1. Definition. (Inner product in \mathbb{R}^n .)

For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, write $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^t \mathbf{v}$.

 $\langle \mathbf{u}, \mathbf{v} \rangle$ is called the inner product of the vector \mathbf{u} with the vector \mathbf{v} .

 $\langle \cdot, \cdot \rangle$ is called the inner product in \mathbb{R}^n .

Remark. Many people refer to $\langle \cdot, \cdot \rangle$ as the 'dot product'.

A common alternative notation for $\langle \mathbf{u}, \mathbf{v} \rangle$ is $\mathbf{u} \bullet \mathbf{v}$. For this reason, we may, for convenience, read it as ' \mathbf{u} dot \mathbf{v} '.

2. Theorem (1). (Basic properties of inner product.)

The statements below hold:

- (a) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
- (b) Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$. Then $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle$.
- (c) Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$. Then $\langle \mathbf{w}, \alpha \mathbf{u} + \beta \mathbf{v} \rangle = \alpha \langle \mathbf{w}, \mathbf{u} \rangle + \beta \langle \mathbf{w}, \mathbf{v} \rangle$.

(d) Suppose $\mathbf{u} \in \mathbb{R}^n$.

Then $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$. Moreover, equality holds if and only if $\mathbf{u} = \mathbf{0}_n$.

1. Definition. (Inner product in \mathbb{R}^n .)

For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, write $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^t \mathbf{v}$.

 $\langle \mathbf{u}, \mathbf{v} \rangle$ is called the inner product of the vector \mathbf{u} with the vector \mathbf{v} .

 $\langle \cdot, \cdot \rangle$ is called the inner product in \mathbb{R}^n .

Remark. Many people refer to $\langle \cdot, \cdot \rangle$ as the 'dot product'. A common alternative notation for $\langle \mathbf{u}, \mathbf{v} \rangle$ is $\mathbf{u} \bullet \mathbf{v}$. For this reason, we may, for convenience, read it as ' \mathbf{u} dot \mathbf{v} '.

2. Theorem (1). (Basic properties of inner product.)

The statements below hold:

- (a) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
- (b) Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$. Then $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle$.
- (c) Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$. Then $\langle \mathbf{w}, \alpha \mathbf{u} + \beta \mathbf{v} \rangle = \alpha \langle \mathbf{w}, \mathbf{u} \rangle + \beta \langle \mathbf{w}, \mathbf{v} \rangle$.

(d) Suppose
$$\mathbf{u} \in \mathbb{R}^n$$
.
Then $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$.
Moreover, equality holds if and only if $\mathbf{u} = \mathbf{0}_r$

3. Proof of Theorem (1).

(a) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Denote the *j*-th entry of \mathbf{u}, \mathbf{v} as u_j, v_j respectively. Then

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^t \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Similarly,

$$\langle \mathbf{v}, \mathbf{u} \rangle = \mathbf{v}^t \mathbf{u} = v_1 u_1 + v_2 u_2 + \dots + v_n u_n.$$

Therefore $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.

(b) Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$. Then $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = (\alpha \mathbf{u} + \beta \mathbf{v})^t \mathbf{w} = (\alpha \mathbf{u}^t + \beta \mathbf{v}^t) \mathbf{w} = \alpha \mathbf{u}^t \mathbf{w} + \beta \mathbf{v}^t \mathbf{w} = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle.$

(c) Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$. Then

$$\langle \mathbf{w}, \alpha \mathbf{u} + \beta \mathbf{v} \rangle = \langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{w}, \mathbf{u} \rangle + \beta \langle \mathbf{w}, \mathbf{v} \rangle.$$

(d) Suppose $\mathbf{u} \in \mathbb{R}^n$. Denote the *j*-th entry of \mathbf{u} as u_j respectively. Then

$$\langle \mathbf{u}, \mathbf{u} \rangle = u_1^2 + u_2^2 + \dots + u_n^2 \ge 0.$$

Hence $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $u_j = 0$ for each $j = 1, 2, \cdots, n$. The latter happens exactly when $\mathbf{u} = \mathbf{0}_n$.

4. Definition. (Norm.)

For any $\mathbf{u} \in \mathbb{R}^n$, the number $\sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$ is called the norm of the vector \mathbf{u} , and is denoted by $\|\mathbf{u}\|$.

Remark. By definition, $\|\mathbf{u}\|^2 = \langle \mathbf{u}, \mathbf{u} \rangle$. It is often read as 'norm-square of \mathbf{u} '.

5. Theorem (2). (Basic properties of norm.)

The statements below hold:

(a) Suppose u ∈ ℝⁿ. Then ||u|| ≥ 0. Moreover, equality holds if and only if u = 0_n.
(b) Suppose u ∈ ℝⁿ and α ∈ ℝ.

