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A bijection between ordinary partitions and
self-conjugate partitions with same disparity
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Abstract. We give a bijection between the set of ordinary partitions and that of self-
conjugate partitions with some restrictions. Also, we show the relation between hook
lengths of a self conjugate partition and its corresponding partition via the bijection.
As a corollary, we give new combinatorial interpretations for the Catalan number and
the Motzkin number in terms of self-conjugate simultaneous core partitions.
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1 Introduction

Let λ = (λ1, λ2, . . . , λ`) be a partition of n. The Young diagram of λ is a collection of n
boxes in ` rows with λi boxes in row i. We label the columns of the diagram from left
to right starting with column 1. The box in row i and column j is said to be in position
(i, j). For example, the Young diagram for λ = (5, 4, 2, 1) is below.

For the Young diagram of λ, the partition λ′ = (λ′1, λ′2, . . . , λ′λ1
) is called the conjugate of

λ, where λ′j denotes the number of boxes in column j of λ. For each box in its Young
diagram, we define its hook length by counting the number of boxes directly to its right
or below, including the box itself. Equivalently, for the box in position (i, j), the hook
length of λ is defined by

hλ(i, j) = λi + λ′j − i− j + 1.

For example, the hook lengths in the first row above are 8, 6, 4, 3, and 1, respectively.
We denote hλ(i, j) by h(i, j) when λ is clear.
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For a positive integer t, a partition λ is called a t-core if none of its hook lengths are
multiples of t. The number of t-core partitions of n is denoted by ct(n). The study of core
partitions arises from the representation theory of the symmetric group Sn. (See [11] for
details.) Many researches on core partitions are being made through various ways, such
as representation theory and analytic methods–see, for example, [5, 6, 7, 9, 10, 12, 13].

A partition whose conjugate is equal to itself is called self-conjugate. Let sct(n) denote
the number of t-core partitions of n which are self-conjugate. A number of properties of
self-conjugate core partitions have been found and proved. (See [3, 4].)

Garvan, Kim, and Stanton [8] found the generating functions of ct(n) and sct(n);

∞

∑
n=0

ct(n)qn =
∞

∏
n=1

(1− qnt)t

1− qn . (1.1)

∞

∑
n=0

sc2t(n)qn =
∞

∏
n=1

(1− q4nt)t(1 + q2n−1). (1.2)

Now by combining (1.1), (1.2), and Gauss’ well-known identity

∞

∑
n=0

q
n(n+1)

2 =
∞

∏
n=1

1− q2n

1− q2n−1 =
∞

∏
n=1

(1− q2n)(1 + qn),

one can obtain the following proposition which shows a relation between two numbers
ct(n) and sct(n).

Proposition 1.1.
∞

∑
n=0

sc2t(n)qn =

(
∞

∑
n=0

ct(n)q4n

)(
∞

∑
n=0

q
n(n+1)

2

)
.

Also, if we let p(n) be the number of partitions of n and let sc(n) be the number of
self-conjugate partitions of n, then p(n) and sc(n) have a similar relation.

Proposition 1.2.
∞

∑
n=0

sc(n)qn =

(
∞

∑
n=0

p(n)q4n

)(
∞

∑
n=0

q
n(n+1)

2

)
.

In this paper, we construct a bijection between the set of ordinary partitions and the
set of self-conjugate partitions with the same disparity. Our bijection can be obtained
by combining Wright’s bijection for proving Jacobi triple product identity and a bijec-
tion between self-conjugate partitions and diagonal sequence pairs. (See [14, 16].) The
bijection leads to a new combinatorial proof for Proposition 1.2. Also, from the bijection,
we find a relation between hook lengths of a self-conjugate partition and that of the
corresponding partition. (See Theorem 4.4.) As a result of this relation, we can also re-
prove Proposition 1.1. Another result comes from Theorem 4.4 is Proposition 1.3 which
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is a generalization of Proposition 1.1. Here, we use the notation of a (t1, t2, ..., tp)-core
partition if it is simultaneously a t1-core,. . . , and a tp-core.

Proposition 1.3. Let c(t1,t2,...,tp)(n) be the number of (t1, t2, . . . , tp)-core partitions of n and
sc(t1,t2,...,tp)(n) be the number of self-conjugate (t1, t2, . . . , tp)-core partitions of n. Then we have

∞

∑
n=0

sc(2t1,2t2,...,2tp)(n)q
n =

(
∞

∑
n=0

c(t1,t2,...,tp)(n)q
4n

)(
∞

∑
n=0

q
n(n+1)

2

)
.

