# Conductivity Imaging from Minimal Current Density Data 

Alexandru Tamasan<br>University of Central Florida

Joint work with:
A. Nachman, A. Timonov, Z. Nashed, A. Moradifam, J. Veras

## Motivation: Current density impedance imaging

Goal: Determine the conductivity of human tissue by combining

- electrical (voltage/current) measurements on the boundary (EIT)
- magnitude of one current density field inside (CDI)

Current Density Imaging (Scott\& Joy '91)
Very low frequency/ direct current $\Rightarrow$ stationary Maxwell Current Density Field $J:=\nabla \times H$ (two rotations of the object)

MR measurements $\Rightarrow$ Magnetic field $H$ produced by the applied current can be identified from the total field produced by the coils+fixed magnet

1-Laplacian in the conformal metric $g_{i j}=|J|^{2 /(n-1)} \delta_{i j}$
$\sigma_{-} \leq \sigma(x) \leq \sigma_{+}=$isotropic conductivity of a body

- Ohm's Law: $J=-\sigma \nabla u \Rightarrow \sigma=|J| /|\nabla u|$.
- Conservation of charge (absence of sources/sinks inside): $\nabla \cdot J=0$.

1-Laplacian (Seo et al., '02):

$$
\nabla \cdot\left(\frac{|J|}{|\nabla u|} \nabla u\right)=0 .
$$

Level sets of smooth, regular solutions are minimal surfaces in the metric $g=\left(|J|^{2 /(n-1)} \delta_{i j}\right)$.

Admissible Data: $(f, a) \in H^{1 / 2}(\partial \Omega) \times L^{2}(\Omega)$
$\exists \sigma(x)$ with $0<c_{-} \leq \sigma(x) \leq \sigma_{+}$, such that, if $u_{\sigma}$ is weak solution of

$$
\nabla \cdot \sigma \nabla u_{\sigma}=0,\left.u_{\sigma}\right|_{\partial \Omega}=f
$$

then

$$
a=\left|\sigma \nabla u_{\sigma}\right| .
$$

$\sigma=$ generating conductivity for the pair $(f, a)$,
$u=$ corresponding potential.

## Sternberg-Ziemer example (for Dirichlet data)

Sternberg\& Ziemer

$$
\begin{aligned}
& \nabla \cdot\left(\frac{1}{|\nabla u(x)|} \nabla u(x)\right)=0, x \in D \equiv \text { unit disk, } \\
& u(x)=\left(x_{1}\right)^{2}-\left(x_{2}\right)^{2}, x \in \partial D
\end{aligned}
$$

has a one parameter family of viscosity solutions $u^{\lambda}, \lambda \in(-1,1)$, with

$$
u^{\lambda} \equiv \lambda
$$

in inscribed rectangles.
Remark: $u^{\lambda}$ s are NOT voltage potentials of some $\sigma \in L_{+}^{\infty}(\Omega)$ :

$$
1 \equiv|J| \neq \sigma\left|\nabla u^{\lambda}\right| \equiv 0
$$

## Admissibility and the minimum weighted gradient problem

- If $(f, a)$ is admissible, say generated by some conductivity $\sigma_{0}$ then the corresponding voltage potential

$$
u_{0} \in \operatorname{argmin}\left\{\int_{\Omega} a|\nabla u| d x: u \in H^{1}(\Omega),\left.u\right|_{\partial \Omega}=f\right\} .
$$

- If $u_{0} \in \operatorname{argmin}\left\{\int_{\Omega} a|\nabla u| d x: u \in H^{1}(\Omega),\left.u\right|_{\partial \Omega}=f\right\}$ and $|J| /\left|\nabla u_{0}\right| \in L_{+}^{\infty}(\Omega)$, then $(f, a)$ is admissible.


## Notes:

- Formally (not smooth) the Euler-Lagrange for $\int_{\Omega} a|\nabla u| d x$ is the 1-Laplacian.
- In the example before only $u^{0}$ (for $\lambda=0$ ) is a minimizer of $\int_{\Omega}|\nabla u(x)| d x$.


