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Abstract

This paper proves that the category of vacant n-tuple groupoids is
equivalent to the category of factorizations of groupoids by n subgroupoids.
Moreover it extends this equivalence to the category of maximally ex-
clusive n-tuple groupoids, that we define, and (n + 1)-factorizations of
groupoids with a normal abelian subgroupoid. Finally it shows that in
the smooth case, such a factorization gives a presentation of the Poincaré
group as a triple groupoid.
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Introduction

Vacant double groupoids correspond to factorizations of groupoids, as shown in
[1], and it was proposed by Brown in [2] that a certain notion of vacant triple
groupoids would correpond to triple factorizations of groupoids. In this paper,
we generalize the definition of core groupoid, prove this result and extend it
to all dimensions. Moreover following our previous article [4], we introduce
new definitions, that of maximal and exclusive n-tuple groupoids, which allow a
wider class of n-tuple groupoids to be analyzed. We show that n-tuple groupoids
belonging to this class can embed further factorizations of groupoids and show
how the Poincaré group provides a prime example of these.
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1 N-tuple categories

Let [n] be the set of integers from 1 to n, and Î := [n] \ I. By abuse of notation
braces will be omitted in subscripts, for example nij := n{ij} and nî = n[n]\{i}.

Definition 1.1. A n-tuple category C is a set(
C∅, {CI}, {sI}, {tI}, {ıI} ∀I ⊆ Zn, {◦i} ∀i ∈ [n]

)
where :

• The sets C∅, {CI} for I ⊂ [n] and C[n] are respectively objects, faces and
n-cubes.

• The following maps of sets are the source and target maps :

sI , tI :CJ → CJ\I ∀J ⊆ [n] s.t. I ⊆ J

• The following maps of sets are the identity maps :

ıI :CJ → CJ∪I ∀J ⊆ [n] s.t. I ∩ J = ∅

• The following maps of sets are the composition maps.

◦i : CI ti×si CI → τI ∀I ⊃ i

• Sources, targets and compositions are compatible the following way :

sIsJ = sJ∪I tItJ = tJ∪I

• Compositions are associative and satisfy the interchange laws :

◦i◦j = ◦j◦i

• ıi is an identity for the composition ◦i.

Lemma 1.1. The interchange laws impose ıiıj = ıjıi, and therefore ıI ıJ = ıJ∪I

Visually we can represent the elements of a n-tuple category as n-cubes with
”oriented faces”. The source and targets give the faces, which are themselves i-
tuple categories. For example a general element of a double category is a square:
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where arrows of the first type have been represented in bold and arrows of the
second type in dashes. Note that there is no defined composition between ar-
rows of different types, so there is no sense in talking of it being commutative.
Note as well that there can be many squares with the same boundary.
We will take the convention to draw identities arrows as bold segments, regard-
less of their type. If two squares can be pasted next to each other in a certain
direction, they are composable in that direction, and identities look like:

The first two are identities on arrows, given respectively by ı1 and ı2, whereas
the third is an identity on objects, given by ı12.
The interchange law ensures that any assortment of the sort :

yields the same square regardless of the order in which it is composed.
General elements of a triple category are cubes :

that compose by pasting in one of the three directions. The interchange laws in
each plane ensures that an arrangement that is a barycentric decomposition of
a cube yields the same composite, regardless of the order of composition.
The generalization to higher dimension is straight forward, though representa-
tion on paper becomes challenging.
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2 Vacant N-tuple groupoids

Definition 2.1. An N-tuple groupoid is an n-tuple category whose n-cubes
are invertible in all directions.

The inverses will be denoted as follows, suppose that X is an n-cube, then
its inverse with respect to ◦i will be denoted X−i. The interchange laws then
ensure that (X−i)−j = (X−j)−i. We can then define the unique inverse X−ijk...

of X in the combined directions i, j, k....

