Problems on Finite Dimensional Norms (part of HW#5)

- 1. Suppose p(x) and q(x) are two norms on \mathbb{R}^1 .
 - (a) Show there are positive finite constants A and B so that

$$(*) \qquad Aq(x) \le p(x) \le Bq(x)$$

is true for all $x \in \mathbb{R}^1$

- (b) Using (*), show $p(\cdot)$ and $q(\cdot)$ have the same Cauchy sequences and the same convergent sequences (and hence have the same topology).
- (c) Using (b) prove each one dimensional subspace G, of any normed space E is closed.
- 2. Suppose $\|\cdot\|$ is some norm on \mathbb{R}^2 and $f: \mathbb{R}^2 \to \mathbb{R}$ is some linear functional. Let $e_1 = (1,0), e_2 = (0,1), f_1(x,y) = x$ and $f_2(x,y) = y$ be the usual vectors and functionals. Define candidates for norms

$$p((x_1, x_2)) = \sum_i |x_i| ||e_i||$$
$$q((x_1, x_2)) = \max_i \{|x_i| / ||f_i||\}$$

- (a) Use (1c) to show f is continuous. (And hence $q(\cdot)$ is well-defined.)
- (b) Show $p(\cdot)$ and $q(\cdot)$ are norms and for all (x_1, x_2) ,

$$q((x_1, x_2)) \le ||(x_1, x_2)|| \le p((x_1, x_2))$$

(c) Find $0 < M < \infty$ so that for all (x_1, x_2)

$$p((x_1, x_2) \le Mq((x_1, x_2)))$$

- (d) Show there are positive finite constants A and B so that $A||x|| \leq \sum |x_i| \leq B||x||$ holds for all $x \in \mathbb{R}^2$
- (e) Repeat (1b) and (1c) to prove each two dimensional subspace G, of any normed space E is closed.
- 3. Suppose G is a codimension one closed subspace of the normed space E and $x_0 \notin G$. Then $E = \{tx_0 + y : t \in \mathbb{R}, y \in G\}$. Let $\phi : E \to \mathbb{R}$ be given by $\phi(tx_0 + y) = t$. Compute the norm of ϕ in terms of the the distance from x_0 to G which is $\inf\{||x_0 g|| : g \in G\}$.