## Unique determination

Theorem (Nachman-T-Timonov '09, Moradifam-Nachman-T' 11)
$(f,|J|) \in C^{1, \alpha}(\partial \Omega) \times C^{\alpha}(\bar{\Omega})=$ admissible pair, $|J|>0$ a.e. in $\Omega$.
Then $\quad \min \int_{\Omega}|J||\nabla u| d x$

$$
\text { over }\left\{u \in W^{1,1}(\Omega) \bigcap C(\bar{\Omega}),|\nabla u|>0 \text { a.e., }\left.u\right|_{\partial \Omega}=f\right\}
$$

has a unique solution, say $u_{0}$;
$\sigma=|J| /\left|\nabla u_{0}\right|$ is the unique conductivity generating $(f,|J|)$.
Note (joint with A. Moradifam and A. Nachman): Uniqueness carries to

$$
\text { over }\left\{u \in B V(\Omega),\left.\quad u\right|_{\partial \Omega}=f\right\}
$$

Implies stability in the minimization problem!

## Equipotential surfaces are (globally) area minimizing

Theorem (Nachman-T-Timonov '11) Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$, be Lipschitz domain, $\sigma \in C^{1, \delta}(\Omega)$, and $f \in C^{2, \delta}(\partial \Omega)$. Let $|J|=\sigma\left|\nabla u_{\sigma}\right|$, where $u_{\sigma}$ solves $\nabla \cdot \sigma \nabla u_{\sigma}=0$ with $\left.u\right|_{\partial \Omega}=f$. Assume $|J|>0$ in $\bar{\Omega}$.

Then, for a.e. $\lambda \in \mathbb{R}$ and any $v \in C^{2}(\bar{\Omega})$ with $\left.v\right|_{\partial \Omega}=f$ and $|\nabla v|>0$,

$$
\int_{u^{-1}(\lambda) \cap \Omega}|J(x)| d S_{x} \leq \int_{v^{-1}(\lambda) \cap \Omega}|J(x)| d S_{x} ;
$$

$d S=$ induced Euclidean surface measure.
Note: the integrals also represent the surface area induced from the metric $g=|J|^{(n-1) / 2} \delta_{i j}$.

## Insulating and perfectly conductive embeddings

$V=$ Insulating " $\sigma=0$ ",
$U=$ perfectly conductive " $\sigma=\infty$ ".
Let $k \rightarrow \infty$ in the equation:

$$
\begin{aligned}
& \nabla \cdot\left(\chi_{U}(k \tilde{\sigma}-\sigma)+\sigma\right) \nabla u=0 \text { in } \Omega, \\
& \left.\partial_{\nu} u\right|_{\partial V}=0, \\
& \left.u\right|_{\partial \Omega}=f .
\end{aligned}
$$

Still get

$$
\begin{aligned}
& \nabla \cdot \sigma \nabla u=0 \text { in } \Omega \backslash \overline{(U \cup V)} \\
& \nabla u=0 \text { in } U, \quad \text { but } \quad|J| \neq 0!
\end{aligned}
$$

Further complications: In 3D+ and $\sigma$ rough $\Rightarrow$ Non-unique continuation for solutions of elliptic

## Admissibility in the presence of insulating/infinitely conductive embeddings

Admissibility of the data $(a, f)$

- On $\Omega \backslash \overline{(U \cup V)}$ same as before (with $u_{\sigma}$ a solution of the limiting equation)
- On $U$ :

$$
\inf _{v \in W^{1,1}(U)} \int_{U} a|\nabla v| d x-\left.\int_{\partial U} \sigma\left(\frac{\partial u_{\sigma}}{\partial \nu}\right)\right|_{U^{+}} v d x=0
$$

- $\{x: a(x)=0\}=V \cup \Gamma \cup E$, where
- $V=$ one insulating connected component
- $\Gamma$-negligible
- $E=$ Exotic $=$ conductive region where $\nabla u=0$