2.1 Barycentric subdivisions

Definition 2.2. An arrangement of n-cubes similar to the one given by exclud-
ing the subspaces xi = 1

2 for all i ∈ [n] from [0, 1]n ⊂ Rn is called a barycen-
tric subdivision of the n-cube. Arrangements given by excluding the subspaces
xi = 1/3 and xi = 2/3 for all i ∈ [n] is called the division in thirds.

With this definition in mind we can see the interchange law as ensuring that
barycentric subdivisions have a uniquely defined composition.

Definition 2.3. In the barycentric subdivision of the n-cube,the partition of a
sub n-cube is an ordered pair (A,B) of complementary subsets of [n] such that
i ∈ A if and only if the ith source of the sub n-cube is part of the barycentric
division of the ith boundary of the original n-cube. The depth of a sub n-cube
is the cardinality of B.

Then the n-cube adjacent to the source corner has depth 0 and the one
adjacent to the sink corner has depth n. Here are for example the 3-subcubes
of depth 1:

source

sink

Every sub n-cube has n external boundaries and n internal boundaries and the
ith target of a sub n-cube with partition (A,B) is internal to the subdivision
if and only if i ∈ A. Therefore an n-cube has 2n boundaries, n of which are
internal.
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Lemma 2.1. A sub n-cube of depth i has a common boundary (n-1)-cube with
i sub n-cubes of depth (i-1) and with (n− i) sub n-cubes of depth (i+ 1).

Proof. Consider a sub n-cube Q, then tJ(Q) is internal to the decomposition
if and only if J ∈ AQ. Similarly, for another sub n-cube Q’, sJ(Q′) is internal
to the decomposition if and only if J ∈ BQ. Then defining R := AQ ∩ BQ′ we
can conclude that sR(Q′) = tR(Q) and that for R ⊂ S ⊂ [n], sS(Q′) 6= tS(Q).
Therefore a sub n-cube Q of depth i − 1 shares a boundary (n-1)-cube with
Q′ of depth i if and only if |AQ ∩ BQ′ | = 1, or equivalently BQ ⊂ BQ′ . Since
|BQ′ | = |BQ|+ 1 = i there are i such n-cubes Q for a given Q′.

Lemma 2.2. The intersection of an n-cube of depth i and the n-cube of depth
0 is an (n − i)-cube. Its intersection with the n-cube of depth n is an i-cube.
Together, these two intersection contain edges of all n directions.

Proof. The sub n-cube α of depth 0 satisfies Aα = [n], so from the previous proof
we can conclude that Q ∩ α = sBQ

and has codimension |BQ| = i. Similarly if
Ω is the sub n-cube of depth n, BΩ = [n], so the intersection Q ∩ Ω = tAQ

and
has dimension |BQ| = i.

Let X be an n-cube of τ and consider a barycentric subdivision where X has
depth n. Place identities in all positions of positive depth. Then the squares
that can be placed with depth 0 must have all targets the identity on the source
of X, i.e. :

ti = ı̂i(s[n](X))

2.2 Core groupoids

Definition 2.4. Let τ be an n-tuple groupoid and define

τy : = {n-cubes whose recusive targets are identities}
= {X ∈ τ |ti(X) = ı̂i(t[n](X))}

For u ∈ τy and X ∈ τ such that t[n](u) = s[n](X) define the transmutation
of X by u, denoted u ·X, to be the n-cube accepting a barycentric subdivision
with u of depth 0, X of depth 1 and all others identities, as defined above.

For example, in dimension 3 a element of τy looks like the following, where
arrows without heads and non colored squares are identities.
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Lemma 2.3. Let u, v ∈ τy, then u · v ∈ τy. Moreover (τy, ·, ı) is a groupoid.

