0. In the Handout Equivalence relations defined by level sets of functions we see that a function, say, $f: A \longrightarrow B$ defines, in a natural way, an equivalence relation in A, through which we may dis-regard the distinction between two distinct elements of A when they belong to the same non-empty level set of f. Besides, A is also naturally 'partitioned' into the non-empty level sets of f, giving rise to the quotient by the equivalence relation induced by f. Here we shall see that this 'correspondence' goes 'the other way'.
1. Definition. (Disjoint sets.)

Let S, T be sets. We say that S, T are disjoint if $S \cap T=\emptyset$.
Definition. (Generalized union, and generalized disjoint union).
Let A be a set, and Γ be a subset of $\mathfrak{P}(A)$.
(a) The (generalized) union of Γ is defined to be the set

$$
\{x \in A: x \in S \text { for some } S \in \Gamma\}
$$

It is denoted by $\bigcup_{S \in \Gamma} S$.
(b) Further suppose that the elements of Γ are pairwise disjoint (as sets).

Then we say the generalized union $\bigcup_{S \in \Gamma} S$ of Γ is called the generalized disjoint union of Γ.
We may denote it by $\bigsqcup_{S \in \Gamma} S$ (when we want to emphasize on the disjointness of the distinct elements of Γ).

2. Definition. (Partition.)

Let A be a set, and Ω be a subset of $\mathfrak{P}(A)$.
Ω is called a partition of A if the statements $(N),(O),(P)$ hold:
(N) For any $S \in \Omega, S \neq \emptyset$.
(O) $\quad\{x \in A: x \in S$ for some $S \in \Omega\}=A$.
$(P) \quad$ For any $S, T \in \Omega$, exactly one of the statements ($P 1$), ($P 2$) holds:
$(P 1) \quad S=T$.
(P2) $\quad S \cap T=\emptyset$.

Remarks.

(a) In terms of the notion of generalized union, the statement (O) reads:
' A equals the generalized union of Ω.'
(b) In terms of the notion of disjointness, the statement (P) reads:
'The elements of Ω are pairwise disjoint.'
With the validity of (P) assumed, we can re-state (O) as:
' A equals the disjoint union of Ω.'

Further remarks.

We shall now see that how a partition, say, Ω, of a set, say, A, will define, in a natural way, an equivalence relation in A and a function with domain A which induces the same equivalence relation in A and whose quotient by such an equivalence relation is Ω itself.
3. Lemma (a).

Let A be a set. Suppose Ω is a subset of $\mathfrak{P}(A) \backslash\{\emptyset\}$.
Then the statements below are logically equivalent:
(a) Ω is a partition of A.
(b) For any $x \in A$, there exists some unique $S \in \Omega$ such that $x \in S$.

Proof of Lemma (a). Exercise in set language.

Remark on symbols and terminologies.

The validity of Lemma (a) allows us to introduce, for each $x \in A$, the specific symbol $[x]_{\Omega}$, for denoting the uniquely determined element of Ω which, as a set, contains x as an element.

4. Theorem (2).

Let A be a set, and Ω be a partition of A.
Suppose $E_{\Omega}=\left\{(x, y) \left\lvert\, \begin{array}{l}x, y \in A, \text { and there exist some } S \in \Omega \\ \text { such that } x \in S \text { and } y \in S .\end{array}\right.\right\}$, and $R_{\Omega}=\left(A, A, E_{\Omega}\right)$.
Then the statements below hold:
(a) R_{Ω} is an equivalence relation in A, with graph E_{Ω}.
(b) For any $x \in A$, define $[x]_{R_{\Omega}}=\left\{y \in A:(x, y) \in E_{\Omega}\right\}$.

Then, for any $w \in A,[w]_{R_{\Omega}}=[w]_{\Omega}$. Moreover, for any $u, v \in A$, the statements below are logically equivalent:
(a) $(u, v) \in E_{\Omega}$.
(b) $u \in[v]_{R_{\Omega}}$.
(c) $v \in[u]_{R_{\Omega}}$.
(d) $[u]_{R_{\Omega}}=[v]_{R_{\Omega}}$.
(c) Suppose $f_{\Omega}: A \longrightarrow \Omega$ is the function defined by $f_{\Omega}(x)=[x]_{\Omega}$ for any $x \in A$.

