Séminaire Lotharingien de Combinatoire **82B** (2019) Article #30, 12 pp.

A bijection between ordinary partitions and self-conjugate partitions with same disparity

Hyunsoo Cho^{*1}, JiSun Huh⁺², and Jaebum Sohn^{‡1}

¹Department of Mathematics, Yonsei University, Seoul 03722, Republic of Korea ²Applied Algebra and Optimization Research Center, Sungkyunkwan University, Suwon 16420, Republic of Korea

Abstract. We give a bijection between the set of ordinary partitions and that of selfconjugate partitions with some restrictions. Also, we show the relation between hook lengths of a self conjugate partition and its corresponding partition via the bijection. As a corollary, we give new combinatorial interpretations for the Catalan number and the Motzkin number in terms of self-conjugate simultaneous core partitions.

Keywords: partition, self-conjugate partition, hook length, simultaneous core partition

1 Introduction

Let $\lambda = (\lambda_1, \lambda_2, ..., \lambda_\ell)$ be a partition of *n*. The *Young diagram* of λ is a collection of *n* boxes in ℓ rows with λ_i boxes in row *i*. We label the columns of the diagram from left to right starting with column 1. The box in row *i* and column *j* is said to be in position (i, j). For example, the Young diagram for $\lambda = (5, 4, 2, 1)$ is below.

For the Young diagram of λ , the partition $\lambda' = (\lambda'_1, \lambda'_2, ..., \lambda'_{\lambda_1})$ is called the *conjugate* of λ , where λ'_j denotes the number of boxes in column j of λ . For each box in its Young diagram, we define its *hook length* by counting the number of boxes directly to its right or below, including the box itself. Equivalently, for the box in position (i, j), the hook length of λ is defined by

$$h_{\lambda}(i,j) = \lambda_i + \lambda'_j - i - j + 1.$$

For example, the hook lengths in the first row above are 8, 6, 4, 3, and 1, respectively. We denote $h_{\lambda}(i, j)$ by h(i, j) when λ is clear.

^{*}coconut@yonsei.ac.kr

⁺hyunyjia@g.skku.edu JiSun Huh was supported by NRF grant #2015R1D1A1A01057476.

[‡]jsohn@yonsei.ac.kr Jaebum Sohn was supported by NRF grant #2017R1A2B4009501.

For a positive integer t, a partition λ is called a *t-core* if none of its hook lengths are multiples of t. The number of *t*-core partitions of n is denoted by $c_t(n)$. The study of core partitions arises from the representation theory of the symmetric group S_n . (See [11] for details.) Many researches on core partitions are being made through various ways, such as representation theory and analytic methods–see, for example, [5, 6, 7, 9, 10, 12, 13].

A partition whose conjugate is equal to itself is called *self-conjugate*. Let $sc_t(n)$ denote the number of *t*-core partitions of *n* which are self-conjugate. A number of properties of self-conjugate core partitions have been found and proved. (See [3, 4].)

Garvan, Kim, and Stanton [8] found the generating functions of $c_t(n)$ and $sc_t(n)$;

$$\sum_{n=0}^{\infty} c_t(n) q^n = \prod_{n=1}^{\infty} \frac{(1-q^{nt})^t}{1-q^n}.$$
(1.1)

$$\sum_{n=0}^{\infty} sc_{2t}(n)q^n = \prod_{n=1}^{\infty} (1 - q^{4nt})^t (1 + q^{2n-1}).$$
(1.2)

Now by combining (1.1), (1.2), and Gauss' well-known identity

$$\sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}} = \prod_{n=1}^{\infty} \frac{1-q^{2n}}{1-q^{2n-1}} = \prod_{n=1}^{\infty} (1-q^{2n})(1+q^n),$$

one can obtain the following proposition which shows a relation between two numbers $c_t(n)$ and $sc_t(n)$.

Proposition 1.1.

$$\sum_{n=0}^{\infty} sc_{2t}(n)q^n = \left(\sum_{n=0}^{\infty} c_t(n)q^{4n}\right) \left(\sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}}\right).$$

Also, if we let p(n) be the number of partitions of n and let sc(n) be the number of self-conjugate partitions of n, then p(n) and sc(n) have a similar relation.

