Math155: Calculus for Biological Scientists Analysis of Discrete-Time Dynamical Systems

David Eklund
Colorado State University

August 26, 2012

Cobwebbing: A graphical solution technique

Math155:
Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

Consider a discrete-time dynamical system with updating function f :

$$
m_{t+1}=f\left(m_{t}\right)
$$

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological Scientists Analysis of Discrete-Time Dynamical
Systems

Consider a discrete-time dynamical system with updating function f :

$$
m_{t+1}=f\left(m_{t}\right)
$$

For example, the graph of f might look like this:

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time
Dynamical
Systems

David Eklund

The diagonal is the line below defined by $m_{t+1}=m_{t}$:

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

Note that the point $\left(m_{0}, m_{1}\right)$ lies on the graph of f, $m_{1}=f\left(m_{0}\right)$. For example, if $m_{0}=3.0$:

Cobwebbing: A graphical solution technique

Math155: Calculus for Biological Scientists Analysis of Discrete-Time Dynamical Systems

Cobwebbing step 1: find $\left(m_{0}, m_{1}\right)$.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

Cobwebbing step 1: find $\left(m_{0}, m_{1}\right)$. For $m_{0}=3.0$:

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

Step 2: move horizontally to the diagonal, ending at $\left(m_{1}, m_{1}\right)$.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

Step 3: move vertically to $\left(m_{1}, m_{2}\right)$ on the graph of f.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

Move horizontally to the diagonal again: move to $\left(m_{2}, m_{2}\right)$.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

And so on...move vertically to $\left(m_{2}, m_{3}\right)$.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

Move horizontally to $\left(m_{3}, m_{3}\right)$.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

Move vertically to $\left(m_{3}, m_{4}\right)$.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

Move horizontally to (m_{4}, m_{4})

Cobwebbing: A graphical solution technique

Math155:
Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

We approach a point where the graph of f intersects the diagonal, that is where $f\left(m_{t}\right)=m_{t}$. This is called an equilibrium.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

We approach a point where the graph of f intersects the diagonal, that is where $f\left(m_{t}\right)=m_{t}$. This is called an equilibrium.

Cobwebbing: A graphical solution technique

Math155:
Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

- That a physical system is at an equilibrium means that the relevant properties remain constant over time.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

- That a physical system is at an equilibrium means that the relevant properties remain constant over time.
- In the present context this makes sense: if m_{t} is an equilibrium then $f\left(m_{t}\right)=m_{t}$ and therefore

$$
m_{t+1}=f\left(m_{t}\right)=m_{t}
$$

hence $m_{t+1}=m_{t}$ and the measured quantity does not change!

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

- That a physical system is at an equilibrium means that the relevant properties remain constant over time.
- In the present context this makes sense: if m_{t} is an equilibrium then $f\left(m_{t}\right)=m_{t}$ and therefore

$$
m_{t+1}=f\left(m_{t}\right)=m_{t}
$$

hence $m_{t+1}=m_{t}$ and the measured quantity does not change!

- Physical systems often tend toward some equilibrium over time.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time
Dynamical
Systems

David Eklund

What happens if we start at $m_{0}=1.0$?

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

Cobweb as before. First move horizontally to the diagonal.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time
Dynamical
Systems

David Eklund

Move vertically to the graph of f.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time
Dynamical
Systems

David Eklund

Move horizontally to the diagonal.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time
Dynamical
Systems

David Eklund

Move vertically to the graph of f.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time
Dynamical
Systems

David Eklund

Move horizontally to the diagonal.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time
Dynamical
Systems

David Eklund

Move vertically to the graph of f.

Cobwebbing: A graphical solution technique

Math155:
Calculus for
Biological
Scientists
Analysis of
Discrete-Time
Dynamical
Systems

This time we approach a different equilibrium, namely the origin.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists Analysis of Discrete-Time Dynamical Systems

This time we approach a different equilibrium, namely the origin.

Cobwebbing: A graphical solution technique

Math155:
Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

If we start at $m_{0}=6.0$, we approach the same equilibrium as before, when we started at $m_{0}=3.0$.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

If we start at $m_{0}=6.0$, we approach the same equilibrium as before, when we started at $m_{0}=3.0$.

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological Scientists Analysis of Discrete-Time Dynamical Systems

If we start at $m_{0}=6.0$, we approach the same equilibrium as before. Zooming in:

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

The equilibrium in the middle is special. If we start there we never leave, but if we merely start close to it then we move away from it!

Cobwebbing: A graphical solution technique

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

The equilibrium in the middle is special. If we start there we never leave, but if we merely start close to it then we move away from it!

The middle equilibrium is called unstable, and the other two are called stable.

Examples

Math155: Calculus for
Biological Scientists Analysis of Discrete-Time Dynamical
Systems

Example 1: Consider the medication dynamics from a previous lecture. Let M_{t} denote the concentration (in mg / I) of medication in a persons bloodstream and suppose this concentration is measured every day and that the updating function is $M_{t+1}=0.5 M_{t}+1.0$.

Examples

Math155: Calculus for
Biological Scientists Analysis of Discrete-Time Dynamical
Systems

Example 1: Consider the medication dynamics from a previous lecture. Let M_{t} denote the concentration (in mg / l) of medication in a persons bloodstream and suppose this concentration is measured every day and that the updating function is $M_{t+1}=0.5 M_{t}+1.0$.

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

We cobweb from $M_{0}=1.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

We cobweb from $M_{0}=1.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

We cobweb from $M_{0}=1.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

We cobweb from $M_{0}=1.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

We cobweb from $M_{0}=1.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

We cobweb from $M_{0}=1.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

We cobweb from $M_{0}=1.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

Now we cobweb from $M_{0}=3.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

Now we cobweb from $M_{0}=3.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

Now we cobweb from $M_{0}=3.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

Now we cobweb from $M_{0}=3.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

Now we cobweb from $M_{0}=3.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

Now we cobweb from $M_{0}=3.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

Now we cobweb from $M_{0}=3.0$:

Examples

Math155:
Calculus for
Biological Scientists Analysis of Discrete-Time Dynamical Systems

David Eklund

In both cases we approach the equilibrium 2.0! Recall that we have seen this before.

Examples

Math155: Calculus for
Biological Scientists Analysis of Discrete-Time Dynamical Systems

In both cases we approach the equilibrium 2.0! Recall that we have seen this before.

Examples

Math155:
Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

Example 2: Now consider the a tree that grows 1.0 meter per year, let h_{t} denote the tree height (in meters), which is measured every year. The updating function is $h_{t+1}=h_{t}+1.0$.

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

Example 2: Now consider the a tree that grows 1.0 meter per year, let h_{t} denote the tree height (in meters), which is measured every year. The updating function is $h_{t+1}=h_{t}+1.0$.

Examples

Math155: Calculus for Biological Scientists Analysis of Discrete-Time Dynamical Systems

We cobweb from $M_{0}=2.0$:

Examples

Math155: Calculus for Biological Scientists Analysis of Discrete-Time Dynamical Systems

We cobweb from $M_{0}=2.0$:

Examples

Math155: Calculus for Biological Scientists Analysis of Discrete-Time Dynamical Systems

We cobweb from $M_{0}=2.0$:

Examples

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

We cobweb from $M_{0}=2.0$:

Examples

Math155: Calculus for Biological Scientists Analysis of Discrete-Time Dynamical Systems

We cobweb from $M_{0}=2.0$:

Examples

Math155: Calculus for
Biological
Scientists Analysis of Discrete-Time Dynamical Systems

The sequence keeps growing! No equilibrium is approached.

Finding equilibria

Math155:
Calculus for
Biological Scientists Analysis of Discrete-Time Dynamical Systems

Let f be the updating function of a dynamical system: $m_{t+1}=f\left(m_{t}\right)$. An equilibrium is a point m^{*} such that

$$
f\left(m^{*}\right)=m^{*} .
$$

Finding equilibria

Math155:
Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

Let f be the updating function of a dynamical system: $m_{t+1}=f\left(m_{t}\right)$. An equilibrium is a point m^{*} such that

$$
f\left(m^{*}\right)=m^{*}
$$

For some f we can compute the equilibria explicitly.

Finding equilibria

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

Let f be the updating function of a dynamical system: $m_{t+1}=f\left(m_{t}\right)$. An equilibrium is a point m^{*} such that

$$
f\left(m^{*}\right)=m^{*}
$$

For some f we can compute the equilibria explicitly.

Example

Consider the medication dynamics from before:

$$
M_{t+1}=0.5 M_{t}+1.0
$$

Finding equilibria

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

Let f be the updating function of a dynamical system: $m_{t+1}=f\left(m_{t}\right)$. An equilibrium is a point m^{*} such that

$$
f\left(m^{*}\right)=m^{*}
$$

For some f we can compute the equilibria explicitly.

Example

Consider the medication dynamics from before:

$$
M_{t+1}=0.5 M_{t}+1.0
$$

If M^{*} is an equilibrium, then $0.5 M^{*}+1.0=M^{*}$.

Finding equilibria

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

Let f be the updating function of a dynamical system: $m_{t+1}=f\left(m_{t}\right)$. An equilibrium is a point m^{*} such that

$$
f\left(m^{*}\right)=m^{*}
$$

For some f we can compute the equilibria explicitly.