Proof. Let source and target of arrows in said groupoid be the source and sinks
of the n-cubes of τy. First note that ti(u · X) = ti(X), so that v ∈ τy implies
u·v ∈ τy. This defines a composition on τy. The associativity of this composition
is a consequence of the interchange law and the uniqueness of identities. The
identities given by identity n-cubes on objects. It remains to prove that inverses
exist and uniqueness will follow.
Consider an equation b(X) = Y where b(X) is a barycentric subdivision with one
indeterminate sub-cube X, then one can solve for X. This proves the existence
of left inverses. Now suppose that u has a right inverse w. Then one can isolate
w and express it as a composition of n-cubes, containing only identities and an
inverse of u. This would imply that w = v. Solving back for the identity on the
source of u shows that v is a right inverse whether w exists or not.

Definition 2.5. The groupoid τy is called the core groupoid of τ

Let u ∈ τy, then the assignment u → u· defines an action of groupoids on
τ[n], the set of n-cubes of τ . The next lemma shows that it is transitive on
n-cubes with common targets.

Lemma 2.4. Let X,Y ∈ τ such that ti(X) = ti(Y ), ∀i, then there exists a
unique element uXY ∈ τy such that

X = uXY · Y

Proof. We will proceed in the same fashion as previously. Assume the existence
of uXY , then using inverses to solve for it gives us a decomposition in terms of
X, some inverse of Y and identity n-cubes. Yet this composition can be defined
without the initial hypothesis, proving the existence of uXY .

Definition 2.6. Let τ• be the sub groupoid of τy composed of n-cubes whose
boundaries are all identities. It is called the core bundle

Lemma 2.5. The core bundle is an abelian group bundle over τ0, the objects
of τ .

Proof. This is a generalized Eckmann-Hilton argument. N-cubes whose bound-
aries are identities ”slide” along each other. First note that for u, v ∈ τ•:

u · v = u ◦i v ∀i ∈ [n]

To see this, pick i ∈ [n], u, v ∈ τ• and compose all n-cubes intersecting the ith

source of the big n-cube in the barycentric decomposition defining u·v. This will
give you u since all other subcubes are identities on the source of u. The rest of
the subcubes compose to v and therefore, by the interchange law, u · v = u ◦i v.
Now pick two directions i, j and apply the following two dimensional argument
in the plane ij :
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which shows that u · v = u ◦i v = v ◦i u = v · u.

Corrollary 2.1. Let X,Y ∈ τ , then X and Y share all boundaries iff uXY ∈ τ•.
Definition 2.7. A n-tuple groupoid is slim if its core bundle is trivial

Corrollary 2.2. A n-tuple groupoid is slim iff there is at most one n-cube per
boundary condition.

Definition 2.8. A n-tuple groupoid is exclusive if τy = τ•.

A n-cube then belongs to the core groupoid if and only if all its faces are
identities.

Corrollary 2.3. A n-tuple groupoid is exclusive if and only if the boundary of
its n-cubes are determined by one of their boundaries of each type.

Proof. Suppose that X,Y ∈ τ share a boundary of each type and define

I := {i ∈ [n]|ti(X) 6= ti(Y )}

Then si(X) = si(Y )∀i ∈ I. But in this case tj(X
−I) = tj(Y

−I)∀j ∈ [n]. But
since τ is exclusive these inverses have the same boundary, proving that X and
Y have the same boundaries as well.

Lemma 2.6. Let τ be a n-tuple groupoid. If all boundary ipl groupoids are slim
and all boundary double groupoids are exclusive then τ is exclusive.
Moreover in this case the following is true :

t̂i(X) = t̂i(Y ) ∀i ∈ [n] ⇐⇒ X = u · Y for u ∈ τ•
Proof. Suppose that τij is exclusive for all i, j ∈ Zn, then for X ∈ τy:

t̂i(X) = ıi(s[n](X))∀i ∈ [n]

⇒ sj t̂iĵ(X) = ıi(s[n](X))∀i 6= j ∈ [n]

⇒ sjk t̂iĵk̂(X) = ıi(s[n](X))∀i 6= j 6= k ∈ [n]

