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Abstract. Let Λ be a left and right noetherian ring. First, for m,n ∈ N ∪ {∞}, we give equivalent
conditions for a given Λ-module to be n-torsionfree and have m-torsionfree transpose. Using them, we
investigate totally reflexive modules and reducing Gorenstein dimension. Next, we introduce homological
invariants for Λ-modules which we call upper reducing projective and Gorenstein dimensions. We provide

an inequality of upper reducing projective dimension and complexity when Λ is commutative and local.
Using it, we consider how upper reducing projective dimension relates to reducing projective dimension,
and the complete intersection and AB properties of a commutative noetherian local ring.

1. Introduction

Araya and Celikbas [1] introduce homological invariants for modules called reducing homological di-
mensions. In this paper, we study two of them: reducing projective dimension and reducing Gorenstein
dimension.

Let Λ be a left and right noetherian ring. For nonnegative integers m,n we say that a finitely generated
right Λ-module M is (m,n)-torsionfree if ExtiΛ(M,Λ) = ExtjΛop(TrM,Λ) = 0 for all 1 ⩽ i ⩽ m and
1 ⩽ j ⩽ n. This is none other than an n-torsionfree module whose transpose is m-torsionfree. The notion
of an (m,n)-torsionfree module is naturally extended to the case where m = ∞ or n = ∞. We provide
criteria for the (m,n)-torsionfree property, part of which is the following.

Theorem 1.1. Let Λ be a left and right noetherian ring. Let m,n ∈ N∪ {∞}. A finitely generated right
Λ-module M is (m,n)-torsionfree if and only if it admits an exact sequence

Gm+1 → Gm → · · · → G0
∂−→ G−1 → · · · → G−n

of (m,n)-torsionfree Λ-modules whose Λ-dual is also exact such that M is isomorphic to the image of ∂.

Applying this theorem, we obtain the following corollary. The first statement includes a finitely
generated version of a theorem of Sather-Wagstaff, Sharif and White [16] if Λ is commutative. The
second statement includes a theorem of Araya and Celikbas [1], which shows the same assertion under
the additional assumption that Λ is commutative and local. Furthemore, our proof highly simplifies
theirs.

Corollary 1.2. Let Λ be a left and right noetherian ring. Let M be a finitely generated right Λ-module.

(1) The module M is totally reflexive if and only if there is an exact sequence of totally reflexive Λ-modules

· · · → G1 → G0
∂−→ G−1 → G−2 → · · ·

whose Λ-dual is also exact such that M is isomorphic to the image of ∂.
(2) If M has finite reducing Gorenstein dimension, then GdimΛ M = sup{i ∈ N | ExtiΛ(M,Λ) = 0}.

Next, modifying the definition of reducing projective dimension, we introduce upper reducing projective
dimension, which is always at least reducing projective dimension. We prove the following theorem, which
relates it to complexity.

Theorem 1.3. Let R be a commutative noetherian local ring. Let M be a finitely generated R-module.
Then the upper reducing projective dimension of M is more than or equal to the complexity of M . If M
has reducible complexity (this is the case when R is a complete intersection), then both are equal.
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Applying this theorem, we obtain the following corollary, providing some relationships of upper reduc-
ing projective dimension with reducing projective dimension, complete intersections and AB rings.

Corollary 1.4. Let R be a commutative noetherian local ring. Consider the following conditions.

(1) The local ring R is a complete intersection.
(2) Every finitely generated R-module has reducible complexity.
(3) Every finitely generated R-module has finite upper reducing projective dimension.
(4) The residue field of R has finite upper reducing projective dimension.
(5) Every finitely generated R-module has finite reducing projective dimension.
(6) The local ring R is AB.

Then the implications (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇒ (5) ⇒ (6) hold.

The paper is organized as follows. In Section 2, we deal with reducing Gorenstein dimension, and
for this we investigate (m,n)-torsionfree modules. Theorem 1.1 and Corollary 1.2 are proved in this
section. In Section 3, we make the definitions of upper reducing projective dimension and upper reducing
Gorenstein dimension, and explore the former. Proofs of Theorem 1.3 and Corollary 1.4 are stated in this
section. In Section 4, we study upper reducing Gorenstein dimension, and obtain a similar inequality as
in Theorem 1.3.

2. (m,n)-torsionfree modules and reducing Gorenstein dimension

In this section, we give a characterization of the (m,n)-torsionfree modules in terms of the existence
of certain exact sequences. As applications, we obtain a characterization of the totally reflexive modules
and a formula of Gorenstein dimension for modules of finite reducing Gorenstein dimension.