Proposition 1.2.

$$\sum_{n=0}^{\infty} sc(n)q^n = \left(\sum_{n=0}^{\infty} p(n)q^{4n}\right) \left(\sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}}\right).$$

In this paper, we construct a bijection between the set of ordinary partitions and the set of self-conjugate partitions with the same disparity. Our bijection can be obtained by combining Wright's bijection for proving Jacobi triple product identity and a bijection between self-conjugate partitions and diagonal sequence pairs. (See [14, 16].) The bijection leads to a new combinatorial proof for Proposition 1.2. Also, from the bijection, we find a relation between hook lengths of a self-conjugate partition and that of the corresponding partition. (See Theorem 4.4.) As a result of this relation, we can also reprove Proposition 1.1. Another result comes from Theorem 4.4 is Proposition 1.3 which

is a generalization of Proposition 1.1. Here, we use the notation of a $(t_1, t_2, ..., t_p)$ -core partition if it is simultaneously a t_1 -core,..., and a t_p -core.

Proposition 1.3. Let $c_{(t_1,t_2,...,t_p)}(n)$ be the number of $(t_1,t_2,...,t_p)$ -core partitions of n and $sc_{(t_1,t_2,...,t_p)}(n)$ be the number of self-conjugate $(t_1,t_2,...,t_p)$ -core partitions of n. Then we have

$$\sum_{n=0}^{\infty} sc_{(2t_1, 2t_2, \dots, 2t_p)}(n)q^n = \left(\sum_{n=0}^{\infty} c_{(t_1, t_2, \dots, t_p)}(n)q^{4n}\right) \left(\sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}}\right).$$

At the end of this paper, new interpretations of the Catalan number and the Motzkin number in terms of self-conjugate simultaneous core partitions is given (see Corollary 4.11) as a corollary of Proposition 1.3.

This paper is organized as follows. In Section 2, we define the disparity and introduce new classification of the set of self-conjugate partitions. In Section 3, we give a bijection between the set of ordinary partitions and that of self-conjugate partitions with the same disparity. In Section 4, we explain the relation between even hook lengths in a self-conjugate partition and hook lengths in the corresponding partition via the bijection. Furthermore, we give some new results on counting self-conjugate simultaneous cores.

2 Self-conjugate partitions with same disparity

In this section, we give some basic notions and introduce a set partition of the set SC of self-conjugate partitions.

Let λ be a partition. We often use the notation δ_i for the hook length h(i,i) of the *i*th box on the main diagonal. The set $D(\lambda) = \{\delta_i : i = 1, 2, ...\}$ is called the *set of main diagonal hook lengths of* λ . It is clear that if λ is self-conjugate, then $D(\lambda)$ determines λ , and elements of $D(\lambda)$ are all distinct and odd. Hence, for a self-conjugate partition λ , $D(\lambda)$ can be partitioned into the following two subsets;

$$D_1(\lambda) = \{\delta_i \in D(\lambda) : \delta_i \equiv 1 \pmod{4}\}, D_3(\lambda) = \{\delta_i \in D(\lambda) : \delta_i \equiv 3 \pmod{4}\}.$$

Example 2.1. Let $\lambda = (4, 4, 4, 3)$ be a self-conjugate partition of 15. Figure 1 shows its Young diagram and the hook lengths. The set $D(\lambda) = \{7, 5, 3\}$ of main diagonal hook lengths is partitioned into $D_1(\lambda) = \{5\}$ and $D_3(\lambda) = \{7, 3\}$.

The set of hook lengths of boxes in the first column of the Young diagram of λ is called the *beta-set* of λ and denoted by $\beta(\lambda)$.

