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Foreword 

Lars Ahlfors often spoke of his excitement as a young student listening to Rolf 
Nevanlinna's lectures on the new theory of meromorphic functions. It was, as he 
writes in his collected papers, his "first exposure to live mathematics." In his 
enormously influential research papers and in his equally influential books, Ahlfors 
shared with the reader, both professional and student, that excitement. 

The present volume derives from lectures given at Harvard over many years, 
and the topics would now be considered quite classical. At the time the book was 
published, in 1973, most of the results were already decades old. Nevertheless, the 
mathematics feels very much alive and still exciting, for one hears clearly the voice 
of a master speaking with deep understanding of the importance of the ideas that 
make up the course. 

Moreover, several of those ideas originated with or were cultivated by the au­
thor. The opening chapter on Schwarz's lemma contains Ahlfors' celebrated discov­
ery, from 1938, of the connection between that very classical result and conformal 
metrics of negative curvature. The theme of using conformal metrics in connection 
with conformal mapping is elucidated in the longest chapter of the book, on ex­
tremal length. It would be hard to overstate the impact of that method, but until 
the book's publication there were very few places to find a coherent exposition of 
the main ideas and applications. Ahlfors credited Arne Beurling as the principal 
originator, and with the publication of Beurling's collected papers [2] one now has 
access to some of his own reflections. 

Extremal problems are a recurring theme, and this strongly influences the 
choices Ahlfors makes throughout the book. Capacity is often discussed in relation 
to small point sets in function theory, with implications for existence theorems, 
but in that chapter Ahlfors has a different goal, aiming instead for the solution 
of a geometric extremal problem on closed subsets of the unit circle. The method 
of harmonic measure appeals to the Euclidean geometry of a domain and parts of 
its boundary to systematize the use of the maximum principle. Here Ahlfors con­
centrates on two problems, Milloux's problem, as treated in Beurling's landmark 
thesis, and a precise version of Hadamard's three circles theorem in a form given by 
Teichmiiller. Nowhere else is there an accessible version of Teichmiiller's solution. 
The chapter on harmonic measure provides only a small sample of a large circle of 
ideas, developed more systematically in the recent book [7]. 

Ahlfors devotes four short chapters to discussions of extremal problems for uni­
valent functions, with focus on Loewner's parametric method and Schiffer's varia­
tional method. The material on coefficient estimates is now quite dated, following 

ix 
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the proof of the Bieberbach conjecture by Louis de Branges [3] and its subsequent 
adaptation [6] appealing to the classical form of Loewner's differential equation. 
However, the methods of Loewner and Schiffer have broad applications in geomet­
ric function theory and their relevance is undiminished. More detailed treatments 
have since appeared [8,4], but Ahlfors' overview still brings these ideas to life. In 
recent years, Loewner's method has stepped into the limelight again with Oded 
Schramm's discovery of the stochastic Loewner equation and its connections with 
mathematical physics. 

The final two chapters give an introduction to Riemann surfaces, with topolog­
ical and analytical background supplied to support a proof of the uniformization 
theorem. In the author's treatment, as in all treatments, the main difficulty is in 
the parabolic case. Overall, the reader is encouraged to consult other sources for 
more details, for example [5]. 

We close with Ahlfors' own words from an address in 1953 at a conference 
celebrating the centennial of Riemann's dissertation [1]: 

Geometric function theory of one variable is already a highly 
developed branch of mathematics, and it is not one in which 
an easily formulated classical problem awaits its solution. On 
the contrary it is a field in which the formulation of essential 
problems is almost as important as their solution; it is a sub­
ject in which methods and principles are all-important, while an 
isolated result, however pretty and however difficult to prove, 
carries little weight. 

The reader can learn much of this from the present volume. Furthermore, Ahlfors' 
remarks came around the time that quasiconformal mappings and, later, Kleinian 
groups began to flower, fields in which he was the leader. What a second volume 
those topics would have made! 
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Preface 

This is a textbook primarily intended for students with approximately 
11 year's background in complex variable theory. The material has been 
collected from lecture courses given over a long period of years, mostly 
at Harvard University. The book emphasizes classic and semiclassic re­
sults which the author feels every student of complex analysis should 
know before embarking on independent research. The selection of topics 
is rather arbitrary, but reflects the author's preference for the geometric 
approach. There is no attempt to cover recent advances in more special­
ized directions. 

~lost conformal invariants can be described in terms of extremal 
properties. Conformal invariants and extremal problems are therefore 
intimately linked and form together the central theme of this book. An 
obvious reason for publishing these lectures is the fact that much of the 
material has never appeared in textbook form. In particular this is true 
of the theory of extremal length, instigated by Arne Beurling, which 
should really be the subject of a monograph of its own, preferably by 
Beurling himself. Another topic that has received only scant attention in 
the textbook literature is Schiffer's variational method, which I have 
tried to cover as carefully and as thoroughly as I know how. I hope 
very much that this account will prove readable. I have also included 
a new proof of la41 ~ 4 which appeared earlier in a Festschrift for ~I. A. 
Lavrentiev (in Russian). 

The last two chapters, on Riemann surfaces, stand somewhat apart 
from the rest of the book. They are motivated by the need for a quicker 
approach to the uniformization theorem than can be obt.ained from Leo 
Sario's and my book "Riemann Surfaces." 

Some early lectures of mine at Oklahoma A. and 7\1. College had 
been transcribed by R. Osserman and }L Gerstenhaber, as was a lecture 
at Harvard University on extremal methods by E. Schlesinger. These 
writeups were of great help in assembling the present version. I also ex­
press my gratitude to F. Gehring without whose encouragement I would 
not have gone ahead with publication. 

There is some overlap with ~Iakoto Ohtsuka's book "Dirichlet 
Problem, Extremal Length and Prime Ends" (Van Nostrand, 1970) 
which is part.ly based on my lectures at Harvard University and in 
Japan. 

Lars V. Ahlfors 





1 
APPLICATIONS OF SCHWARZ'S LEMMA 

1-1 THE NONEUCLIDEAN METRIC 

The fractional linear transformation 

8(z) = ~z + b 
bz + a 

(1-1) 

with lal 2 - Ibl 2 = 1 maps the unit disk A = {z; Izl < I) conformaUyonto 
itself. It is also customary to write (1-1) in the form 

z - Zo 
8(z) = eia _ 

1 - ZoZ 
(1-2) 

which has the advantage of exhibiting Zo = 8- 1(0) and a = arg 8'(0). 
Consider ZI,Z2 E A and set WI = 8(ZI), W2 = 8(Z2). From (1-1) we 

obtain 
ZI - Z2 

WI - W2 = - -
(bz l + a) (bZ2 + a) 

1 - ZlZ2 
1 - WIW2 = , 

(bz l + a) (bz 2 + a) 
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and hence (1-3) 

We say that 

0-4) 

is a conformal invariant, Comparison of 0-2) and (1-4) shows that 
~(Zl,Z2) < 1, a fact that can also be read off from the useful identity 

(1 - IZlI2)(1 - IZ212) 
1 - ~(Zl Z2) 2 = ' 

, 11 - ZlZ21 2 

If Zl approaches Z2, (1-3) becomes 

Idzl Idwl 
1 - IzI2 1 - Iwl 2 

This shows that the Riemannian metric whose element of length is 

ds = 21dzl 
1 - IzI2 (1-5) 

is invariant under conformal self-mappings of the disk (the reason for the 
factor 2 will become apparent later), In this metric every rectifiable arc 'Y 
has an invariant length 

( 21dzi 
1'1 "1 - Iz12' 

and every measurable set E has an invariant area 

Iff 4dx dy 
'J (1 - Iz12)2 

The shortest arc from 0 to any other point is along a radius, Hence 
the geodesics are circles orthogonal to Izi = 1. They can be considered 
straight lines in a geometry, the hyperbolic or noneuclidean geometry of 
the disk. 

The noneuclidean distance from 0 to " > 0 is 

(. ~ = log 1 + r, 
10 1 - r2 1 - r 

Since 6(0,r) = r, it follows that the noneuclidean distance d(Zl,Z2) is con­
nected with O(Zl,Z2) through ~ = tanh (d/2), 

The noneuclidean geometry can also be carried over to the half plane 
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H = {z = X + iy; y > 0 J. The element of length that corresponds to the 
choice (1-5) is 

ds = Idzl, 
y 

(1-6) 

and the straight lines are circles and lines orthogonal to the real axis. 

1-2 THE SCHWARZ-PICK THEOREM 

The classic Schwarz lemma asserts the following: If f is analytic and 
If(z) I < 1 for Izl < 1, and if f(O) = 0, then If(z) I ~ Izl and 11'(0)1 ~ 1. 
Equality If(z) I = Izlwithz ~ Oorlf'(O)1 = 1 can occur only forf(z) = eiaz, 
a a real constant. 

There is no need to reproduce the well-known proof. It was noted by 
Pick that the result can be expressed in invariant form. 

Theorem 1-1 An analytic mapping of the unit disk into itself de­
creases the noneuclidean distance between two points, the noneuclid­
ean length of an are, and the noneuclidean area of a set. 

The explicit inequalities are 

If(Zl) - f(Z2) I IZI - z21 
< 11 - f(Zl)f(Z2) I - 11 - ZlZ21 

_ I.f'(z) I < 1 . 
1 - If(z)12 - 1 - Izl2 

~ ontrivial equality holds only whenf is a fractional linear transformation 
of the form (1-1). 

Pick does not stop with this observation. He also proves the follow­
ing more general version which deserves to be better known. 

Theorem 1-2 Let f: ~ -+ ~ be analytic and set Wk = f(Zk), k = 

1, ... , n. Then the Hermitian form 

2:n 1 - WhWk -
Qn(t) = _ thtk 

h.k= 1 1 - ZhZk 

is positive definite (or semidefinite). 

PROOF We assume first that f is analytic on the closed disk. The 
function F = (1 + f)/(1 - f) has a positive real part, and if F = U + iV 



4 CONFORMAL INVARIANTS; TOPICS IN GEOMETRIC FUNCTION THEORY 

we have the representation 

1 i2.-ei6+z 
F(z) = - '-, - U(ei6) dO + iV(O). 

211' 0 e,6 - z 

This gives 

and hence 

f Fh + Fk Mk = ! (211' I ~ ,tk 12 U dO > O. 
h.t.l 1 - ZhZk 11' }o f e,9 - Zk -

Here Fh + Fk = 2(1 - whwk)/(1 - wh)(1 - 10k). The factors in the de­
nominator can be incorporated in th, tk, and we conclude that Qn(t) ~ O. 
For arbitrary f we apply the theorem to !(rz) , 0 < r < 1, and pass to the 
limit. 

Explicitly, the condition means that all the determinants 

1 - IWI12 1 - WIWk 

1 - IZI12 1 - ZIZk 

Dk = 
1 - WkWI 1 - IWkl2 

1 - ZkZI 1 - /zkl 2 

are ~O. It can be shown that these conditions are also sufficient for the 
interpolation problem to have a solution. If WI, • • . ,Wn-I are given and 
D I , •.. , Dn_ 1 ~ 0, the condition on Wn will be of the form /wn /2 + 
2 Re (awn) + b ~ o. This means that Wn is restricted to a certain closed 
disk. It turns out that the disk reduces to a point if and only if Dn - I = O. 

The proof of the sufficiency is somewhat complicated and would lead 
too far from our central theme. We shall be content to show, by a method 
due to R. N evanlinna, that the possible values of Wn fill a closed disk. We 
do not prove that this disk is determined by Dn ~ o. 

Nevanlinna's reasoning is recursive. For n = 1 there is very little to 
prove. Indeed, there is no solution if IWII > 1. If IWII = 1 there is a unique 
solution, namely, the constant WI. If IWII < 1 and it is a solution, then 

C ) hCz) - WI Z - Zl 
!z= :---

2 1 - Wdl(Z) 1 - ZlZ 
0-7) 

is regular in ~, and we have proved that Ih(z) I ~ 1. Conversely, for any 
such function h formula (1-7) yields a solution It. 

For n = 2 the solutions, if any, are among the functions it already 
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determined, and h(Z2) must be equal to a prescribed value W2(2). There 
are the same alternatives as before, and it is dear how the process con­
tinues. Weare trying to construct a sequence of functions fk of modulus 
~ 1 with certain prescribed values fk(Zk) = tt'k(k) which can be calculated 
from WI, .•• , Wk. If IWk(k)1 > 1 for some k, the process comes to a halt 
and there is no solution. If IWk(k)1 = 1, there is a unique fk' and hence a 
unique solution of the interpolation problem restricted to ZI, • . • ,Zk. In 
case all IWk(kll < 1, the recursive relations 

fk(Z) - Wk(k) Z - Zk 
fk+l(Z) = : ---

I - Wk(klfk(Z) 1 - ZkZ 
k = 1, ... , n 

lead to all solutions it of the original problem when fn+1 ranges over all 
analytic functions with Ifn+l(z) 1 ~ 1 in L\. 

Because the connection between fk and fk+l is given as a fractional 
linear transformation, the general solution is of the form 

f ( ) - An(z)fn+l(z) + B,.(z) 
1 Z - , 

Cn(Z)fn+l(Z) + Dn(z) 

where An,Bn,Cn,Dn are polynomials of degree n determined by the data of 
the problem. We recognize now that the possible values of fez) at a fixed 
point do indeed range over a closed disk. 

This solution was given in R. 1\ evanlinna [42]. The corresponding 
problem for infinitely many Zk,Wk was studied by Denjoy [17], R. Nevan­
linna [43], and more recently Carleson [13]. 

1-3 CONVEX REGIONS 

A set is convex if it contains the line segment between any two of its 
points. We wish to characterize the analytic functions f that define a 
one-to-one conformal map of the unit disk on a convex region. For sim­
plicity such functions will be called convex univalent (Hayman [27]). 

Theorem 1-3 An analytic function f in L\ is convex univalent if 
and only if 

zf"(z) 
Re -- > -1 (1-8) 

f'(z) -

for all Z E A. When this is true the stronger inequality 

I zf"(z) - 21z12 I < 21z1 (1-9) 
f'(z) 1 - Izl2 - 1 - Izl2 

is also in force. 



6 CONFORMAL INVARIANTS: TOPICS IN GEOMETRIC FUNCTION THEORY 

Suppose for a moment that f is not only convex univalent but also 
analytic on the closed disk. It is intuitively clear that the image of the 
unit circle has a tangent which turns in the positive direction when 
o = arg z increases. This condition is expressed through alao arg df ~ O. 
But arg df = algf' + arg dz = argf' + 0 + 11"/2, and the condition be­
comes alao (argf' + 0) = Re (zf" If' + 1) ~ 0 for Izl = 1. By the maxi­
mum principle the same holds for Izl < 1. 

Although this could be made into a rigorous proof, we much prefer 
an idea due to Hayman. We may assume that f(O) = O. If f is convex 
univalent, the function 

g(z) = f- 1 [f<"vI;) + I( - V;) ] 

is well defined, analytic, and of absolute value < 1 in ~. Hence la' (0) I ::::; 1. 
But if fez) = a1Z + azzZ + ... , then g(z) = (az/al)z + ... , and we 
obtain lazlall ::::; 1, 1f"(0)/f'(0) I ::::; 2. This is (1-9) for z = o. 

We apply this result to F(z) = f[(z + e)/(1 + cz)J, lei < 1, \\"hich 
maps ~ on the same region. Simple calculations give 

F"(O) f"(e) _ 
F'(O) = f'(e) (1 - lel 2) - 2e, 

and we obtain (1-9) and its consequence (1-8). 
The proof of the converse is less elegant. It is evidently sufficient 

to prove that the image of ~r = {z; Izl < r} is convex for every r < l. 
The assumption (1-8) implies that arg df increases with () on Izl = r. Since 
f' is never zero, the change of arg df is 211". Therefore, we can find 01 and ()2 

such that arg df increases from 0 to 11" on [01,()2] and from 11" to 211" on 
[()Z,()1 + 211"J. If f(re i8) = u«() + iv«(), it follows that v increases on the 
first interval and decreases on the second. Let Vo be a real number between 
the minimum V«()I) and the maximum V«()2). Then v(O) passes through Vo 
exactly once on each of the intervals, and routine use of winding numbers 
shows that the image of ~r intersects the line v = Vo along a single seg­
ment. The same reasoning applies to parallels in any direction, and we 
conclude that the image is convex. 

The condition If" (0) If' (0) I ::::; 2 has an interesting geometric inter­
pretation. Consider an arc l' in ~ that passes through the origin and whose 
image is a straight line. The curvature of l' is measured by d(arg dz)/ldzl. 
By assumption d(arg df) = 0 along l' so that d(arg dz) = -d argf'. The 
curvature is thus a directional derivative of arg f', and as such it is at 
most If" 1f'1 in absolute value. We conclude that the curvature at the 
origin is at most 2. 
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This result has an invariant formulation. If the curvature at the 
origin is ::;2, the circle of curvature intersects !z! = 1. But the circle of 
curvature is the circle of highest contact. A conformal self-mapping pre­
serves circles and preserves order of contact. Circles of curvature are 
mapped on circles of curvature, and our result holds not only at the origin, 
but at any point. 

Theorem 1-4 Let l' be a curve in A whose image under a conformal 
mapping on a convex region is a straight line. Then the circles of 
curvature of l' meet Izi = 1. 

This beautiful result is due to Caratbeodory. 

1-4 ANGULAR DERIVATIVES 

For lal < 1 and R < 1 let K(a,R) be the set of all z such that 

-- <R. I 
z - a I 
1 - az 

Clearly, K(a,R) is an open noneuclidean disk with center a and radius d 
such that R = tanh (d/2). 

Let Kn = K(zn,Rn) be a sequence of disks such that Zn ----t 1 and 

_1 _----'-Iz--'n I ----t k ;e 0 00. 

1 - Rn ' 
(1-10) 

We claim that the Kn tend to the horocycle Koo defined by 

11 - zI2 
II < k. 

1 - Z 2 
(1-11) 

The horocycle is a disk tangent to the unit circle at z = l. 
The statement Kn ----t Koo is to be understood in the following sense: 

(1) If z E Kn for infinitely many 71, then z E K oo , the closure of Koo; (2) if 
z E K oo, then z E Kn for all sufficiently large 11. For the proof we observe 
that Z E Kn is equivalent to 

11 - znz l
2 < 1 - IZn!2. 

1 - Izl2 1 - Rn 2 
(1-12) 

If this is true for infinitely many n, we can go to the limit and obtain 
(1-11) by virtue of (1-10), except that equality may hold. Conversely, if 
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(1-11) holds, then 

while 

so that (1-12) must hold for all sufficiently large n. 
After these preliminaries, let f be analytic and If(z) I < 1 in ~. Sup­

pose that ZIt -? 1, f(zn) -? 1, and 

1 - !f(Zn) I 
1 _ IZnl -~ a ~ 00. 

(1-13) 

Given k > 0 we choose Rn so that (1 - IZnl)/(1 - Rn) = k; this makes 
o < Rn < 1 provided 1 - IZnl < k. With the same notation 

Kn = K(zn,Rn) 

as above, we know by Schwarz's lemma that f(Kn} C K~ = K(wn,Rn } 

where Wn = fez"). The Kn converge to the horocycle Koo with parameter 
k as in (1-11), and because (l - Iwn/)/(l - Rn) -? ak, the K~ converge 
to K~ with parameter ak. If Z E K CXJ , it belongs to infinitely many Kn. 
Hence fez) belongs to infinitely many K~ and consequently to K~. In 
view of the continuity it follows that 

,--ll~-_z_12 < k 
1 - IzI2 -

implies 
11 - f(z)12 '-------'---'--'--'- < ak. 
1 - If(z)12 -

This is known as Julia's lemma. 
Since k is arbitrary, the same result may be expressed by 

11 - f(z)/2 11 - ZI2 '------"---'- < a , 
1 - If(z)12 - 1 - IzI2 

or by _ [ll- f (Z)/2 .II-Z12] 
{3 - sup 1 _ !f(z)12 • 1 _ IzI2 ~ a. 

In particular, a is never 0, and if fJ = 00, there is no finite a. 
Let us now assume fJ < 00 and take Zn = Xn to be real. Then 

1-x 11 - wn l 2 < fJ n, 
1 + Xn 

and the condition Wn ~ 1 is automatically fulfilled. Furthermore, 

> 11 - w nl2 1 + Xn > 1 + Xn 11 - wnl > 1 + Xn 1 - Iwnl 

fJ - 1 - Iwnl2 1 - Xn - 1 + Iwnl 1 - Xn - 1 + Iwnl 1 - Xn 
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so that (1-13) implies a. ::; (3. Hence a. = (3 for arbitrary approach along 
the real axis, and we conclude that 

lim 1 -If(x)1 = lim 11 -f(x)1 = (3. 
x--> 1 1 - x x--> 1 1 - x 

(1-14) 

Since (3 ,e 0, <Xl, the equality of these limits easily implies arg [1 - f(x)] 
~ 0, and with this information (1-14) can be improved to 

lim 1 - f(x) = (3. 
x-->I 1 - x 

(1-15) 

We have proved (1-14) and (1-15) only if (3 ,e 00. However, if 
(3 = 00, we know that (1-13) can never hold with a finite a.. Hence 
(1-14) is still true, and for (3 = 00 (1-14) implies (1-15). 

So far we have shown that the quotient [1 - f(z)l/(1 - z) always 
has a radial limit. We shall complete this result by showing that the 
quotient tends to the same limit when z ~ 1 subject to a condition 
11 - zl ::; M (1 - Izl). The condition means that z stays within an angle 
less than 1r, and the limit is referred to as an angular limit. 

Theorem 1-5 Suppose that f is analytic and If(z) I < 1 in ~. Then 
the quotient 

1 - fez) 

1 - z 

always has an angular limit for z ~ 1. This limit is equal to the least 
upper bound of 

11 - f(z) 12 11 - zl2 . , 
1 - If(z)12 . 1 - Izl2 

and hence either + 00 or a positive real number. If it is finite, J'(z) 
has the same angular limit. 

PROOF We have to show that (3 is an angular limit. If (3 = 00, no 
new reasoning is needed, for we conclude as before that 

lim 1 - If(z) I = 00 

HI 1 - izl ' 

and when 11 - zl ::; M (1 - Izl) this implies 

lim 1 - fez) = 00. 

z-->I 1 - z 
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The case of a finite (3 can be reduced to the case (3 = 00. The defini­
tion of (3 as a least upper bound implies 

R 1 + z < R 1 + fez) e-- (3 e . 
1 - z - 1 - fez) 

Therefore we can write 

(31+ f _l+z=I+F 
1-f 1-z 1-F 

(1-16) 

with IFI < 1. Because (3 cannot be replaced by a smaller number, it is 
clear that the function F must fall under the case (3 = 00 so that 
(1 - z)/(1 - F) ~ 0 in every angle. It then follows from (1-16) that 
(1 - f)/(1 - z) has the angular limit (3. 

From (1-16) we have further 

(31'(1 - f)-2 - (1 - Z)-2 = F/(1 - F)-2. 

We know by Schwarz's lemma that IF'I/(1 - IFI2) ::; 1/(1 - Izl2). With 
this estimate, together with 11 - zl ::; M (1 - Iz/), we obtain 

I (3f'(z) [11_ ~(:J2 -1/ ::; 2M2 : = i~, -+ 0, 

and from this we conclude that f'(z) -+ (3. 
When (3 ~ 00, it is called the angular derivative at 1. In this case 

the limit f(l) = 1 exists as an angular limit, and (3 is the angular limit of 
the difference quotient [fez) - f(l)l!(z - 1) as well as of f'(Z). The map­
ping by f is conformal at z = 1 provided we stay within an angle. 

The theorem may be applied to it(z) = e- i6f(e- i 'Yz) with any real l' 
and 0, but it is of no interest unless fez) -+ eW as z -+ ei-r along a radius. 
In that case the difference quotient [fez) - ei6]/(z - ei'Y) has a finite limit, 
and the mapping is conformal at ei'Y if this limit is different from zero. 

In many cases it is more convenient to use half planes. For instance, 
if f = 1.1, + iv maps the right half plane into itself, we are able to conclude 
that 

Hm fez) = lim u(z) = e = inf u(z), (1-17) 
z-+oo z 2-+,. X X 

the limits being restricted to largzl ::; r/2 - E, E > O. Indeed, ifthe theorem 
is applied tof, = (f - 1)/(f + 1) as a function of Zl = (z - 1)/(z + 1), 
we have (3 = sup x/u = l/e and 

lim 1 - Zl = lim 1 + f = e. 
2,-+ 1 1 - it z....... 1 + z 

This easily implies (1-17). Note that c is finite and ~ O. 
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The proof of Theorem 1-5 that we have given is due to Caratheodory 
[10]. We have chosen this proof because of its clear indication that the 
theorem is in fact a limiting case of Schwarz's lemma. There is another 
proof, based on the Herglotz representation of an analytic function with 
positive real part, which is perhaps even simpler. We recall t.he Poisson­
Schwarz representation used in the proof of Theorem 1-2. For positive 
U it can be rewritten in the form 

!c 2". ei9 + z 
F(z) = 0 -,s--~ dJJ.(6) + iC, 

e' - '" 

where fJ. denotes a finite positive measure on the unit circle. In this form, 
as observed by Herg\otz, it is valid for arbitrary analytic funetions with 
a positive real part. 

Apply the formula to F = (1 + f)1(1 - f), where If(z) I < 1 in A. 
Let c ~ 0 denote fJ. ( 10}), i.e., the part of fJ. concentrated at the point 1, 
and denote the rest of the measure by fJ.0 so that we can write 

1 + I 1 + z !c 2". ei9 + z 
-1 I = C 1-- + 0 -'9-- dJJ.o(O) + iC. - -z e'-z 

(1-18) 

For the real parts we thus have 

1 - 1/12 1 - Izl2 (2". 1 - Izl2 
11 - 112 = elI _ zl2 + 10 leiS _ zl2 dfJ.o(8) , (1-19) 

from which it is already elear that 

1 - 1/12 1 - Izl2 :----'..:.-'- > C • 
11 - 1/2 - 11 - z 12 

We rewrite (1-19) as 

1 - /1/2 1 - Izl2 
!1 - 112 : 11 _ Z!2 = C + I(z) 

with 
(2". 11 - zl2 

I(z) = 10 leiS _ zl2 dJJ.o(O). 

We claim that I(z) - 0 as z - 1 in an angle. For this purpose we choose 
/) so small that the fJ.o measure of the interval (- 0, 0) is less than a given 
E > O. Divide I(z) in two parts: 

If 11 - zl ~ M(1 - Iz/), it is immediate that 1101 ~ APE. It is obvious 
that II - 0, and we conclude that I (z) - 0 in an angle. This proves that 
c = II {j in the earlier notation 
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If the same reasoning is applied directly to CI-18), we find that 
(1 - z)(1 + 1)(1 - 1)-1 ~ 2c in an angle, and this is equivalent to 
(1 - z)/(1 - f) ~ c. This completes the alternate proof of Theorem 1-5. 

As an application we shall prove a theorem known as Lowner's 
lemma. As before, f will be an analytic mapping of ~ into itself, but this 
time we add the assumption that !fez) I ~ 1 as z approaches an open 
arc,), on Izl = 1. Then f has an analytic extension to ')' by virtue of the 
reflection principle, and f'en ~ 0 for r E ')'. Indeed, if f'Cr) were zero t.he 
value fCr) would be assumed with multiplicity greater than 1, and this is 
incompatible wit.h If(r) I = 1 and IfCz) I < 1 for Izi < 1. It is also true 
that arg fCr) increases with arg r so that f defines a locally one-to-one 
mapping of ')' on an arc ')". 

Theorem 1-6 If in these circumstances f(O) = 0, then the length 
of ')" is at least equal to the length of ')'. 

PROOF We apply Theorem 1-5 to FCz) = f(rz)/f(r), r E ')'. The 
angular derivative at z = 1 is 

lim 1 - F(r) = F'(1) = rf'Cr) = If'(r)I, 
T---+1 1 - r fCr) 

for arg f'Cr) = arg (f(r)/rJ. But 11 - F(r)1 ~ 1 - IF(r)1 ~ 1 - r by 
Schwarz's lemma. Hence If'Cr) I ~ 1, and the theorem follows. 

1-5 ULTRAHYPERBOLIC METRICS 

Quite generally, a Riemannian metric given by the fundamental form 

(1-20) 

or ds = pldzl, p > 0, is conformal with the euclidean metric. The quantity 

K(p) = _p-2 ~ log p 

is known as the curvature (or gaussian curvature) of the metric (1-20). 
The reader will verify that the metrics (1-5) and (1-6) have constant 
curvature -1 [the factor 2 in (1-5) was chosen with this in mind]. 

In this text, which deals primarily with complex variables, the geo­
metric definition of curvature is unimportant, and we use the name only 
as a convenience. It is essential, however, that K(p) is invariant under 
conformal mappings. 

Consider a conformal mapping w = fez) and define pew) so that 
pldzl = .oldwl or, more explicitly, p(z) = p(f(z)]lf'(z)l. Because log 1/'(z)1 is 
harmonic, it follows that ~ log p(z) = ~ log pew), both laplacians being 
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with respect to z. Change of variable in the laplacian follows the rule 
.:1. log p = /f'{z}l2.:1w log p, and we find that K(p) = K(p). 

From no\y on the hyperbolic metric in .:1 will be denoted by X/dz/; 
that is to say, we set 

2 
X(z) = 1 _ IZ/2 

We wish to compare Xldz/ with other me tries p/dzl. 

Lemma 1-1 If p satisfies K(p) ::; 1 ever-ywhere in.:1, then X(z) ~ p(z) 
for an z E .:1. 

PROOF We assume first that p has a continuous and strictly positive 
extension to the closed disk. From .:1 log X = X2, .:1 log p ~ p2 we have 
.:1(log X - log p) ::; X2 - p2. The function log X - log p tends to + <Xl 

when /z/ - 1. It therefore has a minimum in the unit disk. At the point 
of minimum .:1(log X - log p) ~ 0 and hence X2 ~ p2, proving that X ~ p 

everywhere. 
To prove the lemma in the general case we replace p(z) by rp(rz), 

o < r < 1. This metric has the same curvature, and the smoothness condi­
tion is fulfilled. Hence X(z) ~ rp(rz) , and X(z) ~ p(z) follows by continuity. 

The definition of curvature requires .:1 log p to exist, so we have to 
assume that p is strictly positive and of class C2. These restrictions are 
inessential and cause difficulties in the applications. They can be re­
moved in a way that is reminiscent of the definition of subharmonic 
functions. 

Definition 1-1 A metric pldzl, p ~ 0 is said to be ultrahyperbolic 
in a region n if it has the following properties: 

(i) p is upper semicontinuous. 
(ii) At every Zo E n with p(zo) > 0 there exists a "supporting 
metric" Po, defined and of class C2 in a neighborhood V of Zo, such 
that .:1 log po ~ P02 and p ~ Po in V, while p(zo) = po(zo). 

Because log X - log p is lower semicontinuous, the existence of a 
minimum is still assured. The minimum will also be a local minimum of 
log X - log AD, and the rest of the reasoning applies as before. The in­
equality X(z) ~ p(z) holds as soon as pis ultrahyperbolic. 

We are now ready to prove a stronger version of Schwarz's lemma. 

