Conductivity Imaging from Minimal Current Density Data

Alexandru Tamasan

University of Central Florida

Joint work with:

A. Nachman, A. Timonov, Z. Nashed, A. Moradifam, J. Veras

Motivation: Current density impedance imaging

Goal: Determine the conductivity of human tissue by combining

- electrical (voltage/current) measurements on the boundary (EIT)
- magnitude of one current density field inside (CDI)

Current Density Imaging (Scott& Joy '91)

Very low frequency/ direct current \Rightarrow stationary Maxwell Current Density Field $J := \nabla \times H$ (two rotations of the object)

MR measurements \Rightarrow Magnetic field *H* produced by the applied current can be identified from the total field produced by the coils+fixed magnet

1-Laplacian in the conformal metric $g_{ij} = |J|^{2/(n-1)} \delta_{ij}$

 $\sigma_{-} \leq \sigma(x) \leq \sigma_{+}$ = isotropic conductivity of a body

- Ohm's Law: $J = -\sigma \nabla u \Rightarrow \sigma = |J|/|\nabla u|$.
- Conservation of charge (absence of sources/sinks inside): $\nabla \cdot J = 0$.

1-Laplacian (Seo et al., '02):

$$\nabla \cdot \left(\frac{|J|}{|\nabla u|}\nabla u\right) = 0.$$

Level sets of smooth, regular solutions are minimal surfaces in the metric $g = \left(|J|^{2/(n-1)} \delta_{ij} \right).$

Admissible Data: $(f, a) \in H^{1/2}(\partial \Omega) \times L^2(\Omega)$

 $\exists \sigma(x) \text{ with } 0 < c_{-} \leq \sigma(x) \leq \sigma_{+}, \text{ such that, if } u_{\sigma} \text{ is weak solution of }$

$$\nabla \cdot \sigma \nabla u_{\sigma} = 0, \ u_{\sigma}|_{\partial \Omega} = f,$$

then

$$a = |\sigma \nabla u_{\sigma}|.$$

 σ = generating conductivity for the pair (f, a),

u =corresponding potential.

Sternberg-Ziemer example (for Dirichlet data)

Sternberg& Ziemer

$$\nabla \cdot \left(\frac{1}{|\nabla u(x)|} \nabla u(x)\right) = 0, \ x \in D \equiv unit \ disk,$$
$$u(x) = (x_1)^2 - (x_2)^2, \ x \in \partial D.$$

has a one parameter family of viscosity solutions u^{λ} , $\lambda \in (-1, 1)$, with

$$u^{\lambda} \equiv \lambda$$

in inscribed rectangles.

Remark: u^{λ} s are NOT voltage potentials of some $\sigma \in L^{\infty}_{+}(\Omega)$:

$$1 \equiv |J| \neq \sigma |\nabla u^{\lambda}| \equiv 0.$$

Admissibility and the minimum weighted gradient problem

If (f, a) is admissible, say generated by some conductivity σ₀ then the corresponding voltage potential

$$u_0 \in argmin\left\{\int_{\Omega} a|\nabla u|dx: \ u \in H^1(\Omega), \ u|_{\partial\Omega} = f\right\}.$$

• If $u_0 \in argmin\left\{\int_{\Omega} a |\nabla u| dx : u \in H^1(\Omega), u|_{\partial\Omega} = f\right\}$ and $|J|/|\nabla u_0| \in L^{\infty}_+(\Omega)$, then (f, a) is admissible.

Notes:

- Formally (not smooth) the Euler-Lagrange for $\int_{\Omega} a |\nabla u| dx$ is the 1-Laplacian.
- In the example before only u^0 (for $\lambda = 0$) is a minimizer of $\int_{\Omega} |\nabla u(x)| dx$.

Unique determination

Theorem (Nachman-T-Timonov '09, Moradifam-Nachman-T' 11)

 $(f, |J|) \in C^{1, \alpha}(\partial \Omega) \times C^{\alpha}(\overline{\Omega}) = admissible pair, |J| > 0 a.e. in \Omega.$ Then $\min \int_{\Omega} |J| |\nabla u| dx$

over
$$\left\{ u \in W^{1,1}(\Omega) \bigcap C(\overline{\Omega}), |\nabla u| > 0 \text{ a.e.}, u|_{\partial\Omega} = f \right\}$$

has a unique solution, say u_0 ;

 $\sigma = |J|/|\nabla u_0|$ is the unique conductivity generating (f, |J|).

Note (joint with A. Moradifam and A. Nachman): Uniqueness carries to

over
$$\{u \in BV(\Omega), u|_{\partial\Omega} = f\}$$

Implies stability in the minimization problem!

Equipotential surfaces are (globally) area minimizing

Theorem (Nachman-T-Timonov '11) Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be Lipschitz domain, $\sigma \in C^{1,\delta}(\Omega)$, and $f \in C^{2,\delta}(\partial \Omega)$. Let $|J| = \sigma |\nabla u_{\sigma}|$, where u_{σ} solves $\nabla \cdot \sigma \nabla u_{\sigma} = 0$ with $u|_{\partial \Omega} = f$. Assume |J| > 0 in $\overline{\Omega}$.

Then, for a.e. $\lambda \in \mathbb{R}$ and any $v \in C^2(\overline{\Omega})$ with $v|_{\partial\Omega} = f$ and $|\nabla v| > 0$,

$$\int_{u^{-1}(\lambda)\cap\Omega} |J(x)| dS_x \le \int_{v^{-1}(\lambda)\cap\Omega} |J(x)| dS_x;$$

dS = induced Euclidean surface measure.