## Admisibility is physical for infinitly conductive inclusions

$U \subset \Omega$ open, $\sigma \in L^{\infty} \Omega \backslash U$ and $a \in L^{\infty}(\Omega)$. Assume there exists $J \in \operatorname{Lip}\left(U ; \mathbb{R}^{n}\right)$ with

$$
\begin{aligned}
& \nabla \cdot J=0, \text { in } U, \\
& |J| \leq a, \text { in } U, \\
& \left.J\right|_{\partial U}=\left.\sigma \frac{\partial u_{\sigma}}{\partial \nu}\right|_{\partial U} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \inf _{v \in W^{1,1}(U)} \int_{U} a|\nabla v| d x-\left.\int_{\partial U} \sigma\left(\frac{\partial u_{\sigma}}{\partial \nu}\right)\right|_{U^{+}} v d x=0 \\
& \int_{\partial U} \sigma \frac{\partial u_{\sigma}}{\partial \nu} d s=0
\end{aligned}
$$

## What can be determined via the minimization problem?

Step1: From minimization determine $u$ outside the zero set of $a$.
Step 2: Regions where $u \equiv$ const. $\Rightarrow$ PERFECT CONDUCTORS.
Step 3: Determine $\sigma$ outside the zeros of $a$ and perfect conductors
Step 4: Identify maximal open connected components within zeros of $a$. If at the boundary of such a set

- $u$ varies $\Rightarrow$ INSULATOR
- $u=$ const. $\Rightarrow$ Fake perfectly conductive (EXOTIC =only happen in 3D when data is rough than Lipschitz).


## The least weighted total variation problem

Would like solve:

$$
\min \left\{\int_{\Omega} a|\nabla u| d x: u \in H^{1}(\Omega),\left.u\right|_{\partial \Omega}=f\right\}
$$

Difficulties:

- minimizing sequence $\left\{u_{n}\right\}$ is not necessarily bounded in $H^{1}$ (but merely in $W^{1,1}$ ).
- Although $u_{n}$ converges in $L_{l o c}^{1}(\Omega)$, the limit is only $B V$.

$$
\min \left\{\int_{\Omega} a|D u|: u \in B V(\Omega),\left.u\right|_{\partial \Omega}=f\right\}
$$

New problem: if a solution lies in $B V \backslash W^{1,1}$ cannot be automatically approximated (in $B V$-norm) by smooth maps (otherwise they would be in $W^{1,1}$ ).

## A regularized well-posed problem for the admissible case

Theorem (Nashed-T'11)Consider

$$
u_{n} \in \operatorname{argmin}_{u \in H_{0}^{1}} F_{\epsilon_{n}}\left[u: a_{n}\right]:=\int_{\Omega} a_{n}\left|\nabla h_{f}+\nabla u\right| d x+\epsilon_{n} \int_{\Omega}|\nabla u|^{2} d x,
$$

where $a_{n} \rightarrow a$ in $L^{2}(\Omega)$, and $\left\|a_{n}-a\right\|=o\left(\epsilon_{n}\right)$. Then

$$
\lim \inf \left[F_{\epsilon_{n}}\left[u_{n}: a_{n}\right]\right]=\min _{v \in B V(\Omega),\left.v\right|_{\partial \Omega=f}} \int_{\Omega} a|D v|
$$

If, in addition $0<\inf (a) \leq a \leq \sup (a)<\infty$, then on a subsequence $u_{n} \rightarrow v^{*}$ in $L^{1}$, and $v^{*} \in B V(\Omega)$ is a minimizer.

Moreover, provided $v^{*} \in W^{1,1}(\Omega)$,

$$
\sigma=\frac{a}{\left|\nabla\left(v^{*}+h_{f}\right)\right|} .
$$

## Mixed Boundary Value Problem



Figure 1:

$$
\nabla \cdot \frac{|J|}{|\nabla u|} \nabla u=0,\left.u\right|_{\Gamma=f},\left.\partial_{\nu} u\right|_{\Gamma_{ \pm}}=g
$$

## Interior Data $|J|$ and computed equipotential lines



Figure 2:

## Original and reconstructed conductivities via the equipotential lines



Figure 3:

## Original and reconstructed conductivities via the minimization approach



Figure 4:

