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Cobwebbing: A graphical solution technique

Consider a discrete-time dynamical system with updating
function f :

mt+1 = f(mt).

For example, the graph of f might look like this:
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The diagonal is the line below defined by mt+1 = mt:
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Note that the point (m0,m1) lies on the graph of f ,
m1 = f(m0). For example, if m0 = 3.0:
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Cobwebbing: A graphical solution technique

Cobwebbing step 1: find (m0,m1).

For m0 = 3.0:
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Cobwebbing: A graphical solution technique

Step 2: move horizontally to the diagonal, ending at (m1,m1).
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Step 3: move vertically to (m1,m2) on the graph of f .
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Move horizontally to the diagonal again: move to (m2,m2).
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And so on...move vertically to (m2,m3).
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Move horizontally to (m3,m3).
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Cobwebbing: A graphical solution technique

Move vertically to (m3,m4).
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Cobwebbing: A graphical solution technique

Move horizontally to (m4,m4)
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Cobwebbing: A graphical solution technique

We approach a point where the graph of f intersects the
diagonal, that is where f(mt) = mt. This is called an
equilibrium.
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Cobwebbing: A graphical solution technique

• That a physical system is at an equilibrium means that the
relevant properties remain constant over time.

• In the present context this makes sense: if mt is an
equilibrium then f(mt) = mt and therefore

mt+1 = f(mt) = mt,

hence mt+1 = mt and the measured quantity does not
change!

• Physical systems often tend toward some equilibrium over
time.
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Cobwebbing: A graphical solution technique

What happens if we start at m0 = 1.0?
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Cobwebbing: A graphical solution technique

Cobweb as before. First move horizontally to the diagonal.
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Cobwebbing: A graphical solution technique

This time we approach a different equilibrium, namely the
origin.
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Cobwebbing: A graphical solution technique

If we start at m0 = 6.0, we approach the same equilibrium as
before, when we started at m0 = 3.0.
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Cobwebbing: A graphical solution technique

If we start at m0 = 6.0, we approach the same equilibrium as
before. Zooming in:
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Cobwebbing: A graphical solution technique

The equilibrium in the middle is special. If we start there we
never leave, but if we merely start close to it then we move
away from it!

The middle equilibrium is called unstable, and the other two
are called stable.
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Examples

Example 1: Consider the medication dynamics from a previous
lecture. Let Mt denote the concentration (in mg/l) of
medication in a persons bloodstream and suppose this
concentration is measured every day and that the updating
function is Mt+1 = 0.5Mt + 1.0.
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We cobweb from M0 = 1.0:
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Examples

Now we cobweb from M0 = 3.0:
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Examples

In both cases we approach the equilibrium 2.0! Recall that we
have seen this before.
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Examples

Example 2: Now consider the a tree that grows 1.0 meter per
year, let ht denote the tree height (in meters), which is
measured every year. The updating function is ht+1 = ht +1.0.
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We cobweb from M0 = 2.0:
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Examples

The sequence keeps growing! No equilibrium is approached.
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Finding equilibria

Let f be the updating function of a dynamical system:
mt+1 = f(mt). An equilibrium is a point m∗ such that

f(m∗) = m∗.

For some f we can compute the equilibria explicitly.

Example

Consider the medication dynamics from before:

Mt+1 = 0.5Mt + 1.0

If M∗ is an equilibrium, then 0.5M∗ + 1.0 = M∗.

This implies that 1.0 = 0.5M∗, and hence M∗ = 2.0.
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Finding equilibria

Example

Now consider the growing tree from before:

ht+1 = ht + 1.0

If h∗ is an equilibrium, then h∗ = h∗ + 1.0. But this equation
has no solutions and hence there is no equilibrium.
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Finding equilibria

Example

We will find the equilibria of the dynamical system
xt+1 =

cxt
xt+1 , where c is some number with c 6= 0.

If x∗ is an equilibrium then x∗ = cx∗

x∗+1 .
This implies that x∗(x∗ + 1) = cx∗ and hence
x∗(x∗ + 1− c) = 0.
Therefore x∗ = 0 or x∗ + 1− c = 0, which gives x∗ = 0 or
x∗ = c− 1.
These points are really equilibria, as long as x∗ + 1 6= 0, which
is true since c 6= 0.
Note that if c = 1, then c− 1 = 0 and hence the equilibria
coincide in this case.
Conclusion: When c 6= 1 there are two equilibria, x∗ = 0 and
x∗ = c− 1. When c = 1 there is only one equilibrium, x∗ = 0.
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