Provable (and Unprovable) Computability

Stan S. Wainer (Leeds University, UK)

Proof and Computation, Fischbachau, Oct. 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Contents

- Subrecursive hierarchies
 Fast Growing F, Slow Growing G, Hardy H.
- Provable recursion
 "Predicative/Tiered" arithmetics, ordinal analysis.

 Independence results For PA, ATR₀, Π¹₁-CA₀.

$\S1$. The Computable Hierarchy

Definition

 ${e}_{s}^{f} =$ the value after s steps in the computation of program e on oracle f.

Definition

The computable jump operator is $f \mapsto f'$ where $f'(n) = \{n_0\}_{n_1}^f$.

Definition

(i) The "sub-elementary" functions are those definable by compositions of +, - and $\sum_{i < k}$. (Polynomially bounded; same as TM computable in linear space.)

(ii) For the "elementary" functions add $\Pi_{i < k}$.

Lemma

For "honest" functions f, f' is (sub)-elementarily inter-reducible with $n \mapsto f^n(n)$.

Fast Growing Hierarchy F and Slow Growing G

Definition

For "tree ordinals" α , with specified fundamental sequences assigned at limits λ , F_{α} is obtained by iterating the jump.

$$F_0(n) = n + 1$$
; $F_{\alpha+1}(n) = F_{\alpha}^n(n)$; $F_{\lambda}(n) = F_{\lambda_n}(n)$.

NB: this is highly sensitive to the choice of fundamental sequences.

Theorem

For arithmetical theories T with "proof-theoretic ordinal" ||T||, the functions provably computable in T are exactly those elementary in the F_{α} for $\alpha \prec ||T||$. (Schwichtenberg-W. around 1970 for PA.)

Definition (Slow Growing Hierarchy) $G_0(n) = 0$; $G_{\alpha+1}(n) = G_{\alpha}(n) + 1$; $G_{\lambda}(n) = G_{\lambda_n}(n)$. Goodstein Sequences and the Hardy Hierarchy H

- Take any number a, for example a = 16.
- Write *a* in "complete base-2", thus $a = 2^{2^2}$.
- Subtract 1, so the base-2 representation is $a 1 = 2^{2+1} + 2^2 + 2^1 + 1$.
- ► Increase the base by 1, to produce the next stage $a_1 = 3^{3+1} + 3^3 + 3^1 + 1 = 112$.
- Continue subtracting 1 and increasing the base:
 a, a₁, a₂, a₃, Example: 16, 112, 1284, 18753, 326594, ...

Theorem (1. Goodstein 1944, 2. Kirby & Paris 1982)

- 1. Every Goodstein sequence eventually terminates in 0.
- 2. But this is not provable in Peano Arithmetic (PA).

Proof – The Hardy Functions

Throughout any Cantor Normal Form $\alpha \prec \varepsilon_0$, replace ω by n. Then we obtain a "complete base-n" representation. Subtract 1 and put ω back: one gets a smaller ordinal $P_n(\alpha)$. Hence part 1 of the theorem, by well-foundedness.

E.G. With $\alpha = \omega^{\omega^{\omega}}$ and n = 2 we get $a = 2^{2^2} = 16$. Then $a - 1 = 2^{2+1} + 2^2 + 2^1 + 1$ and $P_n(\alpha) = \omega^{\omega+1} + \omega^{\omega} + \omega^1 + 1$. Definition (Hardy Hierarchy)

$$H_0(n) = n$$
; $H_{\alpha+1}(n) = H_{\alpha}(n+1)$; $H_{\lambda}(n) = H_{\lambda_n}(n)$.

Theorem (Cichon (1983))

 $H_{\alpha}(n) = n + \text{ the length of a Goodstein sequence on a, n.}$ A proof that all G-sequences terminate says H_{ε_0} is recursive. But $H_{\varepsilon_0} \simeq F_{\varepsilon_0}$ is not provably recursive in PA. Hence part 2. Some Relationships: $F_{\alpha} := H_{\omega^{\alpha}}$, $B_{\alpha} := H_{2^{\alpha}}$

$$\bullet \ H_{\alpha+\beta}=H_{\alpha}\circ H_{\beta}.$$

► So
$$H_{\omega^{\alpha+1}}(n) = H_{\omega^{\alpha} \cdot n}(n) = H_{\omega^{\alpha}}^n(n) = F_{\alpha}^n(n) = F_{\alpha+1}(n).$$

• Similarly if
$$B_{\alpha} = H_{2^{\alpha}}$$
 then

$$B_lpha(n) = \left\{egin{array}{ll} n+1 & ext{if } lpha = 0 \ B_eta(B_eta(n)) & ext{if } lpha = eta+1 \ B_{lpha_n}(n) & ext{if } lpha ext{ is a limit} \end{array}
ight.$$

Theorem

 $\{B_{\alpha} : \alpha \prec ||T||\}$ also classifies provable recursion in arithmetical theories T, i.e. provides bounds for witnesses of provable Σ_1^0 formulas. Roughly, $F_{\alpha} \simeq B_{\omega \cdot \alpha}$.

The Basic Witness-Bounding Principle

Suppose A(n) is a Σ_1 formula: $A(n) \equiv \exists a D(n, a)$. Suppose $A(k) \rightarrow A(n)$ is derivable by Cuts with "height" α :

$$\frac{\vdash^{\beta} A(k) \to A(m) \quad \vdash^{\beta} A(m) \to A(n)}{\vdash^{\alpha} A(k) \to A(n)} \ (\beta \prec \alpha)$$

Then $\models \exists a \leq b.D(k, a)$ implies $\models \exists a \leq B_{\alpha}(b).D(n, a)$. Proof.

Sketch: by induction on α . Since $\beta \prec \alpha$, the premises give

$$\models \exists a \leq b.D(k, a) \text{ implies } \models \exists a \leq B_{\beta}(b).D(m, a)$$
$$\models \exists a \leq b'.D(m, a) \text{ implies } \models \exists a \leq B_{\beta}(b').D(n, a)$$
Put $b' = B_{\beta}(b)$ to obtain $B_{\beta}(B_{\beta}(b)) = B_{\beta+1}(b) \leq B_{\alpha}(b).$ NB. This requires $\beta + 1 \leq_{b} \alpha$ where $\gamma \prec_{b} \gamma + 1$ and $\lambda_{b} \prec_{b} \lambda$.

The Majorization Lemma

Lemma

If $\beta \preceq_b \alpha$ then $B_{\beta}(b) \leq B_{\alpha}(b)$.

Proof.

By transfinite induction on α :.

- If $\alpha = 0$ then trivial.
- If α is a limit and β ≺_b α then β ≤_b α_b.
 By the induction hypothesis,

$$B_{eta}(b) \leq B_{lpha_b}(b) = B_{lpha}(b)$$
.

If α = γ + 1 and β ≺_b α then β ≤_b γ.
 By the induction hypothesis,

$$B_eta(b) \leq B_\gamma(b) \leq B_\gamma B_\gamma(b) = B_lpha(b)$$
 .

§2. Provable Recursion in "Input-Output" Arithmetics Definition (of EA(I;O))

- EA(I;O) has the language of arithmetic, with (quantified, "output") variables a, b, c,
- ▶ In addition there are numerical constants ("inputs") x, y,
- ► There are defining equations for (prim.) recursive functions.
- Basic terms are those built from the constants and variables by successive application of successor and predecessor.
- Only basic terms are allowed as "witnesses" in the logical rules for ∀ and ∃. E.g. A(t) → ∃aA(a) only for basic t.
- ▶ However the equality axioms give $t = a \land A(t) \rightarrow A(a)$, hence $\exists a(t = a) \land A(t) \rightarrow \exists aA(a)$ and $\exists a(t = a) \land \forall aA(a) \rightarrow A(t)$.
- "Predicative" induction axioms, for closed basic terms t(x):

$$A(0) \wedge orall c(A(c)
ightarrow A(c+1))
ightarrow A(t(x))
ightarrow$$

Working in EA(I;O)

Definition

Write $t \downarrow$ for $\exists a(t = a)$.

Note: if t is not basic one cannot pass directly from t = t to $t \downarrow$. But a + 1 is basic, and $t = a \rightarrow t + 1 = a + 1$ so $t \downarrow \rightarrow t + 1 \downarrow$.

Example

- From $b + c \downarrow \rightarrow b + (c + 1) \downarrow$ one gets $b + x \downarrow$ by Σ_1 -induction "up to" x. Then $\forall b(b + x \downarrow)$.
- ► Then $b + x \cdot c \downarrow \rightarrow b + x \cdot (c+1) \downarrow$. Therefore, by another Σ_1 -induction, $b + x \cdot x \downarrow$.
- Hence $\forall b(b + x^2 \downarrow)$, $\forall b(b + x^3 \downarrow)$ etc.
- ► Similarly, $I\Sigma_1(I;O) \vdash \forall b(b + p(\vec{x}) \downarrow)$ for any polynomial p.

• Exponential requires a Π_2 induction on $\forall b(b+2^c\downarrow)$:

Proving $\forall b(b + 2^{\times} \downarrow)$ with Π_2 induction - an argument going back to Gentzen.

Assume

$$\forall b(b+2^{c}\downarrow).$$

Then, for arbitrary *b*, we have, by the assumption:

$$b+2^{c}\downarrow$$
 and again $(b+2^{c})+2^{c}\downarrow$

Therefore

$$\forall b(b+2^{c}\downarrow) \rightarrow \forall b(b+2^{c+1}\downarrow)$$

and $\forall b(b+2^0\downarrow)$ because b+1 is basic.

Therefore
$$\Pi_2(I;O) \vdash \forall b(b + 2^x \downarrow)$$
.
Similarly $\Pi_2(I;O) \vdash \forall b(b + 2^{p(\vec{x})} \downarrow)$.
Then $\Pi_3(I;O) \vdash \forall b(b + 2^{2^x} \downarrow)$ etc.

Bounding Σ_1 -Inductions

Theorem

Witnesses for Σ_1 theorems $A(n) \equiv \exists a D(n, a)$, proved by Σ_1 -inductions up to x := n, are bounded by B_h where $h = \log n$.

Proof.

Sketch: first, any induction up to x := n can be unravelled, inside EA(I;O), to a binary tree of Cuts of height $h = \log n$: For any $c, \vdash A(c) \rightarrow A(c + 2^h)$ with cut-height h.

$$\frac{\mathit{A}(c) \rightarrow \mathit{A}(c+2^{h}) \quad \mathit{A}(c+2^{h}) \rightarrow \mathit{A}(c+2^{h}+2^{h})}{\mathit{A}(c) \rightarrow \mathit{A}(c+2^{h+1})}$$

Therefore $\vdash^h A(0) \to A(n)$ with cut-height $h = \log n$. The Witness-Bounding Principle then gives $\exists a \leq B_h(b).D(n,a)$ where b is the witness for A(0).

Provably Computable Functions in EA(I;O)

Definition

A provably computable/recursive function of EA(I;O) is one which is Σ_1^0 -definable and provably total on inputs, i.e. $\vdash f(\vec{x}) \downarrow$.

Theorem (Leivant 1995, Ostrin-W. 2005)

The provable functions of $I\Sigma_1(I;O)$ are sub-elementary. Equiv: TM-computable in linear space, or Grzegorczyk's \mathcal{E}^2 .

The provable functions of $I\Pi_2(I;O)$ are those computable in exp-time $2^{p(n)}$. Etcetera, up the Ritchie-Schwichtenberg hierarchy for \mathcal{E}^3 .

(See Leivant's Ramified Inductions (1995) where such characterizations were first obtained. Also Nelson's Predicative Arithmetic (1986). Spoors (Ph.D. 2010) develops hierarchies of ramified extensions of EA(I;O) classifying primitive recursion.)

Proof

- Fix x := n in $\vdash f(x) \downarrow$ say with d nested inductions.
- Partial cut-elimination yields a "free-cut-free" proof, so after unravelling, only cuts on the induction formulas remain.
- ► The height of the proof-tree will be (of the order of) $h = \log n \cdot d$.
- For IΣ₁(I;O) the Bounding Principle applies immediately to give complexity bounds

$$B_{\log n \cdot d}(b) = b + 2^{\log n \cdot d} = b + n^d$$
 for some constant b.