Then the statements below hold:
i. f_{Ω} is surjective.
ii. The equivalence relation $R_{f_{\Omega}}$ in A is the same as the equivalence relation R_{Ω}.
iii. For any $x \in A,[x]_{\Omega}=[x]_{f_{\Omega}}$.
iv. The quotient by $R_{f_{\Omega}}$ in A is the same as Ω.

Proof of Theorem (2). Exercise in set language.

Remark on terminologies.
(a) R_{Ω} is called the equivalence relation in A induced by the partition Ω.

In this context, for each $x \in A$, the set $[x]_{R_{\Omega}}$ (which equals $[x]_{\Omega}$ as sets) is referred to as the equivalence class of x under R_{Ω}.
(b) f_{Ω} is called the natural surjective function induced by the partition Ω.

Further remark.

The key to Theorem (2) is the synonymity, for each $x \in A$, of these three sets:

- the unique element $[x]_{\Omega}$ of the partition Ω which, as a set, contains x as an element,
- the level set $f_{\Omega}{ }^{-1}\left(\left\{f_{\Omega}(x)\right\}\right)$ of the function f_{Ω} at $f(x)$,
- the equivalence class $[x]_{R_{\Omega}}$ under the equivalence relation R_{Ω}.

What is Theorem (2) about?

- Assumption:
Ω is a partition of A.

$$
\left.\begin{array}{l}
E_{\Omega}=\left\{(x, y) \left\lvert\, \begin{array}{l}
x, y \in A \text { and } \\
\text { there exits some } s \in \Omega \\
\text { sud h that } x \in S \text { and } y \in S
\end{array}\right.\right.
\end{array}\right\} .
$$

So, by definition of Ω as a partition A :
(N) For any $s \in \Omega, S \neq \phi$.
(0) $\frac{\{x \in A: x \in S \text { for some } S \in \Omega\}}{\text { (This is called the smenarizel union of } \Omega \text {.) }}=A$
(P) For any $S, T \in \Omega$, exactly one of $' S=T^{\prime}, ' S \cap T=\phi$ ' is true. g (S,T are 'dicjorit'.)

$$
\Omega=\{U, V, W, X, Y, Z, \ldots\}
$$

(N) Each of U, V, W, X, Y, Z is nonempty.
(0) ' $U \cup V \cup W \cup X \cup Y \cup Z \cup \ldots=A$.
(P) $U \cap V=\phi, U \cap W=\phi, U \cap X=\phi, \ldots ;$
$V \cap W=\phi, V \cap X=\phi, \ldots ;$ $W \cap X=\phi, \ldots ; \ldots$.

What is Theorem (2) about?

- Assumption:
Ω is a partition of A.

$$
\left.\begin{array}{l}
E_{\Omega}=\left\{(x, y) \left\lvert\, \begin{array}{l}
x, y \in A \text { and } \\
\text { there exits some } s \in \Omega \\
\text { sud nt hat } x \in S \text { and } y \in S
\end{array}\right.\right.
\end{array}\right\} .
$$

So, by definition, for any $x, y \in A$. $(x, y) \in E_{\Omega}$ iff there exists some $S \in \Omega$.
Or simply,
$(x, y) \in E_{\Omega}$ if x, y belong to the same (nonempty) subset of A - collected' as some element of Sa.

- Conclusion:
R_{Ω} is an equivalence relation in A.
(Proof? Exercise in 'definition of paction' and 'there exited'.)

What is Theorem (2) about?

$$
\Omega=\{U, V, V, X, Y, Y, Z, \ldots\}
$$

- Assumption:
S is a partition of A.

$$
\begin{aligned}
& F_{\Omega}=\left\{(x, y) \left\lvert\, \begin{array}{l}
x, y \in A \text { and } \\
\text { there exits some } S \in \Omega \\
\text { such that } x \in S \text { and } y \in S
\end{array}\right.\right\} . \\
& R_{\Omega}=(A, A, E \Omega) .
\end{aligned}
$$

- Conclusion:
R_{Ω} is an equivalence relation in A.
- Consequences of the conclusion: Through R_{Ω}, we dis-regard (possible) distinction between $x, y \in A$ exactly when they belong to the same element of Ω. Then any two elements of A are identified under R_{Ω} exactly when they belong to the same (non-empty) subset of A 'collected' as an element of Ω.
 identified
under R_{Ω}.