Theorem 1-7 Let f be an analytic mapping of .:1 into a region n on 
which there is given an ultrahyperbolic metric p. Then p[f(z)lIf'(z) I ::; 
2(1 - /Z/2)-I. 
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The proof consists in the trivial observation that p[f(z)]If'(z) 1 is 
ultrahyperbolic on ~. Observe that the zeros of J'(z) are singularities of 
this metric. 

REMARK The notion of an ultrahyperbolic metric makes sense, and 
the theorem remains valid if n is replaced by a Riemann surface. In this 
book only the last two chapters deal systematically with Riemann sur­
faces, but we shall not hesitate to make occasional references to Riemann 
surfaces when the need arises. Thus in our next section we shall meet an 
application of Theorem 1-7 in which n is in fact a Riemann surface, but 
the adaptation will be quite obvious. 

1-6 BLOCH'S THEOREM 

Let w =1(z) be analytic in ~ and norm lized by 1f'(0) 1 = 1. We may 
regard 1 as a one-to-one mapping of ~ onto a Riemann surface WI spread 
over the w plane. It is intuitively clear what is meant by an unramified 
disk contained in WI' As a formal definition we declare that an unramified 
disk is an open disk ~' together with an open set D C ~ such that 1 
restricted to D defines a one-to-one mapping of D onto ~'. Let BI denote 
the least upper bound of the radii of all such disks ~'. Bloch made the 
important observation that B I cannot be arbitrarily small. In other words, 
the greatest lower bound of BI for all normalizedJ is a positive number B, 
now known as Bloch's constant. Its value is not known, but we shall prove 
Theorem 1-8: 

Theorem 1-8 B ~ V3/4. 

PROOF Somewhat informally we regard w = J(z) both as a point 
on W, and as a complex number. Let R(w) be the radius of the largest 
unramified disk of center w contained in WI [at a branch-point R(w) = 0]. 
We introduce a metric pldwl on WI defined by 

A 
pew) = R(w)t[A 2 - R(w)] 

where A is a constant >B/ This induces a metric p(z) = p[1(z)]1f'(z) 1 in 
~. We wish to show that p(z) is ultrahyperbolic for a suitable choice of A. 

Suppose that the value Wo = J(zo) is assumed with multiplicity n > 1. 
For w close to Wo (or rather z close to zo), R(w) = Iw - wol, which is 
of the order /2 - zo/". Since /I'(z) 1 is of order Iz - z01 n- 1, it follows that 
p(z) is of order Iz - ZOI"/2-1. If n > 2, it follows that p is continuous and 
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p(Zo) = O. We recall that there is no need to look for a supporting metric 
at points where p is zero. 

In case n = 2 we have 

p(z) = Alf'(z) I 
If(z) - f(zo)i![A 2 - IfCz) - f(zo) I] 

near Zo. This metric is actually regular at Zo, and it satisfies illog p = p2 

as seen either by straightforward computation or from the fact that 
pldzl = 2Idtl/(l - It1 2) with t = A-l[f(z) - f(zo)]l. 

It remains to find a supporting metric at a point Wo = f(zo) with 
f'(zo) ,.e O. Denote the disk {Wj Iw - wol < R(wo) I by il'(wo) and by D(zo) 
the component of its inverse image that contains zo. The boundary of D(zo) 
must contain either a point a E il with f'(a) = 0, or a point a on the 
unit circle, for otherwise il'(wo) would not be maximal. In the first case 
the boundary of il'(wo) passes through the branch-point b = f(a). In the 
second case f(a) is not defined, but we make the harmless assumption that 
f can be extended continuously to the closed unit disk. The point b = f(a) 
is then on the boundary of il'(wo) and may also be regarded as a boundary 
point of the Riemann surface Wf' 

Choose Zl E D(zo), WI = f(ZI) E il'(wo). It is geometrically clear that 
R(wI) ~ IWI - bl. For a more formal reasoning we consider il'(wI) and 
D(zl). Let c be the line segment from w to b. If b were in il'(WI), all of c 
except the last point would be in il'(wo) n il'(Wl). But the inverse func­
tions f- I with values in D(zo) and D(zl) agree on this set, and it would 
follow by continuity that a E D(zI). This is manifestly impossible. We 
conclude that b is not in il'(WI), and hence that R(wI) ~ IWI - bl. 

N ow we compare p(z) with 

Alf'(z) I 
po(z) = If(z) - W[A 2 - If(z) - bll 

when z is close to zo. This metric has constant curvature -1 and 

po(Zo) = p(zo). 

Moreover, the inequality p(z) ~ po(z) holds near Zo if the function 
ti(A 2 - t) remains increasing for 0 ~ t ~ R(wa). The derivative changes 
sign at t = A 2/3. We conclude that p(z) is ultrahyperbolic if A 2 > 3B f. 

All that remains is to apply Lemma 1-1 with z = O. We obtain 
A ~ 2Rff(0)]i{A2 - R[f(O)ll ~ 2Bf i(A2 - Bf). The inequality B f ~ 

V3/4 > 0.433 follows on letting A tend to (3B,)1. 

It is conjectured that the correct value of B is approximately 0.472. 
This value is assumed for a function that maps il on a Riemann surface 
with branch points of order 2 over all vertices in a net of equilateral 
triangles. 



16 CONFORMAL INVARIANTS: TOPICS IN GEOMETRIC FUNCTION THEORY 

1-7 THE POINCARE METRIC OF A REGION 

The hyperbolic metric of a disk Izl < R is given by 

2R 
AB(Z) = R2 _ Iz12' (1-21) 

If p is ultrahyperbolic in Izl < R, we must have p ~ An. In particular, 
if p were ultrahyperbolic in the whole plane we would have p = O. 
Hence there is no ultrahyperbolic metric in the whole plane. 

The same is true of the punctured plane {z; z ~ O}. Indeed, if p(z) 
were ultrahyperbolic in the punctured plane, then p(ez) le-! would be ultra­
hyperbolic in the full plane. These are the only cases in which an ultra­
hyperbolic metric fails to exist. 

Theorem 1-9 In a plane region n whose complement has at least 
two points, there exists a unique maximal ultrahyperbolic metric, 
and this metric has constant curvature -1. 

The maximal metric is called the Poincare metric of n, and we 
denote it by Au. It is maximal in the sense that every ultrahyperbolic 
metric p satisfies p ~ All throughout n. The uniqueness is trivial. 

The existence proof is nonelementary and will be postponed to Chap. 
10. The reader will note, however, that the applications we are going to 
make do not really depend on the existence of the Poincare metric. At 
present its main purpose is to allow a convenient terminology. 

Theorem 1-10 If n en', then All' ~ Au. 

This is obvious, for the restriction of All' to n is ultrahyperbolic in n. 

Theorem 1-11 Let 5(z) denote the distance from zEn to the 
boundary of n. Then An(z) ~ 2/5(z). 

n contains the disk with center z and radius 5(z). The estimate fol­
lows from Theorem 1-10 together vllith (1-21). It is the best possible, for 
equality holds when n is a disk and z its center. 

It is a much harder problem to find lower bounds. 

1-8 AN ELEMENT AR Y LOWER BOUND 

Let na,b be the complement of the two-point set {a,b} and denote its 
Poincare metric by Aa,b. If a and b are in the complement of n, the n 
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D C Da,b and hu ~ ha,b, A lower bound for ha,b is therefore a lower bound 
for hu, Because 

(z - a) 
ha,b(Z) = Ib - al-1ho,l (b _ a) 

it is sufficient to consider hO,l' There are known analytic expressions for 
hO,I' but they are not of great use, What we require is a good elementary 
lower bound. 

The region DO,l is mapped on itself by 1 - z and by liz, Therefore 
hO,I(Z) = hu(1 - z) = Izl-2ho,l(1/z), 1t follows that we need consider only 
hO,1 in one of the regions Dl ,D2,Da marked in Fig. 1-1. 

We begin by determining a better upper bound than the one given 
by Theorem 1-11. DO,l contains the punctured disk 0 < Izi < 1. The Poin­
care metric of the punctured disk is found by mapping its universal cover­
ing, an infinitely many-sheeted disk, on the half plane Re w < 0 by means 
of w = log z. The metric is Idwl/lRe wi = /dzl/iz/log (ll/z/), and we 
obtain 

( 1 )-1 
hO,l(Z):S; /z/logj;/ (1-22) 

for /z/ < 1. This estimate shows what order of magnitude to expect, 
Let r(z) be the function that maps the complement of [1, + 00 J con­

formally on the unit disk; origins corresponding to each other and sym­
metry with respect to the real axis being preserved. 

Theorem 1-12 For /z/ :s; 1, Iz/ ~ /z - 1/, i.e., for z E DI , 

I r'(z) I hO,l(Z) ~ r(z) [4 - log Ir(z)/J-l. (1-23) 

FIGURE 1-1 
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For z ~ 0, (1-22) and (1-23) imply 

1 
log >'O,I(Z) = -log Izi - log log j;) + 0(1). (1-24) 

PROOF It is immediate that the metric defined by 

I r'(z) I p(z) = Hz) [4 - log Ir(z) IJ-l (1-25) 

has curvature -1, for it is obtained from the Poincare metric of the 
punctured disk 0 < Irl < e4• We use (1-25) only in fil and extend p to 
O2 and 0 3 by means of the symmetry relations p(1 - z) = p(z) and 
p(l/z) = IzI2p(z). The extended metric is obviously continuous. We need 
to verify that p has a supporting metric on the lines that separate fh,02,fh. 
Because of the symmetry it is sufficient to consider the line segment 
between 0 1 and O2• It is readily seen that the original p, as given by 
(1-25) in fh and part of O2, constitutes a supporting metric provided 
iJp/iJx < 0 on the separating line segment. 

The mapping function is given explicitly by 

with Re V 1 - z > O. In 

Vl-z-l 
r(z) = -V-=I=-=z=-+-1 

a log p = Re (!:.-log t) + Re r (4 - log Irl}-I 
iJx dz r r 

we substitute 

r' 1 
-- = --;=== r z VI - z 

!:.- log r' = 3z - 2 
dz r 2z(1 - z) 

On taking into account that 1 - z = z on the line segment, we find 

iJ log p 1 Re Vz 
--a;- = - 4/z12 + Izl2 (4 - log IrD-I, 

and this is negative because Irl < 1 and Re Vz < 1. 
We conclude that (1-23) holds. The passage to (1-24) is a trivial 

verification. 
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1-9 THE PICARD THEOREMS 

We use Theorems 1-7 and 1-12 to prove a classic theorem known as the 
Picard-Schottky theorem. The emphasis is on the elementary nature of 
the proof and the explicit estimates obtained. 

Theorem 1-13 Suppose that fez) is analytic and different from 0 
and 1 for It I < 1. Then 

log If(z) I ~ [7 + l:g If(O) /] 1 + :z:. (1-26) 
1 - z 

+ 
REMARK As usual, log If(O) I is the greater of log 1.f(O) I and O. The 

constant in the bound is not the best possible, but the order of magnitude 
of the right-hand side is right. 

PROOF Because l/f satisfies the same conditions as f it is irrelevant 
whether we derive an upper or a lower bound for log If I· The way we have 
formulated Theorem 1-12, it is slightly more convenient to look for a 
lower bound. 

By assumption f maps .1 into nO•l • By Theorem 1-7 we therefore 
have 

Ao.Ilf(z)llf'(z)! ~ 1 ! Izl2 

We obtain by integration 

(I(z) 1 + Izi 
11(0) AO.l(w)ldwl ~ log 1 _ Izl' (1-27) 

where the integral is taken along the image of the line segment from 0 
to z. We use the notation n1 of the previous section and assume first that 
the whole path of integration lies in !h. The estimate (1-23) can be 
applied and gives 

(Ilz) 1 + Izl 
11(0) (4 - log Ir(w)I)-lld log r(w) I ~ log 1 _ Izi' 

On noting that Id log rl ~ -d log Irl we find 

4 - log l[f(z)]I < 1 + Izi. 
4 - log l[f(0)1I - 1 - Izi 

From the explicit expression 

Iwl 
Ir(w) I = I vi 12 

1 + 1 - w 

(1-28) 

(1-29) 
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we derive (1 + y2)-2Iwl ~ Is(w) I ~ Iwl, the lower bound being quite 
crude. With these estimates, and since log (1 + y2) < 1, we obtain 
from (1-29) 

- log If(z) I < [6 - log If(O) I] 1 + 'l,zll· 1 - z 
(1-30) 

Now let us drop the assumption that the path in (1-27) stays in !h. 
If fez) E fh, (1-28) is still true if ,,'e start the integral from tUo, the last 
point on the boundary of ~2t. Since Iwol ~ i, the inequality (1-30) is 
replaced by 

1 + Izl 
-log If(z) I < (6 + log 2) I ' 

1 - Zl 
(1-31) 

which is also trivially true in case fez) is not in n1• The inequalities (1-30) 
and (1-31) can be combined to give 

[ + 1 ] 1 + Izi 
-log If(z) I < 6 + log 2 + log If(O) I 1 - IzI' 

and (1-26) is a weaker version with f replaced by IIf. The theorem is 
proved. 

Corollary The little Picard theorem If f is meromorphic in the 
whole plane and omits three values, then f is constant. 

PROOF Iff omits a,b,c then F = [(c - b)/(c - a)J[(f - a)l(f - b)] 
is holomorphic and omits 0,1. Apply Theorem 1-13 to F(Rz) with R >0. 
It follows that IF(Rei8 /2) I lies under a finite bound, independent of R 
and O. Hence IF(z) I is bounded, and F must be a constant by Liouville's 
theorem. 

Theorem 1-14 The big Picard theorem If f is meromorphic and 
omits three values in a punctured disk 0 < Izl < 0, then it has a 
meromorphic extension to the full disk. 

PROOF We may assume that 0 = 1 and that f omits 0,1,0(). Com­
parison of Ao,1 with the Poincare metric of the punctured disk yields 

( 1 )-1 
Ao,I[f(z)]If'(z) I ~ Izllogr;r . 

We integrate along a radius from Zo = roeiB to z = reiD, r < ro < 1. If 
fez) E n1, we obtain as in the preceding proof 

1 
log {4 - log If(z) II ~ log log j;j + A, 
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where A is an irrelevant constant. This implies 

1 
-log If(z) I ~ Clog r:;! 

with some other constant, showing that 1/lfl is bounded by a power of 
1/14 Hence the isolated singularity at the origin is not essential. 

NOTES The Schwarz lemma and its classic proof are due to Cara­
theodory [10]; Schwarz proved it only for one-to-one mappings [58, p. 
109]. Although Poincare had used noneuclidean geometry for function 
theoretic purposes, Pick [50, 51] seems to be the first to have fully realized 
the invariant character of Schwarz's lemma. Theorem 1-2 has been 
included mainly for historical reasons. 

Theorem 1-5 was first proved by Caratheodory [11] but indepen­
dently and almost simultaneously by Landau and Valiron [35]. All three 
were unaWare that the theorem is an easy consequence of Herglotz's inte­
gral representation of positive harmonic functions. We have given prefer­
ence to Caratheodory's proof because of its geometric character. 

Ultrahyperbolic metrics (without the name) were introduced by 
Ahlfors [1]. They have recently found many new applications in the theory 
of several complex variables. 

There are many proofs of Bloch's theorem, that of Landau [34] prob­
ably being the simplest. The original theorem is in Bloch [8]. Heins has 
improved on the author's bound by showing that B > V3/4 (Heins [28]). 
See also Pommerenke [52]. 

Stronger forms of (1-26) can be found in Jenkins [32], but his proof 
uses the modular function. Our proof of the Picard theorems is elementary 
not only because it avoids the modular function, but also because it does 
not use the monodromy theorem. 

EXERCISES 

1 Derive formulas for the noneuclidean center and radius of a circle con­
tained in the unit disk or the half plane. 

:2 Show that tv,:o circular arcs in the unit disk with common end points 
on the unit circle are noneuclidean parallels in the sense that the points 
on one arc are at constant distance from the other. 

S Let z = z(t) be an arc of class ca. Show that the rate of change of its 
curvature can be expressed through 

[Zll' (t) 3 (Zll (t»)2] iz'(t) 1-1 1m -- - - -- . 
z' (t) 2 z' (t) 
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4- Formulate and prove the analog of Theorem 1-5 for functions with 
positive real part on the right half plane. 

5 Verify that the spherical metric 

has constant curvature 1. 

21dzl 
ds = 1 + /Z12 

6 If f is analytic in the unit disk ~ and normalized by !I'(O) 1 = 1, let 
L/ be the least upper bound of the radii of all disks covered by the 
image f(A). Imitating the proof of Bloch's theorem, show that the 
greatest lower bound of L/ is a constant L ~ i. 



2 
CAPACITY 

2-1 THE TRANSFINITE DIAMETER 

Let E be a closed bounded set in the complex plane. We define its diameter 
of order n as 

dn = max n IZi - ZjI2/n(n-l) 

i<j 

for points Zi E E, i = 1, ... , n. If z" is omitted, 

n IZi - zil ~ dn_ 1(n-l)(n-2)/2. 

i.i'l"k 

When these inequalities are multiplied, each factor IZi - zjl occurs n - 2 
times, and we obtain 

dn n (n-l)(n-2)/2 ::; d n _ 1n (n-l)(n-2J/2, 

and hence dn ~ dn- 1• We set dao = lim dn and call it the transfinite diameter 
of E. 

Among all monic polynomials Pn(Z) = zn + alzn- 1 + ... + an of 
degree n, there is one whose maximum modulus on E is a minimum. It is 
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called a Chebyshev polynomial, and we denote its maximum modulus on 
E by Pnn. 

Theorem 2-1 lim Pn = d ... 
n-+" 

PROOF Let Zl, ••• , Zn be the end points of dn and consider the 
Vandermonde determinant 

1 Z zn 

V(Z,ZI, , Zn) 
1 Zl zln 

1 Zn z,," 

It is a polynomial whose highest coefficient has absolute value dn n (n-l)/2. 

The maximum of /Vi on E is ~dn+ln(n+I)/2 ~ dnn(n+O/2. It follows that 
p,," ~ dn", Pn ~ dn. 

N ext we observe that 

1 

1 

where the Pk may be chosen as Chebyshev polynomials. On usmg 
the Hadamard inequality for determinants, we obtain d nn (n-I)/2 ~ 

nn/2p1P22 . . . P:=~' and hence lim inf (PIP2 2 . . . p:=D 2/10(10-1) ~ d ... This 
is a weighted geometric mean, and we conclude that if lim Pn exists it 
must be equal to d ... 

To prove the existence of the limit we use the inequality p:;:zt: ~ 
max iPmkPhi ~ PmmkPhh which we write as 

mk h 
log Pmk+h ~ mk + h log Pm + mk + h log Ph. 

Keep m fixed and let k run through the positive integers while h = 0, 
... , m - 1. We conclude that lim sup Pn ~ Pm, which obviously im­
plies the existence of lim Pn. 

2-2 POTENTIALS 

Consider a positive mass distribution p. on the compact set E, i.e., a mea­
sure that vanishes on the complement of E. We define 

PN(Z) = J min ( N, log Iz ~ 51) dp.(r) 
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and p(z) = limN-...,PN(z). This is the logarithmic potential of /Jo. Clearly, p 
is lower semicontinuous, p(zo) ~ lim inf ....... op(z), and harmonic outside of 
E. We set V" = sup p(z). It may be infinite. 

If II is another mass distribution, we can form 

1(/Jo,II) = limN __ JpN(Z) dll(z). 

We leave it to the reader to prove that 1(/Jo,II) = 1(1I,p.). For /Jo = II we 
write 1(1-') instead of 1(1-',p.). It is the energy integral of p.. 

Theorem 2-2 Among all distributions with total mass I-'(E) = 1, 
there is one that minimizes V". The same distribution minimizes 
1 (1-'), and the two minima are equal. 

Definition 2-1 If min V" = V, we call e-v the capacity of E. 

REMARK It may happen that V = 00, namely, if no I-' gives rise to 
a finite V". Then E is a set of zero capacity. 

PROOF The proof of Theorem 2-2 is in several steps. We assume 
first that the complement of E is connected and bounded by a finite num­
ber of piecewise analytic Jordan curves. We denote the complement by 
U and its boundary by au. The orientation of au is chosen so that U lies 
to the left. 

It is known that U has a Green's function with a pole at 00 (see 
Ahlfors, L. V.: "Complex Analysis," 2d ed., JlcGraw-Hill Book Com­
pany, New York, 1966, henceforth referred to as C.A.). The Green's func­
tion is harmonic in U, it vanishes on an, and its asymptotic behavior at 
0() is of the form 

g(z) = log Izl + 'Y + ~(z), 
where 'Y is a constant and ~(z) ~ 0 for z ~ 00. The constant 'Y is known 
as the Robin constant. 

For any r E U, Green's formula yields 

get) - 'Y = J:.. ( log __ 1_ iJg Idzl, 
271" jafl Iz - rl an 

(2-1) 

where the normal derivative is in the direction of the outer normal (we 
adopt this convention throughout this book). It is clear that ag/an < 0, 
and we can define a positive mass distribution by setting 

p.(e) = - J:.. ( ag Idzl 
211" j er'lao an 

for any Borel set e. Green's formula shows that the total mass is 1. 
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Formula (2-1) shows that the potential of J.I. satisfies p(r) = 'Y - gCr) 
for rEO. Green's formula can also be applied when r is an exterior 
point of n, and even if r E a~. We find that pCr) = 'Y on E. Hence 
VI' = 'Y, and we have proved that V ~ 'Y. 

Let ""0 be another mass distribution with total mass 1 and let po 
be its potential. Then po(z) - p(z) ~ 0 for Z ~ 00, and it follows by the 
maximum principle that VI" ~ VI' = 'Y. Thus VI' is minimal, and V = 'Y. 
It follows further that 

1("",""0) = fp dJ.l.o = 'Y = 1(,.,.). (2-2) 

To continue the proof we need a lemma. 

Lemma 2-1 Let /J.l and""2 be positive mass distributions on E with 
~ l(E) = ,.,.z(E) and IC""l) < 00, 1(/J.2) < 00. Then 1(/J.l) + 1(""2) -
21 (M,/J.2) ~ o. 
PROOF It is elementary to show that 

1 If dx dy -2 I II I = log R - log IZI - z21 + C + f(Zl,Z2,R), 
7r' Izl<R Z - Zl Z - Z2 

(2-3) 

where C is a constant and ~(Zl,Z2,R) ~ 0 for R ~ 00, uniformly when 
Zl,Z2 are on a compact set. We may assume that /J.l(E) = /J.2(E) = 1. 
Integration of (2-3) with respect to /J.i(Zl) and ""j(zz), i,.i = 1,2, yields 

1 If [I dJ.li(r) I dl-'iCr) ] y ( -2 -, _ I ,_, dx dy = log R + 1 (/J.i,J.lj) + C + ~ R) 
7r'lzl<R r z r z 

with feR) ~ o. It follows that 

1(1-'1) + 1(fJ.2) - 21C/J.l,/J.2) = lim If [f d/J.l(r) -= ~J.lz(r)J2 dxdy ~ o. 
R--+o. Izl <R Ir I 

Another way of expressing the result is to state that I (J.ll - ""2) ~ o. 

We apply the lemma to /J. and J.I o. It follows from (2-2) together with 
the lemma that 1(J.l.0) ~ 1(,.,.). We have proved that I(J.I.) is minimal. The 
distribution J.I is known as the equilibrium distribution. 

It remains to pass to the case of an arbitrary compact set E. The 
unbounded component of the complement of E is denoted by o. It can be 
represented as the union of a sequence of increasing regions On each of 
which satisfies our earlier conditions. The complement of On will be denoted 
by En, the equilibrium distribution on En by /J.n, the potential of ""n by 
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pn, the Green's function by gn, and the Robin constant by 'Yn. By the 
maximum principle gn and 'Yn increase with n. We set y(z) = lim Yn(Z) 

and 'Y = lim 'Yn. By Harnack's principle g(z) is either harmonic or ident.i­
cally + 00. If it is finite, g is called the Green's function of il; it is easily 
seen to be independent of the sequence I iln I by which it is defined. 

It is well known that one can select a subsequence of the P.n that 
converges to a limit distribution p. with the same total mass. Evidently, 
p. is a distribution on E, and in fact on the boundary of il. For convenience 
we adjust the notation so that lp.n I is the subsequence. 

If z is not on the boundary of il, it is immediate that the potential 
p of p. satisfies 

p(z) = lim Pn(Z) ~ 'Y. 

Because of the lower semicontinuity this inequality remains true on the 
boundary, and we conclude that VI' ~ 'Y. On the other hand, if fJo is any 
distribution of unit mass on E, it is also a distribution on En so that 
Vpo ~ 'Y7I, and hence Vpo ~ 'Y. We have shown that VI' is a minimum and 
equal to 'Y. 

It can no longer be asserted that p(z) is constantly equal to 'Y on E. 
However, it is trivial that I(p.) ~ 'Y, and for any distribution fJo of unit 
mass on E we have I(p.o) ~ I(fJn) = 'Yn. Hence I(fJo) ~ 'Y and, in particu­
lar, I(p.) ~ 'Y, so that in fact I(p.) = 'Y. We have proved that I(p.) is indeed 
a minimum and equal to the minimum of Vu. 

2-3 CAPACITY AND THE TRANSFINITE DIAMETER 

We proved in the preceding section that cap E = e-'Y, where 'Y is the Robin 
constant of n, the unbounded component of the complement of E. In 
particular, the capacity does not change if E is replaced by the full comple­
ment of n. 

It is clear that 'Y, and therefore the capacity of E, has a certain 
degree of invariance with respect to conformal mappings of n. In fact, 
suppose thatf(z) defines a conformal mapping of il on a region nl, and that 
the Laurent development of fez) at 00 has the form fez) = z + ... so 
that f( 00) = 00 and f(z)/z - 1. If gl is the Green's function of ~h, then 
gl 0 f is the Green's function of n. The Robin constants 'Y and 'Yl are equal. 
Hence the capacity of E l , the complement of nt, is equal to that of E. 
In other words, the capacity is invariant under normalized conformal 
mappmgs. 

Note that there is no mapping of E on b\; the comparison comes 
about by passing to the complements. If we drop the normalization, we 
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have cap El = lal cap E, wheref(z) = az + .... A quantity with this 
behavior may be called a relative conformal invariant. 

The capacity of a disk of radius R is R. The capacity of a line seg­
ment of length L is L/4. 

We shall now study capacity in its relation to the transfinite 
diameter. 

Theorem 2-3 The capacity of a closed bounded set is equal to its 
transfinite diameter. 

PROOF With the same notations as before, let iJ. be the equilibrium 
distribution and Pn(z) = (z - fl) ... Cz - fn) the Chebyshev poly­
nomial of degree n. It is immediate by Green's formula that 

Hence Pnn = maXE IPni ? e- noy , and it follows that doo ? e-OY = cap E. 
For the opposite inequality we observe that dooCE) ~ dooCEn). Hence 

if we prove that d",,(En) ~ e-'Yn, it will follow that d",(E) ~ e-OY. In other 
words, we are free to assume that n has analytic boundary curves. 

We divide the boundary an into n parts Ci such that each Ci carries 
exactly the mass l/n of the equilibrium distribution. For large n most of 
the parts can be chosen as arcs, but if there are N contours we must allow 
for N - 1 parts which are not connected. These parts will be called 
exceptional. 

We choose points fi E Ci and consider the polynomial 

Recall that the potential of the equilibrium distribution equals 'Y on E. 
Since the mass on each Ci is l/n, we obtain 

for all z E E. We can choose n so large that the diameter of each non­
exceptional Ci is less than a fixed 0 > O. For z E Ci we then have 

I z - r" I r - r'l ( 0) log --' = log 1 + --' ~ log 1 + -I --I . 
z - f z - r z - r 

When z lies on an exceptional part we can only say that 

, z - r'\ D log --' ~ log -, --I' 
z-f z-r 
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where D is the diameter of E. With these estimates we obtain 

~log IPn(z) I + l' S flog (1 + Iz ~ rl) dp. + f, log Iz ~ rl dp., (2-4) 

where c' is the union of the exceptional parts. 
Let d be the shortest distance between contours. We obtain trivial 

estimates for the contours that do not contain <:, the total contribution 
to the right-hand side of (2-4) being at most 

( 0) N-I D log I + - + -- log -. 
d n d 

(2-5) 

Denote by s the arc length from z to r along the contour that con­
tains z. Because of the regularity of the contour there exists a constant 
k > 0 such that Iz - rl ~ ks. :\foreover, the normal derivative of (J is 
bounded so that dp. S Kds with finite K. It is seen that the remaining 
part of the first integral in (2-4) is bounded by 

{L/2 ( 0) 2K}o log I + ks ds, (2-6) 

where L is the length of the contour. The remaining part of the second 
integral is at most equal to 

(a/k D 
K}o log ks ds. (2-7) 

Recall that Pnn S max IPn(z)1 on E, that is to say, on an. Our esti­
mates show that log pn + l' is bounded by the sum of the expressions (2-5) 
to (2-7). All three tend to zero when n ~ 00 and 0 ~ 0. We conclude that 
log doc S -1', which is what we wanted to prove. 

The double role of capacity as a conformal invariant and a geometric 
quantity permits us to gain relevant information about conformal map­
pings. For instance, if a set E is projected on a line, it is evident that the 
transfinite diameter decreases. Hence if the projection in any direction 
has length L, the capacity is ~LI4. As an application, let fez) define a 
one-to-one conformal mapping of the unit disk, normalized by f(O) = 0, 
If' (0) I = 1. Let b be a point not in the image region. Then l/f(1lz) gives 
a normalized mapping of the unit disk on an unbounded region n whose 
complement E has capacity I and comprises the points 0 and lib. Since 
E is connected it has a projection of length ~ I/lbl. Hence 1 ~ tlbl or 
Ibl ~ t. This is the famous one-quarter theorem. 
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2-4 SUBSETS OF A CIRCLE 

Recall that the Dirichlet integral of a function u over a region n is defined 
by 

We shall also make use of the mixed Dirichlet integral 

Dn(u,v) = J J (au av + au av) dx dy, 
n ax ax ayay 

which satisfies Dn(u,v)2 ~ Dn(u)Dn(v). (The subscript n is often omitted.) 
In this section we study the capacity of a closed subset E of the unit 

circle. It will be shown that the capacity has an extremal property which 
links the Dirichlet integral of a harmonic function in the unit disk ~ with 
its values on E and at the origin. We denote the complement of E by fl, its 
Green's function by g(z), and the Robin constant by 'Y = - Jog cap E. 

Theorem 2-4 Suppose u(z) is harmonic in ~,u(O) = 1, and lim sup 
u(z) ~ 0 as z approaches E. Then D(u) ~ 7r/'Y with equality for 
u = g(z)/'Y. 

PROOF It will first be assumed that E consists of a finite number of 
arcs and that u is of class Cion the closed disk. The functions g(z) - g(l/i) 
and log Izl are harmonic in fl except for the same singularities at 0 and 00, 

and they also have the same boundary values on E. Therefore, by the 
maximum principle, g(z) - g(l/i) = log 14 This shows that yeO) = 'Y 
and also that ag/ar = j on E', the complement of E with respect to the 
unit circle. Since y is positive, it is furthermore true that ay/ar < 0 on E. 
There is a slight singularity at the end points of the arcs that constitute 
E; by standard use of the reflection principle one shows that the gradient 
of g is of the order of 1/ VP, where p is the distance from the nearest 
end point. 

On taking all these properties into account we easily obtain 

r 2.. ag 1 r 1 r 2". 
DA(u,g) = Jo u ar d8 ~ 2 JE' u d8 ~ 2 Jo u d8 = 7r 

r 211" ag 1 r 1 r 2 ... 
and DA(g) = Jo g ar d8 = 2 JE' g d8 = 2 Jo g d8 = 7r'Y. 

Hence7r2 ~ D",(u)D",(g) = 7r'YDA(U), and we have shown that DA(U) ~ 1r/'Y. 
Equality occurs for u = g/'Y. 
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An arbitrary set E can be represented as the intersection of sets En, 
each consisting of a finite number of arcs. The result we have already 
proved is applicable to Ul(Z) = (1 - E)-l[u(rz) - E] and En for E > 0, 
r < 1, and sufficiently large n. Since cap En ----+ cap E and D/l(Ul) ----+ D/l(u), 
the full theorem follows. 

In preparation for the next section we shall determine the capacity 
of an arc on the unit circle of length a. Let it be the arc between e-ia / 2 

and eia / 2• Its complement is mapped on the exterior of a disk centered at 
the origin by the function 

1 
fez) = '2 [z - 1 + V (z - eia /2)(z - e-;a/2)], 

where the square root is asymptotically equal to z at 00. Indeed, explicit 
computation gives 

f(e i9) = ei9 / 2 (i sin ~ + ~sin2 ~ - sin2~). 

so that /f(e i9)j = sin (a/4) for /8/ < a/2. Since fez) is normalized at 00 

the capacity of the arc is sin (a/4). 

2-5 SYMMETRIZATION 

We would like to show that a set E on /z/ = 1 of given length L has a 
minimum capacity if it consists of a single arc. In other words, \\·e claim 
that cap E ~ sin (L/4). This is practically trivial if E is contained in a 
half circle, for then a contraction makes all distances smaller so that the 
transfinite diameter decreases. But if E does not lie on a half circle, this 
reasoning does not apply and we must look for an altogether different 
approach. 

We shall reach our goal by combining Theorem 2-4 with a "sym­
metrization theorem." There are many such theorems, and we shall be 
concerned only by a special, but rather typical case. The kind of sym­
metrization we have in mind is known as c£rcular symrnelrizaNon. 

Let g(8) be a measurable real-valued function defined for 0 ~ /8/ ~ 1T'. 

Set met) equal to the measure of the set on which g(8) ~ t. Note that 
met) is nondecreasing and continuous on the right: met + 0) = met). Two 
functions are said to be equimeasurable if they give rise to the same m (t). 
We wish to construct a function (/*(8) which is equimeasurable with g(8), 
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even, and nonincreasing for (J ~ O. The existence of g* is quite obvious 
if met) is continuous and strictly increasing, for then we merely set 
g*(O) = g*( -0) = m-1(20), where m- 1 is the uniquely defined inverse 
of m. In the general case we define g*(O) as the least upper bound of 
all t with met - 0) ~ 28. We must prove, carefully, that g* and 9 are 
equimeasurable. 

It is clear that g* is nondecreasing. Therefore, the inequality 
g*(O) ~ to holds either in an open interval 101 < 00, or on a closed interval 
101 ~ (Jo. We have to show that m(to) = 200• 

1 If m(to) > 200, then m(to) > 200 + 2E for some E > 0, and hence 
m(to + 0 - 0) > 200 + 2E for all 0 > O. By the definition of g* this 
implies g*(Oo + E) ~ to + 0, and hence g*(Oo + E) ~ to. This con­
tradicts the definition of 00• 

:2 If m(to) < 200, we can find E and 0 > 0 such that m(to + 0 - 0) < 
200 - 2e. This implies g*(Oo - E) ~ to + 0, which again contradicts 
the definition of 00• The only remaining possibility is to have 
m(to) = 200• 

For the sake of simplicity the Poisson integral in the unit disk formed 
with the boundary values y(O) will be denoted by g(z). We assume of 
course that geO) is integrable. The notation DaCg) will be simplified to 
D(g). We shall need a formula that expresses DCg) in terms of the boundary 
values g(O). 

Theorem 2-5 

1 (2r (2r ( g(O) - y(O'»)2 , 
D(g) = &r Jo Jo sin [(0 _ O')j2] d8 dO. 

PROOF We complete 9 to an analytic function! = (J + ih normalized 
by h(O) = o. The Dirichlet integral extended over ~r = Ilzl < r} can be 
expressed by 

Dr(g) = - ~ ~Zl =. Jf' dz. 

In this formula we have to substitute 

1 !c 271" ei6 + z fez) = 2- 0 -·6- g(8) dO 
7r e' - z 

, 1 (2r ei6 

f (z) = 7r Jo (ei6 _ Z)2 g(8) dO. 
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A simple residue computation gives 

{ e-i8 + Z ei8' { (z + r2ei8)ei8' 
11zl=7 e-i8 _ Z (eiB' - z)2 dz = 1121=7 (z _ r2ei8)(ei8' _ Z)2 dz 

2r2eiCH8'l 
= 211'"i = 411'"ir 2(e i (8'-8J/2 - r2ei (8-8'J/2)-2 

(ei8 ' - r2ei8 )2 , 

and we obtain 

2 

Dr(g) = ;- 102" 1021< (e i (8'-8J/2 - ,,2e i(8-8'J/2)-2 g(O)g(O') dO dO'. (2-8) 

As a special case of (2-8), 

/027r 102" (e i (8'-8J/2 - r2ei (8-8'J/2)-2 dO dO' = 0, 

and since 

(2-9) 

is obviously independent of 0', the integral (2-9) is identically zero. It 
follows that 

10211" 1027r (e i (8'-8J/2 - r2ei (8-8'J/2)-2 g(OP dO dO' = 0, 

and (2-8) can thus be replaced by 

r2 (27r (27r [ g(O) - g(O') ]2 , 
Dr(g) = - 211'" 10)0 ei(8'-8J/2 _ r2ei (8-8'J/2 dO dO . (2-10) 

As r ~ 1 we expect the right-hand member of (2-10) to converge to 

leg) = ~ (27r (27r ( .g(O) - g(O') )2 dO dO'. 
811'" 10 10 sm [CO - 0')/2] 

If l(g) < 00, it is easy to prove that this is indeed so, for the identity 

lei(8'-8J/2 _ r2ei(8-8'J/212 = (1 - r 2)2 + 4r2 sin2 0 - 0' 
2 

(2-11) 

shows that leg) is a convergent majorant of Dr(g) so that Lebesgue's 
theorem of dominated convergence is applicable. 

It remains to show that leg) converges when D(g) < 00. First, if 
the Dirichlet integral is finite, the radial limit g(O) = limr-.lg(rei8) exists 
almost everywhere and is square integrable. This is an immediate con­
sequence of the Schwarz inequality, for instance, in the form 

102
11" [It 1 :,. g(reie) dr r dO ~ ~ hI 102

7r (:~) 2 dr dO < D(g) < 00 
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Furthermore, it is well known that the Poisson integral formed with the 
values g(O) is equal to g(z). Now we apply the theorem to (fr(O) = g(rei8 ). 

We know that l(gr) = D(gr) = Dr(g) and that gr(O) ~ g(O) almost every­
where. It follows by Fatou's lemma that leg) ~ lim l«(lr) = D(g) < 00. 

The theorem is proved. 

We return to the symmetrized function g*. 

Theorem 2-6 D(g) ~ D(g*). 

PROOF We introduce the auxiliary integral 

E ( ) = ~ {2'1f (27r [g(O) - g(O'»)2 dO dO' 
r g 211" 10 10 (1 - r2)2 + 4r2 sin2 [(0 - O')j2] . 

By (2-9), Dr(g) ~ Er(g) ~ leg). If we can show that Er(g*) ~ Er(g), the 
theorem will follow, for then Dr(g*) ~ Er(g*) ~ Er(g) ~ leg), and hence 
in the limit D(g*) = l(g*) ~ leg). 

The missing part will be supplied by a more general symmetrization 
lemma. 

Lemma 2-2 Let u(O) and v(O) be measurable and nonnegative for 
-11" ~ 0 ~ 71' and suppose that K(t) is nonnegative and nonincreas­
ing for 0 ~ t ~ 1. Then the integral 

J(u,v) = J~7r J: . .u(O)v(O')K (sin 10 ~ 0'1) dO dO' 

satisfies J(u,v) ~ J(u*,v*). 

The application to the proof of Er(g*) ~ Er(g) is rather obvious. 
First, we may assume g to be bounded, and since added constants have 
no influence, we may take g positive. If we develop the square in Er(g), 
it is obvious that the terms containing g(O)2 and g(O')2 do not change when 
g is replaced by g*. It is therefore sufficient to show that the term with 
g(O)g(O') increases, and that follows from the lemma since the kernel is a 
decreasing function of sin (10 - 8'1/2). 

PROOF Define u+(O) = max [u(O),u( -8)] if 0 E (0,71') and u+(O) = 

min [u(8),u( -O)J if 0 E (-71',0). In other words, if we think of u(O) as 
being defined on the unit circle, we change the values at conjugate points 
in such a way that the larger value is taken on the upper half circle. 
With a similar change of v we claim that J(u+,v+) ~ J(u,v). 
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For fixed (J,(J' E (0,11") we have to compare 

( . I(J - 8'1) a(u,v) = [u(8)v«(J') + u( -(J)v( -8')]K sm 2 

( (J + 8') + [u(8)v( -(J') + u( -(J)v(O')]K sin -2-

with a(u+,v+). In view of obvious symmetry considerations it is sufficient 
to consider the case in which u+(O) = u(8) and v+(O) = v( -8). It is seen 
that 

a(u+,v+) - a(u,v) 

[ ( 18 - (11) (8 + 8')] = [u(O) - u( -O)][v( -0') - v(8')] K sin 2 - K sin -2- , 

a product of three positive factors. Hence J(u+,v+) ~ J(u,v). 
In proving the lemma we may assume that u, v, and K are bounded. 

N ext, we can replace u and v by step functions that assume only a finite 
number of values, each on a semiopen interval. We set 

where the Ui are characteristic functions of intervals and a. > O. It is 
evident that u* = alut + ... + anu:, and it is similarly evident 
that 

v = b1vl + ... + bmvm• 

The lemma needs to be proved only for Ui and Vj. 

Accordingly, let u and v be the characteristic functions of two arcs 
a and (3 on the unit circle. It is evident that J(u,v) is invariant under 
rotations of the circle. Therefore we can assume that the midpoints of a 
and (3 are symmetric with respect to the real axis, for instance, with a 
having its midpoint on the upper half of the circle. But in this situation 
u+(O) = u(8) and v+(O') = v( - 8'). Thus u+ and V+ are characteristic func­
tions of arcs with a common midpoint. This implies J(u*,v*) = J(u+,v+), 
and we have already proved that Jtu+,v+) ~ J(u,v). The lemma is 
proved. 

The application to capacity is quite simple. 

Theorem 2-7 A closed set E on the unit circle with length a has 
a capacity at least equal to sin (a/4). 

PROOF Let g(z) be the Green's function of the complement of 
E, and'Y the Robin constant, so that cap E = e-Y • We denote by y*(z) 
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the harmonic function with the symmetrized equimeasurable boundary 
values g*(fJ). It is equal to zero on an arc E* of length ex, and we set 
cap E* = e-"Y* = sin (ex/4). Because g and g* are equimeasurable on the 
unit circle, they have the same value at the origin, and in the course of the 
proof of Theorem 2-4 it was shown that this value is 'Y. Now apply The­
orem 2-4 to gh andg*h. It yields D(gh) = rh andD(g*h) ~ 1rh*. 
Since D(g) ~ D(g*), it follows that 'Y ~ 'Y*, cap E ~ cap E*. 

NOTES The transfinite diameter was introduced by Fekete [19]. 
Important simplifications were given by Szego [59] and in Poly a and 
Szego [54]. 

In spite of its classic origin potential theory suffered a long time 
from lack of rigor and did not come into its own until the appearance of 
Frostman's thesis [20] in 1935. More work on the foundations was done 
by H. Cartan and in many articles by Brelot. For later developments the 
reader is referred to the excellent survey and bibliography by Brelot [9]. 

The representation of the Dirichlet integral in terms of the boundary 
values (Theorem 2-5) is due to Douglas [18]. Symmetrization techniques 
were used extensively by Polya. All rearrangement theorems, of which 
Lemma 2-2 is a sample, are based on a fundamental idea of Hardy and 
Littlewood [26]. Theorem 2-7 was probably first proved, but not pub­
lished, by Beurling. 

EXERCISES 

1 Show that the transfinite diameter of a set is equal to that of its 
boundary. 

2 Let E be a closed, bounded, connected set, and let n denote the un­
bounded component of its complement. By Riemann's mapping the­
orem there is a normalized conformal mapping 

fez) = z + ao + alz- l + . . 
of n on the outside of a circular disk whose radius R is known as the 
outer conformal radius of O. Show that R = cap E. 

3 (Hayman) Let F(w) = atv + bo + b1w-1 + ... be analytic in 1 < 
Iwl < CQ. Denote by Q the set of all values that F(w) does not assume. 
Then cap Q ~ ex with equality only if F is one to one. 

4- (Pommerenke) Study the mapping of Izl > 1 by (zn + 2 + Z-n) lin and 
use it to find the capacity of a star formed by n equally spaced seg­
ments of unit length issuing from a point. 



3 
HARMONIC MEASURE 

3-1 THE MAJORIZATION PRINCIPLE 

Harmonic functions satisfy the maximum principle. Elementary but sys­
tematic use of the maximum principle leads to important methods for 
majorizing and minorizing harmonic and analytic functions. In this con­
nection the emphasis is never on great generality but on usefulness. For 
this reason we shall deal only with situations in which the existence the­
orems needed are virtually trivial. 

It has been found extremely useful to introduce the notion of har­
monic meaSUre. In its most primitive form it arises as follows. 

Let U be a region in the extended complex plane whose boundary 
an consists of a finite number of disjoint Jordan curves. Suppose that 
the boundary an is divided into two parts E and E', each consisting of 
a finite number of arcs and closed curves; it is immaterial whether the 
end points of the arcs are included or not. There exists a unique bounded 
harmonic function w(z) in n such that w(z) ---t 1 when z tends to an in­
terior point of E and w(z) ---t 0 when z tends to an interior point of E'. 
The values of w lie strictly between 0 and 1. The number w(z) is called 
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the harmonic measure of E at the point z with respect to the region O. 
It is also denoted by w(z,O,E). 

We remind the reader that the uniqueness depends essentially on 
the boundedness of w. It follows from the LindelOf form of the maximum 
principle, which we state and prove for the benefit of the reader. 

Lindelof's maximum principle Let u(z) be harmonic and bounded 
above, u(z) :::;: M, in a region 0 whose boundary is not a finite set. 
Suppose that lim supz-+t 'u(z) :::;: m for all boundary points t with a 
finite number of exceptions. Then u(z) :::;: m in fl. 

PROOF Assume first that 0 is bounded and denote its diameter by 
d, the exceptional points by ti. In this case it suffices to apply the ordinary 
maximum principle to 

'\' Iz - t·1 
u(z) + E 4t log d J 

1 

with E > 0, and then let E tend to zero. With the help of an inversion the 
same reasoning can be applied as soon as 0 has an exterior point. In the 
absence of exterior points we choose a positive number R different from 
all Itil. Let 0 1 and O2 be the parts of 0 with Izl < Rand Izl > R, respec­
tively. If u(z) :::;: m on 0 n Ilzl = R}, we can apply the result separately 
in 0 1 and O2. If not, u will have a maximum >m on 0 n Ilzl = R}, and 
this is a maximum for all of O. But then u would be a constant > m and 
could not satisfy the boundary condition. 

EXAMPLE 3-1 Let 0 be the upper half plane and E a finite union of 
segments of the real axis. Then w(z,O,E) is 1/'11" times the total angle under 
which E is seen from the point z. 

EXAMPLE 3-2 Let 0 be a circular disk and E an arc of the circle with 
central angle a. The harmonic measure is w(z) = (28 - a)/2'11" where 8 is 
the angle subtended by E at z. 

EXAMPLE 3-3 Let 0 be an annulus rl < Izl < r2 and E the outer 
circle Izl = r2. The harmonic measure at z is log (izi/rl) :log (rdrl). 

For some purposes it is preferable to consider a slightly more gen­
eral situation. Let 0 be an open set and a a closed set in the extended 
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plane. We denote by E the part of the boundary of a - a that belongs 
to a. It will be assumed that the geometric situation is so simple that it 
is possible to form w(z,a - a,E), separately for each component of a-a. 
This is called the harmonic measure of a with respect to a, and the nota­
tion is simplified to w(z,a,a). Roughly speaking, w is harmonic and 
bounded in a - a, equal to 1 on a, and zero on the rest of the boundary. 

The principle of majorization is stated as follows: 

Theorem 3-1 Given two pairs (a,a) and (n*,a*), let f be analyt­
ic in a - a with values in a*, and such that z ~ a implies 
fez) ~ a*. Under these circumstances w(z,n,a) s w(f(z),a*,a*) in 
f-1(n* - a*). 

We write w = w(z,a,a), w* = w(f(z),n*,a*) and apply the maximum 
principle to w - w* in a component of f-I(n* - a*). As z approaches the 
boundary of this component, either z tends to a boundary point of a 
which is not on a, or f(z) tends to a*. In either case lim sup (w - w*) S 0, 
except when f(z) tends to an end point of the boundary arcs of a - a* 
that lie on a*. If there are only finitely many such points, the maximum 
principle remains valid, and we conclude that w S w* throughout 
f-1(n* - a*). 

Corollary w(z,n,a) increases with a and a. 

This is the theorem applied to the identity mapping. 
As another application let n* be the disk /wl < M and a* a 

closed disk / wi S m < M. Then 

(fe ) n* *) = log [M Ilf(z) I] 
w z ,u ,a I MI og rn 

and we obtain the "two-constant theorem," Theorem 3-2. 

Theorem 3-2 If If(z) I s Min nand if(z) I S m on a, then If(z) I S 
m 9MI-e in the part where w(z,n,a) ~ o. 

When both regions are annuli we obtain as a special ease Had­
amard's three-circle theorem which is best formulated as a deter­
minant inequality 

1 
log r 

log M(r) 

1 
log p 

log M(p) 

1 
log R ~ 0 (3-1) 

log M(R) 
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for r < p < R. Here M(r) is the maximum of If(z) I for Izl = r. The 
inequality shows that log M (r) is a convex function of log r. N eed­
less to say the same is true of the maximum of any sub harmonic 
function. 

3-2 APPLICATIONS IN A HALF PLANE 

The next three theorems are typical applications of the majorization 
principle. 

Theorem 3-3 Let f(z) be analytic and bounded for y > 0, con­
tinuous on the real axis. If f(x) ~ c for x ~ + 00, then fez) ~ c in 
any angle 0 S arg z S 7r - 0, 0 > O. 

PROOF We may assume that If(z) - cl < 1 in the half plane, and 
that If(x) - cl < f for x > Xo. The two-constant theorem gives If(z) - cl 
< f6121r when arg (z - xu) < 7r - 0/2. In particular, this inequality holds 
as soon as Izl > xu, arg z < 7r - o. 

Theorem 3-4 (Phragmen-Lindelof's principle) Let f(z) be ana­
lytic for y > 0, continuous with If(x) lSI for all real x. Then 
either If(z) lSI in the entire half plane, or the maximum modulus 
M(r) on Izl = r satisfies lim infT ..... ""r- 1 log M (r) > O. 

PROOF In Fig. 3-1 the harmonic measure of th.e half circle is 
20/7r. Hence If(z) I S M(R) 2811r • But RO tends to a finite limit when z is 
fixed and R ~ 00. The theorem follows. 

Theorem 3-5 (Lindelof) Let fez) be analytic and bounded in a 
half plane and assume that fez) ~ c along an arc l' tending to 00. 

Then fez) ~ c uniformly in any interior angle. 

PROOF We may assume that c = 0 and If(z) I S 1. Replace l' by 
its subarc from the last intersection with Izl = R (Fig. 3-2). It divides 
{Izl > R I into two regions n' and nil, and we may suppose that If(z) I < f 

FIGURE 3-1 -R R 
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FIGURE 3-2 

on 'Y. The harmonic measure w(z,O','Y) is greater than or equal to the har­
monic measure of [R, + 00] with respect to {Iz 1 > R}. If the latter is de­
noted by w(z,R), it is clear that w(z,R) = w(z/R,l). But w(z,1) has a 
positive minimum }o., for instance, on the arc {Izl = 2, arg z S 7r - !5}. 
We conclude that If(z) 1 S EX when Izl = 2R and at the same time zEn', 
arg z S 7r - 15. The same estimate holds when zEn", arg z ~ 15. The 
theorem is proved. 

Corollary A bounded analytic function in the half plane cannot 
tend to different limits along two paths leading to infinity. 

A limit along a path that leads to infinity is known as an asymptotic 
value. The corollary asserts that a bounded analytic function cannot have 
two different asymptotic values in a half plane. The same is true when 
the half plane is replaced by an angle. 

3-3 MILLOUX'S PROBLEM 

Suppose that fez) is analytic and If(z) 1 S M in the unit disk A. Assume 
further that the minimum of If(z) 1 on every circle {Izl = r J ,0 < r < 1, 
is S m < M. How large can l1(zo) 1 be at a given point? This is a 
natural setting for harmonic measure. Indeed, we know that If(z) 1 S m 
on a certain set a and If(z) 1 S M elsewhere. Hence by the two-constant 
theorem, If(zo) 1 S m"'Ml-." where w is the harmonic measure of a with 
respect to A at the point zoo What we need therefore is a lower bound 
for w which does not depend on the shape of a but merely on the fact 
that a intersects all the concentric circles. 

This problem was proposed by Milloux [38] and aroused consider­
able interest. It was solved independently by R. N evanlinna [44] and 
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Beurling [61]. We shall give an account of the development that led to 
the solution. 

Because of the rotational symmetry we may assume that Zo is posi­
tive, and we set Zo = ro < 1. It is to be expected that W is a minimum 
when a is the negative radius, and we shall ultimately show that this is 
indeed the case. For the negative radius one easily finds that Wo = w(ro) 
is given by 

1 - Wo = i arc tan Vro• 
'II" 

If we show that w(zo,A,a) ~ Wo, it will follow that If(zo) I ~ m"'oMh,o 
not only for the functions f originally under consideration, but also for 
functions f that are analytic only in A - a and satisfy lim sup If(z) I ::::; m 
as z ~ a. Indeed, since the maximum principle is being applied to log If(z) I, 
it is not even necessary that fez) be single-valued as long as it has a 
single-valued modulus. Thus the solution applies to a larger class, and 
it will give the best possible estimate for the larger class; but it does not 
give the best answer to the original question. Although the answer is 
known (Heins [30)), we shall be content to solve the easier problem of 
finding the best lower bound for w(zo). 

Even before ~"Iilloux an important special case was treated by Carle­
man [12]. He assumed that the region A - a is simply connected. Under 
this hypothesis we can map A - a by a branch of log z. The image region 
lies in the left half plane, and it has the property of intersecting each 
vertical line along segments whose total length is at most 2'11". By con­
formal invariance 1 - w(ro) is the harmonic measure at log ro of that part 
of the boundary of the image which lies on the imaginary axis. It is 
majorized by the harmonic measure with respect to the full left half 
plane. The angle subtended at log ro by segments of given total length 
is a maximum for a single segment, symmetrically placed with respect 
to the real axis. It follows that 

2 'II" 
1 - w(ro) ::::; - arc tan I (/) 

'II" og 1 ro 
(3-2) 

This is a rather poor estimate, the reason being that the half plane 
is the image of a Riemann surface with infinitely many sheets rather than 
the image of a plane region. Carleman used the following idea to improve 
the result. Assume that If I ::::; 1 on a and let M(r) denote the maximum 
modulus of f on Izl = r. We use (3-2) in a disk of radius r > ro to obtain 

log M (ro) 2 'II" --"'----'-..:.. < - arc tan ---
log M (r) - 'II" log (r Iro) 

(3-3) 
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On letting 1'0 tend to r this becomes a differential inequality 

d log M(r) > ~ log 111(1') 
d log r - '11"2 ' 

and integration from 1'0 to 1 gives 

2 1 
log log M (1) - log log M (1'0) ~ - log _. 

'11"2 1'0 
(3-4) 

[We have tacitly assumed M (1') to be differentiable. This can be avoided 
by passing direetly from (3-3) to (3-4).] 

We apply (3-4) with log If I = 1 - wand obtain the estimate 

which is an improvement over (3-2). 
More important, it is possible to take into account the "thickness" 

of the set a. For this purpose let 0(1') denote the total angle of the arcs 
on Izi = r complementary to a. It is rather obvious that (3-3) can be 
replaced by 

d log M(r) < _4_log M(r) 
d log l' - 'll"O(r) , 

from which it follows that 

4 f, 1 dl· loglogM(l) -loglogM(ro) ~- ~, 
'II" ro 1'0(1') 

and finally 

[ 4 f,l dr ] log[l - w(ro)] ~ exp - - ~(). 
'II" ro 1'0 l' 

Although this is not precise, it is at any rate a good est.imate obtained 
by very elementary methods. 

We pass now to Beurling's solution of the problem, or rather of a 
more general problem. Let a be a closed set in .1, and let a* be its eir­
cular projection on the negative radius. In other words a* consists of all 
-1' such that there exists a z E a with Izl = r. 

Theorem 3-6 (Beurling) w(1'o,.1,a) ~ w(ro,.1,a*). 

The proof can be given for arbitrary a (with an appropriate defini­
tion of w), but we shall be content to consider the case in which a* 
consists of a finite number of segments. In this case the existence of 
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w*Cz) = w(z,~,a*) is clear, and the existence of w(z,~,a) will be taken 
for granted as part of the hypothesis. 

We know that 

g(z,r) = log \
1 - zr I 
z-r 

is the Green's function of ~ with a pole at r, and we note the inequalities 

g(lzl,-lrl) ~ g(z,r) ~ g(lzl,lrD = g(-Izl,-Irl). (3-5) 

Green's formula gives the representation 

1 J. aw*(r) 
w*(z) = - - * g(r,z) -~ Idrl, 

11" a an (3-6) 

where we have added the two equal normal derivatives, both in the direc­
tion of the inner normal, and hence negative. 

In (3-6) we replace each r E a* by a r' E a such that Ir'l = Irl. 
This can be done in such a way that g(r',z) is a measurable function. We 
can therefore form the function 

1 J. ,aw*(r) 
u(z) = - - g(r z) -- Idrl. 

11" a* , an 

It is obvious that u is harmonic in ~ - a and that u = 0 on Izl = 1. 
With the help of (3-5) we see that u(z) ~ w*( -Izl) ~ 1 for all z E ~ - a, 
and it follows by the maximum principle that u(z) ~ w(z). On the other 
hand u(ro) ~ w*(ro), again by (3-5), and we have proved that w(ro) ~ 
w*(ro). 

3-4 THE PRECISE FORM OF HADAMARD'S THEOREM 

We return to Hadamard's three-circle theorem which we derived as a con­
sequence of Theorem 3-2, the two-constant theorem. We shall assume 
that ICz) is analytic for 1 ~ Izl ~ R and that III ~ 1 on Izl = 1, III ~ M 
on Izi = R; we assume M > 1. The inequality (3-1) takes the form 

logR 
log M(r) ~ -I-log M. 

ogr 

Equality can hold only if 

I I/() I log Izil M 
og z = logR og , 
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and we then have 

r a log If I r dO = 271" log M. 
1101=r or log R 

But if fez) is single-valued, as we assume, the left-hand side is an integral 
multiple of 271", and hence equality can occur only if M is an integral 
power of R. When this is not the case, there must be a smaller bound 
for M (r), and it becomes an interesting problem to find the best bound 
for arbitrary r, R, and M. 

This problem was solved by Teichmiiller [60], and independently by 
Heins [29]. Teichmiiller's solution is more explicit, and it is the one we 
shall present. 

We choose a fixed p, 1 < p < R, and denote the Green's function 
of the annulus 1 < Izl < R with a pole at - p by g(z} = g(z, - p). The 
harmonic measure of the outer circle is w(z) = log Izl/log R. 

Lemma 3-1 The maximum of g(z) on Izl = r is attained at -r, 
the minimum at r. As a consequence the radial derivative og/iJr has 
its minimum on Izl = R at R, and its maximum on Izl = 1 at 1. 
Moreover, y(r) is a strictly concave function of log r, that is, rg'(r) 
is strictly decreasing for 1 < r < R. 

PROOF We write z = rei8 and consider the harmonic function oy/iJO. 
It vanishes on Izl = 1 and Izl = R, and it is also zero on the real axis 
because of the symmetry. Near the pole it behaves as 

1m [ z :z log (z + p) ] = 1m [(z ~ p)] 

which is positive in the upper half plane. Hence iJy/oO > 0 in the upper 
half of the annulus, which proves the assertion about the maximum and 
minimum. The statements about the maximum and minimum of iJg/ iJr 
are a trivial consequence. 

The three-circle theorem for harmonic functions states that the 
maximum of a harmonic function on Izl = r is a convex function of log r, 
and strictly convex except for functions of the form a log Izl + b. It fol­
lows that the minimum g(r) is concave in the intervals (l,p) and (p,R) 
and hence ry'(r) is decreasing in (l,R). If g(r) were equal to a log r + b 
in an interval, we would have g(z) = a log Izl + b in the corresponding 
annulus. This would imply that the analytic function r iJg/iJr - i iJg/iJO 
reduces to a constant, which is impossible in view of the singularity at 
-po 
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Theorem 3-7 Suppose that fez) is analytic in 1 ~ Izi ~ R and that 
If(z) I ~ 1 for Izl = 1, If(z) I ~ M for Izi = R. Let m be the integer 
determined by Rm-l < M ~ Rm. Then 

log M(p) ~ log M log p _ g (Rm), (3-7) 
logR M 

with equality only if 

log If(z) I = w(z) log M - g (z, ~)- (3-8) 

PROOF We may assume that the maximum modulus M(p) is at­
tained at - p. Denote the zeros of f by ai, . . . , aN and write C for the 
full boundary of the annulus. Green's formula gives 

1 a N 
log If( -p)1 = - 2- Ie log If I ~ Idzl - I g(ai) (3-9) 

7r an 1 

and 
N 

1 r aw ~ 1 r a log I fl 
-2 Je log If 1- Idzl - ~ w(a;) = - Ji.1-R Idzl· 7r an 1 27r z - an 

Observe that f is single-valued if and only if the right-hand member of 
the last equation is an integer. Our problem is to maximize (3-9) under 
the diophantine condition 

1 r aw N 
27r Je log If I an Idzl - I w(ai) = 0 (mod 1). (3-10) 

1 

We note 'first that g(a;) ~ g(laiD, by Lemma 3-1, while 

w(a;) = w(Ia;D. 
For this reason we may assume that the a; are positive. Let us write 
log If I = -UI on Izl = 1 and log If I = log M - U2 on Izl = R; then Ul 

and U2 are ~O. The normal derivative ag/an (outer normal) is ~ - g'(I) 
on Izi = 1 and ~g'(R) on Izi = R. 

