[X]$ del polinomio $X^3+X+\bar{1}$.

Ora, essendo di grado 3, il polinomio $X^3+X+\bar{1}$ è riducibile in $\mathbb{Z}_3[X]$ se e solo se ammette radici in $\mathbb{Z}_3=\{\bar{0},\bar{1},\bar{2}\}$. A questo punto, essendo l'insieme \mathbb{Z}_3 di potenza 3, possiamo procedere mediante verifica diretta e osservare che l'elemento $\bar{1}\in\mathbb{Z}_3$ è l'unica radice di $Q[X]=X^3+X+\bar{1};$ infatti, $Q[\bar{0}]=\bar{1}\neq\bar{0},$ $Q[\bar{1}]=\bar{0}$ e $Q[\bar{2}]=\bar{2}\neq\bar{0}.$ Quindi, abbiamo

$$X^3 + X + \overline{1} = (X - \overline{1})(X^2 + X + \overline{2});$$

ossia, scrivendo $R_1[X] = X - \bar{1} = X + \bar{2} e R_2[X] = X^2 + X + \bar{2}$,

$$X^3 + X + \overline{1} = Q[X] = R_1[X] \cdot R_2[X] = (X + \overline{2})(X^2 + X + \overline{2})$$

Quindi, gli ideali che contengono $I = \langle Q[X] \rangle = \langle X^3 + X + \overline{1} \rangle$ sono $\langle R_1[X] \rangle = \langle X + \overline{2} \rangle$ e $\langle R_2[X] = \langle X^2 + X + \overline{2} \rangle$; ossia,

$$\mathrm{Ideali}_{\mathbb{Z}_3[X]}(I) \ = \ \mathrm{Ideali}_{\mathbb{Z}_3[X]}(\langle \mathbf{Q}[\mathbf{X}] \rangle) \ = \ \{\langle \mathbf{R}_1[\mathbf{X}] \rangle, \langle \mathbf{R}_2[\mathbf{X}] \rangle\}$$

Dunque,

$$Ideali_{\mathbb{Z}_3[X]/I} = Ideali_{\mathbb{Z}_3[X]/\langle Q[X]\rangle} = \{\pi_I(\langle R_1[X]\rangle), \pi_I(\langle R_2[X]\rangle)\}.$$

Esercizio 7. Siano κ un campo e $\kappa[X_1, X_2]$ l'anello dei polinomi in due indeterminate a coefficienti in κ . Mostrare che l'anello $\kappa[X_1, X_2]$ non è a ideali principali.

Soluzione. Al fine di mostrare che l'anello $\kappa[X_1, X_2]$ non è a ideali principali, consideriamo l'ideale $I = \langle X_1, X_2 \rangle$ e mostriamo che non è principale. Proveremo questo fatto, supponendo che I sia principale e arrivando, partendo da tal supposizione, a una conclusione assurda.

Sia, dunque, l'ideale I principale; allora esiste $p[X_1, X_2] \in \kappa[X_1, X_2]$ tale $I = \langle p[X_1, X_2] \rangle$; ossia, tale che $\langle X_1, X_2 \rangle = \langle p[X_1, X_2] \rangle$. Ora, poiché deg $X_1 = 1$ e deg $X_2 = 1$, il grado di $p[X_1, X_2]$ è al più uguale a 1; ossia deg $p[X_1, X_2] \in \{0, 1\}$.

Se deg $p[X_1, X_2] = 0$, allora $p[X_1, X_2]$ è una costante; ossia, $p[X_1, X_2] = k \in \kappa$. Ora,

se k fosse uguale a 0, allora arriveremmo alla seguente conclusione assurda $\langle X_1, X_2 \rangle = \langle p[X_1, X_2] \rangle = \langle k \rangle = \langle 0 \rangle = \{0\}$ (8);

se k fosse uguale a 1, allora arriveremmo alla seguente conclusione assurda $\langle X_1, X_2 \rangle = \langle p[X_1, X_2] \rangle = \langle k \rangle = \langle 1 \rangle = \kappa[X_1, X_2]$ (9);

se k fosse una costante diversa da 0 e da 1, allora $\langle \mathbf{X}_1, \mathbf{X}_2 \rangle = \langle p[\mathbf{X}_1, \mathbf{X}_2] \rangle = \langle k \rangle$ conterrebbe solamente polinomi che son multipli della costante k e questo è assurdo, dato che, ad esempio, né \mathbf{X}_1 , né \mathbf{X}_2 son multipli di k.

Se deg $p[X_1, X_2] = 1$, allora $p[X_1, X_2]$ è della forma $p[X_1, X_2] = a_1X_1 + a_2X_2 + a_3$, con $a_1, a_2, a_3 \in \kappa$, con $a_1 \neq 0$ o $a_2 \neq 0$, 'ché, altrimenti, avremmo deg $p[X_1, X_2] = 0$. Ora.

se $a_1 = 0$ e $a_2 \neq 0$, allora X_1 sarebbe un multiplo di a $a_2X_2 + a_3$ e questo è assurdo, dato che il grado di X_1 è uguale a 1.

se $a_1 \neq 0$ e $a_2 = 0$, allora X_2 sarebbe un multiplo di a $a_1X_1 + a_3$ e questo è assurdo, dato che il grado di X_2 è uguale a 1.

se $a_1 \neq 0$ e $a_2 \neq 0$, allora X_1 e X_2 sarebbero multipli di a $a_1X_1 + a_2X_2 + a_3$ e questo è assurdo, dato che il grado di entrambi X_1 e X_2 è uguale a 1.

Quindi, l'ideale I non essendo principale, l'anello $\kappa[X_1, X_2]$ non è a ideali principali.

⁸L'ideale $I = \langle X_1, X_2 \rangle$ è diverso dall'ideale nullo; infatti, ad esempio, contiene gli elementi non nulli X_1 e X_2 .

 $^{^9}$ L'ideale $I = \langle X_1, X_2 \rangle$ è un sottoinsieme proprio di $\kappa[X_1, X_2;$ infatti, ad esempio, non contiene il polinomio costante 1.