At the end of this paper, new interpretations of the Catalan number and the Motzkin
number in terms of self-conjugate simultaneous core partitions is given (see Corol-
lary 4.11) as a corollary of Proposition 1.3.

This paper is organized as follows. In Section 2, we define the disparity and introduce
new classification of the set of self-conjugate partitions. In Section 3, we give a bijection
between the set of ordinary partitions and that of self-conjugate partitions with the same
disparity. In Section 4, we explain the relation between even hook lengths in a self-
conjugate partition and hook lengths in the corresponding partition via the bijection.
Furthermore, we give some new results on counting self-conjugate simultaneous cores.

2 Self-conjugate partitions with same disparity

In this section, we give some basic notions and introduce a set partition of the set SC of
self-conjugate partitions.

Let λ be a partition. We often use the notation δi for the hook length h(i, i) of the ith
box on the main diagonal. The set D(λ) = {δi : i = 1, 2, . . . } is called the set of main
diagonal hook lengths of λ. It is clear that if λ is self-conjugate, then D(λ) determines λ,
and elements of D(λ) are all distinct and odd. Hence, for a self-conjugate partition λ,
D(λ) can be partitioned into the following two subsets;

D1(λ) = {δi ∈ D(λ) : δi ≡ 1 (mod 4)},
D3(λ) = {δi ∈ D(λ) : δi ≡ 3 (mod 4)}.

Example 2.1. Let λ = (4, 4, 4, 3) be a self-conjugate partition of 15. Figure 1 shows its Young
diagram and the hook lengths. The set D(λ) = {7, 5, 3} of main diagonal hook lengths is
partitioned into D1(λ) = {5} and D3(λ) = {7, 3}.

The set of hook lengths of boxes in the first column of the Young diagram of λ is
called the beta-set of λ and denoted by β(λ).
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7 6 5 3

6 5 4 2

5 4 3 1

3 2 1

Figure 1: The Young diagram of a self-conjugate partition and its hook lengths

Let SC(n) be the set of self-conjugate partitions of n and λ ∈ SC(n). Using the value
|D1(λ)| − |D3(λ)|, we split SC(n) as follows: For m, n ≥ 0, we define a set SC(m)(n) by

SC(m)(n) = {λ ∈ SC(n) : |D1(λ)| − |D3(λ)| = (−1)m+1
⌈m

2

⌉
}.

We note that for a self-conjugate partition λ, if |D1(λ)| − |D3(λ)| = k for k ≥ 1, then
λ ∈ SC(2k−1)(n). Otherwise, if |D1(λ)| − |D3(λ)| = −k for k ≥ 0, then λ ∈ SC(2k)(n).

Therefore, SC(n) =
∞⋃

m=0
SC(m)(n).

We use the notation sc(m)(n) for |SC(m)(n)| and SC(m) for
⋃

n≥0 SC(m)(n).

For a partition λ, we define the disparity of λ by

dp(λ) = |{(i, j) ∈ λ : h(i, j) is odd}| − |{(i, j) ∈ λ : h(i, j) is even}|.

For example, for λ = (4, 4, 4, 3) given in Example 2.1, |D1(λ)| − |D3(λ)| = −1, and λ

is an element of SC(2)(15). Moreover, the disparity of λ is dp(λ) = 9− 6 = 3.

It is not hard to show that each element of SC(m)(n) has the same disparity.

Proposition 2.2. For m ≥ 0, if λ is in the set SC(m), then its disparity dp(λ) is m(m+1)
2 .

By Proposition 2.2, one may notice that the disparity of a self-conjugate partition is
a triangular number m(m+1)

2 , and the set of self-conjugate partitions with the disparity
m(m+1)

2 is SC(m). In fact, the disparity of any ordinary partition is a triangular number.

3 Bijections between SC(m) and P
The set of partitions of n is denoted by P(n), and the set of partitions is denoted by
P . In this section we construct bijections between two sets SC(m)(4n + m(m + 1)/2) and
P(n) which play a key role throughout the paper.
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Before constructing bijections, we give a notation. For a self-conjugate partition λ, if

D1(λ) = {4a1 + 1, 4a2 + 1, . . . , 4ar + 1},
D3(λ) = {4b1 − 1, 4b2 − 1, . . . , 4bs − 1},

we say that λ has the diagonal sequence pair ((a1, a2, . . . , ar), (b1, b2, . . . , bs)), where a1 >
a2 > · · · > ar ≥ 0 and b1 > b2 > · · · > bs ≥ 1. For convenience, we allow an empty
sequence if r or s is equal to 0.