Example

Consider the medication dynamics from before:

$$
M_{t+1}=0.5 M_{t}+1.0
$$

If M^{*} is an equilibrium, then $0.5 M^{*}+1.0=M^{*}$.
This implies that $1.0=0.5 M^{*}$, and hence $M^{*}=2.0$.

Finding equilibria

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

David Eklund

Example

Now consider the growing tree from before:

$$
h_{t+1}=h_{t}+1.0
$$

Finding equilibria

Math155:
Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems
David Eklund

Example

Now consider the growing tree from before:

$$
h_{t+1}=h_{t}+1.0
$$

If h^{*} is an equilibrium, then $h^{*}=h^{*}+1.0$. But this equation has no solutions and hence there is no equilibrium.

Finding equilibria

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical Systems

Example

We will find the equilibria of the dynamical system $x_{t+1}=\frac{c x_{t}}{x_{t}+1}$, where c is some number with $c \neq 0$.

Finding equilibria

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

David Eklund

Example

We will find the equilibria of the dynamical system $x_{t+1}=\frac{c x_{t}}{x_{t}+1}$, where c is some number with $c \neq 0$. If x^{*} is an equilibrium then $x^{*}=\frac{c x^{*}}{x^{*}+1}$.

Finding equilibria

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems
David Eklund

Example

We will find the equilibria of the dynamical system $x_{t+1}=\frac{c x_{t}}{x_{t}+1}$, where c is some number with $c \neq 0$. If x^{*} is an equilibrium then $x^{*}=\frac{c x^{*}}{x^{*}+1}$.
This implies that $x^{*}\left(x^{*}+1\right)=c x^{*}$ and hence $x^{*}\left(x^{*}+1-c\right)=0$.

Finding equilibria

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems
David Eklund

Example

We will find the equilibria of the dynamical system $x_{t+1}=\frac{c x_{t}}{x_{t}+1}$, where c is some number with $c \neq 0$.
If x^{*} is an equilibrium then $x^{*}=\frac{c x^{*}}{x^{*}+1}$.
This implies that $x^{*}\left(x^{*}+1\right)=c x^{*}$ and hence $x^{*}\left(x^{*}+1-c\right)=0$.
Therefore $x^{*}=0$ or $x^{*}+1-c=0$, which gives $x^{*}=0$ or $x^{*}=c-1$.

Finding equilibria

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

Example

We will find the equilibria of the dynamical system $x_{t+1}=\frac{c x_{t}}{x_{t}+1}$, where c is some number with $c \neq 0$.
If x^{*} is an equilibrium then $x^{*}=\frac{c x^{*}}{x^{*}+1}$.
This implies that $x^{*}\left(x^{*}+1\right)=c x^{*}$ and hence $x^{*}\left(x^{*}+1-c\right)=0$.
Therefore $x^{*}=0$ or $x^{*}+1-c=0$, which gives $x^{*}=0$ or $x^{*}=c-1$.
These points are really equilibria, as long as $x^{*}+1 \neq 0$, which is true since $c \neq 0$.

Finding equilibria

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

Example

We will find the equilibria of the dynamical system $x_{t+1}=\frac{c x_{t}}{x_{t}+1}$, where c is some number with $c \neq 0$.
If x^{*} is an equilibrium then $x^{*}=\frac{c x^{*}}{x^{*}+1}$.
This implies that $x^{*}\left(x^{*}+1\right)=c x^{*}$ and hence $x^{*}\left(x^{*}+1-c\right)=0$.
Therefore $x^{*}=0$ or $x^{*}+1-c=0$, which gives $x^{*}=0$ or $x^{*}=c-1$.
These points are really equilibria, as long as $x^{*}+1 \neq 0$, which is true since $c \neq 0$.
Note that if $c=1$, then $c-1=0$ and hence the equilibria coincide in this case.

Finding equilibria

Math155: Calculus for
Biological
Scientists
Analysis of Discrete-Time Dynamical
Systems

Example

We will find the equilibria of the dynamical system
$x_{t+1}=\frac{c x_{t}}{x_{t}+1}$, where c is some number with $c \neq 0$.
If x^{*} is an equilibrium then $x^{*}=\frac{c x^{*}}{x^{*}+1}$.
This implies that $x^{*}\left(x^{*}+1\right)=c x^{*}$ and hence $x^{*}\left(x^{*}+1-c\right)=0$.
Therefore $x^{*}=0$ or $x^{*}+1-c=0$, which gives $x^{*}=0$ or $x^{*}=c-1$.
These points are really equilibria, as long as $x^{*}+1 \neq 0$, which is true since $c \neq 0$.
Note that if $c=1$, then $c-1=0$ and hence the equilibria coincide in this case.
Conclusion: When $c \neq 1$ there are two equilibria, $x^{*}=0$ and $x^{*}=c-1$. When $c=1$ there is only one equilibrium, $x^{*}=0$.