⇒ · · ·
⇒ sî(X) = ıi(s[n](X))∀i ∈ [n]
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Which shows that all 1-arrows of X are identities. Now since the boundary
double groupoids of τ are slim, it shows that all sub 2-cubes of X are identities.
Since all boundary triple groupoids of τ are slim, all sub 3-cubes of X are
identities. Repeat the argument to dimension n-1 to prove that τ is exclusive.
In this case, the above argument shows that all boundary i-tuple groupoids are
exclusive and slim. Therefore the boundary of an n-cube X ∈ τ is fixed by
{t̂i(X)}, so if X and Y share these arrows, they share their whole boundary
and by a previous lemma differ by an element of τy, which in this situation is
equal to τ•

Definition 2.9. An n-tuple groupoid τ is maximal if for any (f1, f2, · · · , fn)
s.t. fi ∈ τi and ti(fi) = tj(fj) ∀i, j ∈ Zn there exists X ∈ τ s.t. t̂i(X) = fi

Definition 2.10. An n-tuple groupoid is maximally exclusive if

• all boundary ipl groupoids are slim for i > 1

• all boundary double groupoids are exclusive

• it is maximal

A n-tuple groupoid is vacant if it is slim and maximally exclusive.

Let X be an n-cube in a vacant groupoid then {t̂i}[n], the set of all boundary
1-arrows targeted at the sink, determines X uniquely and such an X exists for
any possible such combination.

Lemma 2.7. Let τ be a vacant n-tuple groupoid, X,Y ∈ τ , then there exist a
unique n-cube X · Y in τ that has a barycentric subdivision with X of depth 0
and Y of depth 1. Moreover (τ, ·) is a groupoid.

Proof. As mentioned above, all positions of any depth different from 0 or n have
an internal edge of each index shared with either X or Y. For example, in the
case n = 3 a 3-cube of depth 1 shares internal edges of two index with the depth
0 3-cube and of the third index with the depth n 3-cube, as in the picture :
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Since the n-tuple groupoid is vacant, these positions have a unique filler
which proves that the composition is well defined. Its associativity is guaranteed
by uniqueness of fillers and the interchange laws. Identities are identity n-cubes
on source or sink.
Now to show that inverses exist, consider an n-cube X and place it in position 0.
As depth 1 cubes’ intersections with X are (n-1) cubes, they only need one arrow
in the direction not contained in the shared boundary to be determined. But for
X to have an inverse, the n-cube Q of depth 1 whose yet undetermined arrows
in direction i needs to satisfy sî(Q) = sî(X)−1. That determines uniquely all
depth 1 n-cubes. From a previous lemma depth i cubes share at least two
boundary (n − 1)-cubes with depth (i − 1) sub n-cubes, for i > 1. This fact
determines inductively all subcubes of depth greater than 1. Their composition
is a n-cube with a boundary arrow of each type being an identity and is therefore
ı[n](s[n](X)), showing that X has a right inverse.

But since (X · Y )−[n] = X−[n] · Y −[n], a right inverse to X−[n] is a left inverse
to X, proving that X is invertible.

2.3 Equivalence with factorizations of subgroupoids

Let nGpd be the category of n-tuple groupoids and n-tuple functors and let
nSub be the category defined by :

• Objects are (n+1) tuples (G,H1, H2, · · · , Hn) where G is a groupoid,
{Hi}[n] are subgroupoids.

• Arrows are functors f : G→ G′ such that f(Hi) ⊂ H ′i ∀i ∈ [n]

In this subsection we will build an adjunction between the two categories and
find subcategories on which the adjunction restricts to an equivalence of cate-
gories. First we build a functor Γ : nSub→ nGpd
For a (n+1) tuples (G,H1, H2, · · · , Hn), let Γ(G,H1, H2, · · · , Hn) be the n-tuple
groupoid defined by:

• Objects of Γ(G,H1, H2, · · · , Hn) are objects of G.

• Γ(G,H1, H2, · · · , Hn)i = Hi.

• n-cubes are commutative cubes, to be defined below.