7	6	5	3
6	5	4	2
5	4	3	1
3	2	1	

Figure 1: The Young diagram of a self-conjugate partition and its hook lengths

Let SC(n) be the set of self-conjugate partitions of n and $\lambda \in SC(n)$. Using the value $|D_1(\lambda)| - |D_3(\lambda)|$, we split SC(n) as follows: For $m, n \ge 0$, we define a set $SC^{(m)}(n)$ by

$$\mathcal{SC}^{(m)}(n) = \{\lambda \in \mathcal{SC}(n) : |D_1(\lambda)| - |D_3(\lambda)| = (-1)^{m+1} \left\lceil \frac{m}{2} \right\rceil\}.$$

We note that for a self-conjugate partition λ , if $|D_1(\lambda)| - |D_3(\lambda)| = k$ for $k \ge 1$, then $\lambda \in SC^{(2k-1)}(n)$. Otherwise, if $|D_1(\lambda)| - |D_3(\lambda)| = -k$ for $k \ge 0$, then $\lambda \in SC^{(2k)}(n)$. Therefore, $SC(n) = \bigcup_{m=0}^{\infty} SC^{(m)}(n)$.

We use the notation $sc^{(m)}(n)$ for $|\mathcal{SC}^{(m)}(n)|$ and $\mathcal{SC}^{(m)}$ for $\bigcup_{n\geq 0} \mathcal{SC}^{(m)}(n)$.

For a partition λ , we define the *disparity* of λ by

$$dp(\lambda) = |\{(i,j) \in \lambda : h(i,j) \text{ is odd}\}| - |\{(i,j) \in \lambda : h(i,j) \text{ is even}\}|.$$

For example, for $\lambda = (4, 4, 4, 3)$ given in Example 2.1, $|D_1(\lambda)| - |D_3(\lambda)| = -1$, and λ is an element of $SC^{(2)}(15)$. Moreover, the disparity of λ is dp(λ) = 9 - 6 = 3.

It is not hard to show that each element of $SC^{(m)}(n)$ has the same disparity.

Proposition 2.2. For $m \ge 0$, if λ is in the set $SC^{(m)}$, then its disparity $dp(\lambda)$ is $\frac{m(m+1)}{2}$.

By Proposition 2.2, one may notice that the disparity of a self-conjugate partition is a triangular number $\frac{m(m+1)}{2}$, and the set of self-conjugate partitions with the disparity $\frac{m(m+1)}{2}$ is $SC^{(m)}$. In fact, the disparity of any ordinary partition is a triangular number.

3 Bijections between $\mathcal{SC}^{(m)}$ and \mathcal{P}

The set of partitions of *n* is denoted by $\mathcal{P}(n)$, and the set of partitions is denoted by \mathcal{P} . In this section we construct bijections between two sets $\mathcal{SC}^{(m)}(4n + m(m+1)/2)$ and $\mathcal{P}(n)$ which play a key role throughout the paper.

Before constructing bijections, we give a notation. For a self-conjugate partition λ , if

$$D_1(\lambda) = \{4a_1 + 1, 4a_2 + 1, \dots, 4a_r + 1\}, D_3(\lambda) = \{4b_1 - 1, 4b_2 - 1, \dots, 4b_s - 1\},\$$

we say that λ has the *diagonal sequence pair* $((a_1, a_2, ..., a_r), (b_1, b_2, ..., b_s))$, where $a_1 > a_2 > \cdots > a_r \ge 0$ and $b_1 > b_2 > \cdots > b_s \ge 1$. For convenience, we allow an empty sequence if *r* or *s* is equal to 0.

For $\lambda = (4, 4, 4, 3) \in SC^{(2)}(15)$, its diagonal sequence pair is ((1), (2, 1)).

We note that if $((a_1, \ldots, a_r), (b_1, \ldots, b_s))$ is the diagonal sequence pair of a self-conjugate partition $\lambda \in SC^{(m)}(4n + m(m+1)/2)$, then

$$r-s+(-1)^m\left\lceil\frac{m}{2}\right\rceil=0$$

and

$$4\left(\sum_{i=1}^{r} a_i + \sum_{j=1}^{s} b_j\right) + r - s = 4n + \frac{m(m+1)}{2}$$

Now, we are ready to construct our mapping.

Mapping
$$\phi_n^{(m)}$$
 : $\mathcal{SC}^{(m)}(4n+m(m+1)/2) \rightarrow \mathcal{P}(n)$

Let $\lambda \in SC^{(m)}(4n + m(m+1)/2)$ be a self-conjugate partition with the diagonal sequence pair $((a_1, \ldots, a_r), (b_1, \ldots, b_s))$. We define $\phi_n^{(m)}(\lambda)$ by the partition $\mu = (\mu_1, \ldots, \mu_\ell)$ such that

$$\mu_i = a_i + i + s - r$$
 for $i \le r_i$

and $(\mu_{r+1}, \ldots, \mu_{\ell})$ is the conjugate of the partition $\gamma = (b_1 - s, b_2 - s + 1, \ldots, b_s - 1)$. (We allow that γ has some zero parts.)

In Figure 2, the diagram after deleting the shaded area is the Young diagram of μ .

Theorem 3.1. For nonnegative integers *m* and *n*, the mapping $\phi_n^{(m)}$ is bijective.

We define the bijection $\phi^{(m)} : SC^{(m)} \to P$ by $\phi_n^{(m)}(\lambda)$, for a partition $\lambda \in SC^{(m)}$ of $4n + \frac{m(m+1)}{2}$. We say that μ is the *corresponding partition* of λ when $\phi^{(m)}(\lambda) = \mu$.

We give two examples of the bijection $\phi^{(m)}$.

Example 3.2. We consider two self-conjugate partitions λ and $\tilde{\lambda}$ with the set of main diagonal hook lengths $D(\lambda) = \{21, 15, 13, 9, 3, 1\}$ and $D(\tilde{\lambda}) = \{31, 19, 11, 5\}$, respectively.

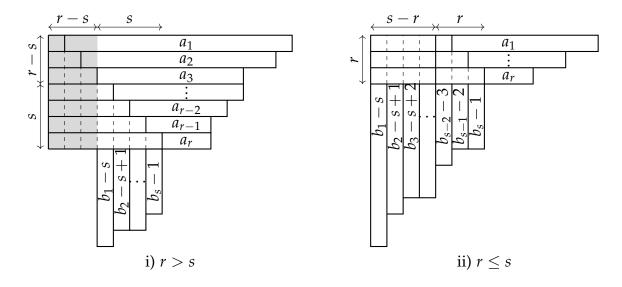


Figure 2: Graphical interpretations of mapping $\phi_n^{(m)}$

• Since $D_1(\lambda) = \{21, 13, 9, 1\}$ and $D_3(\lambda) = \{15, 3\}, \lambda \in SC^{(3)}$ and ((5, 3, 2, 0), (4, 1)) is the diagonal sequence pair of λ . If we let μ be the partition $\phi_{14}^{(3)}(\lambda)$, then

 $\mu_1 = 5 + 1 - 2 = 4$, $\mu_2 = 3 + 2 - 2 = 3$, $\mu_3 = 2 + 3 - 2 = 3$, $\mu_4 = 0 + 4 - 2 = 2$

and $(\mu_5, \mu_6, ...)$ is the conjugate of the partition (4 - 2, 1 - 2 + 1). Therefore, $\mu = (4, 3, 3, 2, 1, 1)$.

• Since $D_1(\tilde{\lambda}) = \{5\}$ and $D_3(\tilde{\lambda}) = \{31, 19, 11\}$, $\tilde{\lambda} \in SC^{(4)}$ and ((1), (8, 5, 3)) is the diagonal sequence pair of $\tilde{\lambda}$. If we let $\tilde{\mu}$ be the partition $\phi_{14}^{(4)}(\tilde{\lambda})$, then $\mu_1 = 1 + 1 + 2 = 4$ and $(\mu_2, \mu_3, ...)$ is the conjugate of the partition (8 - 3, 5 - 3 + 1, 3 - 3 + 2). Therefore, $\tilde{\mu} = (4, 3, 3, 2, 1, 1)$.