Note: the integrals also represent the surface area induced from the metric $g = |J|^{(n-1)/2} \delta_{ij}$.

Insulating and perfectly conductive embeddings

V = Insulating " $\sigma = 0$ ",

U=perfectly conductive "
$$\sigma = \infty$$
".

Let $k \to \infty$ in the equation:

$$\nabla \cdot (\chi_U (k \tilde{\sigma} - \sigma) + \sigma) \nabla u = 0 \text{ in } \Omega,$$
$$\partial_\nu u |_{\partial V} = 0,$$
$$u |_{\partial \Omega} = f.$$

Still get

$$\nabla \cdot \sigma \nabla u = 0 \text{ in } \Omega \setminus \overline{(U \cup V)}$$
$$\nabla u = 0 \text{ in } U, \quad \text{but} \quad |J| \neq 0!$$

Further complications: In 3D+ and σ rough \Rightarrow Non-unique continuation for solutions of elliptic

Admissibility in the presence of insulating/infinitely conductive embeddings

Admissibility of the data (a, f)

- On Ω \ (U ∪ V) same as before (with u_σ a solution of the limiting equation)
- On *U*:

$$\inf_{v \in W^{1,1}(U)} \int_{U} a |\nabla v| dx - \int_{\partial U} \sigma \left(\frac{\partial u_{\sigma}}{\partial \nu} \right) \Big|_{U^{+}} v dx = 0$$

- $\{x: a(x) = 0\} = V \cup \Gamma \cup E$, where
 - V = one insulating connected component
 - Γ -negligible
 - $E = \text{Exotic} = \text{conductive region where } \nabla u = 0$

Admisibility is physical for infinitly conductive inclusions

 $U \subset \Omega$ open, $\sigma \in L^{\infty}\Omega \setminus U$ and $a \in L^{\infty}(\Omega)$. Assume there exists $J \in Lip(U; \mathbb{R}^n)$ with

$$\nabla \cdot J = 0, \text{ in } U,$$
$$|J| \le a, \text{ in } U,$$
$$J|_{\partial U} = \sigma \frac{\partial u_{\sigma}}{\partial \nu} \Big|_{\partial U}$$

Then

$$\begin{split} \inf_{v \in W^{1,1}(U)} \int_{U} a |\nabla v| dx - \int_{\partial U} \sigma \left(\frac{\partial u_{\sigma}}{\partial \nu} \right) \Big|_{U^{+}} v dx &= 0\\ \int_{\partial U} \sigma \frac{\partial u_{\sigma}}{\partial \nu} ds &= 0. \end{split}$$

What can be determined via the minimization problem?

Step1: From minimization determine u outside the zero set of a.

Step 2: Regions where $u \equiv const. \Rightarrow$ PERFECT CONDUCTORS.

Step 3: Determine σ outside the zeros of a and perfect conductors

Step 4: Identify maximal open connected components within zeros of *a*. If at the boundary of such a set

- $u \text{ varies} \Rightarrow \text{INSULATOR}$
- u = const. ⇒ Fake perfectly conductive (EXOTIC =only happen in 3D when data is rough than Lipschitz).

The least weighted total variation problem

Would like solve:

$$\min\{\int_{\Omega} a |\nabla u| dx: \ u \in H^1(\Omega), \ u|_{\partial\Omega} = f\}$$

Difficulties:

- minimizing sequence $\{u_n\}$ is not necessarily bounded in H^1 (but merely in $W^{1,1}$).
- Although u_n converges in $L^1_{loc}(\Omega)$, the limit is only BV.

$$\min\{\int_{\Omega} a|Du|: \ u \in BV(\Omega), \ u|_{\partial\Omega} = f\}$$

New problem: if a solution lies in $BV \setminus W^{1,1}$ cannot be automatically approximated (in BV-norm) by smooth maps (otherwise they would be in $W^{1,1}$).

A regularized well-posed problem for the admissible case

Theorem (Nashed-T'11)Consider

$$u_n \in \operatorname{argmin}_{u \in H_0^1} F_{\epsilon_n}[u:a_n] := \int_{\Omega} a_n |\nabla h_f + \nabla u| dx + \epsilon_n \int_{\Omega} |\nabla u|^2 dx,$$

where $a_n \to a$ in $L^2(\Omega)$, and $||a_n - a|| = o(\epsilon_n)$. Then

$$\liminf \left[F_{\epsilon_n}[u_n:a_n]\right] = \min_{v \in BV(\Omega), v|_{\partial\Omega} = f} \int_{\Omega} a|Dv|$$

If, in addition $0 < \inf(a) \le a \le \sup(a) < \infty$, then on a subsequence $u_n \to v^*$ in L^1 , and $v^* \in BV(\Omega)$ is a minimizer.

Moreover, provided $v^* \in W^{1,1}(\Omega)$,

$$\sigma = \frac{a}{|\nabla(v^* + h_f)|}.$$

Mixed Boundary Value Problem *g*+>0 Γ_+ 0 g =Current Measure voltage Г Source U potential $u|_{\Gamma}$ $g_- < 0$ Γ

Figure 1:

$$\nabla \cdot \frac{|J|}{|\nabla u|} \nabla u = 0, u|_{\Gamma = f}, \partial_{\nu} u|_{\Gamma_{\pm}} = g$$

Interior Data |J| and computed equipotential lines

Figure 2:

Original and reconstructed conductivities via the equipotential lines

Figure 3:

Original and reconstructed conductivities via the minimization approach

Figure 4: