Provable (and Unprovable) Computability

Stan S. Wainer (Leeds University, UK)

Proof and Computation, Fischbachau, Oct. 2016

Contents

- Subrecursive hierarchies

Fast Growing F, Slow Growing G, Hardy H.

- Provable recursion
"Predicative/Tiered" arithmetics, ordinal analysis.
- Independence results

For PA, ATR $0, \Pi_{1}^{1}-C_{0}$.

§1. The Computable Hierarchy

Definition

$\{e\}_{s}^{f}=$ the value after s steps in the computation of program e on oracle f.

Definition

The computable jump operator is $f \mapsto f^{\prime}$ where $f^{\prime}(n)=\left\{n_{0}\right\}_{n_{1}}^{f}$.

Definition

(i) The "sub-elementary" functions are those definable by compositions of,+- and $\Sigma_{i<k}$.
(Polynomially bounded; same as TM computable in linear space.)
(ii) For the "elementary" functions add $\Pi_{i<k}$.

Lemma
For "honest" functions f, f^{\prime} is (sub)-elementarily inter-reducible with $n \mapsto f^{n}(n)$.

Fast Growing Hierarchy F and Slow Growing G

Definition

For "tree ordinals" α, with specified fundamental sequences assigned at limits λ, F_{α} is obtained by iterating the jump.

$$
F_{0}(n)=n+1 ; F_{\alpha+1}(n)=F_{\alpha}^{n}(n) ; F_{\lambda}(n)=F_{\lambda_{n}}(n)
$$

NB: this is highly sensitive to the choice of fundamental sequences.
Theorem
For arithmetical theories T with "proof-theoretic ordinal" $\|T\|$, the functions provably computable in T are exactly those elementary in the F_{α} for $\alpha \prec\|T\|$. (Schwichtenberg-W. around 1970 for PA.)

Definition (Slow Growing Hierarchy)
$G_{0}(n)=0 ; G_{\alpha+1}(n)=G_{\alpha}(n)+1 ; G_{\lambda}(n)=G_{\lambda_{n}}(n)$.

Goodstein Sequences and the Hardy Hierarchy H

- Take any number a, for example $a=16$.
- Write a in "complete base-2", thus $a=2^{2^{2}}$.
- Subtract 1 , so the base- 2 representation is

$$
a-1=2^{2+1}+2^{2}+2^{1}+1 .
$$

- Increase the base by 1 , to produce the next stage $a_{1}=3^{3+1}+3^{3}+3^{1}+1=112$.
- Continue subtracting 1 and increasing the base: $a, a_{1}, a_{2}, a_{3}, \ldots$.. Example: 16, 112, 1284, 18753, 326594, ...

Theorem (1. Goodstein 1944, 2. Kirby \& Paris 1982)

1. Every Goodstein sequence eventually terminates in 0.
2. But this is not provable in Peano Arithmetic (PA).

Proof - The Hardy Functions

Throughout any Cantor Normal Form $\alpha \prec \varepsilon_{0}$, replace ω by n.
Then we obtain a "complete base-n" representation.
Subtract 1 and put ω back: one gets a smaller ordinal $P_{n}(\alpha)$. Hence part 1 of the theorem, by well-foundedness.
E.G. With $\alpha=\omega^{\omega^{\omega}}$ and $n=2$ we get $a=2^{2^{2}}=16$.

Then $a-1=2^{2+1}+2^{2}+2^{1}+1$ and $P_{n}(\alpha)=\omega^{\omega+1}+\omega^{\omega}+\omega^{1}+1$.
Definition (Hardy Hierarchy)

$$
H_{0}(n)=n ; H_{\alpha+1}(n)=H_{\alpha}(n+1) ; H_{\lambda}(n)=H_{\lambda_{n}}(n) .
$$

Theorem (Cichon (1983))
$H_{\alpha}(n)=n+$ the length of a Goodstein sequence on a, n.
A proof that all G-sequences terminate says $H_{\varepsilon_{0}}$ is recursive.
But $H_{\varepsilon_{0}} \simeq F_{\varepsilon_{0}}$ is not provably recursive in PA. Hence part 2.

Some Relationships: $F_{\alpha}:=H_{\omega^{\alpha}}, B_{\alpha}:=H_{2^{\alpha}}$

- $H_{\alpha+\beta}=H_{\alpha} \circ H_{\beta}$.
- So $H_{\omega^{\alpha+1}}(n)=H_{\omega^{\alpha}, n}(n)=H_{\omega^{\alpha}}^{n}(n)=F_{\alpha}^{n}(n)=F_{\alpha+1}(n)$.
- Similarly if $B_{\alpha}=H_{2^{\alpha}}$ then

$$
B_{\alpha}(n)= \begin{cases}n+1 & \text { if } \alpha=0 \\ B_{\beta}\left(B_{\beta}(n)\right) & \text { if } \alpha=\beta+1 \\ B_{\alpha_{n}}(n) & \text { if } \alpha \text { is a limit }\end{cases}
$$

Theorem
$\left\{B_{\alpha}: \alpha \prec\|T\|\right\}$ also classifies provable recursion in arithmetical theories T, i.e. provides bounds for witnesses of provable Σ_{1}^{0} formulas. Roughly, $F_{\alpha} \simeq B_{\omega \cdot \alpha}$.