For given $\mu \in \mathcal{P}$ and $m \geq 0$, we consider the following diagram to find λ such that $\phi^{(m)}(\lambda) = \mu$. For convenience, even if $i \leq 0$, we set the *i*th column is the column on the left side of the (i + 1)st column and the *i*th row is on the above of the (i + 1)st row.

- For m = 2k 1, we consider the diagram v obtained from the Young diagram of μ by attaching $\frac{k(k-1)}{2}$ boxes on the left side such that v has $\mu_i + k i$ boxes in row i for i < k and μ_i boxes in row i for $i \ge k$. Then, the number of (white) boxes (i, j) in row i such that i j < k is equal to a_i and the number of (gray) boxes (i, j) in column j such that $i j \ge k$ is equal to b_j . See the first diagram in Figure 3 for $\mu = (4, 3, 3, 2, 1, 1)$ and m = 3.
- For m = 2k, we consider the diagram v obtained from the Young diagram of μ by attaching $\frac{k(k+1)}{2}$ boxes on the above such that v has k i boxes in row -i for i = 0, 1, ..., k 1

and μ_i boxes in row *i* for i > 0. Then, the number of (white) boxes (i, j) in row *i* such that i - j < -k is equal to a_i and the number of (gray) boxes (i, j) in column *j* such that $i - j \ge -k$ is equal to b_j . See the second diagram in Figure 3 for $\mu = (4, 3, 3, 2, 1, 1)$ and m = 4.

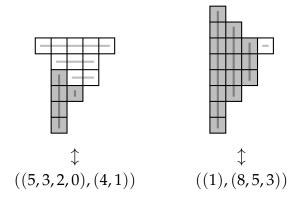


Figure 3: Graphical interpretations for odd *m* and even *m* of the bijection $\phi^{(m)}$

Proposition 3.3. For $m \ge 0$, the number of self-conjugate partitions of n with the disparity $\frac{m(m+1)}{2}$ is

$$sc^{(m)}(n) = \begin{cases} p(k) & \text{if } n = 4k + rac{m(m+1)}{2}, \\ 0 & \text{otherwise.} \end{cases}$$

By Theorem 3.1 and Proposition 3.3, we have the following corollary and as a consequence of Corollary 3.4, we have Proposition 1.2.

Corollary 3.4. For a nonnegative integer *m*, we have

$$\sum_{\lambda \in \mathcal{SC}^{(m)}} q^{|\lambda|} = q^{\frac{m(m+1)}{2}} \sum_{\mu \in \mathcal{P}} q^{4|\mu|}$$

4 **Properties of hook lengths of** $SC^{(m)}$

In this section we provide some properties of hook lengths of $\lambda \in SC^{(m)}$.

4.1 Hook lengths of the first row or column

For the partitions $\lambda \in SC^{(m)}$ and $\mu = \phi^{(m)}(\lambda)$, we give a relation between their hook lengths in the first row or the first column.

For a self-conjugate partition λ , we define the *half-even beta set* of λ by

$$\beta_{e/2}(\lambda) = \{h(i,1)/2 : h(i,1) \text{ is even, } 1 \le i \le \lambda_1\}.$$

Proposition 4.1. Let $\lambda \in SC^{(m)}$ with $D(\lambda) = \{\delta_1, \ldots, \delta_d\}$ and $\mu = \phi^{(m)}(\lambda) = (\mu_1, \ldots, \mu_\ell)$. Then the half-even beta set of λ is

$$\beta_{e/2}(\lambda) = \begin{cases} \beta(\mu') & \text{if } \delta_1 \in D_1(\lambda), \\ \beta(\mu) & \text{if } \delta_1 \in D_3(\lambda). \end{cases}$$

Example 4.2. Let λ , $\tilde{\lambda}$ be self-conjugate partitions we considered in Example 3.2. We remind that $\phi^{(3)}(\lambda) = \phi^{(4)}(\tilde{\lambda}) = \mu = (4,3,3,2,1,1)$. We note that $h_{\lambda}(1,1) = 21 \in D_1(\lambda)$ and $h_{\tilde{\lambda}}(1,1) = 31 \in D_3(\tilde{\lambda})$. As in Proposition 4.1, $\beta_{e/2}(\lambda) = \beta(\mu') = \{9,6,4,1\}$ and $\beta_{e/2}(\tilde{\lambda}) = \beta(\mu) = \{9,7,6,4,2,1\}$. See Figure 4 for the Young diagrams of μ , λ , $\tilde{\lambda}$, and their hook lengths.