Let Λ be a (left and right) noetherian ring. Denote by modΛ the category of finitely generated (right)
Λ-modules. For each M ∈ modΛ we denote by ΩM and TrM the (first) syzygy and the (Auslander)
transpose of M respectively, for whose details we refer the reader to [2]; see also [9, §1].

Definition 2.1. For m,n ∈ N ∪ {∞} we denote by Gmn the full subcategory of modΛ consisting of

Λ-modules M such that ExtiΛ(M,Λ) = 0 for all 1 ⩽ i ⩽ m and ExtjΛop(TrM,Λ) = 0 for all 1 ⩽ j ⩽ n.

When m = ∞ (resp. n = ∞), the vanishing condition reads ExtiΛ(M,Λ) = 0 for all i ⩾ 1 (resp.

ExtjΛop(TrM,Λ) = 0 for all j ⩾ 1). Note that G00 = modΛ. We call the modules belonging to Gmn the
(m,n)-torsionfree modules. The (0, n)-torsionfree modules are nothing but the n-torsionfree modules in
the sense of Auslander and Bridger [2]. The (∞,∞)-torsionfree modules are none other than the totally
reflexive (or Gorenstein projective) modules in the sense of Avramov and Martsinkovsky [6] (and Enochs
and Jenda [11]). There are inclusions Gm∞ ⊆ · · · ⊆ Gm,n+1 ⊆ Gmn ⊆ · · · ⊆ Gm0 and G∞n ⊆ · · · ⊆
Gm+1,n ⊆ Gmn ⊆ · · · ⊆ G0n, and there is an equality Gmn = Gm0 ∩ G0n.

It is the main subject of [2] to investigate the (m,n)-torsionfree modules; a lot of deep results on those
modules are obtained there. Also, the subcategories Gmn are closely related to one another, whose stable
categories involve equivalences and dualities given by Ω and Tr; see [14, Proposition 1.1.1].

Put (−)∗ = HomΛ(−,Λ). The main result of this section is the following theorem.

Theorem 2.2. Let Λ be a noetherian ring. Let M be a finitely generated Λ-module. The following are
equivalent for m,n ∈ N ∪ {∞}.
(1) The Λ-module M belongs to Gmn, that is to say, M is (m,n)-torsionfree.

(2) There exists an exact sequence of finitely generated projective Λ-modules Pm+1 → Pm → · · · → P0
∂−→

P−1 → · · · → P−n whose Λ-dual is also exact and satisfies Im ∂ ∼= M .

(3) There exists an exact sequence σ : Gm+1 → Gm → · · · → G0
∂−→ G−1 → · · · → G−n of Λ-modules

such that Gi ∈ Gmn for all −n ⩽ i ⩽ m+ 1, Im ∂ ∼= M and σ∗ is also exact.

(4) There is an exact sequence σ : Gm+1 → Gm → · · · → G0
∂−→ G−1 → · · · → G−n of Λ-modules such

that Gi ∈ Gm0 for all 0 ⩽ i ⩽ m+ 1, Gi ∈ G0n for all −n ⩽ i ⩽ −1, Im ∂ ∼= M and σ∗ is also exact.

Proof. (1) ⇒ (2): Taking a projective resolution of M , we get an exact sequence α : Pm+1 → Pm →
· · · → P0 → M → 0 with Pi projective for 0 ⩽ i ⩽ m + 1. As ExtiΛ(M,Λ) = 0 for 1 ⩽ i ⩽ m, the dual
sequence 0 → M∗ → P ∗

0 → · · · → P ∗
m+1 is exact. By [2, Theorem (2.17)] there is an exact sequence
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β : 0 → M → P−1 → · · · → P−n with Pi projective for −n ⩽ i ⩽ −1 such that the dual sequence
P ∗
−n → · · · → P ∗

−1 → M∗ → 0 is exact. Splicing α and β, we obtain an exact sequence as in (2).
(2) ⇒ (3): The implication is evident since Gmn contains the finitely generated projective Λ-modules.
(3) ⇒ (4): Since Gmn is contained in both Gm0 and G0n, the implication holds.
(4) ⇒ (1): As Gmn = Gm0 ∩ G0n, it suffices to prove the following two statements.
(a) Suppose that there is an exact sequence σ : Gm+1 → Gm → · · · → G0 → M → 0 such that

Gi ∈ Gm0 for all 0 ⩽ i ⩽ m+ 1 and σ∗ is also exact. Then M ∈ Gm0.
(b) Suppose that there is an exact sequence σ : 0 → M → G−1 → · · · → G−n such that Gi ∈ G0n for

all −n ⩽ i ⩽ −1 and σ∗ is also exact. Then M ∈ G0n.
First, we prove (a) by induction on m ∈ N; then the case m = ∞ also follows. There is nothing to

prove when m = 0. Assume m ⩾ 1. Letting N be the image of the map G1 → G0, we get exact sequences
Gm+1 → · · · → G1 → N → 0 and 0 → N → G0 → M → 0. As m ⩾ 1, we have exact sequences

(i) G2 → G1 → N → 0, (ii) G∗
0 → G∗

1 → G∗
2, (iii) 0 → N∗ → G∗

1 → G∗
2,

where (iii) is induced from (i). Using the exactness of (ii) and (iii), we see that the map G∗
0 → N∗ is

surjective, which together with the containment G0 ∈ G10 implies Ext1Λ(M,Λ) = 0. Splicing (iii) with
the exact sequence G∗

1 → G∗
2 → · · · → G∗

m+1, we get an exact sequence 0 → N∗ → G∗
1 → · · · → G∗

m+1.

The induction hypothesis implies N ∈ Gm−1,0. An exact sequence Exti−1
Λ (N,Λ) → ExtiΛ(M,Λ) →

ExtiΛ(G0,Λ) is induced for each i. As G0 ∈ Gm0 and N ∈ Gm−1,0, we observe that ExtiΛ(M,Λ) = 0 for
all 2 ⩽ i ⩽ m. We now obtain M ∈ Gm0, as desired.

Next, we prove (b) by induction on n ∈ N. There is nothing to show in the case n = 0, so let n ⩾ 1.
Then G−1 exists, and this module belongs to G01. It is observed from [2, Proposition (2.6)(a)] and [12,
Lemma 3.4] that G01 is closed under submodules. The injection M → G−1 shows M ∈ G01. Thus the
case n = 1 is done, and we assume n ⩾ 2 from now on. Letting N be the image of the map G−1 → G−2,
we have exact sequences 0 → M → G−1 → N → 0 and 0 → N → G−2 → · · · → G−n. The exact
sequences G∗

−2 → G∗
−1 → M∗ and 0 → N∗ → G∗

−1 → M∗ show that the map G∗
−2 → N∗ is surjective,

and we see that the sequence G∗
−n → · · · → G∗

−2 → N∗ → 0 is exact. By the induction hypothesis we

obtain N ∈ G0,n−1. An exact sequence 0 → N∗ → G∗
−1 → M∗ δ−→ TrN → TrG−1 → TrM → 0 (up to

free summands) is induced; see [2, Lemma (3.9)]. The surjectivity of the map G∗
−1 → M∗ implies that

the map δ is zero, which yields an exact sequence 0 → TrN → TrG−1 → TrM → 0. This induces an
exact sequence Exti−1

Λop(TrN,Λ) → ExtiΛop(TrM,Λ) → ExtiΛop(TrG−1,Λ) for each i. Since G−1 ∈ G0n

and N ∈ G0,n−1, we observe that ExtiΛop(TrM,Λ) = 0 for all 2 ⩽ i ⩽ n. It follows that M ∈ G0n. ■
Letting m = n = ∞ in Theorem 2.2 immediately yields the following result. This is a special case of

the theorem of Sather-Wagstaff, Sharif and White [16, Theorem A] when Λ is commutative.

Corollary 2.3. Let Λ be a noetherian ring. A finitely generated Λ-module M is totally reflexive if and

only if there exists an exact sequence of totally reflexive Λ-modules · · · → G1 → G0
∂−→ G−1 → G−2 → · · ·

whose Λ-dual is also exact and satisfies Im ∂ ∼= M .

Here we recall the definition of Gorenstein dimension, which has been introduced in [2].

Definition 2.4. Let Λ be a noetherian ring and M a finitely generated Λ-module. The Gorenstein
dimension (G-dimension for short) of M , which is denoted by GdimΛ M , is defined as the infimum of
integers n ⩾ 0 such that there exists an exact sequence 0 → Gn → Gn−1 → · · · → G1 → G0 → M → 0
of Λ-modules with Gi being totally reflexive for all 0 ⩽ i ⩽ n.

The reducing homological dimensions are defined in [1, Definition 2.1]. In this paper we deal with two
of them.

Definition 2.5. Let Λ be a noetherian ring. Let M be a finitely generated Λ-module. We define the

reducing projective dimension redpdΛ M and the reducing Gorenstein dimension redGdim
Λ M of M as follows;

let ϖ ∈ {pd,Gdim}.
(1) One has ϖΛ(M) < ∞ if and only if redϖΛ M = 0.