The Basic Witness-Bounding Principle

Suppose $A(n)$ is a Σ_{1} formula: $A(n) \equiv \exists a D(n, a)$.
Suppose $A(k) \rightarrow A(n)$ is derivable by Cuts with "height" α :

$$
\frac{\vdash^{\beta} A(k) \rightarrow A(m) \quad \vdash^{\beta} A(m) \rightarrow A(n)}{\vdash^{\alpha} A(k) \rightarrow A(n)}(\beta \prec \alpha)
$$

Then $\vDash \exists a \leq b . D(k, a)$ implies $\models \exists a \leq B_{\alpha}(b) . D(n, a)$.
Proof.
Sketch: by induction on α. Since $\beta \prec \alpha$, the premises give

$$
\begin{aligned}
& \models \exists a \leq b \cdot D(k, a) \text { implies } \models \exists a \leq B_{\beta}(b) \cdot D(m, a) \\
& \models \exists a \leq b^{\prime} \cdot D(m, a) \text { implies } \models \exists a \leq B_{\beta}\left(b^{\prime}\right) \cdot D(n, a)
\end{aligned}
$$

Put $b^{\prime}=B_{\beta}(b)$ to obtain $B_{\beta}\left(B_{\beta}(b)\right)=B_{\beta+1}(b) \leq B_{\alpha}(b)$.
NB. This requires $\beta+1 \preceq_{b} \alpha$ where $\gamma \prec_{b} \gamma+1$ and $\lambda_{b} \prec_{b} \lambda . \quad \square$

The Majorization Lemma

Lemma
If $\beta \preceq_{b} \alpha$ then $B_{\beta}(b) \leq B_{\alpha}(b)$.
Proof.
By transfinite induction on α :.

- If $\alpha=0$ then trivial.
- If α is a limit and $\beta \prec_{b} \alpha$ then $\beta \preceq_{b} \alpha_{b}$. By the induction hypothesis,

$$
B_{\beta}(b) \leq B_{\alpha_{b}}(b)=B_{\alpha}(b) .
$$

- If $\alpha=\gamma+1$ and $\beta \prec_{b} \alpha$ then $\beta \preceq_{b} \gamma$.

By the induction hypothesis,

$$
B_{\beta}(b) \leq B_{\gamma}(b) \leq B_{\gamma} B_{\gamma}(b)=B_{\alpha}(b) .
$$

§2. Provable Recursion in "Input-Output" Arithmetics

Definition (of EA(I;O))

- $\mathrm{EA}(1 ; \mathrm{O})$ has the language of arithmetic, with (quantified, "output") variables a, b, c, \ldots.
- In addition there are numerical constants ("inputs") x, y, \ldots.
- There are defining equations for (prim.) recursive functions.
- Basic terms are those built from the constants and variables by successive application of successor and predecessor.
- Only basic terms are allowed as "witnesses" in the logical rules for \forall and \exists. E.g. $A(t) \rightarrow \exists a A(a)$ only for basic t.
- However the equality axioms give $t=a \wedge A(t) \rightarrow A(a)$, hence $\exists a(t=a) \wedge A(t) \rightarrow \exists a A(a)$ and $\exists a(t=a) \wedge \forall a A(a) \rightarrow A(t)$.
- "Predicative" induction axioms, for closed basic terms $t(x)$:

$$
A(0) \wedge \forall c(A(c) \rightarrow A(c+1)) \rightarrow A(t(x)) .
$$

Working in $\mathrm{EA}(\mathrm{I} ; \mathrm{O})$

Definition

Write $t \downarrow$ for $\exists a(t=a)$.
Note: if t is not basic one cannot pass directly from $t=t$ to $t \downarrow$.
But $a+1$ is basic, and $t=a \rightarrow t+1=a+1$ so $t \downarrow \rightarrow t+1 \downarrow$.
Example

- From $b+c \downarrow \rightarrow b+(c+1) \downarrow$ one gets $b+x \downarrow$ by Σ_{1}-induction "up to" x. Then $\forall b(b+x \downarrow)$.
- Then $b+x \cdot c \downarrow \rightarrow b+x \cdot(c+1) \downarrow$. Therefore, by another Σ_{1}-induction, $b+x \cdot x \downarrow$.
- Hence $\forall b\left(b+x^{2} \downarrow\right), \forall b\left(b+x^{3} \downarrow\right)$ etc.
- Similarly, $\mathrm{I} \Sigma_{1}(\mathrm{I} ; \mathrm{O}) \vdash \forall b(b+p(\vec{x}) \downarrow)$ for any polynomial p.
- Exponential requires a Π_{2} induction on $\forall b\left(b+2^{c} \downarrow\right)$:

Proving $\forall b\left(b+2^{x} \downarrow\right)$ with Π_{2} induction -

 an argument going back to Gentzen.Assume

$$
\forall b\left(b+2^{c} \downarrow\right)
$$

Then, for arbitrary b, we have, by the assumption:

$$
b+2^{c} \downarrow \quad \text { and again } \quad\left(b+2^{c}\right)+2^{c} \downarrow
$$

Therefore

$$
\forall b\left(b+2^{c} \downarrow\right) \rightarrow \forall b\left(b+2^{c+1} \downarrow\right)
$$

and $\forall b\left(b+2^{0} \downarrow\right)$ because $b+1$ is basic.
Therefore $I \Pi_{2}(\mathrm{I} ; \mathrm{O}) \vdash \forall b\left(b+2^{x} \downarrow\right)$.
Similarly $I \Pi_{2}(1 ; O) \vdash \forall b\left(b+2^{p(\bar{x})} \downarrow\right)$.
Then $\mathrm{I}_{3}(\mathrm{I} ; \mathrm{O}) \vdash \forall b\left(b+2^{2^{x}} \downarrow\right)$ etc.

Bounding Σ_{1}-Inductions

Theorem
Witnesses for Σ_{1} theorems $A(n) \equiv \exists a D(n, a)$, proved by
Σ_{1}-inductions up to $x:=n$, are bounded by B_{h} where $h=\log n$.
Proof.
Sketch: first, any induction up to $x:=n$ can be unravelled, inside EA $(I ; O)$, to a binary tree of Cuts of height $h=\log n$:
For any $c, \vdash A(c) \rightarrow A\left(c+2^{h}\right)$ with cut-height h.

$$
\frac{A(c) \rightarrow A\left(c+2^{h}\right) \quad A\left(c+2^{h}\right) \rightarrow A\left(c+2^{h}+2^{h}\right)}{A(c) \rightarrow A\left(c+2^{h+1}\right)}
$$

Therefore $\vdash^{h} A(0) \rightarrow A(n)$ with cut-height $h=\log n$.
The Witness-Bounding Principle then gives $\exists a \leq B_{h}(b) . D(n, a)$ where b is the witness for $A(0)$.

Provably Computable Functions in $\mathrm{EA}(1 ; \mathrm{O})$

Definition

A provably computable/recursive function of $E A(I ; O)$ is one which is Σ_{1}^{0}-definable and provably total on inputs, i.e. $\vdash f(\vec{x}) \downarrow$.

Theorem (Leivant 1995, Ostrin-W. 2005)

The provable functions of $I \Sigma_{1}(I ; O)$ are sub-elementary. Equiv:
TM-computable in linear space, or Grzegorczyk's \mathcal{E}^{2}.
The provable functions of $I \Pi_{2}(I ; O)$ are those computable in exp-time $2^{p(n)}$.
Etcetera, up the Ritchie-Schwichtenberg hierarchy for \mathcal{E}^{3}.
(See Leivant's Ramified Inductions (1995) where such characterizations were first obtained. Also Nelson's Predicative Arithmetic (1986). Spoors (Ph.D. 2010) develops hierarchies of ramified extensions of $\mathrm{EA}(\mathrm{I} ; \mathrm{O})$ classifying primitive recursion.)

Proof

- Fix $x:=n$ in $\vdash f(x) \downarrow$ say with d nested inductions.
- Partial cut-elimination yields a "free-cut-free" proof, so after unravelling, only cuts on the induction formulas remain.
- The height of the proof-tree will be (of the order of) $h=\log n \cdot d$.
- For $I \Sigma_{1}(I ; O)$ the Bounding Principle applies immediately to give complexity bounds

$$
B_{\log n \cdot d}(b)=b+2^{\log n \cdot d}=b+n^{d} \text { for some constant } b
$$

- For $I \Pi_{2}$ one must first reduce all cuts to Σ_{1} form by Gentzen cut-reduction, which further increases the height by an exponential, so in that case the complexity bounds will be

$$
B_{2^{\log n \cdot d}}(b)=B_{n^{d}}(b)=b+2^{n^{d}}
$$

PA - by adding an Inductive Definition

Definition

$\mathrm{ID}_{1}(\mathrm{I} ; \mathrm{O})$ is obtained from $\mathrm{EA}(I ; O)$ by adding, for each uniterated positive inductive form $F(X, a)$, a new predicate P, and Closure and Least-Fixed-Point axioms:

$$
\begin{gathered}
\forall a(F(P, a) \rightarrow P(a)) \\
\forall a(F(A, a) \rightarrow A(a)) \rightarrow \forall a(P(a) \rightarrow A(a))
\end{gathered}
$$

for each formula A.
Example
Associate the predicate N with the inductive form:

$$
F(X, a): \equiv a=0 \vee \exists b(X(b) \wedge a=b+1) .
$$

Embedding Peano Arithmetic

Theorem
If $P A \vdash A$ then $I D_{1}(I ; O) \vdash A^{N}$.

