
LATTICES IN LIE GROUPS

T. N. VENKATARAMANA

Abstract. These lectures are concerned with Construction and
Classification of Lattices in Lie Groups.

1. Introduction

In this exposition, we consider construction and classification of lat-
tices (i.e. discrete subgroups with finite Co-volume) in (connected) Lie
Groups.

In Section 2, we will collect some general results on lattices in locally
compact groups.

The first main theorem is that the discrete subgroup SLn(Z) is a
lattice in SLn(R). This will be proved in section 4.

We then prove the Mahler criterion, which will enable us to prove
the co-compactness of many discrete groups.

In sections 6 and 7, we specialise to the case G = SO(n, 1) and
construct compact hyperbolic manifolds whose fundamental groups are
arithmetic subgroups of SO(n, 1). .

2. Lattices in Locally Compact Groups

2.1. Haar Measure on groups and the Modular Function. Fix a
locally compact Hausdorff topological groupG. A left invariant Haar
measure on G, is by definition a regular Borel measure µ on G such
that for all g ∈ G and all Borel sets E in G, we have µ(gE) = µ(E).
We can similarly define a right invariant Haar measure.

We recall the fundamental theorem on Haar measures.

Theorem 1. Every locally compact Hausdorff topological group G has
a left invariant Haar measure.

A left invariant Haar measure is unique up to scalar multiples.
A similar result holds for right invariant Haar measures.

1
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If µ is a left invariant Haar measure on G and g ∈ G, then the
function E 7→ µ(Eg) on the algebra of Borel sets gives another left
invariant Haar measure on G. By the uniqueness part of Theorem 1,
there exists a constant ∆G(g) such that for all Borel sets E ⊂ G, we
have

µ(Eg) = ∆G(g)µ(E).

The function ∆G : G → R>0 is easily seen to be a homomorphism
from G into the multiplicative group R>0 of positive real numbers.

Definition 1. If G is a locally compact Hausdorff topological group
and ∆G is the homomorphism as in the preceding, the function ∆G is
called the modular function of G.

A locally compact Hausdorff topological group is said to be uni-
modular if the modular function ∆G is identically 1. In that case, a
left invariant Haar measure is also a right invariant Haar measure as
well.

Example 1. The additive group Rn has left and right invariant Haar
measure, namely the Lebesgue measure

dµ = dx1dx2 · · · dxn.

In particular, the group Rn is unimodular.

Example 2. If Γ is a discrete group with the discrete topology, then
the counting measure µ is defined to be the measure which assigns
to any set (note that in a discrete space, any set is a Borel set), its
cardinality. Then µ is a left and right invariant Haar measure, and Γ
is unimodular.

Example 3. Let G = {g =

(
a b
0 a−1

)
∈ GL2(R) : a 6= 0, b ∈ R}.

Then, dµ(

(
a b
0 a−1

)
= da
|a|db

1
|a| is a left invariant Haar measure on G.

The modular function is given by

∆G(

(
a b
0 a−1

)
) =

1

| a |2
,

and hence G is not unimodular.

Example 4. If µ is a left invariant Haar measure on G and ∆G is

the modular function, then dν(x) = dµ(x)
∆G(x)

is a right invariant Haar

measure on G.
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2.2. Haar measures on quotients. If G is as in the preceding sub-
section and H ⊂ G is a closed subgroup, then the quotient space G/H
of left cosets of H in G is a topological space under the quotient topol-
ogy, which declares a set in G/H to be open if and only if its preimage
under the quotient map G → G/H is open. Then it is easy to see
that G/H is a locally compact Hausdorff space. Further, G acts by left
translations on G/H and the action is continuous.

Let ∆G and ∆H be the modular functions of G and H respectively.
We will say that a regular Borel measure µ on the quotient G/H is

a left invariant Haar measure if for all Borel sets E ⊂ G/H and all
g ∈ G we have µ(gE) = µ(E).

We prove an analogue of Theorem 1 for quotient spaces G/H. Note
that uniqueness still holds, but not the existence of a left invariant
measure.

Theorem 2. A left invariant Haar measure on G/H is unique up to
scalar multiples.

The quotient G/H carries a left invariant Haar measure if and only
if we have

∆G(h) = ∆H(h),

for all h ∈ H.

Definition 2. If G is a locally compact group and Γ is a discrete
subgroup such that the quotient G/Γ carries a finite left G-invariant
Haar measure, then we say that Γ is a lattice in G.

Corollary 1. If a locally compact topological group G admits a lattice,
then G is unimodular.

Proof. Suppose that G contains a lattice Γ. Being discrete, Γ is closed.
By Theorem 2, the modular function of G and that of Γ coincide on
Γ. From Example 2 it follows that the modular function of Γ is trivial,
hence ∆G(γ) = 1 for all γ ∈ Γ.

We therefore get a map ∆G : G/Γ→ R>0 which is a homomorphism
on G and is trivial on Γ. The image ∆∗G(µ) of the Haar measure µ
on G/Γ is then a finite measure on R>0. This measure is invariant
under the image of G under the map ∆G. However, there are no finite
measures on R>0 which are invariant under a non-trivial subgroup.
Hence, the map ∆G is identically 1 and G is unimodular. �
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For example, the group G = {g =

(
a b
0 a−1

)
: a 6= 0, b ∈ R} of

Example 3 is not unimodular and hence does not contain lattices.

Quotients do not always have invariant Haar measures. As an ex-

ample, consider G = SL2(R) and H = B = {g =

(
a b
0 a−1

)
: a 6=

0 b ∈ R}. Then, it is easy to see that G/B does not have a G-invariant
measure.

2.3. Haar measures on Lie Groups. Suppose that G is a connected
Lie group. Fix a metric at the tangent space at identity. By left trans-
lating this metric everywhere, we get a (left) G-invariant metric on G.
Fix an orthonormal basis w1, w2, · · · , wn of the cotangent space of G
at identity. The left translate of wi gives a left invariant differential
one form ωi for each i. Clearly, ωi form an orthonormal basis of the
cotangent space at every point of G.

Therefore, the wedge product ω1∧ω2∧ · · ·∧ωn gives a nowhere van-
ishing top degree differential form, denoted ω on G and G is orientable.

Given a compactly supported smooth function f on G, the form
fω can be integrated on G and gives a positive linear functional on
the dense space C∞c (G), and by the Riesz representation theorem, this
gives a Haar measure on G.