 For IΠ₂ one must first reduce all cuts to Σ₁ form by Gentzen cut-reduction, which further increases the height by an exponential, so in that case the complexity bounds will be

$$B_{2^{\log n \cdot d}}(b) = B_{n^d}(b) = b + 2^{n^d}.$$

PA – by adding an Inductive Definition

Definition

 $ID_1(I;O)$ is obtained from EA(I;O) by adding, for each uniterated positive inductive form F(X, a), a new predicate P, and Closure and Least-Fixed-Point axioms:

$$\forall a(F(P,a) \rightarrow P(a))$$

$$orall a(F(A,a)
ightarrow A(a))
ightarrow orall a(P(a)
ightarrow A(a))$$

for each formula A.

Example

Associate the predicate N with the inductive form:

$$F(X,a) :\equiv a = 0 \lor \exists b(X(b) \land a = b + 1).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Embedding Peano Arithmetic

Theorem If $PA \vdash A$ then $ID_1(I;O) \vdash A^N$.

Since the LFP axiom gives:

 $A(0) \wedge orall a(A(a) \rightarrow A(a+1)) \rightarrow \ orall a(N(a) \rightarrow A(a)).$

- Hence Peano Arithmetic is interpreted in ID₁(I;O) by relativizing quantifiers to N.
- Note that N(0) ∧ ∀a(N(a) → N(a + 1)) by the Closure Axiom, so by "predicative" induction, ID₁(I;O)⊢ N(x).
- ▶ Hence if *f* is provably recursive in PA then, by the embedding,

$$ID_1(I; O) \vdash \forall a(N(a) \rightarrow \exists b(N(b) \land f(a) = b))$$

and therefore, $ID_1(I; O) \vdash f(x) \downarrow \land N(f(x))$.

Unravelling LFP-Axiom by Buchholz' Ω -Rule

- We are still working in the I/O context, so can fix x̄ := n̄ and unravel inductions into iterated Cuts as before.
- However the resulting ID₁(I;O)-derivations will be further complicated by the presence of Least-Fixed-Point axioms.
- These must be "unravelled" as well, by the Ω-Rule.

The infinitary system $ID_1(I;O)^{\infty}$ has Tait-style sequents $n : N \vdash^{\alpha} \Gamma$ and rules (where $\beta \prec_n \alpha$) :

$$(\exists) \frac{k \leq B_{\beta}(n) \quad n : N \vdash^{\beta} \Gamma, A(k)}{n : N \vdash^{\alpha} \Gamma, \exists a A(a)} \qquad (\forall) \frac{n : N \vdash^{\beta} \Gamma, A(i) \text{ for all } i}{n : N \vdash^{\alpha} \Gamma, \forall a A(a)}$$
$$(\Omega) \frac{\vdash^{\lambda_{0}} N(m), \Gamma_{0} \qquad \vdash^{h}_{0} N(m), \Delta \implies \vdash^{\lambda_{h}} \Gamma_{1}, \Delta}{\vdash^{\lambda} \Gamma_{0}, \Gamma_{1}}$$

where Δ denotes an arbitrary set of "positive-in-N" formulas.

Ω Proves LFP-Axiom

The basic idea.

- ► For the left-hand premise of the Ω -rule choose $\vdash^0 N(m), \neg N(m)$.
- ► For the right-hand premise, first assume $\vdash_0^h N(m), \Delta$.
- ► Each step of this (direct) cut-free proof can be mimicked to prove A(m) if we assume that A is "inductive".
- ► Thus $\vdash^{k+h} \neg \forall a(F(A, a) \rightarrow A(a)), A(m), \Delta$ where k = |A|.
- The standard fundamental sequence for ω gives $\omega_h = h$.
- ► Ω -rule gives $\vdash^{k+\omega} \neg \forall a(F(A, a) \rightarrow A(a)), \neg N(m), A(m)$ and this holds for every number m.
- ▶ Therefore by \lor and the infinitary \forall -rule obtain LFP-Ax:

$$\vdash^{k+\omega+3} \neg orall a(F(A,a)
ightarrow A(a)) \lor orall a(\neg N(a) \lor A(a))$$
 .

(日) (同) (三) (三) (三) (○) (○)

Cut Elimination in $ID_1(I;O)^{\infty}$

As usual, Gentzen-style cut-reduction raises height exponentially. It cannot be done directly in PA because of the induction axioms.

Lemma (Cut-reduction)

(i) If $\vdash^{\gamma} \Gamma$, $\forall a \neg A(a)$ and $\vdash^{\alpha} \Gamma$, $\exists aA(a)$ both with cut-rank r, and |A| = r then $\vdash^{\gamma+\alpha} \Gamma$ with cut-rank r. (ii) Hence if $\vdash^{\alpha}_{r+1} \Gamma$ then $\vdash^{2^{\alpha}}_{r} \Gamma$.