- Since the LFP axiom gives:

$$
A(0) \wedge \forall a(A(a) \rightarrow A(a+1)) \rightarrow \forall a(N(a) \rightarrow A(a)) .
$$

- Hence Peano Arithmetic is interpreted in $\mathrm{ID}_{1}(\mathrm{I} ; \mathrm{O})$ by relativizing quantifiers to N.
- Note that $N(0) \wedge \forall a(N(a) \rightarrow N(a+1))$ by the Closure Axiom, so by "predicative" induction, $\mathrm{ID}_{1}(\mathrm{I} ; \mathrm{O}) \vdash N(x)$.
- Hence if f is provably recursive in PA then, by the embedding,

$$
I D_{1}(I ; O) \vdash \forall a(N(a) \rightarrow \exists b(N(b) \wedge f(a)=b))
$$

and therefore, $I D_{1}(I ; O) \vdash f(x) \downarrow \wedge N(f(x))$.

Unravelling LFP-Axiom by Buchholz' Ω-Rule

- We are still working in the I/O context, so can fix $\vec{x}:=\vec{n}$ and unravel inductions into iterated Cuts as before.
- However the resulting $\mathrm{ID}_{1}(\mathrm{I} ; \mathrm{O})$-derivations will be further complicated by the presence of Least-Fixed-Point axioms.
- These must be "unravelled" as well, by the Ω-Rule.

The infinitary system $\mathrm{ID}_{1}(\mathrm{I} ; \mathrm{O})^{\infty}$ has Tait-style sequents $n: N \vdash^{\alpha} \Gamma$ and rules (where $\beta \prec_{n} \alpha$):

$$
\begin{gathered}
(\exists) \frac{k \leq B_{\beta}(n) \quad n: N \vdash^{\beta} \Gamma, A(k)}{n: N \vdash^{\alpha} \Gamma, \exists a A(a)} \quad(\forall) \frac{n: N \vdash^{\beta} \Gamma, A(i) \text { for all } i}{n: N \vdash^{\alpha} \Gamma, \forall a A(a)} \\
(\Omega) \frac{\vdash^{\lambda_{0}} N(m), \Gamma_{0} \quad \vdash_{0}^{h} N(m), \Delta \Rightarrow \vdash^{\lambda_{h}} \Gamma_{1}, \Delta}{\vdash^{\lambda} \Gamma_{0}, \Gamma_{1}}
\end{gathered}
$$

where Δ denotes an arbitrary set of "positive-in-N" formulas.

Ω Proves LFP-Axiom

The basic idea.

- For the left-hand premise of the Ω-rule choose $\vdash^{0} N(m), \neg N(m)$.
- For the right-hand premise, first assume $\vdash_{0}^{h} N(m), \Delta$.
- Each step of this (direct) cut-free proof can be mimicked to prove $A(m)$ if we assume that A is "inductive".
- Thus $\vdash^{k+h} \neg \forall a(F(A, a) \rightarrow A(a)), A(m), \Delta$ where $k=|A|$.
- The standard fundamental sequence for ω gives $\omega_{h}=h$.
- Ω-rule gives $\vdash^{k+\omega} \neg \forall a(F(A, a) \rightarrow A(a)), \neg N(m), A(m)$ and this holds for every number m.
- Therefore by \vee and the infinitary \forall-rule obtain LFP-Ax:

$$
\vdash^{k+\omega+3} \neg \forall a(F(A, a) \rightarrow A(a)) \vee \forall a(\neg N(a) \vee A(a))
$$

Cut Elimination in $\mathrm{ID}_{1}(\mathrm{I} ; \mathrm{O})^{\infty}$

As usual, Gentzen-style cut-reduction raises height exponentially. It cannot be done directly in PA because of the induction axioms.
Lemma (Cut-reduction)
(i) If $\vdash^{\gamma} \Gamma, \forall a \neg A(a)$ and $\vdash^{\alpha} \Gamma, \exists a A(a)$ both with cut-rank r, and
$|A|=r$ then $\vdash^{\gamma+\alpha} \Gamma$ with cut-rank r.
(ii) Hence if $\vdash_{r+1}^{\alpha} \Gamma$ then $\vdash_{r}^{2^{\alpha}} \Gamma$.

Proof.

(i) By induction on α. If the second premise comes from
$\vdash^{\beta} \Gamma, \exists a A(a), A(t)$ then $\vdash^{\gamma+\beta} \Gamma, A(t)$ by the induction hypothesis. Inverting the first premise gives $\vdash^{\gamma} \Gamma, \neg A(t)$. Then $\vdash^{\gamma+\alpha} \Gamma$ by a cut on $A(t)$, still with rank r.
(ii) By another induction on α : at a cut on $C=\exists a A(a)$ of size $r+1$ apply the induction hypothesis to both premises. Then apply
(i) with $\gamma=\beta=2^{\alpha^{\prime}}$ where $\alpha^{\prime}<\alpha$. Clearly $\gamma+\beta \leq 2^{\alpha}$.