Thus, a Haar measure on a connected G can be easily constructed.
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3. Lattices in Rn

In this section, we consider the simple case of lattices on the real
vector space Rn. The results established in this section will be helpful
in proving the Minkowski reduction of the next section.

We first note that Rn is the real span of the standard basis vectors
e1, e2, ·, en. The integral span of e1, e2, · · · , en is the subgroup Zn of
n-tuples which have integral co-ordinates and is a discrete subgroup of
Rn. Clearly, Rn/Zn is the n-fold product of the circle group R/Z with
itself. We will now show that every lattice in Rn is the translate of Zn

by a non-singular linear transformation.

Proposition 3. Suppose that L ⊂ Rn is a lattice. Then there exists
a basis v1, v2, · · · vn of Rn such that L is the integral linear span of
v1, v2, · · · , vn.

Proof. Suppose L ⊂ Rn is a lattice. Then the R-linear span of L is vec-
tor subspace W , and the vector space Rn/W has finite volume, which
means that Rn/W = {0}, i.e. W = Rn. Consequently, L contains a
basis, call it w1, w2, · · · , wn of Rn. The integral linear span L′ of the
vectors w1, · · · , wn is contained in L and is already a lattice in Rn.
Therefore, L/L′ is finite, and hence L is finitely generated and torsion-
free.

Therefore, L is a free abelian group on k generators. Since L′ has
finite index in L and is free on n generators, it follows that k = n. The
linear span of L is Rn. Therefore, L is the integral linear span of a
basis of Rn.

�

Lemma 4. Let L ⊂ Rn be a lattice in v1 ∈ L a non-zero vector of
smallest norm. Let v ∈ L \ Zv1 be any vector and v′ the projection of
v to the orthogonal complement v⊥1 . Then, we have the estimate

|| v′ || ≥
√

3

2
|| v1 || .

Proof. Write v = v′ + λv1 for some scalar λ. Definite the integer a
by the property that µ = λ − a lies between −1

2
and +1

2
. Then the

projection of w = v − av1 to the orthogonal complement v⊥1 is still v′

and w lies in the lattice L.
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The norm of v−av1 is bounded from below by the norm of v1 since v1

has the smallest norm amongst nonzero elements of the lattice. There-
fore, we get

|| v1 ||2 ≤|| w ||2=|| v′ ||2 + | µ |2|| v1 ||2 ≤|| v′ ||2 +
1

4
|| v1 ||2 .

Therefore,

|| v′ ||2≥ 3

4
|| v1 ||2 .

This gives the estimate of the Lemma. �

Lemma 5. If L is a lattice, then there exists an element v1, say, of
smallest norm. Let v⊥1 denote the orthogonal complement to v1 in Rn

with respect to the standard inner product on Rn. Then the projection
of L into v⊥1 is a lattice.

Proof. In view of the proposition, it is enough to show that the pro-
jection s discrete. By the preceding Lemma, if v is an element of the
lattice that is not an integral multiple of v1, then the norm of the pro-
jection of v to the orthogonal complement of v1 is bounded away from
zero. Therefore, the projection to v⊥1 is discrete. �

Lemma 6. Given a lattice L ⊂ Rn, there exists an integral basis
v1, v2, · · · , vn of L such that if v′i denotes the orthogonal projection of
the i-th basis vector vi to the orthogonal complement of the span of the
basis vectors v1, v2, · · · , vi−1, then

| v′i |2≥
3

4
| vi−1 |2 .

Proof. Given a lattice L in Rn, fix a non-zero element v1 ∈ L of the
smallest norm. If v1 = λw is an integral multiple of another element
w ∈ L, then the minimality of the norm of v1 shows that λ has norm
1, whence λ = ±1.

Since the lattice L is isomorphic to Zn, we conclude that v1 is part
of an integral basis of L. From Lemma 4, we know that the projection
of L to the orthogonal complement v⊥1 is a lattice L′ and it has an
integral basis v′2, · · · , v′n. Fix elements v2, · · · , vn ∈ L mapping onto
v′2, · · · , v′n and satisfying the inequalities of the Lemma (for i ≥ 3)
by the induction assumption (n replaced by n − 1). Then it is clear
that v1, v2, · · · , vn form a basis of L: we have a short exact sequence
0 → Zv1 → L → L′ → 0 of free Z modules. Hence L is the integral
span of v1, v2, · · · , vn. The inequality of the Lemma for i = 2 follows
from Lemma 4. �
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4. Minkowski Reduction and SLn(R)

We view GLn(R) as ordered bases of Rn by identifying a matrix g ∈
GLn(R) with its columns v1, v2, · · · , vn. Given an element h ∈ GLn(R)
and a basis v1, · · · , vn, we get the new basis h(v1), · · · , h(vn). Under
our identification, this new basis corresponds to the matrix hg. Thus,
this identification of GLn with bases of Rn, respects the SLn(R)-action
on both sides.

4.1. The Gram -Schmidt Process. The following Lemma is a sim-
ple restatement of the Gram-Schmidt orthonormalisation process.

Lemma 7. Every matrix g in SLn(R) may be written in the form

g = kau,

where k ∈ SO(n), a is a diagonal matrix with positive entries and u is
an upper triangular matrix with 1’s on the diagonal.

Proof. Let us view elements g GLn(R) as n linearly independent vec-
tors v1, v2, · · · , vn where v1, v2, · · · , vn are the columns of the matrix g.

If u is an upper triangular matrix with 1’s on the diagonal (such a
matrix u has he property that u− 1 is nilpotent, and is called a unipo-
tent matrix), then the right multiplication of g by u takes the vectors
v1, v2, · · · , vn into the vectors v′1, v

′
2, · · · , v′n where for each i ≤ n, the

vector v′i = vi+
∑

j≤i−1 uijvj is the sum of vi plus a linear combination
of the previous members v1, v2, · · · , vi−1.

Recall that the Gram-Schmidt process takes a basis v1, v2, · · · , vn
into a linear combination of the form v′1, v

′
2, · · · , v′n where v′i is vi plus a

linear combination of v1, v2, · · · , vi−1, such that the vectors v′1, v
′
2, · · · , v′n

are orthogonal to each other. It follows from the preceding paragraph
that given g there exists a unipotent upper triangular matrix u such
that g′ = gu is a matrix whose columns are orthogonal vectors.