With these estimates, and by use of the relation 

_ ~ r ag Idzl = w(-p) = logp, 
27r JI.I=R an log R 

it follows from (3-9) that 

1 If( _ ) I < log M log p _ g'(l) r d(J 
og p - logR 27r JI.I=1 Ul 

Rg'(R) r f + 27r Jlzl=R U2 d(J - ~ g(a;), 
1 

(3-11) 
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with equality only if Ut and U2 are identically zero. For further simplifica­
tion we set g(r) = h[w(r)], w(ai) = ti, and 

At = (211" log R)-I kl-l Ut dfJ, 

With this notation (3-11) becomes 

N 

log II( -p)1 ~ 10giM ~g P - Alh'(O) + A 2h'(I) -I h(ti ), (3-12) 
og 1 

while (3-10) can be written 
N 
~ 10gM 

Al - A2 + ~ ti = - -1 R (mod 1). 
1 og 

(3-13) 

We shall make use of the follo\\<ing lemma. 

Lemma 3·2 Let h(t) be periodic with period 1, h(O) = h(l) = 0, 
and h"(t) < 0 for 0 < t < 1. Then h is subadditive: hex + y) ~ 
hex) + hey), and more generally heAl - A2 + tt + ... + tN) ~ 
A I h'(O) - A 2h'(I) + h(tt) + ... + h(tN) if AI, A2 ~ O. Equality 
holds only if Al = A2 = 0 and at most one ti is not an integer. 

The lemma is applicable to the function h in (3-12), extended by 
periodicity. Set fJ = w(Rm/M) = m - (log M flog R) so that 

h(fJ) = g (!m} 
m being the integer in the statement of the theorem. We obtain from 
(3-13) and Lemma 3-2 

N N 

h(fJ) = h (AI - A2 + r ti) ~ A1h'(O) - A 2h'(I) + r h(t;), 
1 1 

and hence by (3-12) 

1 I ( ) I < log M log p (Rm) og I -p _ - g - , 
10gR M 

which is (3-7). 
For equality we must have equality in (3-12) and in the lemma. 

This occurs only if Al = A2 = 0 and I has a single zero al. We then 
have 

log II(z) I = w(z) log M - g(z,aI), 
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and by (3-13) tl = weal) == -log M flog R (mod 1), which is possible 
only for al = R"'/M. We have shown that the function f defined by 
(3-8) is single-valued, and that its maximum modulus M(p) is the largest 
possible for all p. 

PROOF OF LEMMA For the first part of the lemma we may assume 
that 0 < x < 1, 0 < y < 1. If x + y ~ 1, we have h'(t + y) < h'(t) for 
o < t < x, and hence hex + y) - hey) < hex). If x + y > 1, we have 
h'(t + y - 1) > h'(t) for x < t < 1, and hence hey) - hex + y - 1) > 
-hex), so that in both cases hex + y) < hex) + hey). 

Repeated use gives h(t1 + ... + tN) ~ h(tl) + ... + h(tN), and 
in particular h(t + ns) ~ h(t) + nh(s) when n is a positive integer. Take 
s = AI/n and let n ---+ 00. We obtain h(t + AI) .:s; h(t) + A 1h'(O). Simi­
larly, for 8 = -A2/n, h(t - A 2) ~ h(t) - A 2h'(I). A combination of 
these results yields the desired general inequality. The reader will con­
vince himself that it is always strict except in trivial cases. 

NOTES It is difficult to trace the origins of harmonic measure, for 
the method was used much earlier than the name. For instance, the 
Lindelof theorems in Sec. 3-2 were proved by a reasoning that comes 
very close to the two-constant theorem. Carleman [12], Ostrowski [49], 
and F. and R. Nevanlinna [41] used the method independently of 
each other. The name harmonisches Mass was introduced by R. Nevan­
linna in his well-known monograph on analytic functions [45,46]. 

Beurling's proof of Theorem 3-6 is in his thesis [6] which appeared 
in 1933 and opened a whole new era in geometric function theory. The 
methods rather than the specific theorems in the thesis have been ex­
tremely influential. 

The work of Teichmiiller began to appear in the late thirties. :Many 
of his articles were published in Deutsche Mathematik and are now very 
difficult to find. 

EXERCISES 

1 Let a be an arc on the boundary of a convex region. Show that the 
harmonic measure of a at a point z is at most 1/71" times the angle 
subtended by a at z. 

2 Let Zo be a point in a Jordan region {} and suppose (for simplicity) 
that the circle [z - zo[ = R intersects the boundary at a finite num­
ber of points. Let f be analytic in {} with [fez) [ ~ M everywhere and 
If(z) I ~ m on the part of the boundary inside the circle. Show that 
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If(O) I ~ m 8/27f M I-m .. , where 8 is the total angular measure of the arcs 
on !z - zol = R outside of n. 

3 Let hl and h2 be continuous functions in an interval ra,b] such that 
o ~ hl(x) ~ h2(x). Let n be defined explicitly by a < x < b, -h 1(x) < 
y < h2(X). Show that the harmonic measure at a point on the real 
axis of the part of the boundary in the upper half plane is at most i. 

4- In an isosceles triangle let w(z) denote the harmonic measure of the 
base with respect to the triangle. If z moves on a line parallel to the 
base, show that w(z) increases monotonically from a lateral side to 
the line of symmetry. 

5 Let n be a region containing the origin and let a be part of its bound­
ary.1f n is a positive integer and S denotes rotation about the origin by 
the angle 211'1 n, assume that the component of 0 in n n sn n . . . n 
s .. -In has a boundary contained in a U Sa U . . . U Sn-Ia. Show 
that w(O,n,a) ~ lin. 



4 
EXTREMAL LENGTH 

4-1 DEFINITION OF EXTREMAL LENGTH 

In this chapter we discuss a geometric method that has had a profound 
influence on the theory of conformal mapping, as well as on the more 
general theory of quasiconformal mapping. It has its origin in an older 
method, known as the length-area principle, which had been used occa­
sionally by several mathematicians and systematically above all by 
Grotzsch. Briefly, the length-area principle uses euclidean length and 
area, while the method of extremal length derives its higher degree of 
flexibility and usefulness from more general ways of measuring. 

Let D be a region in the plane, and r a set whose elements 'Yare 
rectifiable arcs in D or, more generally, finite unions of such arcs (tech­
nically, each 'Y is a rectifiable one-chain). If n is mapped conform ally on 
n', the set r is transformed into a set r'o Our objective is to define a 
number An(r) with the invariance property An(r) = An' (r/). 

It is natural to focus the attention on the lengths of the arcs 'Y. 
However, length is not conform ally invariant. For this reason we con­
sider the whole family of Riemannian metrics ds = pldzl which are con-
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formal to the euclidean metric. This family is attached to the region n 
in a conformally invariant way. Indeed, under a conformal mapping 
z -. z' the metric pldzl in n is transformed into a metric p'ldz'l in n' with 
p' = pldz/dz'l· 

For technical reasons it is necessary to introduce some regularity 
requirements. This can be done in many ways, but we choose to require 
that the functions p be Borel measurable. In these circumstances every 
rectifiable arc 'Y has a well-defined p length 

L( 'Y,p) = ~ pldzl, 

which may be infinite, and the open set n has a p area 

A(n,p) = J J p2 dx dy. 
(J 

If we perform a conformal mapping and replace p by p', as explained 
above, it is clear that L(r,p) = L(r',p') and A(n,p) = A(n',p'). In order 
to define an invariant which depends on the whole set r, we introduce the 
minimum length 

L(r,p) = inf L('Y,p). 
'l'Er 

To obtain a quantity that does not change when p is multiplied by a 
constant we form the homogeneous expression L(r,p)2/A(n,p). The set 
of all these ratios is conformally invariant, and so is their least upper 
bound. We are led to adopt the following definition. 

Definition 4-1 The extremal length of r in n is defined as 

sup L(r,p)2 
p 

A (n,p) 

where p is subject to the condition 0 < A(n,p) < 00. 

There are several alternative statements of the definition obtained by 
use of different normalizations. For instance, Xn(r) is equal to sup L(r,p)2 
when p is subject to the condition 0 < A(n,p) S 1. Similarly, let us say 
that p is admissible if L(r,p) ~ 1 and define the modulus of r with respect 
to n as inf A (n,p) for admissible p. Then Xn(r) is the reciprocal of the 
modulus, and it is a matter of taste whether one prefers to use the modulus 
or the extremal length. The modulus is denoted by M ner)o 

Another convenient normalization is expressed by the condition 
L(r,p) = A(n,p). Because of the different degrees of homogeneity it is 
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always fulfilled for a suitable constant multiple of a given p, except when 
L(r,p) = 0 or 00. With this normalization we have 

AO(r) = sup L(r,p) = sup A (n,p). (4-1) 

Observe that AO(r) = Oifandonlyif A (n,p) < 00 impliesL(r,p) = O. 
In this case the normalization L(r,p) = A (r,p) is possible only when 
both are zero. 

The conformal invariance is an immediate consequence of the defini­
tion. We wish to point out, in addition, that in a sense AO(r) depends only 
on r and not on n. To see this, suppose that n en'. Given p on n we 
choose p' = p on nand p' = 0 on n - n'. Then p' is Borel measurablp 
and L(r,p) = L(r,p'), A (O,p) = Acn',p'). This proves that AO/(r) ~ An(r). 
For the opposite inequality we need only start from a p' on n' and let p 

be its restriction to O. We see that An(r) is the same for all open sets 0 
that contain the arcs 'Y E r. Accordingly, we shall henceforth simplify 
the notation to A(r). 

4-2 EXAMPLES 

To illustrate we consider the more special notion of extremal distance. Let 
o be an open set and let E I,E 2 be two sets in the closure of O. Take r to be 
the set of connected arcs in n which join Eland E 2; in other words, each 
'Y E r shall have one end point in EI and one in E 2, and all other points 
shall be in O. The extremal length A(r) is called the extremal distance of 
EI and E2 in 0, and we denote it by dn(EI,E2). It depends essentially on n 
because the set r depends on O. 

A typical example is the quadrilateral. A quadrilateral is a Jordan 
region Q together with four points on its boundary. These points divide 
the boundary into two pairs of opposite sides a, a' and #, #'. The quadri­
lateral is oriented by choosing one of these pairs, for instance a,a', as the 
base pair; the choice can be indicated by the notation Q(a,a'). We are 
interested in determining the extremal distance dQ(a,a'). 

Since the extremal distance is invariant under conformal mappings, 
we can replace Q by a conformally equivalent rectangle R. We choose 
the mapping so that the a sides of R lie on x = 0, x = a and the # sides on 
y = 0, y = b. The first observation is that p = 1 gives L(r,l) = a, 
A(R,l) = abo Hence dQ(a,a') ? a2/ab = a/b. Conversely, let p be arbi­
trary but normalized by L(r,p) = a, for example. Then 

loa [p(z) - 1] dx ? 0, 

and hence II (p - 1) dx dy ? O. 
R 
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Together with 

II (p - 1)2dxdy 2 0 
R 

this leads to 

A (R,p) = II p2 dx dy 2 If dx dy = ab, 
R R 

so that L(r ,p) 21 A (R,p) ::;; alb for all p. Hence dQ(a,ex') ::;; alb, and we 
have shown that the extremal distanc; between ex and ex' is equal to the 
ratio of the sides in a rectangle conformally equivalent to Q. If we inter­
change a and (3, we obtain dQ«(3,(3') = bla. Observe that the product of 
the two extremal distances is 1. 

There are other extremal lengths that can be associated with the 
configuration formed by fl, E I , and E 2• For instance, we could let r* 
consist of all l' * in fl which separate Eland E 2; in this case we do not 
require each 1'* to be connected but allow it to be made up of several arcs 
or closed curves. The corresponding conformal invariant A(r*) is called 
the conjugate extremal distance of E I , E2 with respect to fl, and we denote 
it by d~(EI,E2). 

For instance, in the case of the quadrilateral it is quite evident that 
d~(exl,ex2) = d Q«(3I,(32). Thus the conjugate extremal distance is the recipro­
cal of the extremal distance. We shall find that this is the case in all 
sufficiently regular cases. 

I t is well known that every doubly connected region is conformally 
equivalent to an annulus RI < Izl < R2• Therefore, if CI and C2 denote 
the two components of the boundary of an annulus fl, the extremal dis­
tance dg(C I ,C2) is the same as for an annulus. The reader will have no 
difficulty proving that d g (C I ,C2) = (1/211") log (R 2IR I ). The conjugate 
extremal distance dri(C I ,C2) is the extremal length of the family of closed 
curves that separate the contours, and its value is 211": log (RdRI). 

4-3 THE COMPARISON PRINCIPLE 

The importance of extremal length derives not only from conformal in­
variance, but also from the fact that it is comparatively easy to find upper 
and lower bounds. First, any specific choice of p gives a lower bound for 
An(r), namely, An(r) 2 L(r,p)21 A (fl,p). This may seem trivial, but it is 
nevertheless very useful. 

To illustrate the point, let us apply this remark to a quadrilateral Q 
without first mapping on a rectangle. Let 0 denote the shortest distance 
between a and ex' inside Q, that is to say, the minimum euclidean length 
of an arc in Q which joins ex and ex'. If A denotes the area of Q, we obtain 
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at once dQ(Ol,Ol') ~ 02/A. Similarly, dZ(Ol,Ol') ~ 0*2/A, where 0* is the 
shortest distance between ~ and ~'. Since dQ and dZ are reciprocals, we 
even have a double inequality 

02 A - < dQ(a a') <_. A - , - 0*2 

From this we can derive the geometric inequality /)0* :$ A, which has no 
explicit connection with either extremal length or conformal mapping. 

Besides these immediate estimates there is also a simple comparison 
principle which we shall formulate as a theorem. 

Theorem 4-1 If every 'Y E r contains a 'Y' E r', then X(r) ~ X(r'). 

Briefly, the set of fewer and longer arcs has the larger extremal 
length. The proof is a triviality. Indeed, both extremal lengths can be 
evaluated with respect to the same !2. For any p in n it is clear that 
L(r,p) ~ L(r',p). These minimum lengths are compared with the same 
A(!2,p), and the assertion follows. 

Corollary The extremal distance d o(E 1,E2) decreases when!2, Ell 
and E 2 increase. 

However, the comparison principle is more genera], even when ap· 
plied only to extremal distances. Figure 4-1 shows the typical application 
to quadrilaterals: do,(al,al') ~ do,(0l2,a2'). 

4-4 THE COMPOSITION LAWS 

In addition to the comparison principle there are two composition laws 
which express a relationship between three extremal lengths. 

FIGURE 4-1 
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Theorem 4-2 Let 0 1 and ~h be disjoint open sets. Let r l , r 2 consist 
of arcs in 0 1, O2, respectively, and let r be a third set of arcs. 

(A) If every l' E r contains a 1'1 E r 1 and a 1'2 E r 2, then 

(4-2) 

(B) If every 1'1 E r 1 and every 'Yz E rz contains a l' E r, then 

(4-3) 

PROOF If ~(rl) or ~(rz) degenerates, being either 0 or 00, the state­
ments are trivial consequences of the comparison principle. To prove (A) 
in the nondegenerate case we choose PI in 0 1 and pz in O2, with the normali­
zation L(ri,Pi) = A(Oi,Pi), i = 1, 2. Consider an 0 => ~h U O2 and take 
P = PI in 0 1, P = P2 in O2, and P = 0 in 0 - 0 1 - O2; this P is Borel 
measurable. We have trivially L(r,p) ~ L(r1,PI) + L(r 2,pz) and 

A(O,p) = A(OI,PI) + A(02,P2) = L(r1,PI) + L(r2,pz). 

Hence her) ~ L(I\,Pl) + L(r2,P2), and (4-2) follows. 
As for (B), let p be given in 0 and normalized by L(r,p) = 1. Then 

L(r1,p) ~ 1, L(r2,p) ~ 1, and this implies 

On the other hand, the greatest lower bound of A(n,p) is l/h(r), and (4-3) 
is proved. 

The composition laws are best illustrated by the following simple 
examples: 

In Fig. 4-2a, 0 is the interior of Of U 0" U E. Clearly, every arc in 

(0) (b) 

FIGURE 4-2 
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n from E' to E" contains an arc in n' from E' to E, and one in nil from E 
to E". Therefore, the first composition law implies 

do(E',E") ~ dO'(E',E) + do,,(E,E"). (4-4) 

In Fig. 4-2b, n is the interior of fil V fi2. Every arc in nl from E~ to 
E~' and every arc in n2 from E; to E~' not only contains but actually is an 
arc in n from E' = E~ V E; to E" = E~' V E~'. The second composition 
law yields 

do(E',E")-l ~ dOl(E~,E~')-l + do,(E~,E~')-l. (4-5) 

In this case, because extremal distance and conjugate extremal dis­
tance are reciprocals, (4-3) and (4-4) happen to express the same fact, 
but this would not be so in more general circumstances. 

4-5 AN INTEGRAL INEQUALITY 

The composition laws can of course be applied to any finite number of 
regions. It is of interest to note that there is also an integrated counterpart 
of (4-4). 

In Fig. 4-3, n represents a region between x = a and x = b. We have 
denoted by OCt) the length of the intercept with x = t. For small I1t it 
is evident that the extremal distance between the intercepts corresponding 
to t and t + !1t is approximately I1t/O(t). Therefore, the integrated version 
of (4-4) is 

(b dx 
d{l(E 1,E2) ~}a 8(x)· (4-6) 

To prove this inequality we need only choose p(x,y) = 1/0(x). In 
this metric the length of any arc joining the vertical sides is at least equal 

FIGURE 4-3 a b 
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to Jab dx/O(x). But this integral is also the p area of n. Hence (4-6) is a 

direct consequence of the definition of extremal length. We have assumed 
for simplicity that each intercept consists of a single segment, and in that 
case O(x) is lower semicontinuous so that p is certainly Borel measurable. 
If there are several segments, it is possible to choose O(x) as the minimum 
length of the segments that join the lower and upper boundary curves. 

The integral in (4-6) was first introduced by Ahlfors in a slightly 
different context. We shall return to this topic in Sec. 4-13. 

4-6 PRIME ENDS 

An important application of extremal length is to the boundary corre­
spondence between two simply connected regions which are mapped con­
formally on each other. The classic theory, due to Caratheodory, is based 
on the concept of prime ends. We shall show in this section that the use of 
extremal length makes it possible to define prime ends in a conformally 
invariant manner. In terms of this definition the main theorem of Cara­
theodory will be a triviality. Naturally, it will be necessary to prove that 
the invariant definition is equivalent to the original one. This fact will 
emerge as a simple consequence of the comparison principle. 

Let n be a simply connected region in the plane. A crosscut of n is 
a Jordan arc 'Y in n which in both directions tends to a boundary point. 
It is well known that n - 'Y consists of two simply connected components, 
and that 'Y constitutes the relative boundary of each component. We shall 
need the slightly more general notion of a cluster of crosscuts. Such a cluster 
is a finite union of crosscuts that form a connected point set. A cluster 'Y 

is said to separate two points in n if they are in different components of 
n - 'Y. 

Choose a fixed Zo E n and consider sequences a = {an I of points 
in n. With the sequence a we associate the family ra of all clusters of 
crosscuts of n which separate Zo from almost all an, i.e., from all but a 
finite number of the an. 

Definition 4-2 The sequence a IS said to be fundamental if 
X(ra ) = o. 

Recall that X(ra ) = 0 if and only if inf-YEra L('Y,p) = 0 for all p with 
A (n,p) < 00. In particular this condition is fulfilled for the spherical 
metric which we denote by Po. We show at once that the definition is 
independent of the choice of zoo Let z~ be another choice and denote the 
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corresponding family of clusters by r~. We connect Zo to z~ by an arc c in 
n and let d be the shortest spherical distance from c to the boundary of n. 
Assume that A(r a) = O. If A (n,p) < 00, it is also true that A (fl,p + po) < 00. 

Therefore there exists a l' E ra with arbitrarily small L(1',p + po). 
But then L(1',p) and L(1',Po) are also arbitrarily small, and as soon as 
L(1',po) < d, it is clear that l' E r~. We have shown that L(r~,p) = 0, 
and hence that A(r~) = O. 

We shall need an equivalence relation between fundamental se­
quences. For this purpose we consider the union a V b of two sequences 
and show that the relation defined by X(raUb) = 0 is transitive. In other 
words, if a U band b V c are fundamental, we have to prove that a V c 
is fundamental. 

Suppose that l' E raUb and 1" E r bUe• If l' and 1" intersect, it is 
clear that the union l' V 1" is again a cluster of crosscuts, and that it 
belongs to raUe. It is for the validity of this conclusion that we are forced 
to use clusters rather than individual crosscuts. 

We assume now that l' and 1" do not intersect. In this situation l' 
lies in a component of n - 1", and 1" lies in a component of n - 1'. We 
denote by no and n~ the components of n - l' and n - 1" which contain 
ZOo The following alternatives need to be considered. 

1) 1" is not in no. With a finite number of exceptions an and en are 
not in no. Hence l' E r aUe. 
2) 1" is in no. Choose bn so that it is separated from Zo by l' and 1". 

Let n 1 and n~ be the components of n - l' and n - 1" which contain 
bn. n 1 C n~, for otherwise fll would contain a relative boundary point 
of n~, hence a point on 1" C no, contrary to the fact that no and n 1 

are disjoint. The situation is reduced to the previous case with the 
roles of l' and 1" reversed. Hence 1" E raue. 

We have seen that in all circumstances l' V 1", 1', or 1" belongs to 
raUe. It follows that X(raUe) = 0, and the transitivity is established. The 
following definition is now meaningful. 

Definition 4-3 The equivalence classes with respect to the relation 
X(raUb) = 0 are called prime ends of n. 

Let f be a conformal mapping from n to another region n'. Because 
of the conformal invariance of extremal length, it is immediately clear 
that the sequences lanl and If(an ) I are simultaneously fundamental. In 
other words, f determines a one-to-one correspondence between the prime 
ends of nand n'. This fact becomes highly significant as soon as we have 
a more direct way of recognizing fundamental sequences. Such a way is 
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presented in the next theorem which states, in effect, that our definition 
coincides with Caratheodory's original definition. 

Theorem 4-3 The sequence {an I is fundamental if and only if a 
point Zo E n can be separated from almost all an by crosscuts of 
arbitrarily small spherical diameter. 

As far as the necessity is concerned we have already remarked that 
Zo is separated from almost all an by a cluster of crosscuts with arbitrarily 
small length, hence small diameter (all lengths and distances are with 
respect to the spherical metric). We wish to show that the separation can 
be accomplished by a single short crosscut. We need a lemma. 

Lemma 4-1 Let n be a simply connected region and (1 the union of 
a discrete set of mutually disjoint crosscuts 'Y. If two points p,q E n 
are separated by (1, then they are also separated by one of the 
crosscu ts 'Y. 

PROOF Let no be the component of n - (1 that contains p. We join 
p to q by an arc c in n. Let po be the last point of c on the boundary of no. 
It lies on one of the crosscuts, say 'Yo. We claim that 'Yo separates P and q. 

The discreteness means that every point on one of the crosscuts has 
a neighborhood which does not meet the others. Let n' be the component 
of n - 'Yo that contains no. Because of the discreteness 'Yo is not in the 
relative boundary of no U 'Yo with respect to n' U 'Yo. Suppose that q were 
in n'. The set no U 'Yo is connected, p' lies in this set, and the subarc p' q 
of c belongs to n' U 'Yo without meeting the relative boundary of no U 'Yo· 

It would follow that q E no U 'Yo, which is contrary to the assumption 
that (1 separates p and q. We have shown that 'Yo is a separating crosscut. 

PROOF OF THE THEOREM Let d be the distance from Zo to the bound­
ary of n and choose 6 < d. If {an) is fundamental, there exists a cluster 'Y 

with diameter less than 6 which separates Zo from almost all an. Let C be a 
circle with radius 6 whose center is an end point of 'Y. Then (1 = n n C is a 
discrete set of disjoint crosscuts. According to the lemma one of these 
crosscuts separates Zo from 'Y, hence from almost all an. Its diameter is at 
most 26 and thus arbitrarily small. 

For the converse, suppose that 'Yo E ra is a crosscut of diameter 
6 < d. With one end point as center we draw two circles C1 and C2 with 
radii 6 and d. A simple closed curve which separates C1 and C2 will also 
separate Zo from 'Yo in n. By the lemma it contains a crosscut which 
separates Zo from 'Yo and thus from almost all an. This crosscut belongs to 
ra, and the comparison principle permits us to conclude that A(ra) ~ 
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d*(C 1,C2), the conjugate extremal distance between C1 and C2• If d and 0 
were euclidean radii, d*(C 1,C2) would be equal to 271": log (d/a). The precise 
expression in terms of spherical radii hardly matters as long as it is clear 
that d*(C1,C2) tends to zero with o. We conclude that X(ra) = 0 if ;; can 
be chosen arbitrarily small. 

If 11 is the unit disk, it follows at once from the theorem that a 
sequence is fundamental if and only if it converges to a point on the unit 
circle. In other words, the prime ends can be identified with the boundary 
points. It is not much harder to show, by very elementary topology, that 
the same is true for any Jordan region. Therefore, a conformal mapping 
of one Jordan region onto another can be extended to a homeomorphism 
between the closed regions. This is a basic theorem in conformal mapping. 

For an arbitrary simply connected region 11, other than the whole 
plane, a conformal mapping on the unit disk will define a one-to-one 
correspondence between the prime ends and the points on the unit circle. 
In particular, the prime ends have a natural cyclic order, and it is possible 
to speak of the cross ratio of four prime ends. 

In order to further illustrate the use of prime ends, we consider the 
case of a Jordan region 11 with an incision c in the form of a Jordan arc 
from an interior point to a boundary point. The points of c are on the 
boundary of 11 - c, and it is clear that in all reasonable applications the 
interior points of c should be counted twice. This becomes quite rigorous 
when we observe that there are indeed two distinct prime ends associated 
with each interior point of c. Boundary points with higher multiplicity 
have a similar interpretation. 

In the general case the cluster set of a prime end consists of all the 
limits of convergent fundamental sequences in the equivalence class de­
fined by the prime ends. It is easy to show that a cluster set is closed and 

FIGURE 4-4 
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connected. Distinct prime ends may have the same cluster sets. Figure 4-4 
shows examples of cluster sets that are not points; in the second example 
the cluster set belongs to two distinct prime ends. 

4-7 EXTREMAL METRICS 

We shall say that the metric Po is extremal for the family r in n if 
L(r,po)2/A(n,po) is equal to its maximum AIl(r). To compute an extremal 
length involves making a good guess what the extremal metric should be 
and then proving that the metric is in fact extremal. 

The problem can be reversed: If Po is given, for what families of 
curves is it extremal? In unpublished work Beurling has given the following 
elegant and useful criterion. 

Theorem 4-4 The metric Po is extremal for r if r contains a sub­
family ro with the following properties: 

i) II' poldzl = L(r,po) for all 

ii) for real-valued h in n the conditions 

for all 'Y E ro imply 
~ hldzl ~ 0 

I I hpo dx dy ~ O. 
{l 

PROOF The proof is almost trivial. Let p be normalized by 

L(r,p) = L(r,po). 

Then II' pldzl ~ II' poldzl 

(4-7) 

(4-8) 

(4-9) 

for all 'Y E r o, so that (4-8) is fulfilled with h = p - Po. It follows by (4-9) 
that 

II (ppo - P02) dx dy ~ 0, 
fl 

and an obvious application of the Schwarz inequality gives 

II P02 dx dy ~ II p2 dx dy, 
fl fl 

proving that Po is extremal. [The proof indicates what regularity to impose 
on h and how to interpret (4-8) and (4-9).1 
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EXAMPLE 4-1 For the extremal distance between the vertical sides of 
a rectangle R = {a < x < b, c < y < d} we take Po = 1 and let 1"0 be 
formed by the lines y = constant. It is evident by integration that 

lab h(x,y) dx ~ 0 

implies J J h(x,y) dx dy ~ o. 
R 

Beurling's criterion is satisfied, and Po = 1 is extremal. 

EXAMPLE 4-2 As a less obvious example we consider a triangle or, 
conformally speaking, a Jordan region with three distinguished boundary 
points. Since all such configurations are conform ally equivalent, all extre­
mal length problems associated with this situation will lead to specific 
numbers rather than conformal invariants. As a particular instance we 
shall determine }"(I"), where I" consists of all arcs in the triangle that touch 
all three sides. 

We begin by mapping conformally on an equilateral triangle with 
side 1, and we shall show that Po = 1, the euclidean metric, is extremal. 
Reflection in a side (Fig.4-5a) shows that the minimum length of l' E I" 
is that of the altitude. The shortest arcs are broken lines which make up 
three subfamilies, one of which is shown in Fig. 4-5b. We take 1"0 to be the 
family of all these broken lines. Let 1':e denote the arc in 1"0 which begins 
at (x,O), 0 ~ x ~ j. If h satisfies condition (4-8), integration gives 

lot dx J-r. h Idzl = J J h dx dy ~ 0, 

where the double integral is taken once over the shaded area and twice 
over the doubly shaded area. There are three such integrals, and when the 
results are added up we obtain 

3 f f h dx dy ~ 0, 

(0) (b) 

FIGURE 4-5 
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where the integral is now over the whole triangle. We conclude by the 
theorem that Po is extremal, and computation yields X(r) = V3. 

4-8 A CASE OF SPHERICAL EXTREMAL METRIC 

In the examples above the extremal metric was euclidean, so that po = 1 
after a preliminary conformal mapping. We shall now discuss an example 
in which this is not the case. 

In a Jordan region n let Zo be an interior point and let r be the family 
of Jordan curves in n that touch the boundary and enclose Zo (more 
accurately, l' E r becomes a Jordan curve when one boundary point is 
added). By conformal invariance we can take n to be the unit disk d, with 
Zo = o. 

We shall first compare X(r) with x(r 1), where r 1 consists of the arcs 
in d which join diametrically opposite boundary points. The comparison 
is by means of the mapping z = Z12. Clearly, every 1'1 E r 1 is mapped on 
a l' E r, and every l' is the image of two 1'1. Given P we determine PI so 
that Plidzil = pldzl; this means setting Pl(ZI) = 2Izllp(ZI2). With this choice 
it is immediate that L(r,p) = L(r1,PI) and 2A(d,p) = A(d,Pl). It follows 
that X(r) :::; 2X(r 1). 

In the opposite direction, if PI is given, a single-valued P can be defined 
by p(z) = ilzl-l[Pl(Z') + PI( -zt)J. It is readily seen that L(r,p) ;::: L(r1,Pl) 
and 2A(d,p) ::; A(d,Pl). This proves X(r) ;::: 2X(r l ), so that in fact 
X(r) = 2X(r l ). 

In order to determine the extremal metric for r 1 we map d by 
stereographic projection on the upper half of the Riemann sphere with 
radius 1 and center at the origin. The points on the unit circle are their 
own images, and the mapping is conformal. Although the hemisphere is 
not a plane region, it is clear that the method of extremal length is ap­
plicable ,vith insignificant changes, and that Theorem 4-4 remains valid 
if the integrals are taken with respect to the spherical metric. We shall 
show that the spherical metric is extremal. This is the same as saying that 
Po = 2(1 + IzI2)-1 is extremal for the original problem. 

The shortest curves in the spherical metric are the great circles; we 
must show that they satisfy condition (ii) in Theorem 4-4. We shall use 
geographic coordinates e for longitude and <P for latitude. Consider a great 
circle whose inclination is determined by the maximal value <Po of the 
latitude. We keep <Po fixed and rotate about the vertical axis; the semi­
circles sweep out the zone 0 :::; <p ::; <Po. We leave it to the reader to verify 
that 

ds de = (cos2 <p - cos2 <po)-t dw, 



64 CONFORMAL INVARIANTS: TOPICS IN GEOMETRIC FUNCTION THEORY 

where s denotes arc length along the great circle and dw is the spherical 
area element. If h satisfies 

r h ds ~ 0 J-r. 

for all great circles 'Yo, it follows that 

f f (cos2 cP - cos2 cpo)-lh dw ~ O. 
... < .... 