For λ = (4, 4, 4, 3) ∈ SC(2)(15), its diagonal sequence pair is ((1), (2, 1)).

We note that if ((a1, . . . , ar), (b1, . . . , bs)) is the diagonal sequence pair of a self-conjugate
partition λ ∈ SC(m)(4n + m(m + 1)/2), then

r− s + (−1)m
⌈m

2

⌉
= 0

and

4

(
r

∑
i=1

ai +
s

∑
j=1

bj

)
+ r− s = 4n +

m(m + 1)
2

.

Now, we are ready to construct our mapping.

Mapping φ
(m)
n : SC(m)(4n + m(m + 1)/2) → P(n)

Let λ ∈ SC(m)(4n + m(m + 1)/2) be a self-conjugate partition with the diagonal se-
quence pair ((a1, . . . , ar), (b1, . . . , bs)). We define φ

(m)
n (λ) by the partition µ = (µ1, . . . , µ`)

such that
µi = ai + i + s− r for i ≤ r,

and (µr+1, . . . , µ`) is the conjugate of the partition γ = (b1 − s, b2 − s + 1, . . . , bs − 1).
(We allow that γ has some zero parts.)

In Figure 2, the diagram after deleting the shaded area is the Young diagram of µ.

Theorem 3.1. For nonnegative integers m and n, the mapping φ
(m)
n is bijective.

We define the bijection φ(m) : SC(m) → P by φ
(m)
n (λ), for a partition λ ∈ SC(m) of

4n + m(m+1)
2 . We say that µ is the corresponding partition of λ when φ(m)(λ) = µ.

We give two examples of the bijection φ(m).

Example 3.2. We consider two self-conjugate partitions λ and λ̃ with the set of main diagonal
hook lengths D(λ) = {21, 15, 13, 9, 3, 1} and D(λ̃) = {31, 19, 11, 5}, respectively.
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Figure 2: Graphical interpretations of mapping φ
(m)
n

• Since D1(λ) = {21, 13, 9, 1} and D3(λ) = {15, 3}, λ ∈ SC(3) and ((5, 3, 2, 0), (4, 1)) is
the diagonal sequence pair of λ. If we let µ be the partition φ

(3)
14 (λ), then

µ1 = 5+ 1− 2 = 4, µ2 = 3+ 2− 2 = 3, µ3 = 2+ 3− 2 = 3, µ4 = 0+ 4− 2 = 2

and (µ5, µ6, . . . ) is the conjugate of the partition (4− 2, 1− 2 + 1).
Therefore, µ = (4, 3, 3, 2, 1, 1).

• Since D1(λ̃) = {5} and D3(λ̃) = {31, 19, 11}, λ̃ ∈ SC(4) and ((1), (8, 5, 3)) is the
diagonal sequence pair of λ̃. If we let µ̃ be the partition φ

(4)
14 (λ̃), then µ1 = 1 + 1 + 2 = 4

and (µ2, µ3, . . . ) is the conjugate of the partition (8− 3, 5− 3 + 1, 3− 3 + 2).
Therefore, µ̃ = (4, 3, 3, 2, 1, 1).

For given µ ∈ P and m ≥ 0, we consider the following diagram to find λ such that
φ(m)(λ) = µ. For convenience, even if i ≤ 0, we set the ith column is the column on the
left side of the (i + 1)st column and the ith row is on the above of the (i + 1)st row.

• For m = 2k − 1, we consider the diagram ν obtained from the Young diagram of µ by
attaching k(k−1)

2 boxes on the left side such that ν has µi + k− i boxes in row i for i < k
and µi boxes in row i for i ≥ k. Then, the number of (white) boxes (i, j) in row i such that
i− j < k is equal to ai and the number of (gray) boxes (i, j) in column j such that i− j ≥ k
is equal to bj. See the first diagram in Figure 3 for µ = (4, 3, 3, 2, 1, 1) and m = 3.