Collapsing in $\mathrm{ID}_{1}(\mathrm{I} ; \mathrm{O})^{\infty}$

Lemma (Collapsing)

Suppose, for fixed input $x:=n>1$, we have a cut-free derivation $\vdash_{0}^{\alpha} \Gamma$ with Γ positive in N.
Then there is a derivation of finite height $\vdash_{0}^{k} \Gamma$ where $k \leq B_{\alpha+1}(n)$.

Proof.

- For Ω-rule, assume it holds for the premises, choosing $\Delta=\Gamma_{0}$:

$$
\vdash_{0}^{\alpha_{0}} N(m), \Gamma_{0} \quad \text { and } \quad \vdash_{0}^{h} N(m), \Gamma_{0} \Rightarrow \vdash_{0}^{\alpha_{h}} \Gamma .
$$

- Then for the left premise, $\vdash_{0}^{h} N(m), \Gamma_{0}$ where $h \leq B_{\alpha_{0}+1}(n)$.
- And for the right premise, $\vdash_{0}^{k} \Gamma$ where $k \leq B_{\alpha_{h}+1}(n)$.
- Hence $k \leq B_{\alpha_{h}+1}(n) \leq B_{\alpha}(h+1) \leq B_{\alpha} B_{\alpha}(n)=B_{\alpha+1}(n)$.
$B_{\alpha_{h}+1}(n) \leq B_{\alpha}(\max (n, h+1))$ is a standard property at limits.

"Another" Proof of an Old Theorem

Theorem
Every Σ_{1}^{0} theorem of PA has witnesses bounded by B_{α} for some $\alpha \prec \varepsilon_{0}$. Therefore the provably recursive functions of PA are those computable in B_{α}-bounded resource for some $\alpha \prec \varepsilon_{0}$.

Proof.

- Embed as $\mathrm{ID}_{1}(\mathrm{I} ; \mathrm{O}) \vdash \exists a(N(a) \wedge A(n, a))$ with $x:=n$ input.
- Translate this into $\mathrm{ID}_{1}(\mathrm{I} ; \mathrm{O})^{\infty}$ with proof-height $\omega+k$, cut-rank r.
- Eliminate cuts to obtain proof-height $\alpha=2_{r}(\omega+k) \prec \varepsilon_{0}$.
- Collapse to obtain $\vdash_{0}^{h} \exists a(N(a) \wedge A(n, a))$ with $h=B_{\alpha+1}(n)$.
- Use original Bounding Principle to bound witness a below $B_{h}(n) \leq B_{h}(h)=B_{\omega}(h)=B_{\omega} B_{\alpha+1}(n) \leq B_{\alpha+2}(n)$.

Generalizing to $\mathrm{ID}_{<\omega}$

- Williams' thesis (Leeds 2004) generalizes the foregoing to theories of finitely iterated inductive definitions $\mathrm{ID}_{i}(\mathrm{I} ; \mathrm{O})$. E.g. $\mathrm{ID}_{2}(\mathrm{I} ; \mathrm{O})$ defines Kleene's \mathcal{O} :

$$
a \in \mathcal{O} \leftrightarrow a=0 \vee \forall n \in N(\{a\}(n) \in \mathcal{O}) .
$$

- Higher-level Ω-rules are then needed, and they require ordinals in successively higher number-classes $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{i}$.
- Collapsing (and Bounding) from one level $i+1$ down to the one below is then computed in terms of higher-level extensions of the B_{α} hierarchy: $\varphi_{\alpha}^{(i)}(\beta)$ for $\alpha \in \Omega_{i+1}, \beta \in \Omega_{i}$.
- The ordinal bound of $\mathrm{ID}_{2}(1 ; \mathrm{O})$ is then the Bachmann-Howard:

$$
\tau_{3}=\varphi_{\varepsilon_{\omega_{1}+1}}^{(1)}(\omega)=\varphi_{\varphi_{\omega}^{(2)}\left(\omega_{2}\right)}^{\left(\omega_{1}^{(1)}\right)}(\omega)
$$

Bounding Functions for $\mathrm{ID}_{<\omega}$ and $\Pi_{1}^{1}-\mathrm{CA}_{0}$

Define $\varphi^{(k)}: \Omega_{k+1} \times \Omega_{k} \rightarrow \Omega_{k}$ by:

$$
\varphi_{\alpha}^{(k)}(\beta)= \begin{cases}\beta+1 & \text { if } \alpha=0 \\ \varphi_{\gamma}^{(k)} \circ \varphi_{\gamma}^{(k)}(\beta) & \text { if } \alpha=\gamma+1 \\ \varphi_{\alpha_{\beta}}^{(k)}(\beta) & \text { if } \alpha=\sup \alpha_{\xi}\left(\xi \in \Omega_{k}\right) \\ \sup \varphi_{\alpha_{\xi}}^{(k)}(\beta) & \text { if } \alpha=\sup \alpha_{\xi}\left(\xi \in \Omega_{<k}\right)\end{cases}
$$