Given g′ as above, and a diagonal matrix a with diagonal entries
a1, a2, · · · , an, the matrix g′a has the columns w′1, w

′
2, · · · , w′n where

w′i = aiv
′
i for each i. Now the Gram- Schimdt process takes an or-

thogonal basis (v′i)1≤i≤n into a basis of the form (w′i)1≤i≤n where w′i
is a positive scalar multiple of wi such that w′1, w

′
2, · · · , w′n form an

orthonormal basis. Consequently, there exists a diagonal matrix a
whose diagonal entries are all positive, such that g′a is a matrix whose
columns form an orthonormal basis of Rn. Moreover, ai = 1

|v′i|
where v′i
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is the image of vi to the orthogonal complement of v1, v2, · · · , vi−1 and
| v′i | is its norm with respect to the standard inner product on Rn.

By the last two paragraphs, given g ∈ SLn(R) we can find a unipo-
tent upper triangular matrix u and a diagonal matrix a with positive
diagonal entries such that the matrix gua has the property that its
rows are of the form w′1, w

′
2, · · · , w′n with wi forming an orthonormal

basis. In other words, gua = k where k ∈ O(n).

Taking absolute values of the determinants on both sides of the
equation k = gua, we see that the determinant of a is one. Taking
determinants on both sides of the equation k = aug we then see that
k ∈ SO(n).

Thus, g = ka−1u−1 for some a and u as above. Writing u and a in
place of u−1 and a−1 in place of u and a, we obtain the Lemma. �

.

Lemma 8. With the preceding notation, if g = kau is the Iwasawa
decomposition of a matrix g, then the i-th diagonal entry of a is | v′i |.

Proof. In the Gram Schmidt process, we multiplied g on the right by
first a unipotent upper triangular matrix and then by a diagonal matrix
a′. The entries of the diagonal matrix a′ were proved to be the inverses
of | v′i |. In the Iwasawa decomposition of g, the diagonal matrix a is
the inverse of a′, and the lemma follows. �

We will now prove that SLn(Z) is a lattice in SLn(R). We first
compute the Haar measure with respect to the Iwasawa decomposition
of SLn(R).

4.2. Haar measure on SLn(R).

Lemma 9. If A and B are groups and G = A × B is their product,
then the left Haar measure on G is da×db where da and db are the left
Haar measures on A and B respectively.

If ∆A and ∆B are the modular functions on A and B respectively,
then the modular function ∆G on g = (a, b) ∈ G is given by

∆G(a, b) = ∆A(a)∆B(b).

The proof is routine and is omitted.
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The group GLn(R)+ of non-singular n × n-matrices with positive

determinant is an open subset of the set Mn(R) = Rn2
of n×n-matrices.

Let dX denote the Lebesgue measure on the vector space Mn(R).

Lemma 10. The Haar measure on GLn(R)+ is given by

dµ(g) =
dg

(detg)n
.

Moreover, GLn(R)+ is unimodular.

Proof. Clearly, dµ is left and right invariant. �

Corollary 2. The group SLn(R) is unimodular.

Proof. The group GLn(R)+ = SLn(R) × R+ is the direct product of
SLn(R) and the multiplicative group R+ of positive real numbers. By
the preceding lemma, SLn(R) is unimodular. �

Proposition 11. If G = K ×N × A is the homeomorphism given by
Lemma 7, then the Haar measure on G = SLn(R) is the product

dk dn da.

where da and dn are the Haar measures on A and N respectively.

The decomposition of Lemma 7: SLn(R) = SO(n)×N × A, where
A is the group of diagonal matrices in SLn(R) whose entries are posi-
tive and N is the group of upper triangular unipotent matrices. shows
that there is a unique measure on SLn(R) which is left K invariant
and right NA invariant: as a topological space, G = K ×NA and the
topological group K×NA has a unique measure invariant under K on
the left and NA on the right.

By the corollary, this measure is the Haar measure on SLn(R).
Therefore, if dg, d(na) and dk denote the bi-invariant Haar measures
on G, NA and N respectively, then

dg = dk d(na).

The group N is the commutator subgroup of NA, as can be easily
seen. Therefore, d(na) = dnda where A is the Haar measure on A and
dn is the Haar measure on N . Consequently, we have

dg = dk dn da.

Definition 3. Given t > 0 and a constant C > 0, define the Siegel
Set St,C as the set of elements g in SLn(R) which have the Iwasawa
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decomposition

g = kau, a = (a1, a2, · · · , an) u = 1 +
∑
i<j≤n

uijEij,

(where Eij is the n× n matrix all of whose entries are zero except the
ij-th entry, which is 1) such that

ai
ai+1

< t, | uij |< C.

Lemma 12. The volume of a Siegel set St,C in SLn(R) is finite.

Proof. Write g = kau = kva with g ∈ St,C and v = aua−1. Then v is
also an upper triangular unipotent matrix of the form

v = 1 +
∑
i<j≤n

ai
aj
uijEij,

The Haar measure in k, v, a co-ordinates is given by dg = dk dv da.
It is easily seen that

dv =
∏
i<j

dvij =
∏
i<j

duij
ai
aj
.

Consequently, the volume of St,C with respect to the Haar measure
dk dv da is given by the integral

(

∫
K

dk)[

∫
ai

ai+1
<t: i≤n−1

da1

a1

da2

a2

· · · dan−1

an−1

(
∏
i<j

ai
aj

)]
∏
i<j

∫
uij<C

duij.

The integral over K is finite. The integral over uij is also finite
since uij lie in the bounded interval [−C,+C]. To compute the inte-
gral over the variables a1, · · · , an (with the condition that the product
a1a2 · · · an = 1 since the diagonal element belongs to SLn), we change
variables from a1, · · · , an to the variables

α1 =
a1

a2

, α2 =
a2

a3

, · · · , αn−1 =
an−1

an
.

Then the integrand over a becomes∏
αi<t: i≤n−1

(dα1α
m1
1 )(dα2α

m2
2 ) · · · (dαn−1α

mn−1

n−1 ),

where mi are non-negative integers. We have thus a product(over i)
of an integral over the bounded interval αi ∈ [0, t] of a monomial αmi

i

for each i and this is finite. Therefore, the integral over a is also finite.
�
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4.3. Finiteness of volume of the space of unimodular lattices.
We have viewed elements of GLn(R) as bases of the vector space Rn by
identifying an element g with the basis of the rows v1, v2, · · · , vn of the
matrix g. Given an elementg ∈ GLn(R), consider the lattice L = L(g)
in Rn given by the integral linear span of the basis v1, v2, · · · , vn of its
rows. We then get a map φ : GLn(R)→ L of GLn(R) into the space of
lattices in Rn. On the latter there is an obvious GLn action by sending
a basis to its translate by the element of GLn, and clearly, this map
respects the action on both sides.