• For m = 2k, we consider the diagram ν obtained from the Young diagram of µ by attaching
k(k+1)

2 boxes on the above such that ν has k − i boxes in row −i for i = 0, 1, . . . , k − 1
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and µi boxes in row i for i > 0. Then, the number of (white) boxes (i, j) in row i such
that i− j < −k is equal to ai and the number of (gray) boxes (i, j) in column j such that
i− j ≥ −k is equal to bj. See the second diagram in Figure 3 for µ = (4, 3, 3, 2, 1, 1) and
m = 4.

l l
((5, 3, 2, 0), (4, 1)) ((1), (8, 5, 3))

Figure 3: Graphical interpretations for odd m and even m of the bijection φ(m)

Proposition 3.3. For m ≥ 0, the number of self-conjugate partitions of n with the disparity
m(m+1)

2 is

sc(m)(n) =

{
p(k) if n = 4k + m(m+1)

2 ,
0 otherwise.

By Theorem 3.1 and Proposition 3.3, we have the following corollary and as a conse-
quence of Corollary 3.4, we have Proposition 1.2.

Corollary 3.4. For a nonnegative integer m, we have

∑
λ∈SC(m)

q|λ| = q
m(m+1)

2 ∑
µ∈P

q4|µ|.

4 Properties of hook lengths of SC(m)

In this section we provide some properties of hook lengths of λ ∈ SC(m).

4.1 Hook lengths of the first row or column

For the partitions λ ∈ SC(m) and µ = φ(m)(λ), we give a relation between their hook
lengths in the first row or the first column.

For a self-conjugate partition λ, we define the half-even beta set of λ by

βe/2(λ) = {h(i, 1)/2 : h(i, 1) is even, 1 ≤ i ≤ λ1}.
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Proposition 4.1. Let λ ∈ SC(m) with D(λ) = {δ1, . . . , δd} and µ = φ(m)(λ) = (µ1, . . . , µ`).
Then the half-even beta set of λ is

βe/2(λ) =

{
β(µ′) if δ1 ∈ D1(λ),
β(µ) if δ1 ∈ D3(λ).

Example 4.2. Let λ, λ̃ be self-conjugate partitions we considered in Example 3.2. We remind
that φ(3)(λ) = φ(4)(λ̃) = µ = (4, 3, 3, 2, 1, 1). We note that hλ(1, 1) = 21 ∈ D1(λ) and
hλ̃(1, 1) = 31 ∈ D3(λ̃). As in Proposition 4.1, βe/2(λ) = β(µ′) = {9, 6, 4, 1} and βe/2(λ̃) =
β(µ) = {9, 7, 6, 4, 2, 1}. See Figure 4 for the Young diagrams of µ, λ, λ̃, and their hook lengths.

4.2 The relation between hook lengths of SC(m) and P
We start this subsection by stating a proposition.

Proposition 4.3. For λ ∈ SC(m) with D(λ) = {δ1, δ2, . . . , δd}, let λ̄ be the self-conjugate
partition with D(λ̄) = {δi ∈ D(λ) : 2 ≤ i ≤ d}, and let µ = (µ1, µ2, . . . , µ`) and µ̄ be the
corresponding partitions of λ and λ̄, respectively. If µ = (µ1, µ2, . . . , µ`), then

µ̄ =

{
(µ2, µ3, . . . , µ`) if δ1 ∈ D1(λ)

(µ1 − 1, µ2 − 1, . . . , µ` − 1) if δ1 ∈ D3(λ)

One may notice that there are more relations between hook lengths of corresponding
partitions from Figure 4. By using Propositions 4.1 and 4.3, we have the following
theorem.

Theorem 4.4. Let λ ∈ SC(m) be a self-conjugate partition with the disparity m(m + 1)/2.
If φ(λ) = µ, then for each positive integer k, the number of boxes (i, j) with hλ(i, j) = 2k is
equal to twice the number of boxes (ĩ, j̃) with hµ(ĩ, j̃) = k.

The following corollary is obtained directly from Theorem 4.4.

Corollary 4.5. For a self-conjugate partition λ with the disparity m(m + 1)/2, let φ(λ) = µ.
Then λ is a (2t1, 2t2, . . . , 2tp)-core partition if and only if µ is a (t1, t2, . . . , tp)-core partition.

We denote the set of self-conjugate (t1, t2, . . . , tp)-core partitions λ ∈ SC(m) of n by

SC(m)
(t1,...,tp)

(n), and use notation sc(m)
(t1,...,tp)

(n) for |SC(m)
(t1,...,tp)

(n)|.