(2) Assume ϖΛ(M) = ∞. If there exist exact sequences {0 → M⊕ai
i−1 → Mi → ΩniM⊕bi

i−1 → 0}si=1 in
modΛ with ni ⩾ 0, s, ai, bi > 0, M0 = M and ϖΛ(Ms) < ∞, then redϖΛ M is the minimum of such
integers s.
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(3) If no such exact sequences as in (2) exist, then redϖΛ M = ∞.

Remark 2.6. In the original definition of reducing homological dimension given in [1], the condition
ni ⩾ 0 appearing in Definition 2.5(2) is replaced with ni > 0. According to the definition of reducible
complexity (see Definition 3.4(2) stated later), it is more natural to require ni ⩾ 0 rather than ni > 0
(this corresponds to the condition n ⩾ 0 in Definition 3.4(2)(b)), and so we adopt this modification. Note
that reducing homological dimension in our sense is always smaller than or equal to reducing homological
dimension in the sense of [1].

Theorems of Auslander, Buchsbaum and Serre and of Auslander and Bridger are stated in terms of
reducing projective and Gorenstein dimensions as follows.

Remark 2.7. Let (R,m, k) be a commutative noetherian local ring. One has the following equivalences.

(1) R is regular ⇐⇒ redpdR M = 0 for all M ∈ modR ⇐⇒ redpdR k = 0.

(2) R is Gorenstein ⇐⇒ redGdim
R M = 0 for all M ∈ modR ⇐⇒ redGdim

R k = 0.

We establish a lemma which is a consequence of the definitions of reducing homological dimensions.

Lemma 2.8. Let Λ be a noetherian ring, and M a finitely generated Λ-module. Let ϖ ∈ {pd,Gdim},
and let r be a positive integer. If one has redϖΛ M ≤ r, then there exist exact sequences {0 → M⊕ai

i−1 →
Mi → ΩniM⊕bi

i−1 → 0}ri=1 in modΛ such that ni ⩾ 0, ai, bi > 0, M0 = M and ϖΛ(Mr) < ∞.

Proof. Let s = redϖΛ M ⩽ r. When s = 0, we have ϖΛ(M) < ∞, and then we set M0 = M . When s > 0,

there exist exact sequences {0 → M⊕ai
i−1 → Mi → ΩniM⊕bi

i−1 → 0}si=1 in modΛ with ni ⩾ 0, ai, bi > 0,
M0 = M and ϖΛ(Ms) < ∞. For each s+1 ⩽ i ⩽ r, let ai, bi be any positive integers (say ai = bi = 1), let

ni be any nonnegative integer (say ni = 0), set Mi = M⊕ai
i−1 ⊕ΩniM⊕bi

i−1 , and take the split exact sequence

0 → M⊕ai
i−1 → Mi → ΩniM⊕bi

i−1 → 0. We obtain exact sequences {0 → M⊕ai
i−1 → Mi → ΩniM⊕bi

i−1 → 0}ri=1

in modΛ with ni ⩾ 0, ai, bi > 0, M0 = M and ϖΛ(Mr) < ∞. ■

The result below includes a theorem of Araya and Celikbas [1, Theorem 1.3]; they prove it under the
additional assumption that Λ is both commutative and local1. It is also worth mentioning that our proof
is much simpler than that of [1, Theorem 1.3].

Corollary 2.9. Let Λ be a noetherian ring. Let M be a finitely generated Λ-module of finite reducing
Gorenstein dimension. Then GdimΛ M = sup{i ∈ N | ExtiΛ(M,Λ) ̸= 0}.

Proof. The equality holds if GdimΛ M < ∞ by [2, Page 95]. It suffices to show that GdimΛ M < ∞ if

s := sup{i ∈ N | ExtiΛ(M,Λ) ̸= 0} is finite. Put r = redGdim
Λ M < ∞. If r = 0, then GdimΛ M < ∞

and we are done. We assume r > 0. By Lemma 2.8 there exist exact sequences {0 → M⊕ai
i−1 → Mi →

ΩniM⊕bi
i−1 → 0}ri=1 in modΛ with ni ⩾ 0, ai, bi > 0, M0 = M and GdimΛ Mr < ∞. Setting a = a1,

b = b1, n = n1 and N = M1, we have an exact sequence

0 → M⊕a → N → ΩnM⊕b → 0

and redGdim
Λ N ⩽ r − 1. This exact sequence shows that sup{i ∈ N | ExtiΛ(N,Λ) ̸= 0} ⩽ s < ∞.

The induction hypothesis implies that N has finite Gorenstein dimension. To show that M has finite
Gorenstein dimension, replacing M and N with their sth syzygies, we may assume that M ∈ G∞0

and N ∈ G∞∞. There are exact sequences 0 → M⊕ab → N⊕b → ΩnM⊕b2 → 0 and 0 → M⊕a2 →
N⊕a → ΩnM⊕ab → 0, the former of which induces an exact sequence 0 → ΩnM⊕ab → ΩnN⊕b ⊕ P1 →
Ω2nM⊕b2 → 0 with P1 projective. We get an exact sequence

0 → M⊕a2

→ N⊕a → ΩnN⊕b ⊕ P1 → Ω2nM⊕b2 → 0.

There are exact sequences 0 → M⊕ab2 → N⊕b2 → ΩnM⊕b3 → 0 and 0 → M⊕a3 → N⊕a2 → ΩnN⊕ab ⊕
P⊕a
1 → Ω2nM⊕ab2 → 0, the former of which induces an exact sequence 0 → Ω2nM⊕ab2 → Ω2nN⊕b2 ⊕

P2 → Ω3nM⊕b3 → 0 with P2 projective. We get an exact sequence

0 → M⊕a3

→ N⊕a2

→ ΩnN⊕ab ⊕ P⊕a
1 → Ω2nN⊕b2 ⊕ P2 → Ω3nM⊕b3 → 0.

1By Remark 2.6, finiteness of reducing Gorenstein dimension in the sense of [1] implies finiteness of reducing Gorenstein

dimension in our sense. Thus, even when Λ is both commutative and local, Corollary 2.9 is stronger than [1, Theorem 1.3].
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Iterating this procedure, we obtain exact sequences

{0 → M⊕ai

→ Gi−1 → · · · → G1 → G0 → ΩinM⊕bi → 0}i⩾1

with Gj ∈ G∞∞ for all 0 ⩽ j ⩽ i − 1. Using the fact that M is in G∞0, we see that the Λ-duals of

these exact sequences are again exact. Now our Theorem 2.2 deduces that M⊕ai

belongs to G0i for
each i ⩾ 1. Since a > 0, this implies that M ∈ G0i for all i ⩾ 1, whence M ∈ G0∞. It follows that
M ∈ G∞0 ∩ G0∞ = G∞∞. Therefore M is totally reflexive, and it has finite Gorenstein dimension. ■

3. Reducing projective dimension and upper reducing projective dimension

In this section, we explore reducing projective dimension and upper reducing projective dimension
mainly over a commutative noetherian local ring. We obtain a close connection of upper reducing projec-
tive dimension with complexity. We also investigate some properties of local rings by means of finiteness
of reducing projective dimension and of upper reducing projective dimension.

Modifying the definitions of reducing projective and Gorenstein dimensions, we introduce the following
homological invariants.

Definition 3.1. Let Λ be a noetherian ring. Let M be a finitely generated Λ-module. We define the

upper reducing projective dimension ∗redpdΛ M and the upper reducing Gorenstein dimension ∗redGdim
Λ M

of M as follows; let ϖ ∈ {pd,Gdim}.
(1) One has ϖΛ(M) < ∞ if and only if ∗redϖΛ M = 0.
(2) Assume ϖΛ(M) = ∞. If there exist exact sequences {0 → Mi−1 → Mi → ΩniMi−1 → 0}si=1 in

modΛ with ni ⩾ 0, s > 0, M0 = M and ϖΛ(Ms) < ∞, then ∗redϖΛ M is the minimum of such s.
(3) If no such exact sequences exist, then ∗redϖΛ M = ∞.

Note that there is an inequality ∗redϖΛ M ⩾ redϖΛ M , which is the reason for the names of upper reducing
projective/Gorenstein dimensions.

Similarly to Remark 2.7, the statements below hold.

Remark 3.2. Let (R,m, k) be a commutative noetherian local ring. One has the following equivalences.

(1) R is regular ⇐⇒ ∗redpdR M = 0 for all M ∈ modR ⇐⇒ ∗redpdR k = 0.

(2) R is Gorenstein ⇐⇒ ∗redGdim
R M = 0 for all M ∈ modR ⇐⇒ ∗redGdim

R k = 0.

The following lemma is the upper reducing homological dimension version of Lemma 2.8, whose proof
is similar and so omitted.