The map φ when restricted to SLn(R), takes an element g of SLn(R)
to a unimodular lattice L(g). Clearly the map φ is right SLn(Z) in-
variant. Hence we have the isomorphism

φ : SLn(R)/SLn(Z)→ L0,

where L0 is the space of unimodular lattices in Rn.

Theorem 13. Given an element g ∈ SLn(R), there exists an element
γ ∈ SLn(Z) such that the element gγ has the Iwasawa decomposition

gγ = kau,

where a is a diagonal matrix a = (a1, a2, · · · , an) with ai positive, such
that ai

ai+1
< 2√

3
, and where u is an upper triangular matrix with 1’s

on the diagonal and whose entries above the diagonal are of the form
(uij : i < j ≤ n) with | uij |≤ 1

2
.

Proof. We may view elements of SLn(R)/SLn(Z) as the space of lat-
tices L in Rn such that the volume Rn/L is one (unimodular lattices),
by sending an element of SLn(R) to the integral linear span L of its
rows.

By Lemma 6, there exists a basis v1, v2, · · · , vn of L such that for all
i ≤ n− 1 we have | vi+1 |2≥| vi |2 3

4
.

We have thus proved (see Lemma 8) that given g ∈ SLn(R), there
exists an element δ ∈ SLn(Z) such that gδ has the Iwasawa decompo-
sition g = kav with ai

ai+1
< 2√

3
for eachi.

An easy induction shows that given v ∈ N(R) there exists an element
θ ∈ N(Z) such that vθ = 1 +

∑
i<j uijEij with | uij |≤ 1

2
. The element

γ = δθ is such that gγ ∈ St,C with C = 1
2

and t = 2√
3
. �

Corollary 3. SLn(Z) is a lattice in SLn(R). Moreover, the quotient
SLn(R)/SLn(Z) is not compact.
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Proof. By the Minkowski reduction, given g ∈ SLn(R), there exists an
element γ ∈ SLn(Z) such that gγ lies in the Siegel set S 2√

3
, 1
2
. Thus,

SLn(R) = S 2√
3
, 1
2
SLn(Z). The Siegel set has finite volume by Lemma

12. �

The following Theorem gives a criterion to check when a sequence in
the quotient SLn(R)/SLn(Z) tends to infinity (i.e. has no convergent
subsequence). This is called the Mahler Criterion.

Theorem 14. A sequence gm ∈ SLn(R)/SLn(Z) does not have a con-
vergent subsequence if and only if there exists a sequence vm ∈ Zn with
vm 6= 0 such that gm(vm) tends to zero.

Proof. By Minkowski Reduction, any element g ∈ SLn(R)/SLn(Z) is
represented by a matrix g ∈ SLn(R) whose Iwasawa decomposition is
of the form g = kan, with n in a compact subset of the space of up-
per triangular unipotent matrices and with a diagonal whose diagonal
entries are of the form a1, a2, · · · , an), and which satisfy the inequalities

a2

a1

≥
√

3

2
,
a3

a2

≥
√

3

2
, · · · , an

an−1

≥
√

3

2
,

and such that the determinant

det(a) = a1a2 · · · an = 1.

We may write

1 = a1a2 · · · an−1an = an1 (
a2

a1

)n−1(
a3

a2

)n−1 · · · ( an
an−1

)n−1.

Since ai+1

ai
≥ t, it follows that a1 is bounded from above by a power of

t, where t =
√

3
2

. If a1 is bounded from below also by a positive constant,
then from these inequalities it follows that a2, · · · , an are bounded both
from above and from below. Consequently, the ai lie in a compact sub-
set of the space of positive real numbers. Therefore, g = kan also lies
in a compact set.

Therefore, a sequence gm ∈ SLn(R)/SLn(Z) lies in a a compact set
if and only if their Iwasawa representatives gm = kmamnm have the
property that the first diagonal entry (am)1 tends to zero. This means
that | gm(e1) |=| am(e1) |= (am)1 tends to zero and this proves the
Mahler Criterion. �
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5. lattices in other groups

5.1. Algebraic groups defined over Q.

Definition 4. Suppose that G ⊂ SLn is a subgroup which is a set
of zeroes of some polynomials in the matrix entries Xij. Then the
subgroup G is said to be an algebraic subgroup of SLn.

If the set of polynomials in Xij of which G is the set of zeroes have
rational coefficients, we say that G is an algebraic subgroup defined
over Q. We similarly have the definition of an algebraic group defined
over any field of characteristic zero.

We say that f : G→ C is an algebraic function, if f is a polyno-
mial in the matrix entries Xij.

We say that f is defined over Q if the polynomial which corresponds
to f has rational coefficients.

More generally, if G ⊂ SLn and H ⊂ SLm are algebraic groups de-
fined over Q and f : G → H is a homomorphism, we say that f is
an algebraic map defined over Q, if the matrix entries of the function
x 7→ f(x) are algebraic functions on G defined over Q.

We recall a result of Chevalley without proof.

Lemma 15. (Chevalley) If G ⊂ SLn is a linear algebraic group defined
over Q without any non-trivial characters G → GL1 defined over Q,
then there exists a representation ρ : SLn → SLm defined over Q and
a non-zero vector v ∈ Qm such that G is precisely the isotropy of v: G
is the set of elements x ∈ SLn such that ρ(x)v = v.

We define G(Z) = G ∩ SLn(Z). Consequently G(Z) is a discrete
subgroup of the topological group G(R) which is a closed subgroup of
SLn(R). we have a continuous map G(R)/G(Z)→ SLn(R)/SLn(Z).

Lemma 16. If G has no non-trivial algebraic characters defined over
Q, then the map φ : G(R)/G(Z)→ SLn(R)/SLn(Z) is a proper map.

Proof. We will first show that the map φ has closed image by using
Chevalley’s theorem (Lemma 15). Let v and ρ be as in Chevalley’s
Theorem. We may assume that v ∈ Zm. The map x 7→ ρ(x)v from
SLn(R) into Rn is an algebraic map defined over Q.

