Topic: Force of Interest

Brett has the option to invest in either Account A or Account B:
a. Account A pays a nominal annual interest rate of 6% compounded monthly for ten years.
b. Account B pays a rate equivalent to $d^{(2)}$ for the first six years and then earns a force of interest of $\delta_{t}=0.008 t$ for the next four years.

If Brett invests 1000 in either account, he will have the same amount at the end of 10 years.

Determine $d^{(2)}$.

Solution:

$$
\begin{aligned}
& \text { Account } \mathrm{A}=1000\left(1+\frac{0.06}{12}\right)^{(10)(12)}=1819.40 \\
& \text { Account } \mathrm{B}=1000\left(1-\frac{d^{(2)}}{2}\right)^{-(6)(2)}\left(e^{\int^{6} 0.008 t \cdot d t}\right)=1819.40 \\
& ==>\left(1-\frac{d^{(2)}}{2}\right)^{-12}\left(e^{\left.0.004 t^{2}\right]_{6}^{10}}\right)=1.81940==>\left(1-\frac{d^{(2)}}{2}\right)^{-12}\left(e^{0.4-0.144}\right)=1.81940 \\
& ==>\left(1-\frac{d^{(2)}}{2}\right)^{-12}=\frac{1.81940}{e^{0.256}}=1.40847==>d^{(2)}=2\left[1-(1.40847)^{-1 / 12}\right]=0.056277
\end{aligned}
$$

Dylan invests 13,000 today in an account at Nick Bank. Dylan also invests another 5000 in the same account at the end of 5 years.

The account at Nick Bank earns a force of interest of $0.08+0.002 t$ where t is measured from today.

Determine how much Dylan has at the end of 9 years.

Solution:

$$
\begin{aligned}
& \text { Amount }=13,000 e^{\int_{0}^{9}(0.08+0.002 t) d t}+5000 e^{\int_{5}^{9}(0.08+0.002 t) d t} \\
& =13,000 e^{\left[0.08 t+0.001 t^{2}\right]_{0}^{9}}+5000 e^{\left[0.08 t+0.001 t^{2}\right]_{5}^{9}}= \\
& 13,000 e^{\left[0.08(9)+0.001(9)^{2}-0\right]}+5000 e^{\left[0.08(9)+0.001(9)^{2}-0.08(5)-0.001(5)^{2}\right]} \\
& 13,000 e^{0.801}+5000 e^{0.376}=36,243.21
\end{aligned}
$$

Alisa invests 42,000 in Amir Bank. At the end of 10 years, Alisa has 100,000.
Amir Bank pays interest based on the following:
a. The first two years, Amir pays an annual effective interest rate of i.
b. During the next three years, Amir pays a nominal discount rate of 8% compounded quarterly.
c. During the last five years, Amir pays a force of interest equal to $\delta_{t}=0.04+0.001 t^{2}$ where t is measured from the date of the original investment of 42,000 .

Determine i.

Solution:

$(42,000)(1+i)^{2}\left(1-\frac{0.08}{4}\right)^{-4(3)} e^{\int_{5}^{10}\left(0.04+0.001 r^{2}\right) d r}=100,000$
$e^{\int_{5}^{10}\left(0.04+0.001 r^{2}\right) d r}=e^{\left[0.04 r+\frac{0.001}{3} r^{3}\right]_{5}^{10}}=e^{(0.4+0.333333333-0.2-0.0411666666)}=e^{0.49166666}$

$$
(1+i)^{2}=\frac{100,000}{(42,000)\left(1-\frac{0.08}{4}\right)^{-4(3)} e^{0.49166666}}=1.14708605
$$

$$
i=(1.14708605)^{0.5}-1=0.068975493
$$

You are given that $v(t)=\left[1+\beta t^{2}\right]^{-1}$.
You are also given that $\delta_{5}=\delta_{10}$.

Determine β.