Define $\tau=\sup \tau_{i}$ where $\tau_{0}=\omega$ and

$$
\tau_{1}=\varphi_{\omega}^{(1)}(\omega), \tau_{2}=\varphi_{\varphi_{\omega}^{(2)}\left(\omega_{1}\right)}^{(1)}(\omega), \tau_{3}=\varphi_{\varphi_{\varphi_{\varphi}^{(2)}}^{\varphi_{\omega}^{(3)}\left(\omega_{2}\right)}\left(\omega_{1}\right)}^{(1)}(\omega), \ldots
$$

Theorem
The proof-theoretic ordinal of $I D_{i}$ is τ_{i+2}. The provably computable functions of $\Pi_{1}^{1}-C A_{0}$ are those computably-bounded by $\left\{B_{\alpha}\right\}_{\alpha \prec \tau}$.

§3. Independence Results

(i) Kruskal's Theorem with Labels

Theorem (Friedman's Miniaturized Version)
For each constant c there is a number $K(c)$ so large that in every sequence $\left\{T_{j}\right\}_{j<K(c)}$ of finite trees with labels from a given finite set, and such that $\left|T_{j}\right| \leq c \cdot 2^{j}$, there are $j_{1}<j_{2}$ where $T_{j_{1}} \hookrightarrow T_{j_{2}}$. The embedding must preserve infs, labels, and satisfy a certain "gap condition".

Lemma
The (natural) computation sequence for $B_{\tau_{i}}(n)$ satisfies the size-bound above, and is a "bad" sequence, i.e. no embeddings.

Corollary
For a simple c_{n} we must have $B_{\tau}(n)=B_{\tau_{n}}(n)<K\left(c_{n}\right)$ for all n. Therefore K is not provably recursive in $I D_{<\omega}$, nor in $\Pi_{1}^{1}-C A_{0}$.

The Computation Sequence for τ_{n}

By reducing/rewriting τ_{n} according to the defining equations of the φ-functions, we pass through all the ordinals $\prec_{n} \tau_{n}$. Each term is a binary tree with labels $\leq n$, and each one-step-reduction at most doubles the size of the tree. E.g. with $n=2$ the sequence begins:

$$
\begin{gathered}
\tau_{2} \rightarrow \varphi_{\varphi_{2}^{(2)}\left(\omega_{1}\right)}^{(1)}(\omega) \rightarrow \varphi_{\varphi_{1}^{(2)} \varphi_{1}^{(2)}\left(\omega_{1}\right)}^{(1)}(\omega) \rightarrow \varphi_{\varphi_{0}^{(2)} \varphi_{0}^{(2)} \varphi_{1}^{(2)}\left(\omega_{1}\right)}^{(1)}(\omega) \rightarrow \\
\varphi_{\varphi_{0}^{(2)} \varphi_{1}^{(2)}\left(\omega_{1}\right)}^{\left(\varphi_{\varphi_{0}^{(2)} \varphi_{1}^{(2)}\left(\omega_{1}\right)}^{(1)}(\omega)\right) \rightarrow \varphi_{\varphi_{1}^{(2)}\left(\omega_{1}\right)}^{(1)}\left(\varphi_{\varphi_{1}^{(2)}\left(\omega_{1}\right)}^{(1)}\left(\varphi_{\varphi_{0}^{(2)} \varphi_{1}^{(2)}\left(\omega_{1}\right)}^{(1)}(\omega)\right)\right)} \\
\rightarrow \varphi_{\omega_{1}}^{(1)} \varphi_{\omega_{1}}^{(1)} \varphi_{\varphi_{0}^{(2)}\left(\omega_{1}\right)}^{(1)} \varphi_{\varphi_{1}^{(2)}\left(\omega_{1}\right)}^{(1)} \varphi_{\varphi_{0}^{(2)} \varphi_{1}^{(2)}\left(\omega_{1}\right)}^{(1)}(\omega) \rightarrow \varphi_{\varphi_{\omega_{1}}^{(1)}(-)}^{(1)}\left(\varphi_{\omega_{1}}^{(1)}(-)\right) \ldots
\end{gathered}
$$

The length of the entire sequence (down to zero) is therefore $\geq G_{n}\left(\tau_{n}\right)=B_{\tau_{n-1}}(n)$. Furthermore, the sequence is bad - no term is gap-embeddable in any follower.