The inverse image of ρ(SLn(Z))v under the continuous map x 7→
ρ(x)v is closed and is clearly, by Lemma 15, the product setG(R)SLn(Z).
Hence, G(R)SLn(Z) is closed in SLn(R).By the definition of the quo-
tient topology, this means that φ : G(R)/G(Z)→ SLn(R)/SLn(Z) has
closed image.
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The map

φ : G(R)/G(Z)→ G(R)SLn(Z)/SLn(Z) ⊂ SLn(R)/SLn(Z),

maps the quotientG(R)/G(Z) into the closed setG(R)SLn(Z)/SLn(Z).
This map is clearly bijective and continuous. By a Baire category ar-
gument, the map can be shown to be an open map, and hence a home-
omorphism. In particular, φ is a proper.

�

5.2. Borel Harish-Chandra Theorem and Arithmetic Groups.
For general algebraic groups defined over Q with no rational character,
there is the following theorem of Borel and Harish-Chandra.

Theorem 17. (Borel and Harish-Chandra) Suppose that G ⊂ SLn is
a Q-algebraic subgroup, such that every homomorphism G → GL(1)
defined over Q is trivial. Then, G(R)/G(Z) has finite volume.

The Mahler condition enables us to test if G(R)/G(Z) is compact.
The following criterion for compactness is called the Godement Crite-
rion.

Theorem 18. (The Godement Criterion) If G is semi-simple, then
G(R)/G(Z) is non-compact if and only if there exist non-trivial unipo-
tent elements in G(Z).

Suppose that G is a real semi-simple algebraic group without com-
pact factors. Suppose that there exists a semi-simple Q algebraic group
G and a morphism φ : G(R) → G of real groups such that φ has com-
pact kernel and finite Co-kernel. Then, by the Theorem of Borel and
Harish-Chandra, the image of G(Z) under φ is a lattice in G(R).

Definition 5. A lattice in G is said to be arithmetic if there exists
G and φ as above such that Γ is commensurate with φ(G(Z)).

Thus, the Borel-Harish-Chandra Theorem says that arithmetic sub-
groups of linear semi-simple Lie groups are lattices. For semi-simple
groups of real rank at least two, there is a converse. To state it, we need
first the notion of irreducibility of lattices and of rank of semi-simple
groups.

Definition 6. Suppose G is a linear real semi-simple Lie Group with-
out compact factors. A lattice Γ ⊂ G is said to be reducible, if there
exist closed normal semi-simple subgroups G1 and G2 of G such that
G = G1G2 and lattices Γ1 ⊂ G1 and Γ2 ⊂ G2 such that the product
group Γ1Γ2 ⊂ Γ (and is of finite index in Γ). A lattice Γ ⊂ G is an
irreducible lattice if Γ is not reducible.
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Definition 7. If G ⊂ SLn is an algebraic group defined over R, then
the real rank of G -denoted R − rank(G) is the maximum of the
dimension of the intersection of the group of diagonals in SLn with
conjugates of G in SLn(R).

For example, the real rank of SLn is n− 1.

In this connection, one has the famous Arithmeticity Theorem of
Margulis.

Theorem 19. (Margulis) If G is a real semi-simple algebraic group
without compact factors and such that R − rank(G) ≥ 2, then every
irreducible lattice in Γ is arithmetic.

If R − rank(G) is one and G is not locally isomorphic to SO(n, 1)
or SU(n, 1), then the following result of Corlette and Gromov-Schoen
says that again lattices are arithmetic.

Theorem 20. If G is a real rank one simple Lie group locally isomor-
phic to Sp(n, 1) or the real rank one form of F4, then every lattice in
G is arithmetic.

Remark. It can be shown, using rigidity theorems, that if G is a non-
compact simple Lie group not locally isomorphic to SL2(R), then any
lattice in G can be conjugated to one whose elements have entries in
an algebraic number field. The only general construction of lattices in
semi-simple Lie groups is by arithmetic lattices, and the above Theo-
rems tell us that for most groups, these are the only lattices.

5.3. SL2(R). By the Uniformisation Theorem, if X is a compact Rie-
mann surface of genus g ≥ 2, then its fundamental group may be
identified to a co-compact torsion-free discrete subgroup of SL2(R).
Conversely, a torsion-free co-compact discrete subgroup Γ of SL2(R)
acts on the upper half plane h properly discontinuously and freely and
therefore, the quotient X = h/Γ is a compact Riemann surface of genus
≥ 2.

Using this, it is not hard to show that there exists a continuous family
of co-compact Γ ⊂ SL2(R) parametrised by an open set in R6g−6, all
these Γ are isomorphic as abstract groups.
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6. The example of SO(n, 1)

6.1. Action of SO(n, 1) on the unit ball in Rn. Define SO(n, 1) as
the subgroup of SLn+1(R) which preserves the quadratic form

x2
1 + · · ·x2

n − x2
n+1.

In particular, SO(n, 1) preserves the “light cone” C = {x ∈ Rn+1 :
x2

1 + · · ·+ x2
n − x2

n+1 < 0}.

Since SO(n, 1) preserves the light cone and commutes with scalar
multiplication, SO(n, 1) preserves the lines through the origin in Rn+1

which lie in the cone C. This set of lines may be identified with the
unit ball Bn in Rn via the map

(x1, x2, · · · , xn, xn+1) 7→ (
x1

xn+1

, · · · , xn
xn+1

),

The isotropy subgroup of SO(n, 1) at the origin in Rn is given by
the group O(n) = O(n+ 1) ∩ SO(n, 1).

6.2. Action by certain subgroups of SO(n, 1). Consider the sub-

group H = {h =

coshx 0 sinhx
0 1n−1 0

sinhx 0 coshx

 : x ∈ R} of SO(n, 1). This

subgroup takes the origin into the open unit interval lying in the unit
ball, such that the x2, · · ·xn co-ordinates of its points vanish. The x1

coordinate is tanhx which lies between −1 and 1.

Moreover, any point in the unit ball, after a rotation by On) may be
brought into the unit interval. This proves that the group generated
by O(n) and H acts transitively on the unit ball. Moreover, this also
proves that SO(n, 1) is generated by H and O(n).

Lemma 21. The volume form on the unit ball in Rn given by

dv =
dx1dx2 · · · dxn

(1− x2
1 − x2

2 − · · · − x2
n)(n+1)/2

is invariant under SO(n, 1).

Proof. The form dv depends only on the radius
√

(x2
1 + · · ·+ x2

n). Hence
dv is clearly invariant under O(n). We need only check that H leaves
dv invariant. �

The group SO(n, 1) acts transitively on the unit ball in Rn and the
isotropy at the origin is O(n). Consequently, if m is an O(n)-invariant
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metric on the tangent space at the origin, then there is an SO(n, 1) -
invariant metric on Bn which coincides with the O(n)-invariant metric
at the origin.

The invariant metric (up to positive scalar multiples) is

ds2 =
dx2

1 + dx2
2 + · · ·+ dx2

n

(1− x2
1 − · · · − x2

n)2
.

This is the hyperbolic metric on the unit ball in Rn, and, up to
connected components, SO(n, 1) is the group of isometries of the unit
ball with respect to this hyperbolic metric. Quotients of the unit ball
Bn by torsion-free discrete subgroups Γ of SO(n, 1) thus give hyperbolic
n-manifolds.

Denote by dg a Haar measure on SO(n, 1). Fix a discrete subgroup
Let Γ of SO(n, 1).

Proposition 22. (1) The discrete subgroup Γ operates without fixed
points on Bn if and only if Γ is torsion-free.

(2) If Γ is torsion-free then the quotient Bn/Gamma is compact if
and only if Γ\SO(n, 1) is compact.

(3) If Γ is torsion-free then the quotient Γ\Bn has finite volume with
respect to the hyperbolic metric if and only if Γ\G has finite measure
with respect to dg.

6.3. Equivalence of quadratic forms and Orthogonal Groups.
Suppose that K is a field of characteristic zero and V an k dimensional
vector space over the field K. Let f and h be two non-degenerate
quadratic forms on V with values in K. One says that h is equivalent
to f if there exists a non-singular linear transformation g ∈ GL(V )
such that for all vectors v ∈ V , we have

h(v) = f(g(v)).

By fixing a basis of V over K, we may view f and h as non-singular
symmetric matrices f and h of order k, and the foregoing equivalence
is the equation

h =t gfg,

where tg is the transpose of the matrix g.

If SO(f) denotes the group of linear transformations in GL(V ) which
preserve f , then it is clear that SO(h) = gSO(f)g−1. Hence SO(f)
and SO(h) are isomorphic.
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If h is any non-degenerate quadratic form on V , then there exists a
diagonal quadratic form

λ1x
2
1 + · · ·λdx2

d,

which is equivalent to f , with λi ∈ K \ {0}.

6.4. Example of real quadratic forms. Take K = R and k = n +
1. Suppose that λ1, · · ·λn are n positive numbers and that λn+1 is a
negative real number. Consider the quadratic form

h = λ1x
2
1 + λ2x

2
2 + · · ·λnx2

n + λ2
n+1x

2
n+1.

There exists a non-singular matrix g such that h =t gfg. Indeed, g
can be taken to be the diagonal matrix with diagonal entries

(
√
λ1,
√
λ2, · · · ,

√
λn,
√
−λn+1).

6.5. Rational Quadratic Forms. Let K = Q and k = n + 1. If
λ1, · · ·λn are positive rational numbers and λn+1 is a negative rational
number then the quadratic form

λ1x
2
1 + · · ·+ λnx

2
n + λn+1x

2
n+1,

is a nondegenerate quadratic form. By replacing f by an integral scalar
multiple, we may assume that λi are integers.

In particular, if V = Rn+1 and L = Zn+1, then for integral vectors
v ∈ Zn+1, we have f(v) ∈ Z.

The group SO(f)(R) is a closed subgroup of SLn+1(R). Hence the
intersection SO(f)(R) ∩ SLn+1(Z) is a discrete subgroup of SO(n, 1).

The group G = SO(f) = {x ∈ SLk :t xfx = f} is the set of zeroes
of the collection Σ of the k2-matrix entries of the difference matrix
tgfg − f . These consist of polynomials of degree two.

Proposition 23. The map G(R)/G(Z) → SLk(R)/SLk(Z) is proper
with the image being closed.

We repeat the proof of Theorem 18 in the case of G = SO(f); the
proof uses the fact that SO(f) is the isotropy of a vector (namely the
quadratic form f) in a suitable representation of SLk (namely the space
of quadratic forms on V = Rk). Recall that the general case is similar,
and we use the Theorem of Chevalley that a Q algebraic group without
rational characters is the isotropy of a vector in a Q-representation V
of SLk.
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Proposition 24. The map

φ : SO(f)(R)/SO(f)(Z)→ SLn+1(R)/SLn+1(Z)

is a proper map. Moreover, SO(f)(R)/SO(f)(Z) is non-compact if
and only if the quadratic form f represents a rational zero.

Proof. The image of the map φ is closed since it is the image of the
closed saturated set SO(f)(R)SLn+1(Z); the latter is closed in SLn+1(R)
since it is the inverse image of a subset of a discrete space, namely the
integral points of the orbit of SLn+1(R) through the non-degenerate
quadratic form f . Note that the space of quadratic forms is a module
for the action g ∗ ψ 7→ (v 7→ φ(g(v)))v∈Rn+1 .

Now a Baire category argument proves that φ maps the quotient
SO(f)(R)/SO(f)(Z) homeomorphically onto its image. By the pre-
ceding paragraph, the image is closed. This proves the properness of
the map φ.

The quotient SO(f)(R)/SO(f)Z) is non-compact if and only if there
exists a sequence gm in it tending to infinity. Since the map φ is proper,
it follows that gm tends to infinity in the quotient SLn+1(R)/SLn+1(Z).
By the Mahler criterion, this means that there is a sequence of integral
vectors vm such that gm(vm) → 0. Evaluating f on this sequence, we
get f(gm(vm) → 0. Since gm lie in the orthogonal group of f , they
preserve the quadratic form f and hence f(gm(vm)) = f(vm)→ 0. But
vm are integral vectors and f has integral coefficients hence ef(vm) is
a sequence of integers which tends to zero, hence f(vm) = 0 for large
m. This proves that f represents a zero.

�
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7. Arithmetic Groups in SO(n, 1)

7.1. non-uniform lattices in SO(n, 1). We first give a general con-
struction of non-co-compact lattices in SO(n, 1). Let λ1, · · ·λn+1 be
positive rational numbers and f the quadratic form

f(x) = λ1x
2
1 + · · ·λnx2

n − λn+1x
2
n+1.

The subgroup of SLn+1(Q) which preserves this quadratic form f is
a rational subgroup G = SO(f) of SLn+1(R) whose real points form
a real algebraic group G(R) isomorphic to SO(n, 1). The intersection
SO(f)(Z) = G(Z) = defn

=
G ∩ SLn+1(Z) of G = SO(f) with SLn+1(Z)

is a discrete subgroup of SO(n, 1).