Solution:

$v(t)=\frac{1}{1+\beta t^{2}}=\frac{1}{a(t)}=\Rightarrow a(t)=1+\beta t^{2}$
$\delta_{t}=\frac{a^{\prime}(t)}{a(t)}=\frac{2 \beta t}{1+\beta t^{2}}$
$\delta_{5}=\delta_{10}=\Rightarrow \frac{2 \beta(5)}{1+\beta(5)^{2}}=\frac{2 \beta(10)}{1+\beta(10)^{2}}=\Rightarrow 10 \beta[1+100 \beta]=20 \beta[1+25 \beta]$
$=\Rightarrow[1+100 \beta]=2[1+25 \beta] \Longrightarrow 1+100 \beta=2+50 \beta$
$50 \beta=1==>\beta=0.02$

You are given that $a(t)=\alpha+\beta t^{2}$ and that $\delta_{10}=0.10$.
Shina invests 1000 at time zero using the above accumulation function.

How much does Shina have after 20 years?

Solution:

$a(0)=1 \Longrightarrow \alpha=1$
$\delta_{t}=\frac{a^{\prime}(t)}{a(t)}=\frac{2 \beta t}{1+\beta t^{2}}=\Rightarrow \delta_{10}=0.10=\frac{2 \beta(10)}{1+\beta(10)^{2}}=\Rightarrow(0.10)(1+100 \beta)=20 \beta$
$==>0.1+10 \beta=20 \beta==>0.1=10 \beta==>\beta=0.01$

Amount after 20 years $=1000 a(20)=1000\left[1+0.01(20)^{2}\right]=5000$

Alex invests 10,000 in an account earning simple interest at a rate of 8%.
Quinn invests S in an account earning 6\% compounded continuously.
At the end of 10 years, Alex and Quinn have the same amount.
Yash invests S at an annual interest rate equivalent to a discount rate of 7%.
Determine the amount that Yash will have at the end of 10 years.
Solution:
Alex : 10,000[1+0.08(10)] = 18,000

Quinn : $S e^{(0.06)(10)}=18,000=\Rightarrow S=\frac{18,000}{e^{0.6}}=9878.60945$

Yash: $9878.60945(1-0.07)^{-10}=20,411.10$

You are given:
a. $\quad v(t)=\frac{1}{\beta+0.01 t+\alpha t^{2}}$
b. $i_{11}=0.04$

Calculate δ_{10}.

Solution:

$v(t)=\frac{1}{a(t)} \Longrightarrow \Rightarrow a(t)=\beta+0.01 t+\alpha t^{2}$
$a(0)=1 \Longrightarrow \beta+0.01(0)+\alpha\left(0^{2}\right)=1 \Longrightarrow \beta=1$
$i_{11}=0.04 \Longrightarrow>\frac{a(11)-a(10)}{a(10)}=0.04 \Longrightarrow>\frac{1+0.01(11)+\alpha\left(11^{2}\right)-\left[1+0.01(10)+\alpha\left(10^{2}\right)\right]}{1+0.01(10)+\alpha\left(10^{2}\right)}=0.04$
$=>\frac{0.11+121 \alpha-0.10-100 \alpha}{1+0.1+100 \alpha}=0.04 \Rightarrow 0.01+21 \alpha=0.04+0.004+4 \alpha$
$\Longrightarrow 17 \alpha=0.034 \Longrightarrow \alpha=0.002$
$a(t)=1+0.01 t+0.002 t^{2}$
$\delta_{t}=\frac{a^{\prime}(t)}{a(t)}=\frac{0.01+0.004 t}{1+0.01 t+0.002 t^{2}}=\Rightarrow \delta_{10}=\frac{0.01+0.004(10)}{1+0.01(10)+0.002\left(10^{2}\right)}=0.03846$

You are given that $a(t)=\alpha+\beta t^{3}$. You are also given that $\delta_{10}=0.25$.

Calculate i_{5}.