4.2 The relation between hook lengths of $\mathcal{SC}^{(m)}$ and \mathcal{P}

We start this subsection by stating a proposition.

Proposition 4.3. For $\lambda \in SC^{(m)}$ with $D(\lambda) = \{\delta_1, \delta_2, \dots, \delta_d\}$, let $\bar{\lambda}$ be the self-conjugate partition with $D(\bar{\lambda}) = \{\delta_i \in D(\lambda) : 2 \le i \le d\}$, and let $\mu = (\mu_1, \mu_2, \dots, \mu_\ell)$ and $\bar{\mu}$ be the corresponding partitions of λ and $\bar{\lambda}$, respectively. If $\mu = (\mu_1, \mu_2, \dots, \mu_\ell)$, then

$$\bar{\mu} = \begin{cases} (\mu_2, \mu_3, \dots, \mu_\ell) & \text{if } \delta_1 \in D_1(\lambda) \\ (\mu_1 - 1, \mu_2 - 1, \dots, \mu_\ell - 1) & \text{if } \delta_1 \in D_3(\lambda) \end{cases}$$

One may notice that there are more relations between hook lengths of corresponding partitions from Figure 4. By using Propositions 4.1 and 4.3, we have the following theorem.

Theorem 4.4. Let $\lambda \in SC^{(m)}$ be a self-conjugate partition with the disparity m(m+1)/2. If $\phi(\lambda) = \mu$, then for each positive integer k, the number of boxes (i, j) with $h_{\lambda}(i, j) = 2k$ is equal to twice the number of boxes (\tilde{i}, \tilde{j}) with $h_{\mu}(\tilde{i}, \tilde{j}) = k$.

The following corollary is obtained directly from Theorem 4.4.

Corollary 4.5. For a self-conjugate partition λ with the disparity m(m+1)/2, let $\phi(\lambda) = \mu$. Then λ is a $(2t_1, 2t_2, ..., 2t_p)$ -core partition if and only if μ is a $(t_1, t_2, ..., t_p)$ -core partition.

We denote the set of self-conjugate $(t_1, t_2, ..., t_p)$ -core partitions $\lambda \in SC^{(m)}$ of n by $SC^{(m)}_{(t_1,...,t_p)}(n)$, and use notation $sc^{(m)}_{(t_1,...,t_p)}(n)$ for $|SC^{(m)}_{(t_1,...,t_p)}(n)|$.

By using Theorems 3.1 and 4.4, we obtain the cardinality of $SC^{(m)}_{(2t_1,\ldots,2t_n)}(n)$.