(4-10) 

(4-11) 

N ow multiply with sin CPo and integrate from CPo = 0 to cpo = 11'/2. Because 

it follows that 
If hdw ~ 0 

over the hemisphere. This proves our contention, and we find ~(rl) = 11'/2, 
~(r) = 11'. 

It is of some interest that the same method solves a more general 
problem. Suppose that we know (4-10) only for those great circles whose 
maximal latitude CPo belong to an interval [O,CPl] with CPl < 11'/2. Then (4-11) 
is valid for these values of CPo. This time we multiply by the factor 
cos CPo sin CPo (cos2 CPo - cos2 CPI)-j and integrate with respect to CPo from 
o to CPl. The substitution to = cos CPo yields 

independently of cP and CPl. We conclude that 

and hence that the spherical metric is extremal in any zone 0 ::; cP ::; CPl. 

It is thereby clear that we have determined the extremal length of 
the family of arcs that join opposite points on the outer boundary of an 
annulus. More important, by the same comparison as in the case of the 
punctured disk we can find the extremal length of the closed curves that 
touch the outer boundary and enclose the inner boundary of a doubly 
connected region. We leave it to the reader to compute the numerical 
value. 
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4-9 THE EXPLICIT FORMULA FOR 
EXTREMAL DISTANCE 

We return to the extremal distance d n(E 1,E2) introduced in Sec. 4-2. Our 
aim is to find an explicit expression for this conformal invariant, at least 
when the configuration formed by OJ E I , and E2 is fairly simple. There 
is no generality lost in assuming that EI and E2 are contained in the 
boundary of 0, for this will be the case if we replace 0 by a component of 
o - (E I U E2). To avoid delicate discussions of the boundary behavior, 
we shall make the following assumptions: (1) 0 is a bounded region whose 
boundary consists of a finite number of Jordan curves; (2) EI and E2 are 
disjoint, and each is a finite union of closed arcs or closed curves contained 
in the boundary of o. Under these conditions there exists a conformal 
mapping of 0 on a region with analytic boundary curves, and the mapping 
extends to a homeomorphism of the closed regions. Since our problem is 
invariant under conformal mapping, we may as well assume from the 
start that 0 has an analytic boundary. 

We denote the full boundary of 0 by C, and we set Co = C -
(E I U E2). Also, Elo and E 2° will denote the relative interiors of EI and 
E2 as subsets of C; they are obtained by removing the end points. There 
exists a unique function u(z) in 0 with the following properties: 

i) u is bounded and harmonic in 0, 
ii) u has a continuous extension to 0 U E10 U E 2°, which is equal 

to 0 on E10 and 1 on E 2°, 
iii) the normal derivative au/an exists and vanishes on Co. 

This function is the solution of a mixed Dirichlet-Neumann problem. 
The uniqueness follows from the maximum principle which also guarantees 
that 0 < u < 1 in o. The existence will be taken for granted. The reflection 
principle implies that u has a harmonic extension across Co U E10 U E 2°. 

Theorem 4-5 The extremal distance d n(E 1,E2) is the reciprocal of 
the Dirichlet integral 

D(u) = II (ux 2 + uy 2) dx dy. 
o 

PROOF If we rely on geometric intuition, the proof is almost trivial. 
Choose Po = Igrad ul = (u z 2 + U Il 2)!, and let 'Y be an arc from El to E 2• 

Since Igrad ul is the maximum of the directional derivative, we have at 
once 

fr Poldzl ~ fr Idul ~ lor du = 1, 
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and hence L(r,po) ~ 1 for the family r of joining arcs. On the other hand 
A({},po) = D(u), and we conclude that do(E 1,E2) ~ L(r,po)2/A({},po) ~ 
I/D(u). 

It is the rigorous proof of the opposite inequality that causes some 
difficulty. If v denotes the conjugate harmonic function of u, it is fairly 
evident that the lines on which v is constant are the shortest arcs in the 
metric Po. The trouble is that v need Dot be single-valued, and for this 
reason the level lines are defined only locally. There is one such line passing 
through each point z with grad u(z) ¢ 0, but the level lines branch at the 
critical points, namely, the points where grad u = O. We shall see that 
there are only a finite number of critical points, but even with this in­
formation it is not at all obvious what the global behavior of the level 
lines will be. 

Postponing these difficulties, let us assume that {} can be swept out 
by level lines v = t which pass from El to E 2• We must allow for a finite 
number of sudden changes of t, but apart from these jumps the total 
increase in t will be 

r dl.' = _ r au Idzl 
lEI lEI an ' 

where n is the outer normal. By Green's theorem the integral of au/an 
over the whole boundary is zero. Hence we obtain 

J: au J: dU f au 
- E -Idzl = E -Idzl = cu-1dz/ =D(u), 

1 an • an dn 

so that the increase in t is D(u). 
Along a level line Po = dU/ds, and the p length of the level line can 

be expressed as 

( t p/dzl = ( t'!!'" duo lv- lv- Po 

If p is normalized by L(r,p) = 1 we thus have 

( .!!...du> I, 
lv-t Po -

and integration with respect to t yields 

II .!!...dudv ~ D(u), 
Po 

where the integral is over a union of rectangles. But du dv = P02 dx dy, 
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and we thus have 

f f PPo dx dy ~ D(u). 
{} 

The Schwarz inequality gives 

D(u) ~ f J p2 dx dy = A (n,p), 
!l 

and if the reasoning can be trusted we have shown that dr.(E 1,E2) ~ 

l/D(u). 

Before proceeding to a more rigorous proof we illustrate the method 
by some examples. Consider first a triply connected region n and let E2 
consist of the outer contour while El is composed of the two inner con­
tours (Fig. 4-6). 

In this case u is the ordinary harmonic measure, u = 0 on E hand 
u = 1 on E 2• For small positive E the level curve u = E will be a pair of 
simple closed curves near E 1, while u = 1 - E will be a single closed curve 
near E2. There is obviously a critical value Uo such that the level curve 
u = Uo is a figure-eight-shaped curve with a point of self-intersection. 
This point is a critical point of u in the sense that u., = UII = O. 

The figure-eight-shaped curve divides the region into three parts, 
each doubly connected, with u < Uo in two of the regions and u > Uo in 
the third. As indicated in Fig. 4-6 we obtain a model of the triply con­
nected region in the form of a rectangle cut up into three subrectangles 
and with identificaiions which make it resemble a pair of trousers. The 
total area is D(u). 

We now consider a slightly more complicated case. The region will 
again be triply connected and E 1 will consist of the inner contours, but 

[G 
III 

III IT] 
1::2 

FIGURE 4-6 
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FIGURE 4-7 

this time E2 will be only a subarc of the outer contour (Fig. 4-7). The 
family of level curves is similar to the one in the preceding example, but 
there will be an additional critical point on the boundary. As before we 
draw the level curves through the critical points and observe how they 
divide the region. There are three annular and one simply connected sub­
region. The latter is mapped on a rectangle whose horizontal sides are not 
identified. The model resembles an unbuttoned pair of trousers. 

We are now ready for a valid proof in the general case. First, the 
critical points are zeros of the analytic function u" - iu1l • We have already 
remarked that u has a harmonic extension across Co U El U E 2• Therefore 
U x - iU1l has an analytic extension from which it follows that its zeros, 
the critical points, have no accumulation points except possibly the end 
points of El and E 2. Let Zo be such an end point, for instance, of E 1. We 
can choose a local conjugate v in n near Zo such that, on the boundary, 
u = 0 on one side of Zo and v = 0 on the other side of zoo Then (u + iV)2 is 
real on both sides of Zo, and by the reflection principle there exists a 
neighborhood V of Zo and an analytic function cp in V - {zol such that 
cp = (u + iV)2 in n (\ V. Moreover, the real part of cp is symmetric across 
the boundary. Since Re cp = u 2 - v2 < 1 in n n V, the same is true 
throughout V - {zo}. This proves that Zo is neither a pole nor an essential 
singularity of 11'. Consequently, cp(zo) exists as a limit, and from the fact 
that u does not change its sign in n we are able to conclude that cp has a 
simple zero at zoo Therefore tp'(zo) = 2(u + iv) (u" - iuy) ~ 0, and u'" - iuy 
must tend to co as z ~ zoo Hence there are no critical points near Zo, and 
the number of critical points is finite. 

This having been established, let Ui be the values of u at the critical 
points in increasing order. We examine the subregions of n characterized 

IV 



EXTREMAL LENGTH 69 

by Ui < u(z) < Ui+l, where, for example, Uo = 0, Un = 1. Actually, thesl' 
subregions may not be connected, in which case we consider the com­
ponents separately. We are going to show that each component is of the 
type considered in our examples. 

For this purpose we need to compute the number of critical points. 
Let us assume that fl has m contours, and that El and E2 consist of arcs 
with a total of h end points. The critical points are the zeros of ux - iu," 
each zero having a certain multiplicity. Let there be 711 critical points in 
the interior and n2 on the boundary whm counted with these multiplicities. 

We use the generalized form of the argument principle in which 
zeros and poles on the boundary are counted with half multiplicity. This 
means that 

fe d arg (u x - iulI ) = (711 + ~ n2 - ~) 211", 

where the term -h/4 is due to the fact that ux - iUII must be regarded as 
having half a pole at each end point of the Eland E 2• Indeed, if Zo is an 
end point, u + iv '" (z - zo)! and u., - iuy ,-...; -Hz - zo)-i. 

We allow ourselves to write w = U + iv and ux - iuy = dw/dz even 
though w is not single-valued. It becomes clear that 

fe d arg (u x - iuy) = fe d arg dw - fe d arg dz 

in obvious notation. The first integral on the right is zero because arg dw 
is constant on each subarc of C. The second integral measures the turning 
of the tangent and is therefore equal to (2 - m)271". When the results are 
combined, we obtain 

h 
2nl + n2 = 2m - 4 + _. 

2 

In particular, if there are no critical points, we must have 2m, + 
h/2 = 4. This allows for only two possibilities: (1) m = 1, h = 4; (2) m = 
2, h = 0. The region is either a quadrilateral or an annulus, and these are 
precisely the cases that were considered above. 

We apply the result to a component of Ui < u < Ui+1. There are no 
critical points inside, nor on the part of the boundary of the component 
that lies on El U E 2• There may be, and usually are, critical points on the 
boundary, but at t.hese points the boundary forms an angle, and the pre­
liminary transformation needed to straighten this angle \yill cancel out 
the multiplicity of the critical point. The net effect is that our formula is 
still valid with n1 = 712 = 0, and we conclude that all subregions are 
quadrilaterals or annuli. The components of Ui < U < Ui+1 can therefore 
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be mapped conformally on rectangles of width Ui+l - Ui and combined 
height D(u). Together they fill out a rectangle with sides 1 and D(u). 
After appropriate identifications we obtain a model of n with El and E2 
as vertical sides. From this model it is immediately clear that the euclidean 
metric is extremal, and we conclude that dfl (E 1,E2) = I/D(u). 

4-10 CONFIGURATIONS WITH A SINGLE MODULUS 

The term configuration will be used to designate a region bounded by a 
finite number of smooth curves together with a finite set of interior and 
boundary points taken in a certain order. Two configurations are con­
formally equivalent if there exists a conformal mapping of one region on 
the other which maps the specified interior and boundary points on the 
corresponding points of the other region. The equivalence of configura­
tions can be expressed through the equality of certain conformal invariants 
called moduli. These invariants can be chosen in various way, but their 
number is always the same. 

The number of moduli can be determined by mapping on a canonical 
region, for instance, on a parallel slit region. If the configuration has m 
contours, nl interior points, and n2 boundary points, it turns out that the 
number of moduli is 

N = 3m - 6 + 2nl + n2 + 8, (4-12) 

where 8 = 0 except in five cases. Actually, 8 is the number of parameters 
in the family of conformal self-mappings. It is 3 for a disk, 2 for a disk 
with one boundary point, and 1 for an annulus and for a disk with one 
interior or two boundary points. 

We shall not be concerned with the proof or interpretation of formula 
(4-12). Our aim is rather to undertake a somewhat deeper study of the 
configurations with a single modulus. With 8 = 0 this will happen when 
3m + 2nl + n2 = 7. The possible cases are 

(1) m = 1 nl = 2 n2 = 0 
(2) m = 1 nl = 1 n2 = 2 
(3) m = 1 nl = 0 n2 = 4 
(4) m = 2 nl = 0 n2 = 1. 

In addition there is the case ofthe annulus with 8 = 1, m = 2, nl = n2 = O. 

Case 1 Simply connected region with two interior points We already 
have a conformal invariant, namely, the Green's function g(Zl,Z2). Every 
other invariant must be a function of this one. It is nevertheless instruc-
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tive to form other invariants and to compare them with the Green's 
function. 

Case 2 Simply connected region with one interior and two boundary 
points A conformal invariant is the harmonic measure at the interior 
point of the arc between the boundary points. The same remark applies 
as above. 

Case 3 The quadrilateral We have already considered its modulus, 
which is the extremal distance between a pair of opposite sides. Another 
invariant can be obtained by mapping on a disk or half plane and forming 
the cross ratio of the four points. 

Case 4 Annulus with one boundary point The boundary point is of no 
interest since we can move it to any position by a rotation. Therefore this 
is just the case of the annulus, and the modulus is the extremal distance 
between the contours. 

4-11 EXTREMAL ANNULI 

We take a closer look at Case 1 of the preceding section. Assume that 
the region is a disk and that ZI, Z2 are on a diameter. As a modulus we 
introduce A * = A(r*), where r* is the family of closed curves that sepa­
rate ZI and Z2 from the circumference. Let s be the line segment joining 
ZI to Z2 and denote by rci t"he smaller family of closed curves that separate 
s from the circumference. Now we are dealing with an annulus, and we 
denote the conjugate extremal distance between s and the circle by 
Aci = A(rri). There is an extremal metric Po for the family rri, which is 
obviously symmetric with respect to s. 

Given 'Y* E r* we obtain a 'Yci of equal po length by reflecting part 
of 'Y* across s. Although 'Yci is no-t strictly contained in t.he annulus, it is 
clear that L(r*,po) = L(rci,po), and we conclude that. A* = Aci. Note the 
crucial role of the symmetry. 

We can look at this result a little differently. Let c be any continuum 
that contains ZI and Z2. Let de be the extremal distance from c to the circle. 
Then the maximum of de is clearly a conformal invariant. On passing to 
conjugate extremal distances we have 

d* > A * = A * = d* c - 0 8' 

and hence de ~ dB' In other words, of all continua containing ZI and Z2 

the line segment is "farthest away" from the circle. 
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In view of conformal invariance the following IS an equivalent 
statement: 

Theorem 4-6 (Grotzsch) Of all the continua that join the point 
R > 1 to 00 the segment [R, + 00] of the real axis has the greatest 
extremal distance from the unit circle. 

The doubly connected region whose complement consists of the 
closed unit disk and the segment [R, + 00 ] is known as the Grotzsch annulus. 
We shall denote its modulus, i.e., the extremal distance between the com­
ponents of the complement, by M(R). This means that the Grotzsch 
annulus is conformally equivalent to a circular annulus whose radii have 
the ratio e2.-J1{(r). 

Another extremal problem of similar nature was solved by Teich­
muller [6[)]. 

Theorem 4-7 (Teichmiiller) Of all doubly connected regions that 
separate the pair {O, -11 from a pair {wo, 00 I with Iwol = R the one 
with the greatest modulus is the complement of the segments [-1,0] 
and [R,+ 00]. 

The proof makes use of Koebe's one-quarter theorem (Sec. 2-3) and 
Koebe's distortion theorem (to be proved in Chap. 5). Suppose that f is 
univalent in the unit disk and normalized by feD) = 0, f'(0) = 1. The 
one-quarter theorem states that fez) ~ Wo for Izl < 1 implies Iwol ~ i. 
The distortion theorem asserts in part that 

< Izl 
If(z) I - (1 - IzlP 

In both cases there will be equality for the Koebe function 

z 
h(z) = (1 + Z)2 

In fact, h(z) does not assume the value i and Ifr(z) I = Izl/(1 - Izl)2 for 
negative z. 

Let n be the doubly connected region in the theorem, and El the 
bounded and E2 the unbounded component of the complement. The set 
12 U El is a simply connected region, and not the whole plane. By Rie­
mann's mapping theorem there exists a univalent function F in the unit 
disk ~ = Ilzl < 11 such that F(Il) = 12 U El and F(O) = 0. Because 
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F(z) ~ wo, we may conclude by the one-quarter theorem that 

R = Iwol ~ tIF'(D)I. 
Let Zo be the inverse image of -1. The distortion theorem yields 

1 = IF(zo) I < IzoIIF'(D)1 < 4Rlzol . 
- (1 - IZOJ)2 - (1 - /zoJ)2 

(4-13) 

Suppose now that {l is the Teichmuller annulus with El = [-1,0] 
and that E2 = [R,+ 00]. The mapping function is F1(z) = 4Rft(z), where 
II is the Koebe mapping, and Zl = FC1( -1) = ft-l( -tR), which is 
negative. Hence there is equality in both places in (4-13) when F is re­
placed by Fl and Zo by Zl. We conclude that Izol ~ IZII, for t/(1 - t)2 is an 
increasing function. 

We note further that the modulus of the original n is the extremal 
distance between F-I(E1) and the unit circle. Given that ° and Zo belong 
to F-l(E1) we already know that this extremal distance is greatest when 
F-l(E 1) is the line segment between ° and ZOo The line segment is shorter 
and the extremal distance greater when Zo is replaced by Zl. Hence the 
modulus is indeed a maximum for the Teichmuller annulus. 

For the convenience of the reader Fig. 4-8 shows the Gr6tzsch and 
Teichmuller annuli. It is clear that the Gr6tzsch domain together with its 

• 
R 

• • • 
-\ o R 

FIGURE 4-8 
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reflection in the circle is a Teichmuller domain, except for normalization. 
If the modulus of the Teichmuller annulus is denoted by A(R), itfollows 
readily that M and A are connected by the relation 

A(R2 - 1) = 2M(R). (4-14) 

The nature of the functions M(R) and A(R) will be discussed in the 
next section. For the moment we remark only that the value A(1) can be 
found at once. If R = 1, it is in fact obvious that the part of the Teich­
muller annulus in the upper half plane is conformally equivalent to a 
square. Hence the extremal distance is 1 with respect to the half plane 
and i with respect to the full plane. Thus A(I) = i, a special case of the 
more general relation A(R)A(1/ R) = -1-, the proof of which is left as an 
exercise. 

Corollary Every doubly connected region with modulus >! con­
tains a circle which separates the components of the complement. 

For the proof we may assume that the bounded component E 1 has 
diameter 1 and that the points 0 and -1 belong to E 1. If the assertion 
were not true, E2 would meet the circle Izl = 1, and by the theorem the 
modulus would be ~A(1) = t. 

4-12 THE FUNCTION A(R) 

The theory of elliptic functions makes it possible to find an explicit ex­
pression for A(R), or rather for its inverse function. Such computations 
are not as popular as they used to be, and for the convenience of the 
reader we shall reproduce some details. 

Recall that the Weierstrass gJ function with period basis Wl, W2 is 
defined by 

gJ(z) = ~ + ~ ( 1 _ !), 
Z2 ~ (z - W)2 w2 .,,,,0 

(4-15) 

where w ranges over all periods except O. It satisfies the differential 
equation 

(4-16) 

with el = gJ(wt/2), e2 = gJ(w2/2), e3 = gJ[(Wl + w2)/2]. This relation is 
proved by comparing the zeros and poles on both sides of (4-16). In 
particular, the values el, e2, ea are assumed with multiplicity two. It fol­
lows that they are distinct, for if two were equal p would assume the same 
value four times. 
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We shall choose Wi = 1 and W2 = 2iA, with A = A(R), the modulus 
of the Teichmiiller annulus as described in the preceding section. It is 
quite obvious from (4-15) that the ~ function is real on the real and 
imaginary axes and on their parallels translated by half periods. Thus 
el,e2,ea are real, and the ~ function maps the perimeter of the rectangle 
with vertices 0, wI/2, (WI + w2)/2, w2/2 on the real axis. It is easy to see 
that the rectangle is in one-to-one correspondence with either the upper 
or the lower half plane. Examination of the behavior near z = ° shows 
that it is the lower half plane. The points 00 ,eI,e3,eZ must follow each other 
in positive order with respect to the lower half plane so that e2 < e3 < el. 
The segments tel, + 00] and [e2,ea] correspond to the horizontal sides of 
the rectangle and thus have the extremal distance 2A with respect to the 
half plane and A with respect to the full plane. Hence 00 ,el,C3,e2 correspond 
by linear transformation to 00 ,R,O, -1, so that 

(4-17) 

Our task is to express R in terms of A. For this purpose it is sufficient 
to construct an elliptic function F with the same periods, zeros, and poles 
as [~(z) - ed/[~(z) - e2]. Indeed, it is then clear that 

R = _ F [(WI + W2)/2]. 
F(O) 

It is convenient to use the notation q = e-2.-A. We shall verify that 
the function 

(4-18) 

has the desired properties. First, the product converges at both ends 
because q < 1 and because each factor remains unchanged when n is 
replaced by - nand z by -z. It has trivially the period 1, and replacing z 
by z + 2iA amounts to replacing n by n - 1 so that 2iA is also a period. 
Finally, the zeros and poles are double, and they are situated at points 
congruent to i and iA, respectively. 

When substituting in (4-18) we separate the factor n = ° and change 
negative 11 to positive. After a slight reordering of the factors one finds 

'" (1 + q2n )4 
F(O) = -4q n --1 - q2n-l 

n =1 

F (WI + W2) = ~ n'" (~- q2n-l)4, 
2 4 n=l 1 + q2n 
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and finally 

A similar computation leads to 

el - e2 1" (1 + q2n-l)8 
R+1= =-TI . 

e3-e2 16qn=1 1+q2n 

In particular, (4-19) and (4-20) give the double inequality 

16R ~ e2d(R) ~ 16(R + 1). 

(4-19) 

(4-20) 

(4-21) 

This is a good inequality only when R is large. For small R it should be 
combined with the identity A(R)A(R-I) = i. 

4-13 A DISTORTION THEOREM 

The integral inequality (4-6) becomes much more useful when combined 
with estimates similar to the ones derived in the preceding section. The 
distortion theorem that we are referring to was originally proved in 
Ahlfors' thesis [2] by use of the area-length principle together with some 
differential inequalities. It was actually for the purpose of simplifying this 
proof that Teichmiiller [65] proved Theorem 4-7. 

We return to the situation discussed in Sec. 4-5, but this time we 
regard n as part of a strip that may extend to infinity in both directions 
(Fig. 4-9a). Let the whole strip be mapped conformally on a parallel strip 
of width 1. Figure 4-9b shows the images E~, E~ of E I, E 2, and the meaning 
of the numbers a and fJ as a maximum and minimum. The problem is to 
find a lower bound for fJ - a. 

Since we already possess a best possible lower bound for the extremal 

n' 

(a) (b) 

FIGURE 4-9 
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distance d(EI,E2), and since d(EI,E2) = d(E~,E;) by conformal invari­
ance, what we need is an upper bound for d(E~,E~) in terms of (3 - a. An 
exponential would map the parallel strip on the whole plane, but the dis­
advantage is that E~ and E; would not be mapped on closed curves. 
Teichmuller overcomes this difficulty by the simple device of first reflect­
ing the parallel strip across one of the boundary lines, for instance, the 
real axis. The union of n' and its reflected image lies between two sym­
metric curves 2~, 2; whose extremal distance in the double strip is 
-!d(E~,E~). The exponential e'" maps E~ and E~ on closed curves CI, C2 as 
shown in Fig. 4-10. Although they appear originally as opposite sides in a 
quadrilateral, they may also be regarded as contours of an annulus, and 
because of the symmetry their extremal distance is the same in both 
cases. We conclude from these considerations that d(CI,C2) = jd(EI,E2). 

Now we apply Theorem 4-7. The curve C1 encloses the origin and 
passes through a point at distance eTa from the origin. C2 separates C1 

from 00 and contains a point with absolute value e .. {3. Except for a nor­
malization this agrees with the situation in the theorem. We obtain 
d(C 1,C2) ~ A(e .. ({3-a» and have thereby proved Theorem 4-8. 

Theorem 4-8 The mapping illustrated in Fig. 4-9 satisfies 

i b dx -- < 2A(e .. ({3-a»). 
a (J(x) -

(4-22) 

This inequality is the best possible, equality occurring ·when n is a 
rectangle and E~, E~ are half lines extending to infinity in opposite direc-

FIGURE 4-10 
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tions, one on the upper and one on the lower boundary of the parallel 
strip. For practical purposes it is better to replace (4-22) by a slightly 
weaker consequence: 

Corollary If Jab dx/()(x) ~ t, then 

1b dx 1 
fJ - ex > - - -log 32. 

- a ()(x) 7f 
(4-23) 

We need only recall that A(I) = t, so that the assumption together 
with (4-22) implies e .. c/3-t.) ~ 1. But (4-21) gives A(R) ~ (1/27f) log 32R 
if R ~ 1, and (4-23) follows. 

4-14 REDUCED EXTREMAL DISTANCE 

The extremal distance between two sets will tend to 00 if one of the sets 
shrinks to a point. It may happen, however, that the difference between 
two extremal distances tends to a finite limit. 

We assume again that n is bounded by a finite number of analytic 
curves. Let E be the union of a finite number of closed arcs on the bound­
ary. For a fixed Zo E n we denote by CT the circle and by ar the disk with 
center Zo and radius r. For ~r C n we let d(Cr,E) be the extremal distance 
with respect ton - ~T.1f r' > r, the composition law (4-2) yieldsd(Cr,E) ~ 
dCC",E) + (1/27f) log (r'/r), for the second term is the extremal distance 
between the two circles. This inequality shows that d(Cr,E) + (1/27f) log r 
is a decreasing function of r. Hence limr_o [d(Cr,E) + (1/27f) log r] exists, 
and under our fl_ssumptions it is finite, for if ncaR then d(C"E) ~ 
(1/27f) log (R/r). We denote this limit tentatively by d(zo,E). This number 
could serve the same purpose as an extremal distance, except for two 
drawbacks. First, it need not be positive, and second, it is not a conformal 
invariant. Both disadvantages are removed by forming the quantity 

a(zo,E) = d(zo,E) - d(zo,C) (4-24) 

where C is the whole boundary. That a(zo,E) ~ 0 is immediate from the 
comparison principle. That it is also a conformal invariant will emerge 
from the discussion that follows. 

We shall call o(zo,E) the reduced extremal distance between Zo and E. 
We wish to relate it to other invariant quantities. For this purpose we 
solve a mixed Dirichlet-Neumann problem to obtain a harmonic function 
G(z,zo) with a logarithmic pole at Zo, which is zero on E and satisfies 
aG/an = 0 on the rest of the boundary. G(z,zo) exists and is unique if we 
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add the condition that it be bounded outside a neighborhood of Zoo The 
behavior at Zo is of the form 

G(Z,Zo) = -log Iz - zol + r(E) + E(Z), 

where r(E) is a constant and E(Z) ~ 0 as z ~ zoo In the special case in 
which E is the whole boundary G(z,zo) is the ordinary Green's function 
g(z,Zo) , and "Y(C) is the Robin constant relative to zoo 

We need to estimate d(Cr,E) for small r. Let a denote the maxi­
mum and f3 the minimum of G(z,zo) when z E Cr. Then the level curve 
La = {z; G(z,Zo) = a} will lie inside CT while L/l lies outside Cr. The com­
parison principle yields 

d(L/l,E) .:::; d(Cr,E) ~ d(La,E). 

But we know by Theorem 4-5 that d(La,E) = l/D(u), where u = G/a 
and the Dirichlet integral is extended over the region between La and C. 
Since D(G/a) = a- 2D(G) and 

D(G) = ( G aG Idzl = a ( aG Idzl = 21ra 
ha an ha an 

we obtain d(Cr,E) ~ a, and similarly d(Cr,E) ~ f3/21r. 
From the development of G(z,zo) it follows that a and f3 are both 

of the form -log r + r(E) + E(r). Hence d(Cr,E) = (1/21r) [-log r + 
"Y(E) + E(r)] and we conclude by (4-24) that 

1 
o(zo,E) = - ["Y(E) - r(C)]. (4-25) 

211" 

Incidentally, this proves that r(C) ~ "Y(E). Also, the way G(z,zo) and 
g(z,zo) change under conformal mapping makes it clear that the right-hand 
side in (4-26) is a conformal invariant. 

The result gains in significance if we show, as we shall, that o(zo,E) 
solves an extremal problem which is similar to, but still fundamentally 
different from, the problem of extremal distance. 

Theorem 4-9 The number 1/ li(zo,E) is the minimum of the Dirichlet 
integral D(v) in the class of functions v with the following properties: 

i) v is subharmonic and of class Cl in 0; 
ii) v has a continuous extension to C; 

iii) v(z)':::; 0 on E and v(zo) ~ 1. 

The similarity to extremal distance is seen by considering p = Igrad vi. 
Indeed, we have J 'Ypidzi ~ 1 for all arcs r that join Zo and E. For the 
family r of such arcs we thus have L(r,p) ~ 1 while A(O,p) = D(v). 
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Therefore while L(r,p)2IA(n,p) becomes arbitrarily large when p varies 
over all metrics, the theorem tells us that the maximum is o(zo,E) when p 

is restricted to be the gradient of a subharmonic function. 
For the proof we compare v with the function G - g. If v has a 

finite Dirichlet integral, it is not difficult to show the validity of the 
formula 

r a(G - g) r aG r ag 
D(v,G - g) = lev an Idzl = lEv an Idzl - le v an Idzl· (4-26) 

The first integral on the right has a nonnegative integrand, for v S 0 and 
aGlan < 0, because G > 0 inside the region and G = 0 on E. The second 
integral is a generalized Poisson integral and is equal to 21r times the value 
at Zo of the harmonic function u with the same boundary values as v. 
Because v is subharmonic, we have v(zo) S u(zo), so that 

- fe v ag~z~zo) Idz/ C: 21rv(zo) C: 211". 

We conclude that D(v,G - g) C: 21r. 
On the other hand, G - g is harmonic throughout n, and we obtain 

f a(G - g) 
D(G - g) = e (G - g) Idz/ 

an 

= - fe (G - g) :! Idzl = 21r['Y(E) - 'Y(G)] 

because 'Y(E) - 'Y(G) is the value of G - g at zoo Now the Schwarz in­
equalitygives41r2 :S D(v,G - g)2 S D(v)D(G - g) = 21r['Y(E) - 'Y(G)]D(v), 
and in view of (4-25) we have shown that I/D(v) S o(zo,E). The upper 
bound is reached, namely, for a constant multiple of G - g. The function 

v(z) = G(z,zo) - g(z,zo) 
'Y(E) - 'Y(G) 

does in fact satisfy conditions (i) through (iii), and D(v) = Ijo(zo,E). 
Theorem 4-8 should be compared with Theorem 2-4. The latter is a 

special case and implies that the reduced extremal distance between the 
origin and a set E on the unit circle is equal to - (1/1r) log E. 