Lemma 3.3. Let Λ be a noetherian ring, and M a finitely generated Λ-module. Let ϖ ∈ {pd,Gdim},
and let r be a positive integer. If one has ∗redϖΛ M ≤ r, then there exist exact sequences {0 → Mi−1 →
Mi → ΩniMi−1 → 0}ri=1 in modΛ such that ni ⩾ 0, M0 = M and ϖΛ(Mr) < ∞.

Here we recall the definition of complexity, and that of reducible complexity introduced by Bergh [7].

Definition 3.4. Let (R,m, k) be a commutative noetherian local ring.

(1) Let M be a finitely generated R-module. The complexity cxR M of M is defined to be the infimum
of integers n ⩾ 0 such that there exists a real number α with βR

i (M) ⩽ αin−1 for all i ≫ 0. Here

βR
i (M) stands for the ith Betti number of the R-module M , i.e., βR

i (M) = dimk Tor
R
i (M,k).

(2) We define the full subcategory X of modR inductively as follows. Let M ∈ modR.
(a) If pdR M < ∞ (i.e., cxR M = 0), then M ∈ X .
(b) If 0 < cxR M < ∞ and there exists an exact sequence 0 → M → N → ΩnM → 0 in modR with

n ⩾ 0 such that cxR N < cxR M , depthR N = depthR M and N ∈ X , then M ∈ X .
The modules belonging to X are said to have reducible complexity. Note by definition that any
module having reducible complexity has finite complexity.

Remark 3.5. Let R be a commutative noetherian local ring. By [7, Proposition 2.2(i)], if a finitely gener-
ated R-module has finite complete intersection dimension, then it has reducible complexity. In particular,
if R is a complete intersection, then every finitely generated R-module has reducible complexity.

A reason why we introduce upper reducing projective dimension is that the following theorem holds.
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Theorem 3.6. Let R be a commutative noetherian local ring. Let M be a finitely generated R-module.

Then cxR M ⩽ ∗redpdR M . If M has reducible complexity, then the equality cxR M = ∗redpdR M holds.

Proof. First, we prove the inequality cxR M ⩽ ∗redpdR M . We may assume ∗redpdR M = r < ∞. We use
induction on r. If r = 0, then pdR M < ∞ and hence cxR M = 0. Let r ⩾ 1. There exist exact sequences
{0 → Mi−1 → Mi → ΩniMi−1 → 0}ri=1 in modR such that M0 = M and pdR Mr < ∞. Note then

that ∗redpdR M1 ⩽ r − 1. The induction hypothesis implies cxR M1 ⩽ r − 1. Putting n = n1, N = M1

and c = cxR N , we have an exact sequence 0 → M → N → ΩnM → 0 and c ⩽ r − 1. There exist a
real number α > 0 and an integer u > 0 such that βR

i (N) ⩽ αic−1 for all i ⩾ u. The induced exact

sequence TorRi (N, k) → TorRi (Ω
nM,k) → TorRi−1(M,k) for each i yields βR

i+n(M) ⩽ βR
i (N)+βR

i−1(M) ⩽
αic−1 + βR

i−1(M) for all i ⩾ u. Fix two integers p, q with p ⩾ 0 and u− 1 ⩽ q ⩽ u− 1 + n. We have

βR
p(n+1)+q(M)− βR

q (M) =
∑p

l=1(β
R
l(n+1)+q(M)− βR

(l−1)(n+1)+q(M))(3.6.1)

⩽
∑p

l=1 α((l − 1)(n+ 1) + q + 1)c−1

⩽
∑p

l=1 α((p− 1)(n+ 1) + q + 1)c−1

= αp((p− 1)(n+ 1) + q + 1)c−1 ⩽ α(p(n+ 1) + q)c.

Putting γ = maxu−1⩽h⩽u−1+n{βR
h (M)}, we get βR

p(n+1)+q(M) ⩽ γ + α(p(n + 1) + q)c for all p, q with

p ⩾ 0 and u−1 ⩽ q ⩽ u−1+n. Note that {p(n+1)+q | p ⩾ 0, u−1 ⩽ q ⩽ u−1+n} coincides with the
set of integers at least u− 1. Hence βR

i (M) ⩽ γ +αic for all i ⩾ u− 1, which implies βR
i (M) ⩽ (α+1)ic

for all i ≫ 0. Therefore cxR M ⩽ c+ 1 ⩽ r as desired.
Next, we prove the opposite inequality cxR M ⩾ ∗redpdR M , assuming that M has reducible complexity.

