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Cobweb as before. First move horizontally to the diagonal.
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The middle equilibrium is called unstable, and the other two
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For some f we can compute the equilibria explicitly.

Example

Consider the medication dynamics from before:
M1 = 0.5M; + 1.0

If M* is an equilibrium, then 0.5M* + 1.0 = M*.
This implies that 1.0 = 0.5M*, and hence M* = 2.0.
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If * is an equilibrium, then A* = h* + 1.0. But this equation
has no solutions and hence there is no equilibrium.
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cx*

This implies that z*(z* 4+ 1) = cz* 4a_r11d hence
*(z*+1—c)=0.

Therefore z* =0 or z* + 1 — ¢ = 0, which gives z* = 0 or

¥ =c—1.

These points are really equilibria, as long as z* + 1 # 0, which
is true since ¢ # 0.

Note that if ¢ =1, then ¢ — 1 = 0 and hence the equilibria
coincide in this case.

Conclusion: When ¢ # 1 there are two equilibria, 2* = 0 and
z* =c¢— 1. When ¢ =1 there is only one equilibrium, * = 0.

If * is an equilibrium then x* =

David Eklund