EXERCISES 

1 For any arc 'Y let -y denote its reflection in the real axis and let 'Y+ be 
obtained by reflecting the part below the real axis and retaining the 
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part above it. The notations rand r+ are self-explanatory. If r = r, 
show that X(r) = tX(r+). 
2 Find the maximum extremal distance between an arc on a circle and a 
continuum that joins the center to the circumference. Show that its value 
can be expressed in terms of the function A. 

3 Let the sides of a triangle be numbered. Find X(r) when r consists 
of all arcs that begin on side 1, touch side 2, and end on side 3. 

Ans. X(r) = 2. 
4- Given two points a and b, let r be the family of figure-eight-shaped 
curves with winding number 1 about a and -1 about b. Show that 
X(r) = 4. (Make use of the preceding exercise. The corresponding question 
for an arbitrary triply connected region is open.) 
5 Find the extremal length of the nondividing dosed curves on a Mobius 
band. (Use the remark in the last paragraph of Sec. 4-4.) 

NOTES The articles by Gri::itzsch are from the period 1928-1934, 
and they were all published in Verhandlungen der sachsischen Akademie 
der Wissenschajten, Leipzig. Because of the relative obscurity of this jour­
nal, it was a long time before Gri::itzsch's work became generally known. 

The definition and underlying idea of extremal length were first con­
ceived by Beurling, presumably in 1943-1944. They were first made public 
at the Scandinavian Congress of j\{athematicians in Copenhagen, 1946, 
in parallel papers read by Beurling and by Ahlfors [1]; Beuding's paper 
never appeared in print. The first systematic account was given in a joint 
article in publications of the Bureau of Standards in 1949, but the best 
known version is in AhHors' and Beurling's article on function theoretic 
null sets [2]. 

Because of this history Ahlfors has sometimes been given partial 
credit for the discovery of extremal length. A more justifiable claim would 
be that of codeveloper. 

An account based on Ahlfors' lectures at Harvard University and in 
Japan in 1957 has been published in Ohtsuka's recent book [48]. 

Theorems 4-5 and 4-6 are almost certainly due to Beurling. 
The connection between prime ends and extremal length ,vas ex­

plored by E. Schlesinger [58]. 



5 
ELEMENTARY THEORY OF 
UNIVALENT FUNCTIONS 

5-1 THE AREA THEOREM 

An analytic or meromorphic function in Q is said to be univalent or schlicht 
if /(Z1) = f(Z2) only when Z1 = Z2. We shall deal only with the case in 
which Q is simply connected. In fact, we assume Q to be a circular region. 
There are two standard normalizations: 

1) / E S if f is univalent and holomorphic in Izi < 1 with the 
development 

f(z) = z + a2z2 + ... + anzn + .... 
2) F E 2: if F is univalent in Izl > 1 with the development 

b1 bn 
F(z) = z + - + . . . + - + .... 

Z zn 

The famous coefficient problem is to find necessary and sufficient 
conditions for an and bn • Bieberbach's conjecture lanl ~ n has been proved 
for n = 2,3,4,5,6. 
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The following theorem is known as the area theorem. It was first 
proved by Gronwall [23] and rediscovered by Bieberbach [7]. 

'" 
Theorem 5-1 All F E 1.: satisfy I nlbn l2 :::; 1. 

1 

PROOF Let Cp be the circle Izl = p > 1 with positive orientation, 
and set 

If F = u + iv and if r p denotes the image curve of C p, we have 

and by elementary calculus this represents the area enclosed by r p. Hence 
I,(F) > o. 

Direct calculation gives 

. '" .. 
Ip(F) = ~ Icp (z + I b"z-n) (1 -I nbnZ-n-1) dz 

1 1 

... 
Thus I nlb,,12p-2n < p2, and the theorem follows for p ---+ l. 

1 

A particular consequence is Ibll :::; 1, and this is sharp, for z + eif3 /z 
is schlicht. It is clearly the only case of equality. 

Theorem 5-2 All f E S satisfy la21 :::; 2 with equality only for the 
so-called Koebe functions fez) = z(l + eif3z)-2. 

PROOF An obvious attempt is to pass from f E S to F(z) = f(Z-l)-l 
+ a2 E ~ whose development begins with F(z) = z + (a22 - a3)z-1 
+ .... Theorem 5-1 gives la2 2 - aal :::; 1, which is interesting, but not 
what we want. 

We employ a famous device due to Faber. Because fCz)/z is holo­
morphic and ~o, we can define h(z) = [f(z)/z]i, h(O) = 1, and subse-
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quentlyg(z) = Zh(Z2)t. The function g is univalent, for g(Zl) = g(Z2) im­
plies f(Z12) == f(Z2 2), hence Zl = Z2 or Zj = -Z2; the latter is ruled out 
because g is odd and ~O for z ~ O. The development of g is g(z) = Z 

+ ia2z3 + .... The preceding result yields la21 ~ 2. 
For equality we must have Ib11 = 1 in the area theorem, hence 

F(z) = g(Z-l)-l = Z + eiPz-l, which leads to fez) = z(1 + eiflz)-2. The 
Koebe function maps the unit disk on the complement of a slit 
{Iwl ~ j, arg w == -,B). The coefficients of the Koebe function satisfy 
lanl == n. 

The inequality la21 ~ 2 leads immediately to upper and lower bounds 
for !f(z) I and If'(z) I· These estimates are collectively known as the dis­
tortion theorem. 

Theorem 5-3 The functions f E S satisfy 

Izl(l + IZi)-2 ~ If(z)/ ~ /zl(l - IZj)-2 (5-1) 
(1 - Izl)(l + IZj)-3 ~ If'(z) I ~ (1 + Iz/)(1 - IZj)-3, (5-2) 

with equality only for the Koebe functions. 

PROOF Consider f(Tz) , where T is a conformal mapping of the unit 
disk onto itself. The function f 0 T is again schlicht, but not normalized. 
We have 

(f 0 T)' = (f' 0 T) 1" 
(f 0 T)" == (f" 0 T) T'2 + (f' 0 T) T", 

and the Taylor development at 0 is 

f 0 T == f(TO) + f'(TO)T'(O)z 

Theorem 5-2 yields 

+ ! [f"(TO)T'(O)2 + f'(TO)T"(O)]Z2 + 
2 

If''(TO) T'(O) + T"(O) I < 4. 
f'(TO) T'(O) -

We choose Tz = (z + r)(l + fZ)-l with Irl < 1. Then TO == r, 
T'(O) == 1 - Ir1 2, T"(O)jT'(O) == -2f. The inequality becomes 

(5-3) 
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Define log f'(z) so that log f'(0) = O. Integration of (5-3) along a radius 
yields 

and hence 

IIogf'(Z) - fl.1 2rdr I ~ fl'I~, 
}o 1 - r2 }o 1 - 1'2 

1 1 + Izl 1 1 + Izi 
log 11- 210g 11~IOglf'(z)I~log II +210g II' 1-z 2 1-z 1-z 2 1-z 

This is the double inequality (5-2). 
From (5-2) we have at once 

If(z) I < fl., ~~dr _ Izl , 
-}o (1 - r)3 - (1 - IZJ)2 

which is the upper bound in (5-1). To find the lower bound, let mer) 
denote the minimum of If(z) I on Izl = r. The image of Izl < r contains 
the disk Iwl < mer). Therefore, there exists a curve 'Y from 0 to Izl = r 
such that 

mer) = Jy 1f'(z)lldzl· 

Since 'Y intersects all circles Izl = p < 1', the lower bound for If'(z) I leads 
to the desired estimate 

fr 1 - p r 
mer) ~ }o (1 + p)3 dp = (1 + r)2' 

For equality to hold it is necessary to have equality in (5-3) on the 
radius from 0 to z, and hence in particular at O. This means that la21 = 2, 
and f must be a Koebe function. 

As r -7 1 the lower bound for If(z) I tends to !. 

Corollary The image of the unit disk under a mapping f E S con­
tains the disk with center 0 and radius !. 

This is Koebe's one-quarter theorem, which we already proved in 
Sec. 2-3 as an application of capacity. Koebe did not give the value of 
the constant. 

5-2 THE GRUNSKY AND GOLUSIN INEQUALITIES 

A function is said to be m-valent if it assumes each value at most m 
times. Theorem 5-1 can be generalized to this situation. 
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Theorem 5-4 If F is analytic and m-valent for Izl > 1 with a 
development 

'" 

-m 

'" m 

then L nlbn l 2 ~ L nlb_n I2• (5-4) 
1 1 

For the proof we need to know that I p(F) is still positive. This fact 
is not as obvious as before, and we prove it as a separate lemma. 

Lemma 5-1 If F is m-valent for Izl > 1 with a pole of order m at 00, 

then 

i ( -
IiF) = 2 Jlzl-p F dF > o. 

PROOF Given w ~ 00 let new) be the number of roots of F(z) = w 
in Izl > p. Assuming that F ~ won Cp we have, for large R, 

and hence (5-5) 

Choose M greater than the maximum of \F(z) I on Cpo We integrate 
(5-5) with respect to w over the disk Iwl < M. The triple integral is 
absolutely convergent, and since the image of Cp covers only a null set, 
we obtain 

~ { (If du dv ) dF ~ 0 
2r~Jcp F - W 

Iwl<M 

(w = u + iv). (5-6) 

The double integral is calculated in standard fashion: 

If dudv = 
Iwl<M F - w 

i If dwdw -- --
2 1wl <M F - w 

i ~ tV dw Ii i ~ tV dw --- --+ m- . 
- 2 Iwl=M F - w ..... 02 Iw-F\=. F - w 

The first integral vanishes as seen by setting tV = M 2/ w, and the second 



ELEMENTARY THEORY OF UNIVALENT FUNCTIONS 87 

has the limit 7rF. Hence 

If dudv -
~~- = 7rF 
F-w ' 

1u;I<M 

and substitution in (5-6) yields [p(F) ~ O. 

The theorem follows from the lemma by explicit calculation of [p(F), 
exactly as in the proof of Theorem .5-1. In our new notation we find 

-m 

Separation of the positive and negative terms yields Theorem 5-4. 

Corollary With the hypothesis and notation of Theorem 5-4 it is 
also true that 

m m 

}; nlbnl !ILnl ~ }; nlb_nI2• (5-7) 
1 1 

The theory of m-valent functions is less interesting than that of 
univalent functions. For this reason i,he main importance of Theorem 5-4 
is to serve as a tool for the study of univalent functions. Let Pm be an 
arbitrary polynomial of degree m. If F E 2: (univalent with pole at 00), 
then P m(li') is obviously m-valent with a pole of order m at 00. Therefore, 
the coefficients of P m(F) satisfy (5-4) and (5-7). In this way we obtain a 
great deal of information about F, albeit in rather implicit form. In the 
exercise section of this chapter we shall show how to translate this in­
formation into explicit inequalities. The inequalities that arise from (5-4) 
are known as the Golusin inequalities. The Grunsky inequalities, which 
were discovered earlier, are easy consequences of (5-7). 

5-3 PROOF OF la41 ~ 4 

The inequality la41 ~ 4 was first proved by Garabedian and Schiffer [21]. 
Later Charzynski and Schiffer [14] made the important discovery that 
la41 ~ 4 can be proved directly, and with much less work, from the 
Grunsky inequalities. We shall follow their lead, but we shall use (5-4) 
rather than (5-7). 

Let 
F(z) = z + b1z- 1 + baz-a + b.z- 5 + 

be an odd univalent function in Izl > 1, and set 

F(z)3 = Z3 + C_IZ + clrl + caZ-3 + 

(5-8) 
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The coefficients are 
C-l = 3b1 

Cl = 3bl2 + 3ba (5-9) 
Ca = bla + 6b l ba + 3b5• 

We introduce a complex parameter t and apply Theorem 5-4 to the 
function F(zP + tF(z) which is 3-valent with a triple pole. This gives 

(5-10) 

and after rearrangement, 

(1 - Ibl12 - 31ba12) W + 2 Re t(C_I - bici - 3baca) 
+ 3 + IC_11 2 - iel1 2 - 31cal2 ? O. 

We already know from the area theorem that the coefficient of Itl2 is 
nonnegative. In addition, the positive definiteness of the Hermitian form 
implies 

IC-I - blcI - 3bacal 2 
~ (1 - Ib l 12 - 31ba12)(3 + /c_11 2 - IClla - 3IcaI 2). (5-11) 

We conclude that Ca lies inside a certain circle: 

Ica - wi ~ p. (5-12) 

To find explicit expressions for wand p we bring (5-11) to the form 

Ca- <~--~----~~~~--~~~ I ba(C-I - b1cI) 12 (1 - Ib l12 - 31ba12)(3 + /c_II2 - /cll 2) 
1 - IbII2 - 3(1 - Ib l 12)2 

ie-I - blCll2 Ibal2lc_l - b1cl1 2 

- 3(1 - Ib ll2) + (1 - Ib ll2)2 . 

With the aid of (5-9) we thus have 

(5-13) 

and on uffing the identity 

it turns out that p has the surprisingly simple value 

(5-14) 
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N ow let fez) = Z + a2z 2 + ... be univalent in Izi < 1 and form 
F(z) = f(z-2) -1. Then F is univalent of the form (5-8), and the relations 
between the coefficients are 

a2 = -2b l 

as = -2bs + 3bl2 

a4 = - 2b 5 + 6b lbs - 4bl3• 

From these relations together with (5-9) and (5-13) we obtain 

3 3blbs2 

CS - w = -~a4 - 5bl 3 + 12b l ba + 1 _ Ib l l2' 

and by (5-13) and (5-14) 

1
10 2blb32 I 2 21bal2 

la41 ~ 3 bI3 - 8b l ba - 1 _ Ib l l2 + 3 - 1 - Ib l l2• 
(5-15) 

If bl = 0, there is nothing left to prove, and if bl r6 0, we can write 
bs = Sb l 2• With this notation (5-15) becomes 

We need an estimate for the absolute value of the quadratic poly­
nomial in the first term on the right. With simpler notations we shall 
show that 

(5-17) 

provided that a is real and {3 > O. To see that this is so we set Re s = u 
and observe that Re S2 = 2u2 - Is12. We obtain 

Is2 + 2as - {31 2 = Isl4 + (4a 2 + 2(3)lsI2 + {32 + 4a(lsl2 - (3)u - 4{3u2, 

and (5-17) follows on replacing the right-hand side by its maximum for 
variable u and fixed lsi. 

We apply (5-17) to (5-16) and find 

I I < 21bl l2 (12 - 7lbll2)i (I '21b 12 + :; _ 51b 12) + ~ _ 21 s121b l 14
• 

a4 - 1 _ Ibll2 5 Sl 1 ""9" ""9" 1 3 1 _ Ibll2 

In this formula the expression on the right increases v..-ith lsi because 
Ib 11 ~ 1. We replace Isl2 by its upper bound i(l - Ib l I2)lb l l- 4 and find 

/ / < 2 + 1O/b1/ 2 (12 - 7IblI2)'. 
a4 - 3 5 
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On setting 1 - /b 1/2 = "X, thE' final inequality reads 

We have proved a little more than la4/ ::; 4, for instance, 

(5-18) 

~OTES The passage from the area theorem via /a21 ::; 2 to the dis­
tortion theorem was first pointed out by R. Xevanlinna [47]. It has been 
generalized to classes with la2/ ::; a. 

The article with the Grunsky inequalities is Grunsky [2:>]; actually, 
it covers a much more general situation. The best reference to Golusin is 
his textbook (Golusin [22]). Golusin's method, with some variations, can 
also be found in Jenkins [33] and Pommerenke [52, ;'3]. An excellent 
account on Faber polynomials is Curtiss [16]. 

The proof of (5-1S) has appeared in a Russian publication honoring 
::\1. A. Lavrentiev. 

EXERCISES 

1 If F(z) = z + L b"z-" is analytic for Izl > 1, show that 
1 

where the Pm are polynomials of degree m with leading coeffit'ient 1. 
The deVelopment is vaiid in a neighborhood of r = ao, which depends 
on w. 

The Pm are known as the Faber polynomials associated with F. 
2 Under the same conditions, prove carefully that for a suitable branch 
of the logarithm there is a development of the form 

'" 
log F(r) - F(z) = - I I bmnr-mz-n 

r-z m=ln=1 

valid for sufficiently large Irl and Izi. 
Deduce that 

00 

Pm[F(z)] = zrn + m L bmnz-n • 

n=1 
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Prove further that Pm is the only polynomial P such that the singular 
part of P[F(z)] at co reduces to zm. m 

3 Assume F to be univalent. Apply Theorem 5-4 to P = 2: k- IlkP" 

k=1 

with arbitrary complex lk to obtain 
~ ~ ~ 

2: n 1 2: bkntk 12 ~ 2: k- l /tk/ 2 (Golusin) 
n=1 k=1 k=1 

~ 

I Re 2: bkntktn I ~ 2: k-1/lk/ 2 (Grunsky). 
k,n=1 k=1 

4. Show conversely that F is univalent if all Golusin or Grunsky in­
equalities are fulfilled by proving that the series in Exercise 2 converges 
for all /r/ > 1, /z/ > 1. 



6 
LOWNER'S METHOD 

6-1 APPROXIMATION BY SLIT MAPPINGS 

It was a remarkable feat of L6wner to prove laal ~ 3 in 1923 when 
nothing was known about univalent functions beyond the most elementary 
results. It seems to be an experimental fact that the Grunsky inequalities 
are of no use for odd coefficients. Lowner's method is quite simple, but 
slightly delicate. Its usefulness goes beyond proving coefficient inequalities. 

We may assume thatf(z) is univalent and analytic in the closed unit 
disk. For the moment we abandon the normalizationf'(O) = 1 and require 
instead that If(z) I < 1 for Izl ~ 1, f(O) = 0, and 1'(0) > O. The image 
B is thus contained in the unit disk. We approximate B by a one-parameter 
family of simply connected subregions of the unit disk obtained by omit­
ting a slit which begins on the unit circle, leads to a boundary point of B, 
and then follows the boundary, stopping short of the initial point of 
contact (Fig. 6-1). The equation of the slit is written as w = 'Y(t), 0 ~ 
t < to, where 'Y is continuous and one to one. The region Bt is the comple­
ment of the arc 'Y[O,t] with respect to the disk. The slit closes up for l = to 
so that Blo = B. Note the discontinuous change in Bt when t ~ to. 
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FIGURE 6-1 

FIGURE 6-2 

Let it(z) be the Riemann mapping function from Izl < 1 to B t with 
ft(0) = 0, I: (0) > o. We know from the theory of boundary correspond­
ence (Sec. 4-6) that it has a continuous extension to Izl :s; 1, and that 
there is a unique point X(t) on Izl = 1 with /t[X(t)] = 'Y(t), the tip of the 
slit. 

We proceed to establish some continuity properties. Consider two 
parameter values t and T with t < T < to. The function htT = 11-1 0 iT is 
defined and univalent in Izl < I, and it has a continuous extension to the 
closed disk. The reader should convince himself that the mapping by hiT is 
as indicated in Fig. 6-2. In words, the unit circle is mapped on itself, 
except for an arc lh,. = i-1('Y[t,T]) which is mapped on a slit Str = It-1('Y[t,T]). 
If T is fixed and t increases to T, it is immediately clear that ~'T closes down 
on the point XCT). Similarly, if t is fixed and T decreases to t, the slit SIr will 
be shortened until it shrinks to X(t). 

The case T = to needs separate consideration. It is seen that 

/jrro = Ilo- 1( 'Y[t,to]) 

is still an arc on the unit circle which shrinks to its end point X(to) as 
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t /' to. Its image S"o is no longer a slit, but an arc with one end point at 
;\ (t). 

Lemma 6-1 Ift-l(w) 1 is strictly increasing and !'teO) is strictly de­
creasing as functions of t. 

PROOF This is immediate by Schwarz's lemma. Indeed, since 
Ih,~(z)1 < 1 for Izi < 1 and h,~(O) = 0, we have Iht ... (z) I ~ IzI, which is the 
same as Ift-l(w) I ~ If ... -I(w)I. For w = 0 this becomes /!t(0) 1 ~ /f;(O)I. In 
both cases equality is excluded because h, ... is not the identity mapping. 

Lemma 6-2 !'teO) and f,-l(w) are continuous on the left. 

Consider the Poisson-Schwarz representation 

1 ht ... (z) = ~ h2r tiS + z 1 /h (is)/ dO og 2 o·s og,... e . 
Z r e'-z 

(6-1) 

The integrand is zero except on 8,.,., and on setting z = i ... -l(w) we find 

it-lew) 1 r eiS + i.,-I(W) . 
log h -lew) = 2r }8" tiS _ i ... -l(w) log /ht ... (e'S)/ d(J. (6-2) 

For w = 0 this becomes 

1 i;(O) 1 r 1 /h ·S) I d 
og !'teO) = 2r J a.~ og , ... (eO O. (6-3) 

We know from Lemma 6-1 that f. (0) has a limit ?:.h(O) as t increases 
to T. We denote this limit by eah(O) so that a ?:. 0 and, according to 6-2, 

lim ~ r log Ih,~1 dO = -a. 
tl'~ 2"11" } a,.,. 

(6-4) 

Because 8,.,. shrinks to a point, comparison of (6-1) or (6-2) with (6-4) 
shows at once that 

. [ ;\(T)+Z] hmh,.,.(z) = zexp -a () . 
tl'r AT - Z 

(6-5) 

As a limit of univalent functions the function on the right is either uni­
valent or constant. If a > 0, neither is true, for then the function tends 
to 0 as z ~ A(T) radially. Hence a = 0, and we have proved the left 
continuity of ,:(0). At the same time (6-5) becomes 

lim h,r(z) = z, 
tl'~ 

(6-6) 
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which is equivalent toft-I(w) ~ f.-I(w) for all wE BT. Note that the proof 
needs no change if T = to. 

The proof also shows that (6-6) holds uniformly on every closed 
subset of Izl ~ 1 that does not include X(T). 

Lemma 6-3 f: (0) and ft-I(w) are continuous on the right. 

This time we keep t fixed and let T decrease to t. Since SIT shrinks to 
a point, hIT-I(r) = fT-I[ftCr)] is ultimately defined in any disk Irl < 1 - E, 

o < E < 1. Schwarz's lemma gives IhIT-I(r)1 ::; (1 - E)-llrl, or IfT-I(w) I ::; 
(1 - E)-llfl-l(w) I. Since we already know that Ifl-II < 1fT- I I, the right 
continuity of 1ft- I I has been proved. That of ft- I follows routinely, for 
instance, by use of the Poisson-Schwarz representation. 

Lemma 6-4 StT approaches X(T) as t /' T, and 51T tends to X(t) as 
T'\. t. 

This is best proved by use of the argument principle. Observe first 
that hIT and htT- I can be extended by symmetry across the unit circle, one 
to the full complement of 51T, the other to the complement of SIT and its 
reflection. Let C, be a circle with center X(T) and small radius E. We have 
already remarked that hIT(z) tends uniformly to z on any closed set that 
does not contain X(T). This is also true for the reflected function, and thus 
on all of C •. When t is close to T, the image of C, will lie close to C" for 
instance, inside the circle with center X(T) which passes through a given 
point r outside Cf • The image curve therefore has a winding number zero 
about r, and it follows that hIT - r has as many zeros as poles outside C •. 
Since there is a pole at ao, the function h must assume the value r. But 
no value on SIT is assumed, proving that StT lies inside C •. The reasoning 
remains valid for T = to. 

The second part is proved in the same way by applying the argu­
ment principle to htT-I. The reader should be aware of a small difficulty. 
The proof of Lemma 6-3 shows that h,T-I(r) ~ r uniformly, but only on 
compact parts of the open disk, and we need uniformity on C •. To fill the 
gap, represent htT- 1 by its Cauchy integral over Irl = 2, and C.' with 
E' < E. The integral over C.' tends to zero as E' ~ 0, and it becomes clear 
that h IT- I tends uniformly to the identity on any compact set that does 
not contain X(t), and in particular on C •. 

Lemma 6-5 X(t) is continuous. 

This follows from Lemma 6-4 because X(t) E StT and X(T) E 5tT. 
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6-2 LOWNER'S DIFFERENTIAL EQUATION 

Having proved that !'t (0) is a continuous strictly decreasing function we 
are free to choose -log !'teO) as a new parameter. In other words, we may 
assume that!'t (0) = e-I • With this normalization (6-3) becomes 

(6-7) 

It follows by (6-2) and (6-7) that 

~ 10 f-I(W) = A(t) + f,-l(W). 
at g I A(t) - ft-l(W) 

(6-8) 

Indeed, ft-l(W) is continuous, and OtT shrinks to a point, trivially when 
t /' T and by virtue of the second part of Lemma 6-4 when T \.. t. 

It is preferable to write (6-8) as a differential equation for ft rather 
than ft-l. Since ft- 1 has a nonzero derivative with respect to w. it follows 
by the implicit function theorem that fl is differentiable, and 

aft-leW) aft-lew) iJf,(z) _ 0 
at + iJw at-

when w = ft(z). Substitution from (6-8) yields 

aft(z) = -!'t(z)z A(t) + z. 
at X(t) - z 

This is Lowner's famous differential equation. 

6-3 PROOF OF la,l ~ 3 

We shall write 
ft(z) = e-t[z + as(t)z2 + a3(t)z3 + .. 'J, 

(6-9) 

To see that this series can be differentiated termwise it is sufficient to ex­
press fl and its derivatives D"ft with respect to z as Cauchy integrals, for 
instance, over Izi = t. The integrals can be differentiated with respect to t 
under the integral sign, and we may conclude that aD"/t/at = Dn(aft/iJt). 
Consequently, a:(t) exists, and we obtain in shorter notation 

aft ( , , at = -e-' z + a222 + aaza + ... ) + e-t(a2z2 + aaz3 + .. '). 

On the right-hand side of (6-9) we substitute 

!'t(z) = e-I(l + 2asZ + 3aaz2 + ... ), 
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and 
A + Z 2z 2Z2 
A-z=I+>:+X2+ 

Comparison of the coefficients leads to 

a~ - a2 = -2a2 - 2A- 1 

a~ - as = -3as - 4a2A-1 - 2X-2, 

which we can rewrite as 

d 
- (a2e t) = -2X-1et 
dt 
d 
dt (ase 2/ ) = (-4a2A- 1 - 2X-2)e2t. 

Recall that a2 = as = 0 for t = O. Therefore, integration yields 

a2(T)e~ = -2 Jo~ etA-1 dt 

as(T )e2T = 4 (Io~ etA -I dt) 2 - 2 JOT e2/A -2 dt. 

We set X = ei8 and take real parts in the second equation. This gives 

Re as(T)e2~ = 4 (Io~ et cos fJ dty - 4 (loT e' sin fJ dt)2 

- 2 (T e2/(2 cos2 fJ - 1) dt }o . 

The Schwarz inequality leads to the estimate 

(loT et cos fJ dt) 2 < e~ loT et cos2 fJ dt, 

and we obtain 

Re a3(T)e2T < 4 loT et(e~ - el) cos2 8 dt + e2T - l. 

Since t < T and cos2 8 ~ 1, it follows that 

Re as(T)e2T < 4 loT e'(eT - e') dt + e2T - 1 = 3e2T - 4eT + 1 < 3e2~. 

We have proved that Re as(r) < 3 for all T. Hence Re as < 3 for the 
original function fez) = e-I.(z + a2Z2 + aaZS + ... ). On applying the 
result to e-iaf(eiaz) we conclude that lasl < 3 when f is analytic on the 
boundary, and hence laal ~ 3 for an arbitrary normalized univalent 
function. 

NOTES The basic reference is L6wner [361. The original proof uses 
Lowner's lemma (Sec. 1-4). The method has been used extensively for 
more general problems and in combination with other variational methods. 



7 
THE SCHIFFER VARIATION 

7-1 VARIATION OF THE GREEN'S FUNCTION 

Let n be a region in the complex plane with Green's function g(z,r). We 
wish to find out what happens to g when n is replaced by a nearby region 
n*. An obvious way would be to express g as an integral over the boundary. 
This has the serious drawback that it requires the boundary to be smooth. 
If the variation is to be used for the solution of an extremal problem, it 
must be applicable in a situation in which the boundary is not known to 
be smooth. It was to overcome this difficulty that Schiffer [57] devised his 
method of interior variation. This method is very simple in principle, but 
the computations require some patience. 

Consider a point Zo Efland a circle c with small radius centered at 
zoo The point Zo will be kept fixed while p tends to zero. We also fix a real 
number a. The function 

(7-1) 

maps the outside of c on the complement of a line segment of length 4p 
with midpoint Zo and inclination a/2. The complement E of fl is mapped 
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on a set E* whose complement is in turn a region 12*. We denote the 
Green's function of 12* by g*. Our aim is to find an asymptotic expression 
for 5g(z,r) = g*(z,r) - g(z,r) when p approaches zero. 

We assume the existence of g(zl). The existence of g*(z,r) is implicit 
in the proof of our first lemma, which will serve to give some crude pre­
liminary estimates. 

Lemma 7-1 The functions g*(z,r) and their partial derivatives are 
uniformly bounded when z and r range over compact sets in nand 
Iz - rl is bounded away from zero. 

PROOF Because gtz,r) is symmetric, it is sufficient to prove the 
lemma for a fixed r. The inversion z' = l/(z - r) maps 12 on a region 12' in 
the extended plane. Clearly, g'(z') = g(r + l/z', r) is the Green's function 
of 0' with pole at 00. The notations 12*' and g*' are self-explanatory. It 
will be sufficient to prove that g*' and its derivatives are uniformly bounded 
on every compact set in 12'. Observe that such a compact set is contained 
in 12*' for all sufficiently small p, and the uniform bound is to be valid for 
p :-:; Po, for example. 

Recall that g'(z') = log Iz'l + "i' + 0(1) as z' ~ 00. The Robin con­
stant "i' is connected with the transfinite diameter of the complement E' 
of 12' by "i' = -log dO(J' By definition dO(J is the limit of dn , and dn is the 
maximum geometric mean of the mutual distances Iz; - z;·1 of n points 
onE'. 

With obvious notations we obtain from (7-1) 

z*' - z*' = (z' - z'.) zi' zJ' [I - p
2eia --J. 

, ] , ] z~z; (Zi - zo)(Z,i - zo) 
(7-2) 

An easy calculation shows that Iztl/lz;1 = 1 + O(p2), uniformly for 
z~ E E', and the same estimate applies to the last. factor in (7-2). It 
readily follows that d! = dO(J[1 + 0(p2)] and "i*' = "i' + O(p2). 

12' can be exhausted by regions 0: with smoot.h boundaries. To save 
notation we assume temporarily that 12' itself has a smooth boundary. 
Routine use of Green's formula gives 

1 ag' 
g'(z) = "i' - 211" lan' an! log It - zlldtl· (7-3) 

Here l1t is the outer normal, so that ag'/ant < O. We conclude from (7-3) 
that 

g'(z) :-:; "i' + max log It - zl. 
tEaQ' 

Because this holds for all n:, it also holds for an 12' with arbitrary bound-
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ary. When applied to n*' the inequality shows that the g*' are uniformly 
bounded on every compact set. Standard use of the Poisson integral 
shows that the same is true of the derivatives, and the lemma is proved. 