Let c := cxR M < ∞. We use induction on c. When c = 0, the module M has finite projective dimension,

and ∗redpdR M = 0. Let c ⩾ 1. Since M has reducible complexity, there exists an exact sequence

(3.6.2) 0 → M → N → ΩnM → 0

in modR such that n ⩾ 0, cxR N < c, depthR N = depthR M and N has reducible complexity. We can

apply the induction hypothesis to N to get ∗redpdR N ⩽ cxR N =: e. If e = 0, then N has finite projective

dimension, and it follows from (3.6.2) that ∗redpdR M ⩽ 1 ⩽ c. Let e ⩾ 1. Lemma 3.3 implies that

there exist a family {0 → Mi−1 → Mi → ΩniMi−1 → 0}e+1
i=2 of exact sequences in modR with ni ⩾ 0,

M1 = N and pdR Me+1 < ∞. Putting n1 = n and M0 = M to include (3.6.2) in this family, we get the
family {0 → Mi−1 → Mi → ΩniMi−1 → 0}e+1

i=1 of exact sequences in modR with ni ⩾ 0, M0 = M and

pdR Me+1 < ∞. It follows that ∗redpdR M ⩽ e+ 1 ⩽ c. ■

We recall the definition of an AB ring introduced by Huneke and Jorgensen [13].

Definition 3.7. A commutative noetherian local ring R is called AB if there exists an integer n such

that for all finitely generated R-modules M,N with Ext≫0
R (M,N) = 0 one has Ext⩾n

R (M,N) = 0.

It is asked in [1, Question 2.2] whether a commutative noetherian local ring over which every finitely
generated module has finite reducing projective dimension is a complete intersection. We can prove the
following result, which shows that the question is affirmative if we replace reducing projective dimension
with upper reducing projective dimension, and that such a ring is AB.

Corollary 3.8. Let (R,m, k) be a commutative noetherian local ring. Consider the following conditions.

(1) R is a complete intersection. (2) All M ∈ modR have reducible complexity. (3) ∗redpdR k < ∞.

(4) ∗redpdR M < ∞ for all M ∈ modR. (5) redpdR M < ∞ for all M ∈ modR. (6) R is AB.
Then the implications (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇒ (5) ⇒ (6) hold.

Proof. It is evident that the implications (3) ⇐ (4) ⇒ (5) hold. It follows from Remark 3.5 that (1)
implies (2). Theorem 3.6 particularly says that (2) implies (4). If (3) holds, then Theorem 3.6 implies
that k has finite complexity, and (1) follows by [4, Theorem 8.1.2]. Thus (3) implies (1).

It remains to show that (5) implies (6). Put t = depthR. Take nonzero finitely generated R-modules

M,N such that Ext≫0
R (M,N) = 0. By assumption, r := redpdR M is finite. When r = 0, we have

pdR M < ∞, which implies pdR M ⩽ t, and Ext>t
R (M,N) = 0. We may assume r > 0. Lemma 2.6 gives

exact sequences {0 → M⊕ai
i−1 → Mi → ΩniM⊕bi

i−1 → 0}ri=1 in modR with ni ⩾ 0, ai, bi > 0, M0 = M
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and pdR Mr < ∞. By the proof of [1, 5.1] we have sup{i ∈ N | ExtiR(M,N) ̸= 0} = sup{i ∈ N |
ExtiR(Mr, N) ̸= 0} = pdR Mr ⩽ t. Thus R is AB. ■

Here is an example of a ring R admitting a module M with ∗redpdR M > redpdR M . This example also
says that the reducing projective dimension version of Theorem 3.6 does not hold in general.

Example 3.9. Consider the ring R = k[x, y]/(x2, xy, y2) with k a field. Then pdR k = ∞ and there

is an exact sequence 0 → k⊕2 → R → k → 0, whence redpdR k = 1. On the other hand, as R is not a

complete intersection, ∗redpdR k = ∞ by Corollary 3.8. Therefore one has ∗redpdR k > redpdR k. Moreover,

since cxR k = ∞ by [4, Theorem 8.1.2], one has cxR k > redpdR k.

4. Upper reducing Gorenstein dimension

In this section, we consider Gorenstein analogues of the results obtained in the previous section.
We recall the definition of plexity in the sense of Avramov [3], and introduce Gorenstein versions of

complexity and reducible complexity.

Definition 4.1. Let (R,m, k) be a commutative noetherian local ring. Denote by mod0 R the full
subcategory of modR consisting of modules that are locally free on the punctured spectrum of R.

(1) The plexity pxR M of M ∈ modR is by definition the infimum of integers n ⩾ 0 such that there exists
a real number α with µi

R(M) ⩽ αin−1 for all i ≫ 0. Here µi
R(M) denotes the ith Bass number of R,

that is, µi
R(M) = dimk Ext

i
R(k,M).

