
1. Definition. (Inner product in Rn.)
For any u,v ∈ Rn, write ⟨u,v⟩ = utv.
⟨u,v⟩ is called the inner product of the vector u with the vector v.
⟨·, ·⟩ is called the inner product in Rn.

Remark. Many people refer to ⟨·, ·⟩ as the ‘dot product’.
A common alternative notation for ⟨u,v⟩ is u•v. For this reason, we may, for convenience,
read it as ‘u dot v’.

2. Theorem (1). (Basic properties of inner product.)
The statements below hold:

(a) Suppose u,v ∈ Rn.
Then ⟨u,v⟩ = ⟨v,u⟩.

(b) Suppose u,v,w ∈ Rn and α, β ∈ R.
Then ⟨αu + βv,w⟩ = α ⟨u,w⟩ + β ⟨v,w⟩.

(c) Suppose u,v,w ∈ Rn and α, β ∈ R.
Then ⟨w, αu + βv⟩ = α ⟨w,u⟩ + β ⟨w,v⟩.

(d) Suppose u ∈ Rn.
Then ⟨u,u⟩ ≥ 0.
Moreover, equality holds if and only if u = 0n.
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3. Proof of Theorem (1).
(a) Suppose u,v ∈ Rn. Denote the j-th entry of u,v as uj, vj respectively.

Then
⟨u,v⟩ = utv = u1v1 + u2v2 + · · · + unvn.

Similarly,
⟨v,u⟩ = vtu = v1u1 + v2u2 + · · · + vnun.

Therefore ⟨u,v⟩ = ⟨v,u⟩.

(b) Suppose u,v,w ∈ Rn and α, β ∈ R. Then

⟨αu + βv,w⟩ = (αu+βv)tw = (αut+βvt)w = αutw+βvtw = α ⟨u,w⟩+β ⟨v,w⟩ .

(c) Suppose u,v,w ∈ Rn and α, β ∈ R. Then
⟨w, αu + βv⟩ = ⟨αu + βv,w⟩ = α ⟨u,w⟩ + β ⟨v,w⟩ = α ⟨w,u⟩ + β ⟨w,v⟩ .

(d) Suppose u ∈ Rn. Denote the j-th entry of u as uj respectively.
Then

⟨u,u⟩ = u1
2 + u2

2 + · · · + un
2 ≥ 0.

Hence ⟨u,u⟩ = 0 if and only if uj = 0 for each j = 1, 2, · · · , n.
The latter happens exactly when u = 0n.
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4. Definition. (Norm.)
For any u ∈ Rn, the number

√
⟨u,u⟩ is called the norm of the vector u, and is denoted by

∥u∥.

Remark. By definition, ∥u∥2 = ⟨u,u⟩. It is often read as ‘norm-square of u’.

5. Theorem (2). (Basic properties of norm.)
The statements below hold:

(a) Suppose u ∈ Rn.
Then ∥u∥ ≥ 0.
Moreover, equality holds if and only if u = 0n.

(b) Suppose u ∈ Rn and α ∈ R.
Then ∥αu∥ = |α| · ∥u∥.

6. Proof of Theorem (2).
(a) Suppose u ∈ Rn. By definition, ∥u∥2 = ⟨u,u⟩ ≥ 0. Then ∥u∥ ≥ 0.

Moreover, ∥u∥ = 0 if and only if ⟨u,u⟩ = 0. The latter happens exactly when u = 0n.
(b) Suppose u ∈ Rn and α ∈ R. Then

∥αu∥2 = ⟨αu, αu⟩ = α · α ⟨u,u⟩ = α2 ⟨u,u⟩ = α2∥u∥2.

Therefore ∥αu∥ = |α| · ∥u∥.
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7. Theorem (3). (Conversion between inner product and norm.)
The statements below hold:

(a) Suppose u,v ∈ Rn.
Then

∥u± v∥2 = ∥u∥2 + ∥v∥2 ± 2 ⟨u,v⟩
respectively.

(b) Suppose u,v ∈ Rn.
Then

⟨u,v⟩ = ±1

2
(∥u± v∥2 − ∥u∥2 − ∥v∥2)

respectively.

(c) Suppose u,v ∈ Rn.
Then

∥u + v∥2 + ∥u− v∥2 = 2∥u∥2 + 2∥v∥2.
Remark.
The result described in Item (b) is known as the polarization identity.
The result described in Item (c) is known as the parallelogramic identity.
Proof of Theorem (3). Exercise.
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8. Theorem (4). (Cauchy-Schwarz Inequality.)
Suppose u,v ∈ Rn.
Then | ⟨u,v⟩ | ≤ ∥u∥ · ∥v∥.
Moreover, equality holds if and only if u,v are linearly dependent.

Theorem (5). (Triangle Inequality.)
Suppose u,v ∈ Rn.
Then ∥u + v∥ ≤ ∥u∥ + ∥v∥.
Moreover, equality holds if and only if u,v are non-negative scalar multiples of each other.

Corollary to Theorem (5). (Triangle Inequality also.)
Suppose u,v ∈ Rn.
Then ∥u− v∥ ≥

∣∣ ∥u∥ − ∥v∥
∣∣.

Moreover, equality holds if and only if u,v are non-negative scalar multiples of each other.
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9. Definition. (Orthogonality.)
Let u,v ∈ Rn.
We say u is orthogonal to v, and write u ⊥ v, if and only if ⟨u,v⟩ = 0.

10. Theorem (6). (Basic properties of orthogonality.)
The statements below hold:

(a) Suppose u,v ∈ Rn.
Then u ⊥ v if and only if v ⊥ u.

(b) Suppose u ∈ Rn.
Then u ⊥ u if and only if u = 0n.

(c) Suppose u ∈ Rn.
Then (u ⊥ v for any v ∈ Rn) if and only if u = 0n.

(d) Suppose u,v ∈ Rn.
Then ∥u + v∥2 = ∥u∥2 + ∥v∥2 if and only if u ⊥ v.

Proof of Theorem (6). Exercise (in the matrix/vector algebra).
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