Proof.

(i) By induction on α . If the second premise comes from $\vdash^{\beta} \Gamma, \exists a A(a), A(t)$ then $\vdash^{\gamma+\beta} \Gamma, A(t)$ by the induction hypothesis. Inverting the first premise gives $\vdash^{\gamma} \Gamma, \neg A(t)$. Then $\vdash^{\gamma+\alpha} \Gamma$ by a cut on A(t), still with rank r.

(ii) By another induction on α : at a cut on $C = \exists aA(a)$ of size r + 1 apply the induction hypothesis to both premises. Then apply (i) with $\gamma = \beta = 2^{\alpha'}$ where $\alpha' < \alpha$. Clearly $\gamma + \beta \leq 2^{\alpha}$.

Collapsing in $ID_1(I;O)^{\infty}$

Lemma (Collapsing)

Suppose, for fixed input x := n > 1, we have a cut-free derivation $\vdash_0^{\alpha} \Gamma$ with Γ positive in N. Then there is a derivation of finite height $\vdash_0^k \Gamma$ where $k \le B_{\alpha+1}(n)$.

Proof.

For Ω -rule, assume it holds for the premises, choosing $\Delta = \Gamma_0$:

 $\vdash_0^{\alpha_0} N(m), \Gamma_0 \text{ and } \vdash_0^h N(m), \Gamma_0 \Rightarrow \vdash_0^{\alpha_h} \Gamma.$

- ► Then for the left premise, $\vdash_0^h N(m)$, Γ_0 where $h \leq B_{\alpha_0+1}(n)$.
- And for the right premise, $\vdash_0^k \Gamma$ where $k \leq B_{\alpha_h+1}(n)$.
- ► Hence $k \leq B_{\alpha_h+1}(n) \leq B_{\alpha}(h+1) \leq B_{\alpha}B_{\alpha}(n) = B_{\alpha+1}(n).$

 $B_{lpha_h+1}(n) \leq B_lpha(\max(n,h+1))$ is a standard property at limits.

"Another" Proof of an Old Theorem

Theorem

Every Σ_1^0 theorem of PA has witnesses bounded by B_α for some $\alpha \prec \varepsilon_0$. Therefore the provably recursive functions of PA are those computable in B_α -bounded resource for some $\alpha \prec \varepsilon_0$.

Proof.

- Embed as $ID_1(I;O) \vdash \exists a(N(a) \land A(n,a))$ with x := n input.
- ► Translate this into ID₁(I;O)[∞] with proof-height ω + k, cut-rank r.
- Eliminate cuts to obtain proof-height $\alpha = 2_r(\omega + k) \prec \varepsilon_0$.
- Collapse to obtain $\vdash_0^h \exists a(N(a) \land A(n,a))$ with $h = B_{\alpha+1}(n)$.

▶ Use original Bounding Principle to bound witness *a* below $B_h(n) \le B_h(h) = B_\omega(h) = B_\omega B_{\alpha+1}(n) \le B_{\alpha+2}(n)$.

Generalizing to $ID_{<\omega}$

 Williams' thesis (Leeds 2004) generalizes the foregoing to theories of finitely iterated inductive definitions ID_i(I;O).
 E.g. ID₂(I;O) defines Kleene's O:

 $a \in \mathcal{O} \iff a = 0 \lor \forall n \in N(\{a\}(n) \in \mathcal{O}).$

- Higher-level Ω-rules are then needed, and they require ordinals in successively higher number-classes Ω₁, Ω₂, ..., Ω_i.
- Collapsing (and Bounding) from one level *i* + 1 down to the one below is then computed in terms of higher-level extensions of the B_α hierarchy: φ⁽ⁱ⁾_α(β) for α ∈ Ω_{i+1}, β ∈ Ω_i.
- The ordinal bound of ID₂(I;O) is then the Bachmann-Howard:

$$\tau_{3} = \varphi_{\varepsilon_{\omega_{1}+1}}^{(1)}(\omega) = \varphi_{\varepsilon_{\omega_{1}+1}}^{(1)}(\omega) = \varphi_{\varphi_{\omega}}^{(1)}(\omega_{2})(\omega_{1})(\omega)$$

Bounding Functions for $ID_{<\omega}$ and Π_1^1 -CA₀

Define
$$\varphi^{(k)} : \Omega_{k+1} \times \Omega_k \to \Omega_k$$
 by:

$$\varphi^{(k)}_{\alpha}(\beta) = \begin{cases} \beta + 1 & \text{if } \alpha = 0 \\ \varphi^{(k)}_{\gamma} \circ \varphi^{(k)}_{\gamma}(\beta) & \text{if } \alpha = \gamma + 1 \\ \varphi^{(k)}_{\alpha_{\beta}}(\beta) & \text{if } \alpha = \sup \alpha_{\xi} \ (\xi \in \Omega_k) \\ \sup \varphi^{(k)}_{\alpha_{\xi}}(\beta) & \text{if } \alpha = \sup \alpha_{\xi} \ (\xi \in \Omega_{< k}) \end{cases}$$

Define $\tau = \sup \tau_i$ where $\tau_0 = \omega$ and

$$\tau_{1} = \varphi_{\omega}^{(1)}(\omega) , \ \tau_{2} = \varphi_{\varphi_{\omega}^{(2)}(\omega_{1})}^{(1)}(\omega) , \ \tau_{3} = \varphi_{\varphi_{\omega}^{(2)}(\omega_{2})}^{(1)}(\omega) , \ \dots$$

Theorem

The proof-theoretic ordinal of ID_i is τ_{i+2} . The provably computable functions of Π_1^1 -CA₀ are those computably-bounded by $\{B_\alpha\}_{\alpha \prec \tau}$.

§3. Independence Results(i) Kruskal's Theorem with Labels

Theorem (Friedman's Miniaturized Version)

For each constant c there is a number K(c) so large that in every sequence $\{T_j\}_{j < K(c)}$ of finite trees with labels from a given finite set, and such that $|T_j| \le c \cdot 2^j$, there are $j_1 < j_2$ where $T_{j_1} \hookrightarrow T_{j_2}$. The embedding must preserve infs, labels, and satisfy a certain "gap condition".

Lemma

The (natural) computation sequence for $B_{\tau_i}(n)$ satisfies the size-bound above, and is a "bad" sequence, i.e. no embeddings.

Corollary

For a simple c_n we must have $B_{\tau}(n) = B_{\tau_n}(n) < K(c_n)$ for all n. Therefore K is not provably recursive in $ID_{<\omega}$, nor in Π_1^1 - CA_0 .

The Computation Sequence for τ_n

By reducing/rewriting τ_n according to the defining equations of the φ -functions, we pass through all the ordinals $\prec_n \tau_n$. Each term is a binary tree with labels $\leq n$, and each one-step-reduction at most doubles the size of the tree. E.g. with n = 2 the sequence begins:

$$\tau_{2} \to \varphi_{\varphi_{2}^{(1)}(\omega_{1})}^{(1)}(\omega) \to \varphi_{\varphi_{1}^{(2)}\varphi_{1}^{(2)}(\omega_{1})}^{(1)}(\omega) \to \varphi_{\varphi_{0}^{(2)}\varphi_{0}^{(2)}\varphi_{0}^{(2)}(\omega_{1})}^{(1)}(\omega) \to \varphi_{\varphi_{0}^{(2)}\varphi_{1}^{(2)}(\omega_{1})}^{(1)}(\varphi_{\varphi_{0}^{(2)}\varphi_{1}^{(2)}(\omega_{1})}^{(1)}(\omega)) \to \varphi_{\varphi_{1}^{(1)}(\omega_{1})}^{(1)}(\varphi_{\varphi_{1}^{(2)}(\omega_{1})}^{(1)}(\varphi_{\varphi_{0}^{(2)}\varphi_{1}^{(2)}(\omega_{1})}^{(1)}(\omega)))$$
$$\to \varphi_{\omega_{1}}^{(1)}\varphi_{\omega_{1}}^{(1)}\varphi_{\varphi_{0}^{(2)}(\omega_{1})}^{(1)}\varphi_{\varphi_{1}^{(2)}(\omega_{1})}^{(1)}\varphi_{\varphi_{0}^{(2)}\varphi_{1}^{(2)}(\omega_{1})}^{(1)}(\omega) \to \varphi_{\varphi_{0}^{(1)}(-)}^{(1)}(\varphi_{\omega_{1}}^{(1)}(-))\dots$$

The length of the entire sequence (down to zero) is therefore $\geq G_n(\tau_n) = B_{\tau_{n-1}}(n)$. Furthermore, the sequence is bad - no term is gap-embeddable in any follower.