Theorem 25. The group SO(f)(Z) is a lattice in SO(n, 1) (If n ≥ 4,
then SO(f)(Z) is a nonuniform lattice).

Proof. There is a result in number theory, called the Hasse principle
for quadratic forms which implies the following result.

Theorem 26. If f is a quadratic form in k variables with k ≥ 5 and
which represents a real zero, then it represents a rational zero.

In view of this, our integral quadratic form f , since is of the form x2
1+

· · ·x2
n−x2

n+1 over the reals, represents a real zero, hence by the foregoing
consequence of the Hasse principle, represents an integral zero. By the
proposition, this means that the quotient SO(f)(R)/SO(f)(Z) is non-
compact. �

Therefore, in order to get compact hyperbolic manifolds with n ≥
4,integral quadratic forms do not suffice. We will therefore have to
consider quadratic forms over other number fields.

7.2. Restriction of Scalars. Suppose that K is a finite extension of
Q (K is called a number field). Suppose that G ⊂ SLr is a subgroup
of SLr which is the set of zeroes of a collection Σ of polynomials in
the r2-matrix variables, whose coefficients lie in K. Then G is called a
K-algebraic subgroup of SLr.

We may view K is a d dimensional vector space over Q and hence
view Kk as a rd = k dimensional vector space over Q. The group
SLr over K is then a subgroup of SLk over Q, which is the subgroup
which commutes with the action of K which acts as scalar multiplica-
tion on Kr = Qrd via Q linear endomorphisms. This, SLr over K is a
Q-algebraic subgroup of SLk = SLrd over Q.
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The elements of Σ are polynomials in the matrix entries of Mr(K).
The r2 variables which are matrix entries may be thought of as r2d2 =
k2 variables in the matrix entries of Mr(K) ⊂Mrd(Q). The coefficients
of elements of Σ are in K and may be thought of as elements of a d
dimensional vector space of Q. Thus each equation φ = 0 with φ ∈ Σ
may be thought of as d equations involving polynomials in k2 variables
with Q-coefficients. We may thus view G as an algebraic subgroup G
of SLrd defined over Q. We denote G = RK/Q(G), call G the Weil
restriction of scalars of G.

7.3. Properties of Restriction of Scalars. If E is an extension of
Q and G = RK/Q(SLr) then G(E) is by definition, the elements of
SL(E ⊗Kr). which commute with the action of K (and also with E).
Therefore, these are just matrices in SL(E⊗Kr) which commute with
E ⊗K. In other words, this group is just SLr(E ⊗K).

Using this observation, it is clear that if G is a K-subgroup of SLr
and G = RK/Q(G) is the group obtained from G by restricting scalars
from K to Q, then G(E) = G(E ⊗K).

In particular, G(R) = G(R ⊗ K). Now, if K = Q[X]/(P (X)) is a
quotient of the polynomial ring in X modulo the ideal (f) generated by
an irreducible monic polynomial P ∈ QX, then R⊗K = R[X]/(P (X))
is isomorphic as an algebra over R to the product R-algebra Cr2 ×Rr1 ,
where 2r2 is the number of complex roots of P and r1 is the number of
real roots of P . Note that d = 2r2 + r1.

Consequently, G(R) = G(C)r2 ×
∏

v G(Kv) where, for each real root
v of P , denote by Kv the real embedding R[X]/(X − v) ' R of the
number field K.

In particular, if the number field K has the property that the ir-
reducible polynomial P above has only real roots, then the quadratic
form f is of the index (pv, qv) for each v above. We choose f so that

G(R) = SO(n, 1)× SO(n+ 1)d−1.

7.4. Some Uniform Lattices in SO(n, 1). In this section, we will
construct some compact hyperbolic manifolds of dimension n for every
integer n ≥ 1. This can be done, if we construct co-compact arithmetic
lattices in SO(n, 1); as we have seen, the unit groups of suitable qua-
dratic forms with rational coefficients yield co-compact lattices only if
n ≤ 4. Therefore, we need to construct co-compact arithmetic lattices
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slightly differently.

We will therefore consider unit groups SO(f) of quadratic forms
over other number fields K. If the number field is totally real and f
is suitably chosen, then we will see that these indeed give arithmetic
co-compact lattices. To see this, we need to view SO(f) as an algebraic
group over Q; this will be achieved by the Weil restriction of scalars
construction.

Suppose now that K is a finite extension of Q (K is then called a
number field) of degree d. Then, K = Q[X]/(g(X)) is the quotient of
the ring of polynomials in the variable X with Q-coefficients, modulo
an ideal generated by an irreducible polynomial g ∈ Q[X]. The degree
of g is d. Suppose that the polynomial g has the additional property
that all its roots are real. Then K is said to be totally real (any em-
bedding of the field K into the field C of complex numbers lies in the
real field R).

Let f be a non-degenerate quadratic form in n + 1 variables over
K. suppose that in d− 1 distinct embeddings of K in C (the image of
K will be in R), the quadratic form f has index (n + 1, 0) and in the
remaining real embedding, f has index (n, 1). Then, SO(f)(OK) is a
discrete subgroup of SO(f)(K ⊗ R) = SO(n, 1)× SO(n+ 1)d−1.

Theorem 27. If d ≥ 2, then the projection of SO(f)(OK) to SO(n, 1)
is a co-compact lattice in SO(n, 1).

Proof. The embedding

SO(f)(R⊗K)/SO(f)(OK) ⊂ SL(n+1)d(R)/SL(n+1)d(Z)

is a proper map. If the left hand side is not compact, there exists a
sequence gm of elements of SO(f)(R ⊗ K) and vm ∈ Or

K of nonzero
vectors such that gm(vm) tends to zero.

Applying f to gm(vm) we get f(vm) = f(gm(vm)) tends to zero. But
f(vm) is a sequence of elements of OK viewed as a discrete subgroup
of Rd, whence f(vm) = 0. Therefore, f represents a zero in Kr. But in
one of the real embeddings Kv of K, f is positive definite, hence f does
not represent a zero in Kr

v , contradicting the assumption. Therefore,
if d ≥ 2, then the quotient in the theorem is compact and SO(f)(OK)
is a co-compact lattice in SO(n, 1).