(2) Let M ∈ mod0 R. Then ExtiR(M,R) has finite length for all i > 0, and one can define the Gorenstein
complexity gcxR M of M as the infimum of integers n ⩾ 0 such that there exists a real number α
with ℓR(Ext

i
R(M,R)) ⩽ αin−1 for all i ≫ 0.

(3) We define the full subcategory X of mod0 R inductively as follows. Let M ∈ mod0 R.
(a) If GdimR M < ∞ (i.e., gcxR M = 0), then M ∈ X .
(b) If 0 < gcxR M < ∞ and there exists an exact sequence 0 → M → N → ΩnM → 0 in modR

with n ⩾ 0 such that gcxR N < gcxR M , depthR N = depthR M and N ∈ X , then M ∈ X .
The modules belonging to X are said to have reducible Gorenstein complexity.

Note that one has the equality gcxR k = pxR R, and that any module having reducible Gorenstein
complexity has finite Gorenstein complexity.

Remark 4.2. Let (R,m, k) be a commutative noetherian local ring.

(1) If in the definition of Gorenstein complexity we replace the length function ℓR with the minimal
number of generators function νR, then gcxR M coincides with the complexity cxR(M,R) of the pair
of modules (M,R) in the sense of Avramov and Buchweitz [5]. When R is artinian, one actually has
gcxR M = cxR(M,R) for each finitely generated R-module M by [10, Corollary 2.6].

(2) One has: R is Gorenstein ⇐⇒ gcxR M = 0 for all M ∈ mod0 R ⇐⇒ gcxR k = 0 ⇐⇒ pxR R = 0.

The following result is a Gorenstein version of Theorem 3.6.

Proposition 4.3. Let R be a commutative noetherian local ring. Let M be a finitely generated R-module
that is locally free on the punctured spectrum of R. Then there is an inequality gcxR M ⩽ ∗redGdim

R M . If

M has reducible Gorenstein complexity, then the equality gcxR M = ∗redGdim
R M holds.

Proof. The proposition can be shown in a simlar way as in the proof of Theorem 3.6.
As to the first assertion of the proposition, we use induction on r = ∗redGdim

R M ∈ N. If r = 0, then
GdimR M < ∞ and gcxR M = 0. For r ⩾ 1, there exist exact sequences {0 → Mi−1 → Mi → ΩniMi−1 →
0}ri=1 in modR such that M0 = M and GdimR Mr < ∞. Note then that ∗redGdim

R M1 ⩽ r − 1 and that
M1 is locally free on the punctured spectrum of R. The induction hypothesis implies gcxR M1 ⩽ r − 1.
Putting n = n1, N = M1 and c = gcxR N , we have an exact sequence 0 → M → N → ΩnM → 0 and
c ⩽ r − 1. There are a real number α > 0 and an integer u > 0 such that ℓR(Ext

i
R(N,R)) ⩽ αic−1 for

all i ⩾ u. The induced exact sequence Exti−1
R (M,R) → ExtiR(Ω

nM,R) → ExtiR(N,R) for each i yields

ℓR(Ext
i+n
R (M,R)) ⩽ ℓR(Ext

i−1
R (M,R)) + αic−1 for all i ⩾ u. Making a computation similar to (3.6.1),

we can deduce that ℓR(Ext
i
R(M,R)) ⩽ (α+ 1)ic for all i ≫ 0. Thus gcxR M ⩽ c+ 1 ⩽ r as desired.
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As for the second assertion of the proposition, in the proof of the second assertion of Theorem 3.6,
we replace complexity with Gorenstein complexity, and projective dimension with Gorenstein dimension.
Then we are done. ■

The corollary below is an immediate consequence of Proposition 4.3.

Corollary 4.4. Let R be a commutative noetherian local ring. Suppose that the residue field k has finite
upper reducing Gorenstein dimension. Then R has finite plexity: pxR R < ∞.

Remark 4.5. According to [8, §1] and [15, Question A], it is an open problem whether a commutative
noetherian local ring (R,m, k) is Gorenstein if pxR R < ∞. If it turns out to be true, then Corollary

4.4 and Remarks 3.2(2), 4.2(2) will imply that R is Gorenstein if and only if ∗redGdim
R M < ∞ for all

M ∈ modR, if and only if ∗redGdim
R k < ∞, which is a Gorenstein version of the equivalences (1) ⇔ (3)

⇔ (4) in Corollary 3.8.
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