Recall the Slow Growing Hierarchy G_{α}

Definition

For each countable "tree ordinal" α , define the finite set $\alpha[n]$ of its "n-predecessors" as follows:

$$0[n] = \phi \quad \alpha + 1[n] = \alpha[n] \cup \{\alpha\} \quad \lambda[n] = \lambda_n[n].$$

 $\mathsf{Call} \ \alpha \ \text{``standard''} \ \mathsf{if} \ \alpha = \bigcup \{ \alpha \, [\mathsf{0}] \subset \alpha \, [\mathsf{1}] \subset \alpha \, [\mathsf{2}] \subset \alpha \, [\mathsf{3}] \subset \ldots \}.$

Then the "slow growing hierarchy" is $\{G_{\alpha}\}$ where $G_{\alpha}(n) = |\alpha[n]|$. With *n* fixed we often write $G_n(\alpha)$ instead of $G_{\alpha}(n)$. Thus

$$G_n(0) = 0$$
; $G_n(\alpha + 1) = G_n(\alpha) + 1$; $G_n(\lambda) = G_n(\lambda_n)$.

Theorem

Let $\varphi = \varphi^{(1)}$. Then for "well behaved" $\alpha \in \Omega_2, \beta \in \Omega_1$,

$$G_n(\varphi_\alpha(\beta)) = B_{G_n(\alpha)}(G_n(\beta))$$
.

Proof by induction on $\boldsymbol{\alpha}$

► If
$$\alpha = 0$$
,
 $G_n(\varphi_0(\beta)) = G_n(\beta + 1) = G_n(\beta) + 1 = B_0(G_n(\beta))$.
► For $\alpha \mapsto \alpha + 1$,
 $G_n(\varphi_{\alpha+1}(\beta)) = G_n(\varphi_\alpha \varphi_\alpha(\beta)) = B_{G_n(\alpha)}B_{G_n(\alpha)}(G_n(\beta)) = B_{G_n(\alpha)+1}(G_n(\beta)) = B_{G_n(\alpha+1)}(G_n(\beta))$.

• If
$$\alpha = \sup_i \alpha_i$$
,
 $G_n(\varphi_\alpha(\beta)) = G_n(\sup_i \varphi_{\alpha_i}(\beta)) = G_n(\varphi_{\alpha_n}(\beta)) = B_{G_n(\alpha_n)}(G_n(\beta)) = B_{G_n(\alpha)}(G_n(\beta)).$

• If
$$\alpha = \sup_{\xi} \alpha_{\xi}$$
,
 $G_n(\varphi_{\alpha}(\beta)) = G_n(\varphi_{\alpha_{\beta}}(\beta)) = B_{G_n(\alpha_{\beta})}(G_n(\beta)) =^*$
 $B_{G_n(\alpha)_{G_n(\beta)}}(G_n(\beta)) = B_{G_n(\alpha)}(G_n(\beta)).$

Example

With
$$\tau_2 = \varphi_{\varphi_{\omega}^{(2)}(\omega_1)}^{(1)}(\omega)$$
, $G_n(\tau_2) = B_{\varphi_n^{(1)}(\omega)}(n) = B_{\tau_1}(n)$.

(ii) Goodstein-style Independence Results Tree Ordinals $\alpha \prec \Gamma_0$ (joint with Arai & Weiermann)

A fundamental sequence $\{\lambda_x\}$ is assigned to each $\lambda = \varphi_{\alpha}(\beta)$ in the Veblen hierarchy of normal functions:

Definition

where

$$\psi_{\alpha} = \begin{cases} \varphi_{\alpha-1} & \text{if } \mathsf{Succ}(\alpha) \\ \psi_{\alpha_{\mathsf{X}}} & \text{if } \mathsf{Lim}(\alpha). \end{cases}$$