�
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Theorem 28. If n is even and n ≥ 4, then all arithmetic lattices
in SO(n, 1) arise in this way. That is, given an arithmetic lattice in
SO(n, 1), there exists a totally real number field K, a quadratic form f
over K such that SO(f)(K ⊗R) = SO(n, 1)× SO(n+ 1)d−1 such that
Γ is commensurable to SO(f)(OK).

7.5. More Arithmetic Lattices in SO(n, 1); Unitary Groups
over skew-Hermitian forms. Suppose that K is a totally real num-
ber field and D a quaternionic central division algebra over K. Then
D⊗C = M2(C) is a matrix algebra for any embedding θ of K in C. IF
x ∈ D ⊂M2(C) then the trace of this matrix denoted tr(x) is actually
an element of K viewed as a subset of C via the embedding θ.

Let x 7→ ι(x) denote the involution ι(x) = tr(x)− x. An involution
on D reverses multiplication and is a vector space automorphism of
order two. All involutions on D are conjugate by a elements of D(by
the Skolem-Noether Theorem). We fix an involution ∗ on D the di-
mension of whose fixed points is three (in the matrix realisation of D,
the involution transpose is one such example).

A map h : Dm×Dm → D denoted h(x, y) for x ∈ Dm and y ∈ Dm is
said to be ∗-Hermitian if D is linear in the first variable x and ∗ linear
in the second variable y and h(y, x) = ∗(h(x, y)) for all x, y ∈ Dm.

Define the unitary group

SU(h) = {g ∈ SL(V )D : h(g(x), g(y)) = h(x, y)∀x, y ∈ V.}
If K denotes an algebraic closure of K, then under the assumptions on
D and h, we have that SU(h)(K) = SO(2m,K).

Suppose that h is a Hermitian form in m variables over the quater-
nionic division algebra D such that in all the real embeddings of K
except one, SU(h)(R) becomes isomorphic to SO(2m) and in the re-
maining one it becomes SO(2m− 1, 1).

Theorem 29. The group SU(h)OK is a co-compact lattice in SO(2m−
1, 1).Moreover, all arithmetic lattices in SO(n, 1) arise in either this
way or are unit groups of quadratic forms over totally real number
fields.

7.6. Non-Arithmetic Lattices in SO(n, 1). The construction by
Gromov and Pjatetskii-Shapiro proves that there exist non-arithmetic
lattices in SO(n, 1) for every integer n ≥ 3.
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8. Lattices in Arbitrary Connected Groups

If G is a connected group, let R be its maximal connected solvable
(closed) subgroup. Then, it is patent that the quotient group G/R is
semi-simple. The group R is called the radical of G.

We have then the following theorem of Auslander.

Theorem 30. (Auslander) If Γ ⊂ G is a lattice, then its projection to
the quotient G/R is also a lattice. Moreover, the intersection R ∩ Γ is
a lattice in the radical R.

Thus lattices in arbitrary connected Lie groups can be “understood”
in terms of lattices in connected solvable groups and lattices in semi-
simple Lie groups. As we said before, lattices in higher rank groups are
arithmetic, and thus only lattices in SO(n, 1) and perhaps SU(n, 1)
need be classified.

It is a deep theorem of Mostow that lattices in solvable Lie groups
R are arithmetic.
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9. Exercises

9.1. Haar measures. If G = SL2(R) and B = {g =

(
a b
0 a−1

)
: a 6=

0, b ∈ R}, then show that G/B is compact and that there is no G-
invariant regular Borel measure on the quotient G/B.

Prove the same for G = SLn(R) and B the group of upper triangular
matrices Bn in SLn(R), for any n ≥ 2. Find the left invariant Haar
measure on Bn.

If G = SLn(R) and H is the group of upper triangular matrices
whose diagonal entries are all 1, then show that on G/H there is in-
deed a left G-invariant regular Borel measure.

9.2. lattices in Rn. If R2 is viewed as the complex plane C, define two
lattices L,L′ in C to be equivalent, if there exists a scalar λ ∈ C such
that L′ = λL (i.e. elements of L′ are of the form λv for some v ∈ L).

Let h denote the upper half plane in C, consisting of complex num-

bers whose imaginary parts are positive. If g =

(
a b
c d

)
lies in SL2(R)

and τ ∈ h, then show that g(τ) = aτ+b
cτ+d

lies in h. Show that this defines
an action of SL2(R) on h.

Then show that every lattice in C is equivalent to one of the form
Z⊕Zτ for some τ ∈ h. Further, show that the lattice Z⊕Zτ is equiv-
alent to the lattice Z⊕ Zτ ′ if and only if there exists γ ∈ SL2(Z) such
that τ ′ = γ(τ) where the action of SL2(Z) on the upper half plane is
as in the preceding paragraph.

9.3. Minkowski Reduction. Fix a diagonal element g in SL2(R) of

the form g =

(
a 0
0 a−1

)
with 0 < a < 1. If u is an upper triangular

unipotent element in SL2(R), show that the sequence gmug−m tends
to the identity matrix as m ∈ Z (m > 0) tends to infinity. Similarly
show that if u is a lower triangular matrix with 1’s on the diagonal,
then g−mugm tends to the identity.

If H is a Hilbert space and ρ : G = SL2(R) → U(H) is a homo-
morphism into the group of unitary transformation of H such that the
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map G×H → H given by (g, v) 7→ ρ(g)(v) is continuous, then we call
ρ (or H), a representation of G. If v ∈ H is fixed by the element g as
in the preceding paragraph, show that all of SL2(R) fixes the vector v.

Hint: consider the function f(x) = x 7→| ρ(x)v − v |2 on SL2(R)
where | w | is the norm of the vector w ∈ H (the norm defined
with respect to the SL2(R)- invariant inner product). Show that
f(gx) = f(x) = f(xg) for all x and use the preceding exercise.

Prove that if E ⊂ SL2(R)/SL2(Z) is a Borel set invariant under the
element g as above, then either E or its complement has Haar measure
zero. One says then that the element g acts ergodically on the quotient
SL2(R)/SL2(Z)

Hint: Use the fact that SL2(R)/SL2(Z) has finite volume, and ap-
ply the foregoing exercise on Hilbert spaces to a suitable vector in
L2(SL2(R)/SL2(Z)).

Similar arguments are involved in the proof of the following result,
called the Howe-Moore Ergodicity Theorem.

Theorem 31. If G is a non-compact simple real Lie group and Γ is
a lattice, then every non-compact subgroup H of G acts ergodically on
the quotient G/Γ.
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