Recall the Slow Growing Hierarchy G_{α}

Definition

For each countable "tree ordinal" α, define the finite set $\alpha[n]$ of its "n-predecessors" as follows:

$$
0[n]=\phi \quad \alpha+1[n]=\alpha[n] \cup\{\alpha\} \quad \lambda[n]=\lambda_{n}[n] .
$$

Call α "standard" if $\alpha=\bigcup\{\alpha[0] \subset \alpha[1] \subset \alpha[2] \subset \alpha[3] \subset \ldots\}$.
Then the "slow growing hierarchy" is $\left\{G_{\alpha}\right\}$ where $G_{\alpha}(n)=|\alpha[n]|$. With n fixed we often write $G_{n}(\alpha)$ instead of $G_{\alpha}(n)$. Thus

$$
G_{n}(0)=0 ; G_{n}(\alpha+1)=G_{n}(\alpha)+1 ; G_{n}(\lambda)=G_{n}\left(\lambda_{n}\right) .
$$

Theorem

Let $\varphi=\varphi^{(1)}$. Then for "well behaved" $\alpha \in \Omega_{2}, \beta \in \Omega_{1}$,

$$
G_{n}\left(\varphi_{\alpha}(\beta)\right)=B_{G_{n}(\alpha)}\left(G_{n}(\beta)\right)
$$

Proof by induction on α

- If $\alpha=0$,

$$
G_{n}\left(\varphi_{0}(\beta)\right)=G_{n}(\beta+1)=G_{n}(\beta)+1=B_{0}\left(G_{n}(\beta)\right) .
$$

- For $\alpha \mapsto \alpha+1$,

$$
\begin{aligned}
& G_{n}\left(\varphi_{\alpha+1}(\beta)\right)=G_{n}\left(\varphi_{\alpha} \varphi_{\alpha}(\beta)\right)=B_{G_{n}(\alpha)} B_{G_{n}(\alpha)}\left(G_{n}(\beta)\right)= \\
& B_{G_{n}(\alpha)+1}\left(G_{n}(\beta)\right)=B_{G_{n}(\alpha+1)}\left(G_{n}(\beta)\right)
\end{aligned}
$$

- If $\alpha=\sup _{i} \alpha_{i}$,

$$
\begin{aligned}
& G_{n}\left(\varphi_{\alpha}(\beta)\right)=G_{n}\left(\sup _{i} \varphi_{\alpha_{i}}(\beta)\right)=G_{n}\left(\varphi_{\alpha_{n}}(\beta)\right)= \\
& B_{G_{n}\left(\alpha_{n}\right)}\left(G_{n}(\beta)\right)=B_{G_{n}(\alpha)}\left(G_{n}(\beta)\right)
\end{aligned}
$$

- If $\alpha=\sup _{\xi} \alpha_{\xi}$,

$$
\begin{aligned}
& G_{n}\left(\varphi_{\alpha}(\beta)\right)=G_{n}\left(\varphi_{\alpha_{\beta}}(\beta)\right)=B_{G_{n}\left(\alpha_{\beta}\right)}\left(G_{n}(\beta)\right)=^{*} \\
& B_{G_{n}(\alpha)_{G_{n}(\beta)}}\left(G_{n}(\beta)\right)=B_{G_{n}(\alpha)}\left(G_{n}(\beta)\right)
\end{aligned}
$$

Example
With $\tau_{2}=\varphi_{\varphi_{\omega}^{(2)}\left(\omega_{1}\right)}^{(1)}(\omega), G_{n}\left(\tau_{2}\right)=B_{\varphi_{n}^{(1)}(\omega)}(n)=B_{\tau_{1}}(n)$.

(ii) Goodstein-style Independence Results

Tree Ordinals $\alpha \prec \Gamma_{0}$ (joint with Arai \& Weiermann)

A fundamental sequence $\left\{\lambda_{x}\right\}$ is assigned to each $\lambda=\varphi_{\alpha}(\beta)$ in the Veblen hierarchy of normal functions:

Definition

- If $\lambda=\varphi_{0}(\beta+1)=\omega^{\beta+1}$ then $\lambda_{x}=\omega^{\beta} \cdot x$
- If $\lambda=\varphi_{\alpha}(0)$ then $\lambda_{x}=\psi_{\alpha}^{(x)}(1)$
- If $\lambda=\varphi_{\alpha}(\beta+1)$ then $\lambda_{x}=\psi_{\alpha}^{(x)}\left(\varphi_{\alpha}(\beta)+1\right)$
- If $\lambda=\varphi_{\alpha}(\beta)$ and $\operatorname{Lim}(\beta)$ then $\lambda_{x}=\varphi_{\alpha}\left(\beta_{x}\right)$
where

$$
\psi_{\alpha}= \begin{cases}\varphi_{\alpha-1} & \text { if } \operatorname{Succ}(\alpha) \\ \psi_{\alpha_{x}} & \text { if } \operatorname{Lim}(\alpha)\end{cases}
$$