G_{x} Collapses Veblen onto Ackermann Theorem

$$G_x(\varphi_{\alpha}(\beta)) = A(x; G_x(\alpha), G_x(\beta))$$

where A(x; a, b) is a parametrized-at-x version of Ackermann:

$$\begin{array}{lll} A(x;0,b) & = x^b \\ A(x;a+1,0) & = A(x;a)^{(x)}(1) \\ A(x;a+1,b+1) & = A(x,a)^{(x)}(A(x;a+1,b)+1) \, . \end{array}$$

This is easily checked by induction on α , for example:

$$G_{x}(\varphi_{\alpha+1}(0)) = G_{x}(\sup_{x} \varphi_{\alpha}^{(x)}(1)) = G_{x}(\varphi_{\alpha}^{(x)}(1))$$

= $A(x; G_{x}(\alpha))^{(x)}(1) = A(x; G_{x}(\alpha+1), 0).$

And if α is a limit:

$$G_{x}(\varphi_{\alpha}(0)) = G_{x}(\varphi_{\alpha_{x}}(0)) = A(x; G_{x}(\alpha_{x}), 0) = A(x; G_{x}(\alpha), 0).$$

An Independence result for ATR_0

The *x*-representation of *n* is formed as follows:

- ► Choose *n* and a fixed base x ≥ 2. Write A_a(b) for A(x; a, b)
- Find greatest *a* and then greatest *b* such that $A_a(b) \le n$
- ▶ If not equal, find greatest b' such that $A_{a-1}(b') \le n$
- ► Continue until = n or $A_0(b'') < n < A_0(b'' + 1)$ Then $n = x^{b''} \cdot y_1 + x^{b'''} \cdot y_2 + ...$ with y's < x.
- Now, hereditarily find x-representations of the a's and b's
- ► This x-representation of n is now G_x(α) where α is obtained by replacing A(x; -, -) by φ(-, -) throughout.
- The Goodstein process is: Subtract 1 and update the base to x + 1. Then repeat.

Termination of Goodstein implies $\forall \alpha \preceq \Gamma_0. H_{\alpha} \downarrow$

Note:
$$G_x(P_x(\alpha)) = G_x(\alpha) - 1$$
 where (Cichon)
 $P_x(0) = 0, P_x(\alpha + 1) = \alpha, P_x(\lambda) = P_x(\lambda_x).$

- Start with the x-representation of n
- ▶ Then by Collapsing, $n = G_x(\alpha)$ where α is a φ -term $\prec \Gamma_0$
- Goodstein: $n := n 1 = G_x(P_x(\alpha))$; x := x + 1; $n := n_1$
- Then $n_1 = G_{x+1}(\alpha_1)$ where $\alpha_1 := P_x(\alpha)$
- Repeat: $n_2 = G_{x+2}(\alpha_2)$ where $\alpha_2 := P_{x+1}(\alpha_1)$ etcetera
- ▶ Termination at stage y when $P_{y-1} \cdots P_{x+2} P_{x+1} P_x(\alpha) = 0$
- But the least such y is $H_{\alpha}(x)$

EG.
$$n = A(x; A(x; \dots A(x; 1, 0) \dots, 0), 0)$$
 gives $y = H_{\Gamma_0}(x)$.

References

1) W. Buchholz: "An independence result for Π_1^1 -CA+BI". APAL Vol. 33 (1987) 131-155.

2) **H. Friedman, N. Robertson & P. Seymour**: "The metamathematics of the graph minor theorem". In S. Simpson (Ed) Logic and Combinatorics, AMS Contemp. Math. Vol. 65 (1987) 229-261.

3) **D. Leivant**: "Intrinsic theories and computational complexity". In D. Leivant (Ed) LCC'94, LNCS Vol. 960 (1995) 177-194.

4) **G. Ostrin & S. Wainer**: "Elementary arithmetic". APAL Vol. 133 (2005) 275-292.

5) H. Schwichtenberg & S. Wainer: "Proofs and Computations". ASL Perspectives in Logic, CUP (2012) 465 + xiii.
6) E. Spoors & S. Wainer: "A hierarchy of ramified theories below PRA". In Berger, Diener, Schuster, Seisenberger (Eds) Logic, Constr., Comp., Ontos Math. Logic Vol. 3 (2012) 475-499.
7) R. Williams & S. Wainer: "Inductive definitions over a predicative arithmetic". APAL Vol. 136 (2005) 175-188.