Solution:

$$
\begin{aligned}
& a(0)=1 \Longrightarrow \alpha+\beta(0)=1=>\alpha=1 \\
& \delta_{t}=\frac{a^{\prime}(t)}{a(t)}=\frac{3 \beta t^{2}}{1+\beta t^{3}}=>\delta_{10}=0.25=\frac{3 \beta(10)^{2}}{1+\beta(10)^{3}}=>0.25+250 \beta=300 \beta \\
& \Rightarrow 0.25=50 \beta \Rightarrow \beta=0.005 \\
& i_{5}=\frac{a(5)-a(4)}{a(4)}=\frac{1+(0.005)(5)^{3}-\left[1+0.005(4)^{3}\right]}{1+0.005(4)^{3}}=0.23106
\end{aligned}
$$

Tom invests 10,000 in the Pham Fund for 10 years.
a. The Pham Fund pays simple interest at an annual rate of 5% during the first 3 years.
b. The Pham Fund pays an interest rate equivalent to a discount rate of 8% convertible quarterly during the next five years.
c. The Pham Fund pays a force of interest of 10% during the last two years of Tom's investment.

Determine the amount of money that Tom has at the end of 10 years.

Solution:

Amount $=(10,000)[1+(0.05)(3)]\left[1-\frac{0.08}{4}\right]^{-(4)(5)}\left[e^{(0.1)(2)}\right]=21,039.49$

You are given that $v(t)=\frac{1}{1+0.002 t^{2}}$.

Calculate $1000\left(\delta_{5}-d_{5}\right)$.

Solution:

$v(t)=\frac{1}{1+0.002 t^{2}}=\Rightarrow a(t)=1+0.002 t^{2}$
$\delta_{t}=\frac{a^{\prime}(t)}{a(t)}=\frac{0.004 t}{1+0.002 t^{2}}=>\delta_{5}=\frac{(0.004)(5)}{1+0.002(5)^{2}}=\frac{0.02}{1.05}=0.01905$
$d_{5}=\frac{a(5)-a(4)}{a(5)}=\frac{1+0.002(5)^{2}-\left[1+0.002(4)^{2}\right]}{1+0.002(5)^{2}}=\frac{1.05-1.032}{1.05}=0.01714$

Answer $=(1000)(0.01905-0.01714)=1.91$

You are given:

a. $\quad v(t)=\frac{1}{\alpha+\beta t^{2}}$
b. $\delta_{5}=0.08$

Peyton invests X today in an account and has 25,000 at the end of 10 years.
Determine X.

Solution:

$v(t)=\frac{1}{a(t)}=\Rightarrow a(t)=\alpha+\beta t^{2}$
$a(0)=1 \Longrightarrow \alpha=1$
$\delta_{t}=\frac{a^{\prime}(t)}{a(t)}=\frac{2 \beta t}{1+\beta t^{2}}=\Rightarrow \delta_{5}=\frac{10 \beta}{1+25 \beta}=0.08$
$10 \beta=0.08+2 \beta=\Rightarrow 8 \beta=0.08 \Rightarrow \beta=\frac{0.08}{8}=0.01$
$X a(10)=25,000 \Longrightarrow X=\frac{25,000}{a(10)}=\frac{25,000}{1+0.01(10)^{2}}=\frac{25,000}{2}=12,500$

Adam has the choice of the following car loans:
a. Bradley Bank will loan Adam 13,000 for five years to be repaid at an annual interest rate of 8% compounded continuously.
b. Chen Bank will loan Adam 13,000 for five years to be repaid at an annual interest rate equivalent to a discount rate of 8% compounded monthly.

State which loan Adam should choose. Demonstrate that the loan that you chose is better for Adam than the other loan.

Solution:

Under Option A:

Amount to be Repaid $=(13,000)\left(e^{(0.08)(5)}\right)=19,393.72$

Under Option B:

Amount to be Repaid $=(13,000)\left(1-\frac{0.08}{12}\right)^{-12(5)}=19,419.71$

Adam should choose the loan that will result in the smallest repayment so he should choose Option A which is the loan from Bradley Bank.

Claire invests 20,000 today in an account earning a force of interest of $\delta_{t}=0.02+0.01 t$.

How much does Claire have at the end of 10 years.
Solution:

$$
\begin{aligned}
\text { Amount } & =20,000 e^{\int_{0}^{10}(0.02+0.01 t) d t} \\
& =20,000 e^{0.02 t+\left.0.005 t^{2}\right|_{0} ^{10}} \\
& =20,000 e^{0.7} \\
& =20,000(2.01375) \\
& =40,275.05
\end{aligned}
$$