We shall write the difference g*(z,r) - g(z,r) as the sum of (h(z,r) = 
g*(z*,r*) - g(z,r) and ch(z,r) = g*(z,r) - g*(z*,r*). To begin with, z and 
r shall lie outside the circle c, and z*, r* are given by (7-1). As a function 
of z the difference lh(z,r) is defined and harmonic in the part of Q outside 
c. It vanishes on an and has no singularity at r. Therefore, Green's for­
mula yields 

(7-4) 

Because 

h [g(t,r) a~~:) - g(t,z) aga~tr) ] Idtl = 0, 

we can rewrite (7-4) as 

~ ( !-) = - ~!c [ *(t* !-*) ag(t,z) - (t ) ag*(t*,r*)] Idtl 
1 z,~ 2 c g ,~ a (/,Z a . 

r nt ~ 
(7-5) 

As before, the formula is first proved for an nn with a smooth boundary, 
but it remains true for an arbitrary n. 

For convenience we introduce the notations 

r(z r) = ag(z,r) = ! (ag _ i ag) 
, az 2 ax ay 

r*(z,r) = ag*a~,r). 

These functions are analytic in z, and one verifies that formula (7-5) 
takes the form 

1 [ dt*] ~l(Z,r) = ; 1m Ic g*(t*,r*)r(t,z) - g(t,z)r*~t*,r*) dt dt, (7-6) 

where the integral is in the positive sense of the circle. 
In the first term on the right in (7-6) we insert the development 

g*(t*,r*) = g*(zo,r*) + r*(zo,r*)(t* - zo) + r*(zo,r*)(l* - zo) + O(p2). 

Here the remainder involves second-order derivatives of g*(t.r*) for 
It - zol ~ 2p. By virtue of Lemma 7-1 the estimate is uniformly valid 
when r stays away from zoo The integral can now be evaluated by residues. 
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r(l,z) is regular for t inside c; t* - Zo has a pole at Zo with residue p2eia ; 
and on c we have l* - Zo = p2j(t - zo) + e-ia(t - zo), which has the 
residue p2. We obtain 

i g*(t*,r*)r(t,z) dt = 2rir(zo,z)[r*(zo,r*)eia + f*(zo,r*)]p2 + O(p3). 

(7-7) 

In the second term on the right-hand side of (7-6) all three factors 
have to be expanded. The expansions are, for It - zol = p, 

p 2eia 
g(t,z) = g(zo,z) + r(zo,z) (t - zo) + f(zo,z) -- + O(p2) 

t - Zo 

r*(t*,s*) = I'*(zo,r*) + 0, t - Zo + -- + O(p2) 
ar*(z r*) ( p2eia) 

az t - Zo 

dt* p2eia 
- = 1 - ---'---
dt (t - ZO)2 

The product of the principal parts has the residue 

p2[r(zo,z) - eiar(zo,z) ]I'*(zo,r*), 
and we find 

[g(t,z)r*(t*,r*) dt* = 2rip2[r(zo,z) - eiarCzo,z)]r*(zo,r*) + O(p3). (7-8) 

Substitution of (7-7) and (7-8) in (7-6) gives 

Ol(Z,r) = 4p2 Re [r(zo,z)r*(zo,r*)eia] + O(p3). (7-9) 

The expansion is valid for arbitrary regions, and the estimate of the 
remainder is uniform as long as z and r stay in compact sets that do not 
include zoo 

K ext we write down the development 

02(Z,r) = g*(z,s) - g*(z*,s*) 
-2 Re [r*(z,r)(z* - z) + I'*(r,z)(r* - r)] + O(p4) 

= _2p2 Re {eia [r*cz,r) + r*(r,z)]} + O(p4), (7-10) 
z - Zo r - Zo 

which is uniformly valid provided that z and r stay av.-ay from each 
other and from zoo 

As a crude estimate (7-9) and (7-10) yield g*(z,r) - g(z,r) = O(p2), 
and by differentiation r*(z,r) - r(z,r) = O(p2). The proof requires z to 
stay away from Zo, but we can use the maximum principle to conclude that 
the estimate continues to hold near zoo It is also obvious from Lemma 7-1 
that I'*(z,s*) - I'*(z,s) = O(p2). As a result of these estimates the aster-



102 CONFORMAL INVARIANTS: TOPICS IN GEOMETRIC FUNCTION THEORY 

isks in (7-9) and (7-10) can be dropped, and we have proved a variational 
formula for Green's function. 

Lemma 7-2 There exists a two-parameter family of regions n* such 
that 

g*(z,!") - g(z,r) = 2p2 Re {e ia [ 2r(zo,z)r(zo,r) 

- r(z,r) _ rCr,z) J} + O(p3). (7-11) 
Z - Zo r - Zo 

l\'fore precisely, to every compact set Ken there exist Po and M 
such that the left-hand member of (7-11) is defined and the re­
mainder is < M p3 for all p < po and all z,r,zo E K. 

The statement has not yet been proved when z, r, and Zo are close 
to each other, but it easily follows by use of the maximum principle. In 
fact, neither the left-hand member nor the expression in braces has any 
singularity. To check that this is so, let us write 

g(z,r) = -log Jz - rJ + 'Y(z,r) 
r(z,r) = --Hz - r)-l + 'Y1(Z,r). 

One finds that the expression inside the square brackets in (7-11) can be 
written as 

'Yl(Z,r) - 'Yl(ZO,r) 'Yl(r,Z) - 'Yl(ZO,Z) + 2 ( ) ( '") 
- - 1'1 Zo,Z 1'1 zo,) . 

Z - Zo r - Zo 

It is obviously regular for all values of the variables. 

7-2 VARIATION OF THE MAPPING FUNCTION 

We now make the additional assumption that n is simply connected and 
that ° E n. By the Riemann mapping theorem there exists a unique con­
formal mapping cp of n onto the unit disk such that <p(0) = ° and cp' (0) > O. 
The mapping function of n* is denoted by cp*. 

We are going to apply (7-11) with Z = 0, Zo = ro. In other words, 
we start from the formula 

g*(O,r) - g(O,r) = 2p2 Re {e ia [ 2r(to,O)r(to,r) 

+ ! r(O,t) - _1_ r(r,O) J} + O(p3). (7-12) 
to t - to 
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Green's function with pole at the origin is a(r,O) = -log Icp(r)l. 
The general value is 

g(ro,r) = -log I cp(r 0) - cp(r) I' 
1 - cp(r)cp(ro) 

and differentiation yields 

r(ro,r) = - ! [~<r~ + cp(r)cp'(ro) j. 
2 cp(ro) - cp(r) 1 - cp(r)ep(to) 

We need the special values 

r(r 0) = _ ! cp'(r) , 
, 2 cp(r) 

1 [ cp' (0) - I ] 
r(O,r) = - 2 - ep(r) + cp(r)cp (0) . 

When these expressions are substituted in (7-12), we obtain 

log lep*(r)I = _p2 Re [eiaA(r) + e-iaB(r)] + O(p3) 
lep(r) I ' 

(7-13) 

where A (r) = cp' (ro) 2 + cp' (0) + cp' (r) 
cp(ro)[cp(ro) - cp(r)] socp(r) (r - ro)cp(r) 

cp(r)cp'(O) 
(7-14) 

We have been careful to distribute the terms so that A(r) and B(r) are 
analytic in s. 

We shall now add the conjugate harmonic functions on both sides 
of (7-13). If we want the same remainder estimate to hold for the imag­
inary part, we must choose the additive constant so that the imaginary 
part vanishes at the origin. We find in this way 

ep*(r) { . [ A (0)] . [ A (0) ]} log-- = _p2 e,a A(r) - - + e-·a B(t) + ~ + O(p3) 
cp(r) 2 2' 

and after exponentiation 

cp*(r) = cp(r) (1 - p2 {e ia [A(r) _ A~O)] 

+ e-ia [ B(r) + A~O) J} + O(p3»). (7-15) 

We observe that A (0) must be computed as a limit and has the value 

A(O) = cp'(ro)2 _ cp"(O) _ ~. 
cp(ro)2 rocp'(O) ro2 



104 CONFORMAL INVARIANTS: TOPICS IN GEOMETRIC FUNCTION THEORY 

For .\0 = 0 still another limit must be formed. The estimate in (7-15) is 
uniform as long as .I and .\0 stay in compact sets. 

In most applications it is more convenient to deal with the inverse 
function f of <p and compare it with the inverse j* of <p*. In fact, the 
primary problem is to study the variation of a schlicht function in the 
unit disk. For this purpose we substitute.\ = fez) and .\0 = f(zo) in (7-14) 
and (7-15). To simplify the notation we write A(z) and B(z) instead of 
A[f(z)] and B(f(z)]. Thus 

1 1 1 
A(z) = zo(zo - z)!'(ZO)2 + !'(O)zf(zo) + z!'(z)[f(z) - f(zo)] 

z z 
B(z) = - ---=, 

zo(l - zzo)!'(ZO)2 !,(O)f(zo) 
(7-16) 

and (7-15) becomes 

<p*[f(z)] = z (1 - p2 {eiQ [ A(z) - A~O) ] 

+ e-ia [B(Z) + A~O)J} + O(p3»). (7-17) 

When both sides of (7-17) are taken as argument inj*, we obtain 

fez) = j*(z) - zj*'(Z)p2 {eia [ A - A~O) ] + e-ia [ B + A~O)]} + O(p3). 

(7-18) 

The estimate remains uniform, for one shows with the aid of Lemma 
7-1 that the derivatives of j* are bounded on any compact set. Hence 
(7-18) yields the crude estimates j* - f = O(p2) and j*' - I' = O(p2). In 
(7-18) we can therefore replace j*' by f', so that the variational formula 
becomes 

If we wish the mapping function to be normalized, 1'(0) = 1, we 
must divide f* by 

j*'(0) = 1 + p2 Re [A(O)eia] + O(p3). 

For simplicity the normalized function will again be denoted by j*, and 
we obtain for the normalized variation 

j*(z) - fez) = p2zl'(Z) {A (z)eia + B(z)e-ia - i 1m [A (O)eiaJ) 
- p2f(z) Re [A (O)eia] + O(p3). (7-19) 
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Here A (z) and B(z) have to be substituted from (7-16) with the slight 
simplification l' (0) = 1, and 

A(O) 
1 1"(0) 1 ---+----_. 

Z021' (Zo) 2 j(Zo) j(Zo)2 

7-3 THE FINAL THEOREM 

There are still other variations of a more elementary nature, and they can 
be added to Schiffer's variation in an effort to gain generality or simplify 
the result. First, we may replace j(z) by e-i'Yj(ei-rz), where,), is a small 
real number. One finds quite easily that the resulting variation is 

5j = i,),[z1'(z) - fez)] + 0(')'2). (7-20) 

We shall choose')' = p2 1m [A (O)e ia] and add the new variation to (7-19). 
In this way we obtain 

j*(z) - j(z) = p2{[A(z)eia + B(z)e-ia]z1'(z) - A (O)eiaj(z) I + 0(p3). 
(7-21) 

This variation is the one given by Schiffer [15] [compare with his formula 
(A3.30) which is not yet normalized]. 

There is a second elementary variation due to Marty [37]. For small 
complex e consider 

j*(z) = 1'(e)-l [j (: : ;z) - j(e) ] (1 - leI 2)-1, 

which is normalized and univalent. The variation is easily seen to be of 
the form 

5f = e[1'(z) - 1 - 1"(O)f(z)] - EZ21'(Z) + 0(leI 2). (7-22) 

We choose e = -p 2eia j(zo)-1 and add to (7-21), The terms withf" (0) can­
cel, and there are other simplifications as well. The resulting formula is 
particularly neat, and we shall formalize it as a theorem. 

Theorem 7-1 There exists a normalized variation of the form 

(7-23) 
with 

L(z) = zf'(z) 
zo(zo - z)1'(zo)2 

fez) j(z) 2 

Z021'(ZO)2 + j(ZO)2[j(Z) - f(zo)] 

1vl (z) 
Z21'(Z) 

(7-24) 
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The estimate is uniform as long as z and Zo stay in compact sets and 
Zo stays away from zero. 

Although we give preference to (7-23), it should be remembered that 
other combinations of (7-19), (7-20), and (7-22) may also be used. 

7-4 THE SLIT VARIATION 

Let 
z 

K(z) = (1 + Z)2 

be the Koebe function which maps Izl < 1 on the plane slit along the 
real axis from t to + 00. Because the image region is star-shaped with 
respect to the origin, we can form 

Et(z) = K-l[e-1K(z)] 

for all t > O. The asymptotic behavior of E t for small t is found by the 
following calculation: 

EtCz) = K-l[(l - t)K(z)] + O(t2) = Z - :,~;) t + O(t2) 

z(1 + z) O( 2) =z- t+ t. 
1 - z 

Starting from a normalized schlichtf weformj*(z) = f[e-i-,.Et(ei-,.z)], 
which is again schlicht. It has the development 

1 + ei-,.z 
j*(z) = fez) - z1'(z) . t + O(t2). 

1 - e'-"z 

To normalize we have to divide by j*'(0) = 1 - t + O(t2). We conclude 
that there exists a normalized variation of the form 

[ 1 + ei'Yz] fif = fez) - z1'(z) . t + O(t2). 
1 - e''Yz 

(7-25) 

It differs fundamentally from the earlier variations by the fact that 
t cannot be replaced by - t. For this reason, when applied to an extremal 
problem, it gives rise to an inequality rather than an equation. 

NOTES Schiffer's idea of using interior variations was a break­
through in the theory of univalent functions. It has permeated much of 
the postwar literature in this field. Schiffer's own retrospective account 
is in his appendix to Courant [15]. 



8 
PROPERTIES OF THE 

EXTREMAL FUNCTIONS 

8-1 THE DIFFERENTIAL EQUATION 

We reintroduce the notation j(z) = L anzn, al = 1, for a normalized 
1 

schlicht function and address ourselves to the problem of maximizing lanl. 
If j(z) is replaced by e-i'Yj(ei'Yz) , the coefficients become ane(n-1l i 'Y. For this 
reason it is an equivalent problem to maximize Re an, and the maximum 
of Re an will occur when an is positive. The existence of an extremal func­
tion is trivial, and we shall use the results of the preceding chapter to 
derive some of its properties. 

We return to the notations of Theorem 7-1 and write 

It is clear from this theorem that the function which maximizes Re aft 
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must satisfy 
Re (Lneio< + 111 nrio<) = 0 

for all real a, and this is so if and only if 

Ln + £1" = o. (8-1) 

In order to analyze this condition we must make it more explicit. 
It is only the last term in the expression for L(z) whose development 
causes some difficulty. For the purpose of obtaining at least semiexplicit 
results we shall write 

tf(z)2 ~ 
1 - tf(z) = ~ 8 n (t)zn, 

2 

where the 8 n are certain polynomials in t of degree n - 1 with leading 
coefficient 1 and zero constant term. With this notation (7-24) yields 

To conform with standard usage we shall write 

,,-1 71-1 

Qn(Z) = I ~~: + (n - l)an + I kakZn- k 

k=l k=l 

Pn(W) = 8ft (;~} 
(8-2) 

If we replace Zo by z, condition (8-1) takes the form 

Pn [f(z)]f'(z)2 Qn(Z) =-_. 
f(z) 2 Z2 

In other ''v'ords, we have shown that the extremal function W = fez) is a 
solution of the differential equation 

Pn (W)w'2 = Q,,(Z). 
W 2 Z2 

(8-3) 

The consequences of this remarkable relation wiIl be studied later. 
For the moment we recall that an > 0, as already mentioned. In par-
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ticular, an is real, so that the symmetry of the coefficients of the rational 
function Qn(Z) makes it real on Izi = 1. Hence the zeros of Qn lie on the 
unit circle or are pairwise symmetric to it. The only poles are at 0 and 0() , 

and they are of order n - 1. As for Pn(w) the most important feature is 
the pole of order n - 1 at the origin. 

We have chosen to maximize Re an only as a typical example. It is 
in no way more difficult to maximize an arbitrary real-valued differenti­
able function F(a2, ... ,an), and we prefer to consider the problem in 
this generality. We denote its complex derivatives by aF /aak = Fk , and 
in order to exclude extraneous solutions we assume that they are never 
simultaneously zero. The variational condition is obviously 

n L (FkLk + FkNh) = 0, 
k=2 

and this leads to a differential equation 

P(W)W'2 Q(z) 
--- =--, 

w2 Z2 

where P and Q are rational functions similar to P nand Qn. 
One sees at once that P and Q are of the form 

n 

n-l 

pew) = L Akw- k 

Q(z) 

1 

n-l 

L BkZIc, 
-(n-l) 

where Bo = 2: (Ie - I)Fkak, B_k = Bk for k ~ 0, and 
2 

n-k 

Bk = L hFh+kah 
h=l 

(8-4) 

(8-5) 

(8-6) 

for k > O. Therefore, Q is real on Izl = 1 if Bois real. That this is so is a 
consequence of the variation (7-20). According to this formula there is a 
permissible variation Of = i'Y[zj'(z) - fez)] for real 'Y. The corresponding 
variation of the coefficients is oak = i'}'(k - l)ak, and if F(a2, ... ,an) 
is a maximum, we must have Re !.Fkoak = 0, and hence 1m Bo = O. 

Because the differential equation (8-4) has a solution w = fez) with 
f'(O) = 1, the highest coefficients must be equal, A n - 1 = B n - l • In the 
case of equation (8-3) these coefficients are ~O. In the general case we 
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do not know this, but under the assumption that not all Fk are zero Q 
cannot be identically zero and therefore has a highest nonvanishing 
coefficient. With a change of notation we may therefore assume that 
B .. -l ~ O. 

It will be important for our later discussion to know that Q is not 
only real on the unit circle, but actually ~ O. This can be seen by use of 
the slit variation (7-25). When expanded this variation can be written 

GO.. .. 

oj = [r a .. z" - (l: kakzk) (1 + 2 r ehi'Yzh) ] t + O(t2), 
1 1 1 

and we find oa,. = -e"t + O(t2) with 
,,-1 

en = (n - l)a .. + 2 r kake(n-k)iy. 
k=l 

Recall that this is a valid variation only when t > O. If F(a2' ... ,an) is a 
maximum, Re "1;F koak must be ~ 0 for t > 0, and this implies Re };F "ek ~ O. 
On the other hand, with the aid of (8-2), (8-5), and (8-6), one finds 
Re "1;F"e" = Q(e- i'Y). Since 'Y is an arbitrary real number, it follows that 
Q(z) = 0 for Izl = 1. 

8-2 TRAJECTORIES 

Equation (8-4) can be written 

pew) dw2 Q(z) dz 2 

w2 Z2 
(8-7) 

and both sides may be regarded as quadratic d~tferentials. The fact that 
j(z) satisfies the differential equation means that (8-7) becomes an iden­
tity when we substitute w = j(z), dw = f'(z) dz. It is clear that any zero 
of Q(z) inside the unit circle is mapped on a zero of pew). Another con­
sequence is that any arc on which Q dz 2/Z 2 has a constant argument is 
mapped on an arc on which P dw 2/W2 has the same constant argument. 
Such arcs are called trajectories. In particular, we speak of a horizontal 
trajectory if Q dz2/Z2 ~ 0, and a vertical trajectory if Q dz2/Z2 :::; O. For 
instance, because Q ~ 0 on Izl = I, the unit circle is a vertical trajectory, 
but it is premature to speak of its image under j. Nevertheless, the study 
of the trajectories, and especially the vertical trajectories, should give 
us valuable information about the mapping. 

For somewhat greater generality we shall denote the quadratic 
differential under consideration by ip(w) dw 2• Here ip(w) will be rational, 
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and the zeros and poles of <p are referred to as the singularities of the 
quadratic differential. In order to stress the geometric point of view we 
introduce a metric ds 2 = I <p(w) Ildwl 2, which is euclidean except at the 
singularities. The trajectories are the geodesics of this metric. 

In order to investigate the trajectories near a given point Wo we 
introduce an auxiliary variable 

r = (w v' <p(w) dw. 
}wo (8-8) 

The vertical trajectories correspond to the lines Re r(w) = constant, but 
the situation is complicated by the fact that r is not single-valued. 

We denote by m the order of <p at Wo, m > 0 for a zero, m < 0 for 
a pole. We have to distinguish several cases. 

1) m = o. We can choose a single-valued branch of v' <p(w) in a 
neighborhood of woo The choice of branch does not matter since a 
change of sign would merely replace r by -t. The function r(w) has 
a simple zero at Wo, and therefore there is a single line Re r = 0 
passing through woo If we prefer, we can say that there are two ver­
tical trajectories issuing from Wo in opposite directions. 
2) m > O. We can perform the integration in (8-8) to obtain 

r = (w - wo)m/2+11f(w), (8-9) 

where If is analytic and ~ 0 near 100. The sign is ambiguous, but of 
no importance. The directions of the lines Re r = 0 are given by 

(~ + 1) arg w + arglf(wo) = ~ + n1l", 

with integral n. There are thus m + 2 equally spaced vertical tra­
jectories issuing from woo 
3) m = -1. This is similar to the preceding case, for it is still true 
that r = 0 for W = woo There is a vertical trajectory from Wo in one 
direction only. 
4) m = - (2k + 1), k > O. The lower bound must be replaced by 
some other constant. Integration still leads to a development similar 
to (8-9), but now r = 00 for w = woo Consequently, all lines Re r = c 
pass through woo There are infinitely many vertical trajectories from 
Wo, and they are tangent to 2k - 1 equally spaced directions. 
5) m = - 2. This case will never occur in our applications, and we 
leave the discussion to the reader. 
6) m = - 2k, k > 1. There is a complication due to the fact that 
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the· development of r may contain a logarithmic term. In place of 
(8-9) we obtain 

r = (w - WO)l-k1/;(W) + a log (w - wo), 

with 1/;(wo) ~ 0 and constant a. Let us write w - Wo = re iD ,1/;(wo) 
pei9., a = al + ia2. The lines Re r = constant are loci of the form 

rl-k[cos[(k - 1)(8 - 8o)]} + r1/;(r,8) + adogr - a28 = C, 

where 1/;(r,8) is differentiable. If the equation is multiplied by r k-l, 
it will be satisfied for r = 0 and 2k - 2 equally spaced values of 8, 
the same for all c. The implicit function theorem is applicable and 
leads to a solution 8 = 8(r) for each initial value and each c. There 
are thus infinitely many vertical trajectories from Wo, and they are 
tangent to 2k - 2 equally spaced directions. 

The results apply equally to Wo = 00, provided that the order at 
00 is defined as the order of <P(l/w) d(l/w)2 at O. For instance, P dw2/W 2 

has a simple pole at 00, and thus there is a single vertical trajectory which 
tends to 00. 

For further information on the trajectories we prove a lemma 
which is essentially a special case of the Gauss-Bonnet formula. In our 
terminology a geodesic polygon II shall be a closed curve consisting of 
finitely many segments of trajectories which together form the boundary 
of a simply connected region. We denote the vertices by Wi; and the order 
of II' at Wi by mi. Moreover, Wi shall be the inner angle at Wi, counted so 
that 0 :s; Wi :::; 211". We agree that Wi counts as a vertex if either mi ~ 0 
or Wi ~ 11", and we do not need to rule out the possibility of vertices and 
sides that are superimposed on each other. The polygon will be traversed 
in the positive direction with respect to the region that it bounds. 

Lemma 8-1 The difference N between the number of zeros and 
poles of II' inside a geodesic polygon is given by 

N + 2 = 4 [ 1 _ emi ~ 2)Wi]. 

• 
(8-10) 

where the sum is over the inner angles. 

For the proof the argument principle yields 

r d arg II' = 211"N + L miWi, In . • 
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where the change of argument refers only to the sides, not to the vertices. 
Because the sides are trajectories, d arg q; + 2 d(arg dw) = 0 along TI, and 
because the tangent changes its direction by 211", 

fn d (arg dw) + ~ (11" - Wi) = 211" . 
• 

Taken together these relations yield (8-10). 

REMARK We proved the lemma for a bounded region, but if cor­
rectly defined both sides of (8-10) are invariant under linear transforma­
tions so that the result remains valid if 00 is a vertex. We shall not allow 
00 as an interior point of a geodesic polygon. 

The quadratic differential P dw2/W 2 has n - 2 zeros and n + 1 
coinciding poles at the origin (and a simple pole at 00). A geodesic poly­
gon encloses either none or all of the poles at the origin. Hence either 
N ~ 0 or N S (n - 2) - (n + 1) = -3 so that N + 2 is never 0 or l. 
The same is true for Q dz 2/Z 2 provided that TI is contained in Iz/ s 1, for 
Q has at most n - 2 zeros in Izl < 1. 

Lemma 8-2 If a geodesic polygon for P dw2lw2 does not pass through 
the origin, it has either a vertex Wi ~ 0,00 with an angle different 
from 211"/(mi + 2), or an angle <211" at 00. The same is true for 
Q dz 2/Z 2 provided that the polygon is contained in Izl s 1. 

Indeed, since N + 2 ~ 0, one of the terms on the right-hand side 
of (8-10) must be different from zero. If no term is from a vertex at 0, this 
can occur only by having one Wi ~ 211"/(mi + 2). Note that mi = -1 at 
00, so that in this case the inequality means that Wi < 211". 

A regular trajectory is one that does not pass through a singularity. 
Every regular trajectory is contained in a maximal regular trajectory 
w = 'Y(t), a < t < b. This includes the case of a closed trajectory, the 
maximal trajectory being periodic. As t tends to a or b, the point 'Y(t) 
can either oscillate or tend to a singularity, but it cannot converge to a 
regular point. 

Lemma 8-3 In the case of P dw 2/W 2 or Q dz 2/Z 2 every maximal reg­
ular trajectory tends to a singularity. In particular, there are no 
closed regular trajectories. 

PROOF We consider only the first case, the second being similar. 
Given any nonsingular point Wo we shall show that 'Y(t) stays away from 
Wo when t is close to a or b. Once this is shown, the lemma follows by an 
obvious compactness argument. 
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(a) (b) 

FIGURE 8-1 

We may assume that the trajectory is a vertical tl.·ajectory. In 
terms of the variable r introduced by (8-8) let V be a small neighbor­
hood Irl < 8. If 'Y(t) does not stay away from Wo, the trajectory would 
intersect V along infinitely many arcs, each represented by a vertical 
line segment in the r plane. Actually, there can be only one such segment. 
Indeed, if there are two such arcs in succession, the schematic diagram 
(Fig. 8-1a and b) shows how to construct a geodesic polygon with two 
right angles or with angles 7r /2 and 37r /2 (a closed regular geodesic may 
be viewed as a degenerate version of the second case). Lemma 8-1 gives 
N + 2 = 1 in the first case and N + 2 = 0 in the second. We have 
already seen that these values are impossible, and Lemma 8-3 is proved. 

8-3 THE r STRUCTURES 

As we have already remarked, the extremal mapping carries singularities 
into singularities and vertical trajectories into vertical trajectories. The 
maximal vertical trajectories that can be distinguished from all others are 
those that either begin or end at a zero or a simple pole. In contrast, there 
are infinitely many vertical trajectories issuing from a multiple pole, and 
we cannot distinguish a vertical trajectory that begins and ends at a 
multiple pole. For this reason we construct, to begin with in the w plane, 
the graph consisting of all maximal vertical trajectories of P dw 2/W2 which 
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do not begin and end at the origin. Following Schaeffer and Spencer [56] 
we shall denote this graph by r w. The graph is finite, for according to 
Lemma 8-3 each trajectory that is part of the graph must lead from a 
zero to a zero, from a zero to a pole, or from the pole at 00 to the pole at 
the origin, and there are only a finite number of trajectories issuing from 
the zeros and from the pole at 00. The single trajectory from 00 is always 
part of r w. The graph divides the plane into regions which we denote 
generically by Ow' 

In the z plane we carry out the same construction for Q dz 2/Z 2, but 
we shall let r. denote only the part of the graph that is contained in 
Izl ~ 1. We recall that the unit circle is a vertical trajectory and that 
there is at least one zero on the unit circle. Hence the unit circle is always 
part of r z. The O. are inside the unit circle. 

Our next step is to use Lemmas 8-1 and 8-2 to gain information 
about the Ow and 0 •. 

Lemma 8-4 Each Ow (or 0.) is the inside of a geodesic polygon 
whose sides belong to the graph r w (or r.). The angle at a vertex 
that is a zero of order mi is 27r/(mi + 2). In addition the polygon has 
either one vertex with angle 27r/(n - 1), or two vertices with angle 
zero at the origin. One of the Ow has angle 27r at 00. 

PROOF Consider the outside contour of Ow' It is obviously a geodesic 
polygon with sides belonging to r w. The angle at a finite vertex other than 
the origin is exactly 27r / (mi + 2), and if there is a vertex at 00, the angle 
is 27r. By Lemma 8-2 the origin must lie on the outer contour. If Ow were 
not simply connected it would have an inside contour which does not pass 
through the origin. There would be at least one O~ inside this contour, and 
the outer contour of O~ would not pass through the origin, contrary to 
what was shown. Hence all Ow are simply connected. 

The angles of Ow at the origin are of the form Wi = 2ki7r/(n - 1) 
with integral ki ~ 0, and the corresponding mi is - (n + 1). It is clear 
that N = 0 in Lemma 8-1. Hence 2:(k i + 1) = 2, which is possible only 
for one k i = 1 or two k i = O. This is precisely the statement in the lemma 
that we are proving. The existence of one Ow with a vertex at 00 is obvious. 
The rest of the proof applies equally to 0 •. 

A geodesic polygon which is also a Jordan curve will be called a 
geodesic loop. 

Lemma 8-5 Every geodesic loop on r w passes through the origin. 
The same is true of every geodesic loop on r. which is not the whole 
unit circle. 
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PROOF If a loop on r w does not pass through the origin, it divides 
the extended plane into two regions, one of which does not contain O. This 
part of the plane is subdivided into regions 12w whose boundaries do not 
pass through the origin, contrary to Lemma 8-4. Similarly, a geodesic loop 
on r., which does not pass through the origin and is not identical to the 
unit circle, divides the unit disk into two parts, one of which does not 
contain the origin. The same contradiction is reached. 

8-4 REGULARITY AND GLOBAL CORRESPONDENCE 

We have yet to prove that the extremal function f is analytic on Jz/ = 1 
(except for isolated points). This will be a by-product of a closer study of 
the correspondence between the regions 12w and 0 •. 

We use superscripts to distinguish the various Ow' and 12/. In each 
Ow' and 0/ we choose some fixed determination of 

r,(w) = f VP(w) d: 
Aj(Z) = f v'QW ~z, (8-11) 

i.e., we choose a branch of the square root and fix the integration con­
stant. This is possible because the 12wi and n.i are simply connected. 

According to Lemma 8-4 there are two types of regions Ow. We shall 
say that Ow' is of type 1 if it has one vertex with angle 27r/(n - 1) at the 
origin, and of type 2 if it has two zero angles at the origin. The same classi­
fication applies to the 12/. 

Consider first an Oi of type 1. It is clear that Aj extends continuously 
to the boundary of 0/, except perhaps at the vertices, and that each side 
of the boundary is mapped on a vertical line segment. It follows from 
(8-11) that the leading term in the expansion of Aj at the origin has the 
form Az(1-n)/2. Therefore, the origin is thrown to 00, and the angle of Oi 
at the origin is mapped on an angle 7r at 00. It is seen in the same way 
that Aj remains continuous at all other vertices, and that all angles are 
straightened. With this information standard use of the argument prin­
ciple shows that Aj determines a one-to-one conformal mapping of 12.i onto 
a right or left half plane, which we shall denote by Ai. In the case of a 
region of type 2 there are two vertices that are thrown to 00, and the 
corresponding angles are zero. It easily follows that the image region is 
a vertical strip. The situation is quite similar in the w plane, and we 
denote the image of Ow' by Aw i • The main theorem can now be stated. 
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Theorem 8-1 The regions O. and Ow can be matched and reindexed 
so that the extremal function j maps O.i onto n",i, both regions being 
of the same type. The function j can be continued analytically to 
Izl = 1, except for one double pole and a finite number of algebraic 
singularities. 