Then $\|\alpha \mathbf{u}\| = |\alpha| \cdot \|\mathbf{u}\|.$

6. Proof of Theorem (2).

(a) Suppose u ∈ ℝⁿ. By definition, ||u||² = ⟨u, u⟩ ≥ 0. Then ||u|| ≥ 0. Moreover, ||u|| = 0 if and only if ⟨u, u⟩ = 0. The latter happens exactly when u = 0_n.
(b) Suppose u ∈ ℝⁿ and α ∈ ℝ. Then

$$\|\alpha \mathbf{u}\|^2 = \langle \alpha \mathbf{u}, \alpha \mathbf{u} \rangle = \alpha \cdot \alpha \langle \mathbf{u}, \mathbf{u} \rangle = \alpha^2 \langle \mathbf{u}, \mathbf{u} \rangle = \alpha^2 \|\mathbf{u}\|^2.$$

Therefore $\|\alpha \mathbf{u}\| = |\alpha| \cdot \|\mathbf{u}\|.$

4. Definition. (Norm.)

For any $\mathbf{u} \in \mathbb{R}^n$, the number $\sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$ is called the norm of the vector \mathbf{u} , and is denoted by $\|\mathbf{u}\|$.

Remark. By definition, $\|\mathbf{u}\|^2 = \langle \mathbf{u}, \mathbf{u} \rangle$. It is often read as 'norm-square of \mathbf{u} '.

- 5. Theorem (2). (Basic properties of norm.) The statements below hold:
- (a) Suppose u ∈ ℝⁿ. Then ||u|| ≥ 0. Moreover, equality holds if and only if u = 0_n.
 (b) Suppose u ∈ ℝⁿ and α ∈ ℝ.
 - Then $\|\alpha \mathbf{u}\| = |\alpha| \cdot \|\mathbf{u}\|.$
- 6. Proof of Theorem (2).

(a) Suppose u ∈ ℝⁿ. By definition, ||u||² = ⟨u, u⟩ ≥ 0. Then ||u|| ≥ 0. Moreover, ||u|| = 0 if and only if ⟨u, u⟩ = 0. The latter happens exactly when u = 0_n.
(b) Suppose u ∈ ℝⁿ and α ∈ ℝ. Then

$$\|\alpha \mathbf{u}\|^2 = \langle \alpha \mathbf{u}, \alpha \mathbf{u} \rangle = \alpha \cdot \alpha \langle \mathbf{u}, \mathbf{u} \rangle = \alpha^2 \langle \mathbf{u}, \mathbf{u} \rangle = \alpha^2 \|\mathbf{u}\|^2.$$

Therefore $\|\alpha \mathbf{u}\| = |\alpha| \cdot \|\mathbf{u}\|.$

Geometric interpretation of the nution of norm. According to Euclidean geometry, the distance from the origin of IR" to the "arrow-head of u, which is the point in IR" corresponding to the vector u, is exactly 11411. 7. Theorem (3). (Conversion between inner product and norm.) The statements below hold:

(a) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then

$$\|\mathbf{u} \pm \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 \pm 2 \langle \mathbf{u}, \mathbf{v} \rangle$$

respectively.

(b) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then

$$\langle \mathbf{u}, \mathbf{v} \rangle = \pm \frac{1}{2} (\|\mathbf{u} \pm \mathbf{v}\|^2 - \|\mathbf{u}\|^2 - \|\mathbf{v}\|^2)$$

respectively.

(c) Suppose
$$\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$$
.
Then

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2.$$

Remark.

The result described in Item (b) is known as the polarization identity. The result described in Item (c) is known as the parallelogramic identity. **Proof of Theorem (3).** Exercise.

Corre Law says:

$$||u-v||^{2} = ||u||^{2} + ||v||^{2} - 2 ||u|| \cdot ||v|| \cos(\theta).$$
From what we know about the product and norm

$$||u-v||^{2} = ||u||^{2} + ||v||^{2} - 2 < u, v > .$$
Then:

$$Co(\theta) = \frac{< u, v >}{||u|| \cdot ||v||}.$$

7. Theorem (3). (Conversion between inner product and norm.) How? Why? $||u\pm v||^{2} = \langle u\pm v, u\pm v \rangle$ $= \langle u, u\pm v \rangle \pm \langle v, u\pm v \rangle$ $= \langle u, u \rangle \pm \langle u, v \rangle \pm \langle v, u \rangle$ $+ \langle v, v \rangle$ $= \langle u, u \rangle \pm 2 \langle u, v \rangle \pm \langle v, v \rangle$ $= \langle u, u \rangle \pm 2 \langle u, v \rangle \pm \langle v, v \rangle$ $= ||u||^{2} \pm ||v||^{2} \pm 2 \langle u, v \rangle.$ The statements below hold: (a) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then $\|\mathbf{u} \pm \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 \pm 2\langle \mathbf{u}, \mathbf{v} \rangle$ respectively. (b) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then respectively. $\|\mathbf{u} + \mathbf{v}\|^{2} + \|\mathbf{u} - \mathbf{v}\|^{2} = 2\|\mathbf{u}\|^{2} + 2\|\mathbf{v}\|^{2}.$ $\|\mathbf{u} + \mathbf{v}\|^{2} = 1\|\mathbf{u}\|^{2} + \|\mathbf{u} - \mathbf{v}\|^{2} = 2\|\mathbf{u}\|^{2} + 2\|\mathbf{v}\|^{2}.$ $(\mathbf{u} + \mathbf{v})^{2} = 1\|\mathbf{u}\|^{2} + 1\|\mathbf{v}\|^{2} + 2\|\mathbf{v}\|^{2}.$ $(\mathbf{u} + \mathbf{v})^{2} = 1\|\mathbf{u}\|^{2} + 1\|\mathbf{v}\|^{2} - 2\langle \mathbf{u}, \mathbf{v} \rangle$ (c) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then Remark. The result described in Item (b) is known as the polarization identity.