Let K be the set of all possible cubes that would comply with the first two
conditions. Each path from the source object to the sink object of an n-cube
gives a sequence of composable arrows in G, with each arrow in a different
subgroupoid. Each path then defines a map of sets K → G by composing the
sequences. The n-cubes of K that have a constant value under all paths are the
cubes of Γ(G,H1, H2, · · · , Hn).

Lemma 2.8. Γ(G,H1, H2, · · · , Hn) is a n-tuple groupoid.
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Proof. The idea behind this proof is that pasting commutative diagrams along
common boundaries produces other commutative diagrams in an associative
way.

Suppose that F : (G,H1, H2, · · · , Hn) → (G′, H ′1, H
′
2, · · · , H ′n) is a sub-

groupoid preserving functor, then we can define Γ(F ) as the n-tuple functor
such that Γ(F )i = F |Hi .

Theorem 2.1. Let I ⊂ [n] have at least two elements, then

• Γ(G,H1, · · · , Hn)I is slim

• Γ(G,H1, · · · , Hn)I is exclusive if and only if ∩
I
Hi is discrete

• Γ(G,H1, · · · , Hn) is maximal if and only if

Hσ(1)Hσ(2) · · ·Hσ(n) = H1H2 · · ·Hn ∀σ ∈ Sn

Proof. By definition a n-cube exists in Γ(G,H1, · · · , Hn) if and only if it is a
commutative diagram in G. It is therefore uniquely defined by its boundary
arrows. With the help of identities this proves the first part.
For the second, note that by definition:

X ∈
(
Γ(G,H1, · · · , Hn)I

)
y ⇐⇒ sî(X) = sĵ(X)∀i, j ∈ I

which if
(
Γ(G,H1, · · · , Hn)I

)
y is exclusive are all forced to be identities and

vice-versa, proving the second part.
For the third part, note that by use of inverses, maximality shows that for any
composable n-tuples h1h2 · · ·hn ofH1H2 · · ·Hn, there is an n-cube X with a path
source-sink whose ith arrow is hi. But as cube of Γ(G,H1, · · · , Hn) correspond
to elements of ∩

σ∈Sn

Hσ(1)Hσ(2) · · ·Hσ(n) the third part is proven.

Definition 2.11. Let nMatchSub be the full subcategory of nSub whose objects
are n-tuples (G,H1, H2, · · · , Hn) such that Hi ∩ Hj is discrete for all i 6= j,
and nMatch the full subcategory of nMatchsub whose objects satisfy G =
H1H2 · · ·Hn.

Theorem 2.2. Γ : nMatchSub → nVacant has a left adjoint Λ given by
Λ(τ) = ((τ, ·), τ1, τ2, · · · , τn). Moreover (Γ|nMatch,Λ) is an equivalence of cate-
gories.

Proof. Let (G,H1, · · · , Hn) ∈ nMatchSub and τ ∈ nVacant. Then since
every element of (τ, ·) has a decomposition as composition of elements of τi,

nMatchSub
(
Λ(τ), (G,H1, · · · , H2)

)
'

{(f1, · · · , fn)|fi : τi → Hi and fi = fj on objects}
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moreover τ has at most one n-cube per acceptable 1-boundary, so an n-tuple
functor is fixed by its values on arrows, i.e.

nVacant
(
τ, Γ(G,H1, · · · , Hn)

)
'

{(f1, · · · , fn)|fi : τi → Hi and fi = fj on objects}

proving the adjunction.
Now if (G,H1, H2, · · · , Hn) ∈ nMatch, every arrow of G can be written as a
composition of arrows of {Hi}, hence :

nMatchSub
(
(G,H1, · · · , H2), Λ(τ)

)
'

{(f1, · · · , fn)|fi : τi → Hi and fi = fj on objects}
nVacant

(
Γ(G,H1, · · · , Hn), τ

)
'

{(f1, · · · , fn)|fi : τi → Hi and fi = fj on objects}

which proves the equivalence of categories between nMatch and nVacant

This theorem allows us to see some decompositions of groups as higher di-
mensional groups, where dimension is taken in a very categorical sense.