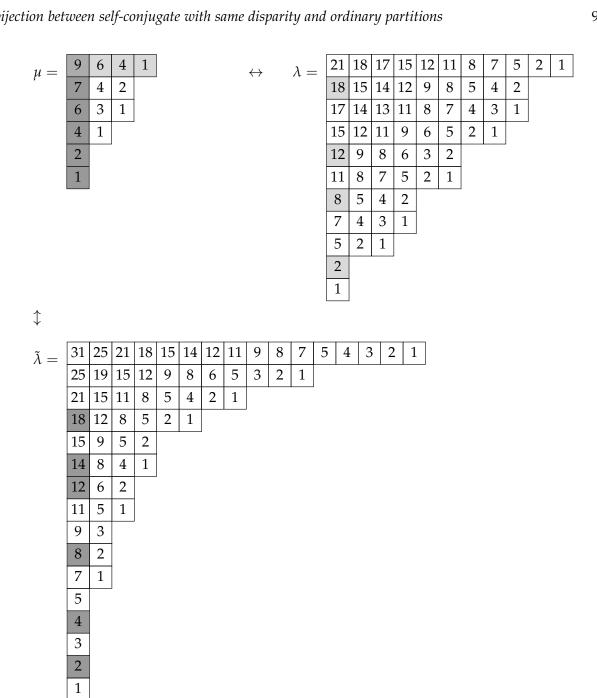


Figure 4: Hook length relations between corresponding partitions

Proposition 4.6. For a nonnegative integer *m*, the number of self-conjugate $(2t_1, 2t_2, ..., 2t_p)$ -core partitions of *n* with the disparity $\frac{m(m+1)}{2}$ is

$$sc_{(2t_1,\dots,2t_p)}^{(m)}(n) = \begin{cases} c_{(t_1,\dots,t_p)}(k) & if \quad n = 4k + \frac{m(m+1)}{2}, \\ 0 & otherwise. \end{cases}$$

Let $\mathcal{SC}_{(t_1,...,t_p)} = \bigcup_{m \ge 0} \mathcal{SC}_{(t_1,...,t_p)}^{(m)}$, where $\mathcal{SC}_{(t_1,...,t_p)}^{(m)}$ denote the set of self-conjugate (t_1, t_2, \ldots, t_p) -core partitions λ with the disparity $\frac{m(m+1)}{2}$. From the previous proposition, we have the following corollary and Proposition 1.3.

Corollary 4.7.

$$\sum_{\lambda \in \mathcal{SC}_{(2t_1, \dots, 2t_p)}^{(m)}} q^{|\lambda|} = q^{\frac{m(m+1)}{2}} \sum_{\mu \in \mathcal{P}_{(t_1, \dots, t_p)}} q^{4|\mu|}.$$

4.3 Counting self-conjugate $(2t_1, \ldots, 2t_p)$ -cores with same disparity

In this subsection, we give some sets of self-conjugate partitions each of them is counted by known special numbers.

It is well-known that there are finitely many $(t_1, ..., t_p)$ -core partitions when $t_1, ..., t_p$ are relatively prime positive integers. From Proposition 4.6, we have the following result.

Corollary 4.8. For relatively prime positive integers $t_1, ..., t_p$, the number of self-conjugate $(2t_1, ..., 2t_p)$ -core partitions with the disparity $\frac{m(m+1)}{2}$ is equal to the number of $(t_1, ..., t_p)$ -core partitions.

Anderson [2] gives an interpretation for the Catalan number in terms of simultaneous core partitions, and Amderberhan and Leven [1], Yang, Zhong, and Zhou [17], Wang [15], respectively, gives an identity for the Motzkin number.

Theorem 4.9 ([2]). For relatively prime integers $t_1, t_2 \ge 1$, the number of (t_1, t_2) -core partitions is

$$c_{(t_1,t_2)} = \frac{1}{t_1 + t_2} \binom{t_1 + t_2}{t_1}.$$

In particular, $c_{(n,n+1)} = C_n$, where $C_n = \frac{1}{n+1} {\binom{2n}{n}}$ is the nth Catalan number.

Theorem 4.10 ([15]). For relatively prime integers $n, d \ge 1$, the number of (n, n + d, n + 2d)-core partitions is

$$c_{(n,n+d,n+2d)} = \frac{1}{n+d} \sum_{i=0}^{\lfloor n/2 \rfloor} {n+d \choose i, i+d, n-2i}.$$

In particular, $c_{(n,n+1,n+2)}$ is the nth Motzkin number $M_n = \sum_{i\geq 0} \frac{1}{i+1} {n \choose 2i} {2i \choose i}$.

By using Corollary 4.8 and the above known results, we have the following corollary.

Corollary 4.11. Let $m \ge 0$ be an integer.