5. We shall now see that how an equivalence relation, say, R, in a set, will define, in a natural way, a partition which induces the equivalence relation R in A, and also a function with domain A which also induces the equivalence relation R.
As preparation, we introduce the notion of set of destinations of an object under a relation.

Definition. (Set of destinations of an object under a relation.)

Let H, K be sets, and L be a subset of $H \times K$. Let R be the relation from H to K with graph L. Let $x \in H$.
The set of destinations of x under the relation R is defined to be the set

$$
\{y \in K:(x, y) \in L\}
$$

It is denoted by $R[x]$.
6. Lemma (b).

Let A be a set. Suppose R is an equivalence relation in A with graph E.
Then, for any $x \in A, x \in R[x]$.
Moreover, for any $u, v \in A$, the statements below are logically equivalent:
(a) $(u, v) \in E$.
(b) $u \in R[v]$.
(c) $v \in R[u]$.
(d) $R[u]=R[v]$

Proof of Lemma (b). Exercise in set language.
Remark on Terminology.
For any $x \in A$, the set $R[x]$ is called the equivalence class of x under the equivalence relation R.

7. Theorem (3).

Let A be a set, and R be an equivalence relation in A with graph E.
Suppose

$$
\Omega_{R}=\{S \in \mathfrak{P}(A): S=R[x] \text { for some } x \in A\} .
$$

Suppose $q_{R}: A \longrightarrow \Omega_{R}$ is the function by $q_{R}(x)=R[x]$ for any $x \in A$.
Then the statements below hold:
(a) Ω_{R} is a partition of A.
(b) q_{R} is a surjective function.
(c) The equivalence relation $R_{\Omega_{R}}$ in A induced by the partition Ω_{R} is R itself.
(d) The equivalence relation $R_{q_{R}}$ in A induced by the function q_{R} is R itself.

Proof of Theorem (3). Exercise in set language.

Remark on terminologies.

Note that Ω_{R} is a special partition of A induced by the equivalence relation R, and q_{R} is a special surjective function with domain A induced by the equivalence relation R.
(a) Ω_{R} is called the quotient in A by the equivalence relation R, and is denoted by A / R.
(b) q_{R} is called the quotient mapping of the equivalence relation R.

Further remark.

An equivalence relation can be visualized through its quotient and its quotient mapping, in the sense that the information about the equivalence relation is carried in full in both its quotient and its quotient mapping. This is the point of the equalities

$$
' R_{A / R}=R=R_{q_{R}} \text { '. }
$$

What is Theorem (3) about?

- Assumption:
R is an equivalence relation in A with graph E.
For any $x \in A, R[x]=\{y \in A:(x, y) \in E\}$.

What is Theorem (3) about?

- Assumption:
R is un equivalence relation in A with graph $E 1$ For any $x \in A, R[x]=\{y \in A:(x, y) \in E\}$. $\Omega_{R}=\left\{S \in p_{(A)}: S=R[x]\right.$ for some $x \in A$. \}.
- Conclusion:
Ω_{R} is a partition of A.
The equivalence relation in A induced b, the partition Ω_{R} in A is R is elf. (Proof? Exercise in playing with deflutions.)

Why is such an Ω_{R} a partition of A ?

- For many $S \in \Omega_{\mathrm{L}}, S \neq \varnothing$. Why?
$u \in R\left[\begin{array}{ll}\text { b because }(u, u) \in E ;\end{array}\right.$
- $\left\{x \in A: x \in S\right.$ for some $\left.S \in \Omega_{R}\right\}=A$. Why? $u \in R[m]$ and $R[u] \in \Omega_{R}, v \in R R[y]$ all $R[v] \in S_{R, \ldots ;} ;$
$k \in R[k]$ ad $R[k] \in \Omega_{R}, \ldots ; \ldots$
- For any $S, T \in \mathcal{R}_{R R}$, exactly ore of ' $S T T^{\prime}$ ', $S T T=\phi$ ' is true. Why?
$\langle u\rangle,) \in E$ gives 'disjoit-ness' of REm], R[ET]; $(u, v) \in E$ gives 'iderity' of $R[u\}, R\left[m_{3} ; \ldots\right.$

What is theorem (3) about?