Corrollary 2.4. Vacant n-tuple groups are in functorial correspondence with
matched n-tuples of subgroups.

3 Maximally exclusive N-tuple groupoids

3.1 From sections to groupoids

Definition 3.1. Let (τ1̂, · · · , τn̂) be boundary (n − 1)pl groupoids of some n-
tuple groupoid τ . Then the coarse n-tuple groupoid 2(τ1̂, · · · , τn̂) is the slim
n-tuple groupoid such that 2(α1, · · · , αn)i = αi and an n-cube exists iff its
boundary is admissible. The frame �τ of τ is then the image of the functor :

Π : τ → 2(τ1̂, · · · , τî, · · · , τn̂)

such that Πsi = siΠ and Πti = tiΠ for all i ∈ [n].

In this light, a maximally exclusive n-tuple groupoids is one whose frame is
vacant. When trying to define a diagonal composition for n-cubes, we previously
used the uniqueness fillers for n-cubes of depth 1 to (n-1) in the barycentric
division of the n-cube that vacancy provides. In the present case this uniqueness
disappears, though the boundaries of such cubes are fixed. We therefore need
to make a consistent choice of fillers to define a diagonal groupoid out of a
maximally exclusive n-tuple groupoid.
Let ! : �τ → τ be a section of Π as n-tuple graphs and X,Y ∈ τ , then one can
use the section to fill the barycentric subdivision of the n-cube with X of depth
0 and Y of depth n. Denote the composite of the subdivision by X ·! Y , and the
graph defined by (τ[n], s[n], t[n]) with the above product by (τ, ·!)
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Lemma 3.1. The following is true :

! ∈ n-tupleGpd(2τ, τ)⇒ (τ, ·!) ∈ Gpd

Proof. Let X,Y, Z ∈ τ such that t[n](Z) = s[n](Y ) and t[n](Y ) = s[n](Z). Then
(X · Y ) · Z and X · (Y · Z) are both equal to the cube obtained by composing
the ”subdivision in thirds” of the n-cube where X,Y, Z are placed on the diago-
nal source-sink and all other n-subcubes are filled with elements of the section.
Since the frame is vacant, such a filling exists and the composition is associative.
Identities on objects are the identities of the groupoid and inverses are given by
the following argument:
Let X be placed in position of depth 0. From a previous theorem, there exists a
filling of the barycentric subdivision with section n-cubes such that all bound-
aries of the composition are identities on s[n](X). In other words, ∃Y ∈ �τ
such that X·!(Y ) = uX ∈ τ•. Then:

X·!(Y ) · (uX)−i = uX · (uX)−i

= uX ◦i (uX)−i

= ı(s[n](X))

Which shows that X has a right inverse. The same procedure shows that it has
a left inverse and therefore that (τ, ·!) is a groupoid.

3.2 Equivalence with factorizations of subgroupoids

As promised in the introduction, we can extend this result to further decompo-
sitions of groupoids. Let nSemiSub be the category defined by :

• Objects are (n+2) tuples (G,A,H1, H2, · · · , Hn) where (G,H1, · · · , Hn) ∈
nMatchSub, A ∈ G is an abelian group bundle on the objects of G and
ha(h)−1 ∈ A ∀h ∈ Hi ∀i ∈ [n].

• Arrows are functors f : G → G′ such that f(Hi) ⊂ H ′i ∀i ∈ [n] and
f(A) ∈ A′.