(a) For relatively prime integers $t_1, t_2 \ge 1$, the number of self-conjugate $(2t_1, 2t_2)$ -core partitions with the disparity $\frac{m(m+1)}{2}$ is

$$sc_{(2t_1,2t_2)}^{(m)} = \frac{1}{t_1 + t_2} \binom{t_1 + t_2}{t_1}.$$

In particular, $sc_{(2n,2n+2)}^{(m)} = C_n$, where C_n is the nth Catalan number.

(b) For relatively prime integers $n, d \ge 1$, the number of self-conjugate (2n, 2n + 2d, 2n + 4d)core partitions with the disparity $\frac{m(m+1)}{2}$ is

$$sc_{(2n,2n+2d,2n+4d)}^{(m)} = \frac{1}{n+d} \sum_{i=0}^{\lfloor n/2 \rfloor} {n+d \choose i, i+d, n-2i}.$$

In particular, $sc_{(2n,2n+2,2n+4)}^{(m)}$ is the nth Motzkin number.

Acknowledgements

We thank Byungchan Kim for helpful comments and anonymous referees for their suggestions which improved the presentation of this extended abstract.

References

- T. Amdeberhan and E. S. Leven. "Multi-cores, posets, and lattice paths". *Adv. in Appl. Math.* 71 (2015), pp. 1–13. Link.
- [2] J. Anderson. "Partitions which are simultaneously t_1 and t_2 -core". Discrete Math. 248.1-3 (2002), pp. 237–243. Link.
- [3] J. Baldwin, M. Depweg, B. Ford, A. Kunin, and L. Sze. "Self-conjugate *t*-core partitions, sums of squares, and *p*-blocks of *A_n*". *J. Algebra* **297**.2 (2006), pp. 438–452. Link.
- [4] N. D. Baruah and K. Nath. "Infinite families of arithmetic identities for self-conjugate 5-cores and 7-cores". *Discrete Math.* **321** (2014), pp. 57–67. Link.
- [5] N. D. Baruah and K. Nath. "Some results on 3-cores". Proc. Amer. Math. Soc. 142.2 (2014), pp. 441–448. Link.
- [6] A. Berkovich and H. Yesilyurt. "New identities for 7-cores with prescribed BG-rank". Discrete Math. 308.22 (2008), pp. 5246–5259. Link.
- [7] S.-C. Chen. "Congruences for t-core partition functions". J. Number Theory 133.12 (2013), pp. 4036–4046. Link.

- [8] F. Garvan, D. Kim, and D. Stanton. "Cranks and t-cores". Invent. Math. 101.1 (1990), pp. 1– 17. Link.
- [9] A. Granville and K. Ono. "Defect zero *p*-blocks for finite simple groups". *Trans. Amer. Math. Soc.* **348**.1 (1996), pp. 331–347. Link.
- [10] M. D. Hirschhorn and J. A. Sellers. "Some amazing facts about 4-cores". J. Number Theory 60.1 (1996), pp. 51–69. Link.
- [11] G. James and A. Kerber. *The Representation Theory of the Symmetric Group*. Encyclopedia of Mathematics and its Applications 16. Addison-Wesley Publishing Co., Reading, Mass., 1981.
- [12] J. r. B. Olsson. "A theorem on the cores of partitions". J. Combin. Theory Ser. A 116.3 (2009), pp. 733–740. Link.
- [13] J. r. B. Olsson. "Core partitions and block coverings". Proc. Amer. Math. Soc. 137.9 (2009), pp. 2943–2951. Link.
- [14] I. Pak. "Partition bijections, a survey". Ramanujan J. 12.1 (2006), pp. 5–75. Link.
- [15] V. Y. Wang. "Simultaneous core partitions: parameterizations and sums". Electron. J. Combin. 23.1 (2016), Paper 1.4, 34 pp. Link.
- [16] E. M. Wright. "An enumerative proof of an identity of Jacobi". J. London Math. Soc. 40 (1965), pp. 55–57. Link.
- [17] J. Y. X. Yang, M. X. X. Zhong, and R. D. Zhou. "On the enumeration of (*s*, *s* + 1, *s* + 2)-core partitions". *European J. Combin.* **49** (2015), pp. 203–217. Link.