By using Theorems 3.1 and 4.4, we obtain the cardinality of SC(m)
(2t1,...,2tp)

(n).
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µ = 9 6 4 1

7 4 2

6 3 1

4 1

2

1

↔ λ = 21 18 17 15 12 11 8 7 5 2 1

18 15 14 12 9 8 5 4 2

17 14 13 11 8 7 4 3 1

15 12 11 9 6 5 2 1

12 9 8 6 3 2

11 8 7 5 2 1

8 5 4 2

7 4 3 1

5 2 1

2

1

l

λ̃ = 31 25 21 18 15 14 12 11 9 8 7 5 4 3 2 1

25 19 15 12 9 8 6 5 3 2 1

21 15 11 8 5 4 2 1

18 12 8 5 2 1

15 9 5 2

14 8 4 1

12 6 2

11 5 1

9 3

8 2

7 1

5

4

3

2

1

Figure 4: Hook length relations between corresponding partitions

Proposition 4.6. For a nonnegative integer m, the number of self-conjugate (2t1, 2t2, . . . , 2tp)-
core partitions of n with the disparity m(m+1)

2 is

sc(m)
(2t1,...,2tp)

(n) =

{
c(t1,...,tp)(k) i f n = 4k + m(m+1)

2 ,

0 otherwise.
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Let SC(t1,...,tp) =
⋃

m≥0 SC
(m)
(t1,...,tp)

, where SC(m)
(t1,...,tp)

denote the set of self-conjugate

(t1, t2, . . . , tp)-core partitions λ with the disparity m(m+1)
2 . From the previous proposition,

we have the following corollary and Proposition 1.3.

Corollary 4.7.

∑
λ∈SC(m)

(2t1,...,2tp)

q|λ| = q
m(m+1)

2 ∑
µ∈P(t1,...,tp)

q4|µ|.

4.3 Counting self-conjugate (2t1, . . . , 2tp)-cores with same disparity

In this subsection, we give some sets of self-conjugate partitions each of them is counted
by known special numbers.

It is well-known that there are finitely many (t1, ..., tp)-core partitions when t1, ..., tp
are relatively prime positive integers. From Proposition 4.6, we have the following result.

Corollary 4.8. For relatively prime positive integers t1, ..., tp, the number of self-conjugate
(2t1, ..., 2tp)-core partitions with the disparity m(m+1)

2 is equal to the number of (t1, ..., tp)-core
partitions.

Anderson [2] gives an interpretation for the Catalan number in terms of simultaneous
core partitions, and Amderberhan and Leven [1], Yang, Zhong, and Zhou [17], Wang [15],
respectively, gives an identity for the Motzkin number.

Theorem 4.9 ([2]). For relatively prime integers t1, t2 ≥ 1, the number of (t1, t2)-core partitions
is

c(t1,t2) =
1

t1 + t2

(
t1 + t2

t1

)
.

In particular, c(n,n+1) = Cn, where Cn = 1
n+1(

2n
n ) is the nth Catalan number.

Theorem 4.10 ([15]). For relatively prime integers n, d ≥ 1, the number of (n, n + d, n + 2d)-
core partitions is

c(n,n+d,n+2d) =
1

n + d

bn/2c

∑
i=0

(
n + d

i, i + d, n− 2i

)
.

In particular, c(n,n+1,n+2) is the nth Motzkin number Mn = ∑i≥0
1

i+1(
n
2i)(

2i
i ).

By using Corollary 4.8 and the above known results, we have the following corollary.

Corollary 4.11. Let m ≥ 0 be an integer.
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(a) For relatively prime integers t1, t2 ≥ 1, the number of self-conjugate (2t1, 2t2)-core parti-
tions with the disparity m(m+1)

2 is

sc(m)
(2t1,2t2)

=
1

t1 + t2

(
t1 + t2

t1

)
.

In particular, sc(m)
(2n,2n+2) = Cn, where Cn is the nth Catalan number.

(b) For relatively prime integers n, d ≥ 1, the number of self-conjugate (2n, 2n+ 2d, 2n+ 4d)-
core partitions with the disparity m(m+1)

2 is

sc(m)
(2n,2n+2d,2n+4d) =

1
n + d

bn/2c

∑
i=0

(
n + d

i, i + d, n− 2i

)
.

In particular, sc(m)
(2n,2n+2,2n+4) is the nth Motzkin number.
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