Let nSemi be the full subcategory of nSemiSub where objects (G,A,H1, · · · , Hn)
satisfy G = AH1H2 · · ·Hn.
Let nMaxExcl be the category whose objects are pairs (τ, !) and arrows are
section preserving n-tuple functors. Then we can build a functor

Γ̃ : nSemi→ nMaxExcl

by building Γ̃(G,A,H1, · · · , Hn), the n-tuple groupoid whose n-cubes are pairs
(X, a) with X ∈ Γ(G,H1, · · · , Hn) and a ∈ A and whose compositions are given
by :

(X, a) ◦i (Y, b) =
(
X ◦i Y, asî(X)b(sî(X)−1)

)
12



A direct computation shows that these compositions define an n-tuple groupoid.
together with the section ! : Γ(G,H1 · · · , Hn) → Γ̃(G,H1 · · · , Hn) given by
!(X) =

(
X, ı(s[n](X))

)
. On arrows of nSemi, Γ̃ is given by:

Γ̃(F )(X, a) =
(
Γ(F )(X), F (a)

)
Once again a direct computation shows that this defines a functor. We are now
ready to state the theorem.

Theorem 3.1. The functor Γ̃ : nSemiSub→ nMaxExcl has a left adjoint Λ̃
defined by:

Λ̃(τ, !) =
(
(τ, ·!), τ•, τ1, · · · , τn

)
Λ̃(F ) = F

Moreover (Γ̃|nSemi, Λ̃) is an equivalence of categories

Proof.

Let τ be maximally exclusive, then :

nMaxExcl(ω, τ) ' {(F0, F1, · · · , Fn)|F0 : ω• → τ• and Fi : ωi → τi}

Moreover if (G,A,H1, · · · , Hn) ∈ nSemi, then:

nSemi
(
(G,H1, · · · , Hn), (K,B,L1, · · · , Ln)

)
'

{(F0, F1, · · · , Fn)|F0 : A→ B and Fi : Hi → Li}

Considering that the image of Λ̃ is by definition in nSemi, it is enough to prove
the two statements.

3.3 Examples

Following the work on Lie double groupoids of MacKenzie [3], we can define the
notions of Lie n-tuple groupoid. Then we can use decompositions such as the
Iwasawa decomposition to present certain Lie groups as n-tuple groups. In our
previous paper we presented the Poincaré group as a maximal exclusive double
group and hinted towards a possible presentation as a triple groupoid. The
previous sections then allows us to make that claim.

Lemma 3.2. Every Iwasawa decomposition of a semisimple Lie group gives a
presentation of the group as a triple group.

Proof. An Iwasawa decomposition gives three subgroups K,A and N such that
every element g of G can be uniquely written as g = kan for k ∈ K, a ∈ A and
n ∈ N . The adjunction described above then associates to it a vacant triple
groupoid.
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Lemma 3.3. Since the Iwasawa decomposition of SO(3,1) is given by the fol-
lowing subgroups:

K := exp

{
0 0 0 0
0 0 a b
0 −a 0 c
0 −b −c 0

 |a, b, c ∈ R

}
' SO(3)

A := exp

{
0 a 0 0
a 0 0 0
0 0 0 0
0 0 0 0

 |a ∈ R

}
' SO(1, 1)

N := exp

{
0 0 a b
0 0 a b
a −a 0 0
b −b 0 0

 |a, b ∈ R

}

the Poincaré group has a decomposition of the form :

Poinc ' (KAN) nR4
+

This decomposition is therefore represented by a maximal exclusive triple group
whose core is (R4,+) and boundary groups are SO(3), SO(1, 1) and N

Proof. The Iwasawa decomposition of the Lorentz group SO(3, 1) is a standard
computation. The semi-direct product with the translations is a well known
feature of Euclidian and Minkowskian isometry groups. The rest follows from
the previous theorems.

Conclusion

The cases presented here are some of the most simple cases of n-tuple groupoids
available. Even within these some questions remain unanswered. A precise
definition of core diagram has not been given yet for the cases n > 2 and it
seems that it would be a weaker invariant that in the two dimensional case.
The classification of the classes of n-tuple groupoids that share the same core
diagram has not been found either. Moreover the proper representation theory
of these entities has not been discussed anywhere, to our knowledge. Considering
that a group as important as the Poincaré group is an example of triple groups
it seems to be urgent to take a look at these questions. It is our hope that this
quick exposition to the subject matter will encourage further development of
higher dimensional group theory and representation theory.
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