- Assumption:
R is un equivalence relation in A with graph $E .1$ For any $x \in A, R[x]=\{y \in A:(x, y) \in E\}$. $\Omega_{R}=\left\{S \in p_{(A)}: S=R[x]\right.$ for some $x \in A$. \}.
$q_{R}: A \rightarrow \Omega_{R}$ is the function given by $q_{R}(x)=R[x]$ for any $x \in A$.
- Conclusion:
Ω_{R} is a partition of A. The equivalence relation in A induced b, the partition Ω_{R} in A is R itself. q_{R} is a subjective function.
The equivalence relation in A induced by the function q_{k} in A is R itself. (Proof? Exercise R playing with definitions.)

What is Theorem (3) about?

- Assumption:
R is an equivalence relation is A with graph E. For any $x \in A, R[x]=\{y \in A:(x, y) \in E\}$. $\Omega_{R}=\left\{S \in P_{(A)}: S=R^{2} \times\right]$ for some $\left.x \in A.\right\}$.
$q_{R}: A \rightarrow \Omega_{R}$ is the function given by $q_{R}(x)=R[x]$ for $a_{n} y x \in A$.
- Conclusion:
S_{R} is a partition of A.
The equivalence relation in A induced b, the partition Ω_{R} in A is R itself. q_{R} is a surjective function. The equivalence relation in A induced by the function q_{R} in A is R itself.

Common terminologies, and nations.
$R[x]$: Equivalence clan of x under R
Ω_{R} : custient of A by R, usually witter as A / R.
$q_{R}:$ Quotient mapping of R.
8. Definition. (Systems of representatives for an equivalence relation.)

Let A be a set, and R be an equivalence relation in A with graph E.
Let H be a subset of A.
H is said to be a system of representatives for the equivalence relation R if the statement ($S R$) holds:
$(S R)$ For any $S \in A / R$, there exists some unique $x \in H$ such that $S=R[x]$.
9. Lemma (c).

Let A be a set, and R be an equivalence relation in A with graph E.
Let H be a subset of A.
Suppose

$$
\Gamma=\{S \in \mathfrak{P}(A): S=R[u] \text { for some } u \in H\}
$$

Then H is a system of representatives of R iff the statements ($S R^{\prime}$) holds: :
$\left(S R^{\prime}\right)$ For any $x \in A$, there exists some unique $u \in H$ such that $(u, x) \in E$.
Proof of Lemma (c). Exercise in set language.

Example (D) revisited.

- Assumption:

$$
\left.\begin{array}{l}
E=\left\{(A, B) \left\lvert\, \begin{array}{l}
A, B \in M_{\text {at }}^{p \times q}(\mathbb{R}) \text { and } \\
A \text { is row-equivalect to } B
\end{array}\right.\right\} . \\
R=\left(M_{\text {ad }}^{\text {pdq }}\right.
\end{array}(\mathbb{R}), M_{\text {at }} \times q(\mathbb{R}), E\right) . .
$$

- Conctusiar:
R is an equivalence relation is $\operatorname{Mat}_{p \times q}(\mathbb{R})$.
Question (*):
- What can we say about the equivalence classes under R ?
- What can we say about the quotient $\operatorname{Mat}_{p \times q}(\mathbb{R}) / R$?

Recall (\#):
For any $A \in \operatorname{Mat}_{p \times q}(\mathbb{R})$, there exits some mique $B \in M$ at $p x(\mathbb{R}$) Such that A is row-equivalent to B and B is a reduced rowechelon form.
Re-interpretation of (\#) gives on answer for chestion (Δ):

- Each equivalence class under R is the set of all $(p \times q)$-matrices with real entries which are rowequivalent to a uniquely determined reduced row-echelon form.
- $M\left(a_{p \times q}(\mathbb{R}) / R\right.$ is the partition of $M \subset p \times q(\mathbb{R})$ into subsets of rowequivalent matrices, each such subset equivalent mat ices, earned row echelon form.
containing exactly one redan