The result described in Item (c) is known as the parallelogramic identity. **Proof of Theorem (3).** Exercise.

8. Theorem (4). (Cauchy-Schwarz Inequality.)

Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| \cdot ||\mathbf{v}||$. Moreover, equality holds if and only if \mathbf{u}, \mathbf{v} are linearly dependent.

Theorem (5). (Triangle Inequality.)

Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

Then $\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|.$

Moreover, equality holds if and only if \mathbf{u}, \mathbf{v} are non-negative scalar multiples of each other.

Corollary to Theorem (5). (Triangle Inequality also.)

Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then $\|\mathbf{u} - \mathbf{v}\| \ge \|\mathbf{u}\| - \|\mathbf{v}\|$.

Moreover, equality holds if and only if \mathbf{u}, \mathbf{v} are non-negative scalar multiples of each other.

· When one of u, v is the zero vector, the vent Beginning 8. Theorem (4). (Cauchy-Schwarz Inequality.) steps of trivially holds . the angument. Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Suppose, without loss of Then $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| \cdot ||\mathbf{v}||$. generality, u = 0. Moreover, equality holds if and only if \mathbf{u}, \mathbf{v} are linearly dependent. Define the quadratic polynomial f(t) by f(t) = 11411 t + 2(4, v) t + 11112. Theorem (5). (Triangle Inequality.) It happens that f(t)= |1tu+v||2. Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Et cetera. Then $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|.$ Moreover, equality holds if and only if \mathbf{u}, \mathbf{v} are non-negative scalar multiples of each other. How? Why? (11u11+11v11)2 - 11u+v112 = 2(11u11.11v11 - <4,v>) >0 by Cauchy-Schwarz Inequality Hence $||u+v||^2 \le (||u|| + ||v||)^2$. Corollary to Theorem (5). (Triangle Inequality also.) Then 114+111 = 11411+1111. (why?) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then $\|\mathbf{u} - \mathbf{v}\| \geq \|\mathbf{u}\| - \|\mathbf{v}\|$. Moreover, equality holds if and only if \mathbf{u}, \mathbf{v} are non-negative scalar multiples of each other. Geometric interpretation of Theorem (3) and its lengths of two IIVI sides of the triangle with vertices being the origin, the arrow-head of u, Corollary and the arrow-head of utv. The distance from the orign to the utv is expected to Sum of 110-VI and 11VH be no less than the sum of 11111 and 1111 1) expected to be no less than [14]

9. Definition. (Orthogonality.)

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

We say **u** is orthogonal to **v**, and write $\mathbf{u} \perp \mathbf{v}$, if and only if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

10. Theorem (6). (Basic properties of orthogonality.)

The statements below hold:

- (a) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then $\mathbf{u} \perp \mathbf{v}$ if and only if $\mathbf{v} \perp \mathbf{u}$.
- (b) Suppose $\mathbf{u} \in \mathbb{R}^n$. Then $\mathbf{u} \perp \mathbf{u}$ if and only if $\mathbf{u} = \mathbf{0}_n$.
- (c) Suppose $\mathbf{u} \in \mathbb{R}^n$. Then $(\mathbf{u} \perp \mathbf{v} \text{ for any } \mathbf{v} \in \mathbb{R}^n)$ if and only if $\mathbf{u} = \mathbf{0}_n$.

(d) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ if and only if $\mathbf{u} \perp \mathbf{v}$.

Proof of Theorem (6). Exercise (in the matrix/vector algebra).

9. Definition. (Orthogonality.)

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

We say **u** is orthogonal to **v**, and write $\mathbf{u} \perp \mathbf{v}$, if and only if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

10. **Theorem (6). (Basic properties of orthogonality.)** The statements below hold:

- (a) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then $\mathbf{u} \perp \mathbf{v}$ if and only if $\mathbf{v} \perp \mathbf{u}$.
- (b) Suppose $\mathbf{u} \in \mathbb{R}^n$. Then $\mathbf{u} \perp \mathbf{u}$ if and only if $\mathbf{u} = \mathbf{0}_n$.
- (c) Suppose $\mathbf{u} \in \mathbb{R}^n$. Then $(\mathbf{u} \perp \mathbf{v} \text{ for any } \mathbf{v} \in \mathbb{R}^n)$ if and only if $\mathbf{u} = \mathbf{0}_n$.
- (d) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ if and only if $\mathbf{u} \perp \mathbf{v}$. In despine.

Proof of Theorem (6). Exercise (in the matrix/vector algebra).