G_{X} Collapses Veblen onto Ackermann

Theorem

$$
G_{x}\left(\varphi_{\alpha}(\beta)\right)=A\left(x ; G_{x}(\alpha), G_{x}(\beta)\right)
$$

where $A(x ; a, b))$ is a parametrized-at-x version of Ackermann:

$$
\begin{array}{ll}
A(x ; 0, b) & =x^{b} \\
A(x ; a+1,0) & =A(x ; a)^{(x)}(1) \\
A(x ; a+1, b+1) & =A(x, a)^{(x)}(A(x ; a+1, b)+1)
\end{array}
$$

This is easily checked by induction on α, for example:

$$
\begin{gathered}
G_{x}\left(\varphi_{\alpha+1}(0)\right)=G_{x}\left(\sup _{x} \varphi_{\alpha}^{(x)}(1)\right)=G_{x}\left(\varphi_{\alpha}^{(x)}(1)\right) \\
=A\left(x ; G_{x}(\alpha)\right)^{(x)}(1)=A\left(x ; G_{x}(\alpha+1), 0\right)
\end{gathered}
$$

And if α is a limit:

$$
G_{x}\left(\varphi_{\alpha}(0)\right)=G_{x}\left(\varphi_{\alpha_{x}}(0)\right)=A\left(x ; G_{x}\left(\alpha_{x}\right), 0\right)=A\left(x ; G_{x}(\alpha), 0\right)
$$

An Independence result for ATR $_{0}$

The x-representation of n is formed as follows:

- Choose n and a fixed base $x \geq 2$. Write $A_{a}(b)$ for $A(x ; a, b)$
- Find greatest a and then greatest b such that $A_{a}(b) \leq n$
- If not equal, find greatest b^{\prime} such that $A_{a-1}\left(b^{\prime}\right) \leq n$
- Continue until $=n$ or $A_{0}\left(b^{\prime \prime}\right)<n<A_{0}\left(b^{\prime \prime}+1\right)$ Then $n=x^{b^{\prime \prime}} \cdot y_{1}+x^{b^{\prime \prime \prime}} \cdot y_{2}+\ldots$ with $y^{\prime} \mathrm{s}<x$.
- Now, hereditarily find x-representations of the a 's and b's
- This x-representation of n is now $G_{x}(\alpha)$ where α is obtained by replacing $A(x ;-,-)$ by $\varphi(-,-)$ throughout.
- The Goodstein process is:

Subtract 1 and update the base to $x+1$. Then repeat.

Termination of Goodstein implies $\forall \alpha \preceq \Gamma_{0} . H_{\alpha} \downarrow$

Note: $G_{x}\left(P_{x}(\alpha)\right)=G_{x}(\alpha) \dot{-} 1$ where $($ Cichon $)$

$$
P_{x}(0)=0, P_{x}(\alpha+1)=\alpha, P_{x}(\lambda)=P_{x}\left(\lambda_{x}\right)
$$

- Start with the x-representation of n
- Then by Collapsing, $n=G_{x}(\alpha)$ where α is a φ-term $\prec \Gamma_{0}$
- Goodstein: $n:=n-1=G_{x}\left(P_{x}(\alpha)\right) ; x:=x+1 ; n:=n_{1}$
- Then $n_{1}=G_{x+1}\left(\alpha_{1}\right)$ where $\alpha_{1}:=P_{x}(\alpha)$
- Repeat: $n_{2}=G_{x+2}\left(\alpha_{2}\right)$ where $\alpha_{2}:=P_{x+1}\left(\alpha_{1}\right)$ etcetera
- Termination at stage y when $P_{y-1} \cdots P_{x+2} P_{x+1} P_{x}(\alpha)=0$
- But the least such y is $H_{\alpha}(x)$

EG. $n=A(x ; A(x ; \cdots A(x ; 1,0) \cdots, 0), 0)$ gives $y=H_{\Gamma_{0}}(x)$.

References

1) W. Buchholz: "An independence result for $\Pi_{1}^{1}-\mathrm{CA}+\mathrm{BI}^{\prime}$. APAL Vol. 33 (1987) 131-155.
2) H. Friedman, N. Robertson \& P. Seymour: "The metamathematics of the graph minor theorem". In S. Simpson (Ed) Logic and Combinatorics, AMS Contemp. Math. Vol. 65 (1987) 229-261.
3) D. Leivant: "Intrinsic theories and computational complexity".

In D. Leivant (Ed) LCC'94, LNCS Vol. 960 (1995) 177-194.
4) G. Ostrin \& S. Wainer: "Elementary arithmetic". APAL Vol.

133 (2005) 275-292.
5) H. Schwichtenberg \& S. Wainer: "Proofs and Computations". ASL Perspectives in Logic, CUP (2012) 465 + xiii.
6) E. Spoors \& S. Wainer: "A hierarchy of ramified theories below PRA". In Berger, Diener, Schuster, Seisenberger (Eds) Logic, Constr., Comp., Ontos Math. Logic Vol. 3 (2012) 475-499.
7) R. Williams \& S. Wainer: "Inductive definitions over a predicative arithmetic". APAL Vol. 136 (2005) 175-188.