Globally, j maps the unit disk on a slit region obtained by 
removing a connected part of r w from the w plane. The slit extends 
to 00. 

PROOF The notation j-I shall refer to the original j as defined for 
Izl < 1, not to its extension. We show first that j-I(rw) era. For this 
purpose, let 8 be a maximal vertical trajectory contained in r w. Then 
j-I(8) is either empty, or it is a vertical trajectory. In the latter case it 
is maximal, for an extension of j-I(8) would be mapped by j on an exten­
sion of 8. It cannot lead from 0 to 0, for then 8 would have the same 
property. We conclude that j-I(8) is contained in r z• As for the vertices 
of r w, it is trivial that the inverse image of each vertex is either empty or 
a vertex of r z. 

Choose any Zj E 0/ and let Ow; be the region Ow that contains j(Zj). 
If there were a point z E 0/ with j(z) E Ow i ;;z: Owj, there would also be 
a point in 0/ with fez) E r w. Since this is impossible, Ow j is unique, and 
f(O.i) C Owj. 

We know further that 5;[f(z)Pf'(z)2 = A~(z)2 in fl,i. Integration 
yields 

(8-12) 

where Cj is a constant. We shall use (8-12) to prove that j maps Oi onto 
Owi. 

Define the map h by h(Aj) = ± Ai + Cj, the sign being as in (8-12). 
Because Aj and 5j are one to one, f(fl.i) C fl.w j translates into h(A.i) C Au';' 
This already shows that Owi is of type 1 if O.i is of type 1. In this case, 
denote the boundary of the half plane A.i by L. Then h(L) is either the 
boundary of Awj or a parallel to it. In the latter case r,.-l[h(L)] = f[A,.-l(L)] 
would be free from singularities. This is not so because Aj-IeL) is not 
singularity-free. It follows that h, and hence f, is onto. In the case of 
type 2 there are two boundary lines LI and L2 of A/. Both heLl) and 
h(L2) must lie on the boundary of Awi, and they cannot coincide. There­
fore fl.w i is of type 2, and the mapping is onto. 

Kote that formula (8-12) will automatically define a continuous 
extension of f to the part of the boundary of each n/ which lies on Izi = 1. 
As usual, the analyticity of f, except at the vertices, follows by the re­
flection principle. 
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The full image of /z/ = 1 is a connected part of I' w. Since the image 
does not pass through the origin, it contains no loop, by Lemma 8-5. The 
image is therefore a slit, which may be branched (the term "tree­
shaped" would perhaps be more descriptive). The image of /z/ < 1 must 
be the full complement of the slit. This shows that every nw is the image 
of some n •. Finally, the slit reaches out to 00 along the single vertical 
trajectory from that point, for otherwise the complement would not be 
simply connected. The unique point on /z/ = 1 that corresponds to w = 00 

is a double pole. 
The Schiffer method has yielded a qualitative description of the 

extremal mapping in a situation of great generality. On the other hand, 
relatively few quantitative results are within the scope of the method. 

8-5 THE CASE n = 3 

In order to illustrate the preceding discussion we shall make a detailed 
study of the case n = 3. Here the problem is to maximize a function 
F(a2,aa). Our earlier notation (8-5) would be 

pew) = AIw- 1 + A 2w-2 

Q(z) = B_2z-2 + B_1z-l + Bo + BIZ + B2Z2, 

but this conceals the available information, namely, that Q(z) ~ 0 on 
/zl = 1 and that Q(z) has at least one double zero on the unit circle. To 
bring this out we prefer to write 

pew) 
A(w - c) 

Q(z) 
B(z - W)2(Z - (j) (z - liP) , 

Z2 

where c ~ 0, Iw/ = 1, and //1/ ~ 1. The argument of B is in a certain 
relation to wand /1, but there is no need to make this explicit. 

The extremal function w = fez) must satisfy 

vA J vi w - c dw = ± Vii J (z - w) vi (z - (1)(z - liP) dz + c. 
w2 Z2 

The integrals can be evaluated explicitly, and in principle we can express 
w at least as an implicit function of z, although there remains the problem 
of choosing signs and integration constants. However, we do not attach 
much importance to this part of the problem, which leads to complicated 
formulas at best. 
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It is of much greater interest to study the r structures and the 
mapping of the fl.i on the flwi • We begin with r w. There are two essentially 
different cases, depending on whether the vertical trajectory from 00 leads 
to c or to o. 

Case I The vertical trajectory from 00 leads to c. The two other trajec­
tories from c form 1200 angles, and they lead to the origin where they meet 
at an angle of 1800 (Fig. 8-2). There are two regions flw 1 and flw 2, each 
mapped on a half plane by means of a branch of 

We choose to map flw 1 on a left half plane and flw 2 on a right half plane 
(Fig. 8-3). In either case w = 0 corresponds to r = 00. In the left half 
plane we mark the point Cl that corresponds to c. In the light half plane 
there are two points C2'C~ corresponding to c, and we also mark the point 
00' that corresponds to 00. It lies halfway between C2 and c~, for both 
distances are measured by 

r'" v'IP(w)lldwl 
}c Iwl 

taken along the trajectory from c to 00. 

(8-13) 

The segments (C2, 00 ') and (c~, 00 ') have to be identified, as indicated 

FIGURE 8-2 

( 

FIGURE 8-3 
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by the arrows. It remains to attach the half planes to one another. This 
is done by identifying the two half lines issuing from Cl with the half 
lines starting at C2 and c~. A way to realize this identification is to cut the 
left half plane along the horizontal line through Cl and attach each quarter 
plane to the right half plane (Fig. 8-4). We obtain a conformal model of 
the w sphere as the complement of a rectangular half strip with two 
identifications. If desired, the identifications can be made concrete at the 
expense of allowing folds in the right half plane. 

At this point we discover that our model has a line of symmetry. For 
this reason Fig. 8-2 must also be symmetric with respect to the straight 
line through 0 and c. In fact, the whole configuration is unique up to a 
rotation and change of scale. We observe that the width of the half strip 
is twice the integral (8-13). By residues, it is also equal to 211" times the 
coefficient of log w in the development of r(w) at the origin. 

For the r. structure there are two possibilities compatible with 
Case 1. 

Case Ia 1,81 < 1. The r. structure is shown in Fig. 8-5, and the mapping 
by >.(z) is diagrammed in Fig. 8-6. Observe that there is no identification 
between W2 and w;. This segment is the image of the unit circle, and Fig. 
8-6 is a model of the unit disk. There is again a line of symmetry, and 
this symmetry carries over to the z plane. 

The extremal mapping is visualized by superimposing Fig. 8-6 on 
Fig. B-4. The widths of the half strips must be equal, ~howing that the 
coefficient of log z must be equal to the coefficient of log w. As we pass 
to w = f(z), we see that Izl = 1 is mapped on a proper part of the vertical 
trajectory from C to 00. Since the latter is a straight line, we recognize 
that the only extremal mapping of type Ia is the Koebe mapping. 

FIGURE 8-4 
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o ~--;W 

FIGURE 8-5 

FIGURE 8-6 

FIGURE 8-7 

Case Ib 1.81 = 1. The rz structure is shown in Fig. 8-7. Because {3 and W 

are interchangeable, we may assume that the labeling is as in the diagram. 
In the image half planes (Fig. 8-8) we have marked not only the images 
of {3 and w, but also the points that correspond to Cl,C2,C; and 00 I when 
the diagram is superimposed on Fig. 8-3. It is readily seen that the dis­
tance from .81 to (e1) must be equal to the distance from (32 to (C2), and 
the distance from (C1) to WI is the same as from (c;) to W2. To realize the 
identifications we cut the left half plane along the horizontal line through 
eCI). The quarter planes are attached to the right half plane, but only 
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FIGURE 8-8 

I ( 

FIGUHE 8-9 

FIGURE 8-10 

along the half lines above /31,/32 and below Wl,W2. Figure 8-9 is an exag­
gerated picture of the resulting model of the unit disk. The extremal 
function j(z) maps the unit disk on the complement of a forked slit as 
indicated by the heavy lines in Fig. 8-2. 

Case II The vertical trajectory from 00 leads to the origin. In the r w 

structure there are three regions !1w, two of type 1 and one of type 2 
(Fig. 8-10). The corresponding half planes and strip are shown in Fig. 
8-H. We manipulate the strip by cutting it from C2 to 00' and rotating 
the lower part through 1800 about 00', in such a way that identified 
points will coincide. It is now easy to attach the half planes (Fig. 8-12). 
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FIGURE 8-11 

FIGURE 8-12 

FIGURE 8-13 

Finally, to make the angles right angles we delete a wedge on the left 
and attach it on the right (Fig. 8-13). We end up ,,·ith the same model 
of the w sphere as in Case I, but now the trajectories are slanted. 

There is only one r. structure compatible with Case II (Fig. 8-14). 
It should be clear by now how to construct the corresponding model of 



124 CONFORMAL INVARIANTS: TOPICS IN GEOMETRIC FUNCTION THEORY 

FIGURE 8-14 

FIGURE 8-15 

the unit disk (Fig. 8-15). Figure 8-15 can be superimposed on Fig. 8-13, 
and we recognize that fez) maps the unit circle on a slit along the vertical 
trajectory from 00 to 0 (the heavy line in Fig. 8-10). 

The possible values of (a2,aa) form a region in real four-dimensional 
space, but since (a2,a3) can be replaced by (a2ei9,aae2i9) , we may assume 
as to be real so that the region is three-dimensional. It may be expected 
that the coefficient region is bounded by a smooth surface, in which case 
every point on the boundary surface would correspond to a local extre­
mum of a linear function, for instance, the distance from the tangent 
plane. If so, we have shown that the boundary point corresponds to a 
mapping fez) of the type described under Case I or Case II. Schaeffer 
and Spencer have shown that this is indeed true, and that the two types 
of extremal mappings form two boundary surfaces of the coefficient body 
with only the Koebe mapping as common point. The boundary is of 
course two-dimensional, the parameters being the lengths (32 - C2 and 
c; - W2 in Case I, and the length and angle of the slit in Fig. 8-15 in 
Case II. The book by Schaeffer and Spencer [56] has a beautiful 
illustration. 



9 
RIEMANN SURFACES 

9-1 DEFINITION AND EXAMPLES 

In the classic literature the term Riemann 8U1jace is used with t,vo 
different although related meanings. Riemann, in his thesis, overcomes 
the difficulty of multiple-valued analytic functions fez) by means of the 
suggestive device of letting the variable z vary over a domain which may 
cover parts of the complex plane several times. Although modern mathe­
maticians frown on the use of multiple-valued functions, the underlying 
idea is fundamental and can easily be axiomatized. It leads to the topo­
logical notion of cOl'ering surface. 

In his later work on the foundations of geometry Riemann intro­
duced what is known as differential manifolds. This idea generalizes in 
turn to the notion of complex manifolds. In present terminology a 
Riemann surface is a one-dimensional complex manifold. 

Definition 9-1 A Riemann surface IS a connected Hausdorff 
space W together with a collection of charts {U a,za} with the 
following properties: 
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i) The U,. form an open covering of W. 
ii) Each Za is a homeomorphic mapping of U,. onto an open subset 
of the complex plane C. 
iii) If U an Ufj ~ 0, then Zafj = Zfj 0 Za -1 is complex analytic on 
Z,.(U,. n Ufj). 

Several comments are in order; 

1) The system {Ua,Za} is said to define a conformal structure on W. 
If it is understood which conformal structure we are referring to, we 
shall not hesitate to speak of the Riemann surface W. 
2) The topology of W is completely determined by the mappings 
z,.. Thus, an alternative way would be to require merely that the 
Za are one to one and that the sets Z,.(Ua n UfJ) are open. The open 
sets on Ware then generated by the inverse images of open sets. 
The topology is Hausdorff if any two distinct points p,q E Ware 
either in the same Ua or in disjoint sets U,. and UfJ. The connected­
ness is of course a separate requirement. 
S) A point p E U a is uniquely determined by the complex number 
z,.(p). For this reason Za is referred to as a local variable or local 
parameter. The subscript is frequently dropped, and z(p) is identi­
fied with p. For instance, Ap = {zlz - zol < p} can refer either to 
a disk in C, or to its inverse image on W. 
4) The practice of identifying a point on the Riemann surface with 
the corresponding value of a local variable leads to no difficulty as 
long as we deal with concepts that are invariant under conformal 
mapping. Typical instances are the notions of analytic function, 
harmonic function, subharmonic function, and analytic arc. 
5) It is clear what is meant by a complex analytic mapping from 
one Riemann surface to another. Two Riemann surfaces are said to 
be conformally equivalent if there is a one-to-one complex analytic, 
and hence directly conformal, mapping of one onto the other. They 
are to be regarded as not essentially different. 
6) Every open connected subset of a Riemann surface is a Riemann 
surface in its own right. 

EXAMPLE 9-1 Let W be the unit sphere X1 2 + X2 2 + X3 2 = 1 in three­
space. Let U 1 be the complement of (0,0,1) and U 2 the complement of 
(0,0, -1) with respect to W. As local variables we choose 

Xl + iX2 
Zl = , 

1 - Xa 
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on U1 and U2, respectively. They are connected by ZIZ2 = Ion U1 n U2• 

This choice makes W into a Riemann surface, namely, the Riemann 
sphere. 

EXAMPLE 9-2 Let WI and W2 be complex numbers ;c 0 whose ratio is 
not real. We define an equivalence on C by saying that ZI and Z2 are 
equivalent if ZI - Z2 = mlWl + m2W2 with integral ml, m2. There is a 
natural projection 7r which takes z E C into its equivalence class z. We 
shall define a conformal structure on T = 7r(C). For this purpose let d a 

be any open set in C which contains no two equivalent points. We set 
U a = 7r(da ) and define Za as the inverse of '/I' restricted to d a • These local 
variables define T as a Riemann surface known as a torus. 

9-2 COVERING SURF ACES 

In Definition 9-1 we required the transition functions ZaiJ to be complex 
analytic. Weaker requirements lead to more general classes of surfaces. 
We speak of a surface as soon as the mappings ZafJ are topological and of 
a d~fferentiable surface if they are of class Coc. Evidently, a Riemann sur­
face is at the same time a differentiable surface. 

Let Wand W* be surfaces, and consider a mappingf: W* ---t W. We 
say that f is a local homeomorphism if every point on W* has a neighbor­
hood V* such that the restriction of f to V* is a homeomorphism. When 
this is so the pair CW*,j) is called a covering surface of W. The point 
f(p*) is the projection of p*, and p* is said to lie over f(p*). It is always 
possible to choose V* and V = f(V*) within the domains of local vari­
ables Z and z*. For convenience we again identify V* and V with their 
images, and we use the notation Z = f(z*) for the projection map. 

Suppose now that W is a Riemann surface with the charts I U a,Za I. 
Then W* can be endowed with a unique complex structure which makes 
the mapping f: W* ---t W complex analytic. Explicitly, this can be done 
by requiring the charts I U;,z; 1 to be such that f is one to one on U; 
and the functions Za 0 f 0 Z;-I complex analytic whenever they are de­
fined. More informally, the conformal structure on W* is such that 
go f is analytic on W* whenever g is analytic on W. 

We remark that when W* and W are Riemann surfaces it is also 
possible to consider complex analytic mappings f: W* ---t W which are 
not necessarily locally one to one. In this case (W*,f) may be considered 
a ramified covering surface, and in contrast an ordinary covering surface 
is said to be smooth. In the following discussion we shall consider only 
smooth covering surfaces. 
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Let V be an open set on W. We shall say that V is evenly covered 
by (W*,f) if every component of the inverse image f-I(V) is in one-to­
one correspondence with V. This correspondence is always topological, 
and if Wand W* are Riemann surfaces, it is a conformal mapping. 

Definition 9-2 A covering surface (W*,f) of W is said to be com­
plete if every point has an evenly covered open neighborhood. 

Every connected subset of an evenly covered set is itself evenly 
covered. For this reason it is sufficient to consider neighborhoods V 
which are homeomorphic to a disk. 

Lemma 9-1 A complete covering surface covers each point the 
same number of times. 

This is an immediate consequence of the definition together with 
the connectedness of W. It is indeed easy to show that the set of points 
that are covered exactly n times is open and closed. The number of 
times each point is covered is called the number of sheets. 

Let (' be an arc on W, that is, a continuous mapping (': [a,b] ~ W. 
We say that the arc ('*: [a,b] ~ W* covers (" or that (' can be lifted to 
('*, if f[('*(t)] = ('(t) for all t E [a,b]. The initial. point ('*(a) lies over the 
initial point ('(a). 

Theorem 9-1 If (W*,f) is complete, every arc (' can be lifted to 
a unique ('* from any initial point pri over po, the initial point 
of ('. 

PHOOF Let E be the set of all r E [a,b] such that ('[a,r] can be 
uniquely lifted to ('*[a,r] with the initial point p*. E is not empty, for 
a E E. If r E E, we determine an evenly covered neighborhood V of 
('(r) and choose 8 so small that (,[r,r + 0] C V. The point ('*(7) belongs 
to a component V* of f-·I(V). Since f: V* ~ V is topological, there is a 
unique way of extending ('* to [r,r + 0]. This proves that E is relatively 
open. A similar proof shows that the complement of E is open. Hence 
E = [a,b]. 

9-3 THE FUNDAMENTAL GROUP 

Suppose that the arcs ('I: [0,1] ~ Wand ('2: [0,1] ~ W have common 
end points: ('1(0) = ('2(0), ('1(1) = ('2(1). A continuous mapping (': 
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[0,1] X [0,11 - W is a deformation of 'Yl into 'Y2 if 'Y(O,u) = 'YI(O), 

'Y(I,u) = 'Yl(I), 'Y(t,O) = 'Yl(t), 'Y(t,I) = 'Y2(t). In other words, there is a 
continuously changing arc bet'veen fixed end points whose initial position 
is 'Yl and terminal position 'Y2. When such a deformation exists, we say 
that 'Yl is homotoph to 'Y2, and we write 'Yl "'" 'Y2. 

We remark that it is only for the sake of convenience that we refer 
all arcs to the parametric interval [0,1]. The general case can be reduced 
to this by a linear change of parameter. 

As an example we note that if W is a convex region in the plane, 
then any two arcs with common end points are homotopic by way of 
the deformation 'Y(t,u) = (1 - Uhl(t) + U'Y2(t). 

Suppose that we change the parametric representation of an arc 
from 'Y(t) to 'Y[T(t)], where T(t) increases monotonically and continuously 
from ° to 1. Then these two arcs, which are geometrically identical, are 
also homotopic as seen from the mapping 'Y[(I - u)t + uT(t)l. 

The relation 'Yl "'" 'Y2 is evidently an equivalence relation. The equiv­
alence classes are called homotopy classes, and we denote the homotopy 
dass of 'Y by b I. Two arcs in the same homotopy class have common 
end points. We have just seen that reparametrization does not alter the 
homotopy class. 

Suppose that 'Y2 begins where 'Yl ends. Then the product 'Y = 'Yl'Y2 

('Yl followed by 'Y2) is defined by 

'Y(t) = { 'Yl(2t) 
'Y2(2t - 1) 

for 
for 

t E [OJ] 
t E [t,I]. 

This construction is compatible with homotopy in the sense that 'Yi ~ 'Y: 

U = 1,2) implies 'Yl'Y2 "" 'Y~I'~. In view of this property we can define a 
product of two homotopy classes by setting bd 11'21 = 11'11'21· 

The product suffers from the disadvantage that it is not always de­
fined. To eliminate this difficulty ,ve pick a point po E Wand consider 
only arcs that begin and end at po. With this restriction all homotopy 
classes can be multiplied. Moreover, the homotopy class of the degenerate 
arc given by I'(t) = po acts as a multiplicative unit and is therefore 
denoted by 1 (it depends on po, but there is little need for more precise 
notation). An easy verification shows that multiplication is associative. 
Also, every homotopy class has an inverse, for bIb-II = 1, where 1'-1 
is I' traced backward, i.e., 'Y-1(t) = 1'(1 - t). These properties show that 
the homotopy classes of closed curves from po form a group. It is called 
the fundamental group of W with respect to po, and the standard notation 
is 1I"1(W,PO). 
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What happens if we replace po by another point PI? Since W is 
connected, we can draw an arc u from po to Pl. If 1'1 begins and ends at 
PI, then l' = U'YIU- 1 begins and ends at Po, and {I' I depends only on 
IT'd. This correspondence between h} and htl is one to one, for l' ~ 
U'YIU-1 if and only if 1'1 ~ u-1,),u . .:\1oreover, the correspondence preserves 
products, and hence is an isomorphism between 1I"1(W,PO) and 1I"1(W,Pl). 
In other words, the choice of po makes very little difference. As an ab­
stract group the fundamental group is denoted by 1I"1(W). 

A surface W is said to be simply connected if 1I"1(W) reduces to the 
unit element. We recall that a plane region is simply connected if and 
only if its complement with respect to the extended plane is connected. 

9-4 SUBGROUPS AND COVERING SURFACES 

From now on all covering surfaces are understood to be complete. In 
this section we study the relations between the fundamental group and 
the covering surfaces of a surface W. 

If (W1,It) is a covering surface of W, and if (W2,i21) is a covering 
surface of WI, then (W2,It ohl) is a covering surface of W. We say in 
this situation that the latter is a stronger covering surface. l\.Jore sym­
metrically, (W2.!2) is stronger than (W l,ft) if there exists a mapping in 
such that h = ft ° hi and (W2,!21) is a covering surface of WI. This rela­
tionship is transitive and defines a partial ordering. If two covering sur­
faces are mutually stronger than the other, they are equivalent and we 
regard them as essentially the same. 

Consider (W*,j) over W. We choose po E W and p~ over po. Let 
l' be a closed curve on W from po, and let 1'* be the lifted arc with initial 
point p~:. Then 1'* mayor may not be closed. The monodromy theorem 
states that 1'* is homotopic to 1, and consequently closed, if l' is homo­
topic to 1 (for a proof see C.A., p. 285). Therefore, whether 1'* is closed 
or not depends only on the homotopy class of 1'. 

Let D be the set of all homotopy classes {')'} such that 1'* is closed. 
If {'Yl belongs to D, so does b-1}, and if hd and h2} are in D, so is 
bl'YzJ. Hence D is a subgroup of 1I"1(W,PO). Observe that D depends on 
the choice of pri. 

The dependence on pri is quite easy to determine. Suppose that we 
replace pri by pt with the same projection po. Let u* be an arc from pri 
to pt. Its projection u is a closed curve from po. If l' is a closed curve from 
po, it is readily seen that u,),u- l lifts to a closed curve from p~ if and 
only if l' lifts to a closed curve from pi. If Dl corresponds to pi in the 
same way that D corresponds to p~, we thus have Dl = lu}-IDlu}. In 
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other words, D and D1 are conjugate subgroups. Conversely, every con­
jugate subgroup of D can be obtained in this manner. 

Theorem 9-2 The construction that we have described determines 
a one-to-one correspondence between the classes of conjugate sub­
groups of 'lr1(W,PO) and the equivalence classes of covering surfaces 
(W*,f). Jloreover, if D and W* correspond to each other, then 
'lrl(W*) is isomorphic to D. 

PROOF We have already shown that. every (W*,J) determines a 
class of conjugate subgroups, and it is evident that equivalent covering 
surfaces determine the same class. 

Conversely, if we start from a subgroup D, we have to construct a 
corresponding surface W*. Let 0'1 and 0'2 be arcs on W from po. We shall 
write 0'1"""" 0'2 if they have the same end point, and if 0'10'2- 1 ED. This is 
obviously an equivalence relation. The points of W* will be equivalence 
classes of arcs 0', the class of 0' being denoted by [0']. The projection map 
f will take [ul into the common terminal point of all 0' E [u]. 

lt is not difficult to provide W* with a surface structure. To de­
scribe the process in some detail, let the structure of W be given by 
charts I U a,Z", I, where the U a are topological disks. Choose a point 
qo E Ua and qci = [0'0] over qo. For any q E V", we draw an arc 0' from 
qo to q within U a. Then 0'00' determines a point [O'ou] which depends on 
qci and q, but not on the choice of u. We have obtained a set u:(qci) C W* 
which is in one-to-one correspondence with its projection U a, and we 
define the structure of W* by means of the charts I U:(q~),z", 0 fl. 

lt is necessary to verify that the induced topology is Hausdorff. Let 
pi and pi be distinct points of W*. If they have different projections, the 
exist.ence of disjoint neighborhoods is obvious. Assume now that f(pi) = 
f(pi) and pi E u:(qci), pi E U;(qi). We can write pi = [uoO"] , pi = 
[U10''']. By assumpt.ion, 0'0U'U"-IU1-1 is a closed curve, but its homotopy 
class is not in D. If u:(qci) and U;(qi) had a eommon point, it would 
have two representations [O'OT'] = [UIT"], and O'OT'T"-IU1-1 would belong to 
D. But if the terminal points of T' and u' are in the same eomponent of 
Ua n U{3, it is easy to see that T'T"-I ~ 0"0'''-1, and we would arrive at a 
contradiction. lt follows that pi and pi have disjoint neighborhoods. 

Our proof also shows that any two U:(q~) with the same Ua are 
either disjoint or identical. This in turn implies that the r;:(qci) are com­
ponents of j-I(U",), and hence (JV*,f) is It complete covering surface. 

We now show that (W*,f) determines the subgroup D or one of its 
eonjugates. As initial point \ye ehoose pci = [1], the equivalence class 
of the ('onstallt eurve from po. Let 0' be a dosed curve from ])0, param-
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etrizedover [O,lJ, and denote its restriction to [O,rJ by uT • Then the 
lifted arc u is given by iT(r) = [uTJ. It is closed if and only if {u) ED, 
which is what we wanted to prove. 

It remains to prove that 1I"1(W*) is isomorphic to D. Let 'Y* be a 
closed curve on W* from pci, and let 'Y be its projection. Then I 'Y) E D, 
and if 'Y~ and 'Y: are homotopic, so are their projections, for a deforma­
tion on W* projects to a deformation on W. Hence projection induces 
a mapping of 1I"1(w*,pci) into D. This mapping is onto by the definition 
of D. It is obviously product preserving, and it is one to one, for 'Y "'" 1 
implies 'Y* "'" 1 by the monodromy theorem. We conclude that the pro­
jection map defines an isomorphism between1l"1(W*,pci) and D. 

In the applications of Theorem 9-2 there are two extreme cases. 
First, if D is the whole group 1I"1(W,PO), two arcs from po are equivalent 
as soon as they lead to the same point, and the projection f is a homeo­
morphism so that W* can be identified with W. The other extreme 
occurs when D reduces to the unit element. The corresponding covering 
surface is called the universal covering surface of W, and we denote it by 
lV'. It has the property that an arc on lV' is a closed curve if and only if 
its projection is homotopic to 1. Furthermore, 1I"ICW) = 1, so that lV' is 
simply connected. 

The subgroups of the fundamental group have the same partial 
ordering as the corresponding covering surfaces. To be more specific, 
suppose that Dl and D2 correspond to w7 and Wi, respectively. If 
DI C D 2, then W7 is stronger than wi. Conversely, if W: is stronger 
than Wi, then D2 contains a conjugate of D1. In particular, the universal 
covering surface is the strongest. The proofs are left to the reader. 

9-5 COVER TRANSFORMATIONS 

Given a covering surface (W*,j) of W, let qJ be a homeomorphic mapping 
of W* onto itself. It is called a cover transformation of W* over W if 
j 0 rp = j, that is to say, if p and rp(p) have the same projection. If W 
and W* are Riemann surfaces, then rp is a conformal mapping. Indeed, 
the local variables on Wand W* may be chosen as Za and z: = z" 0 j. 
To say that rp is conformal is to say that z; 0 rp ° Z:-l is conformal where 
it is defined. Butz;orpoZ:-l =Z{30jorpoj- 1oz,,-1 =Z{3oZa- 1, and this 
is conformal by hypothesis. 

Theorem 9-3 A cover transformation, other than the identit.y, has 
no fixed points. 
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PROOF Suppose that c,o(p~) = P6. By the definition of covering 
surface p~ has a neighborhood V* such that J: V* ----t J(V*) is a homeo­
morphism. Let U* C V* be a neighborhood of P6 such that 10 ( V*) C V*. 
If P* E U*, \ve have J[c,o(p*)] = J(p*) E J(V*). Since p* and c,o(p*) are 
both in V*, it follows that c,o(p*) = p*. We conclude that the set of fixed 
points is open. It is trivially closed, and the theorem follows from the 
connectedness of W*. 

The cover transformations of (ll*,j) over W form a group. We shall 
show that there is a simple connection between the group of cover trans­
formations and the subgroup D that corresponds to (W*,f) in the sense 
of Theorem 9-2. 

Theorem 9-4 The group of cover transformations of (W*,J) over 
W is isomorphic to N(D)/D, where N(D) is the normalizer of D in 
1I"1(W,PO). 

PROOF Recall that 9 E 1I"1(W,PO) belongs to N(D) if and only if 
gD = Dg. Consider a closed curve 'Y from po such that ('Y lEN (D). 
With this 'Y we associate a mapping c,o-y as follows. Join P6 to P* by an 
arc 0"* with projection 0" and define c,o(p*) as the end point of the lifted 
arc ('YO") *. It must be shown that the result does not depend on the choice 
of 0"*. Suppose that 0"* is replaced by O"{. Then (0"0"1- 11 ED, and hence 
bUU1-l.y-lj ED. Therefore, ('Yu)* has the same end point as ('YU1)*. It 
is quite obvious that 'I'-y is a cover transformation, and that 'l'n' = 

'I'-y 0 'I'-y" We observe further that 'I'-y is the identity if and only if ('Y lED. 
Hence our construction defines an isomorphic mapping of N(D)/D into 
the group of cover transformations. 

Conversely, let 'I' be a cover transformation. Let 'Y* be an arc from 
P6 to 'I'(P6) with projection 'Y. Then 'I'-y(P6) = 'I'(p~) so that 'I'-yc,o-1 has 
the fixed point pci. Hence 'I' = 'I'-y by Theorem 9-3, and we have shown 
that every cover transformation is of the form c,o-y. The proof is complete. 

A particularly important case occurs when N(D) = 1I"1(W,PO), that 
is, for a normal subgroup D. There is then a 'I'-y corresponding to every 
closed curve 'Y from po, and the cover transformations are transitive in 
the sense that there is a unique 'I' Vv'hich sends P6 to any point over po. 
A covering with this property is said to be regular, and it is a property 
that does not depend on the choice of po. On a regular covering surface 
points with the same projection are indistinguishable from each other. 
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9-6 SIMPLY CONNECTED SURF ACES 

We have defined a simply connected surface as one whose fundamental 
group reduces to the unit element. In view of Theorem 9-2 this means 
that every covering surface has a single sheet. The consequences of this 
property are somewhat indirect, for in most applications it is necessary 
to construct a covering surface where none was originally present. The 
construction is illustrated in the proof of the following fairly general 
theorem. 

Theorem 9-5 Let W be a simply connected surface and let {U",} 
be a covering of W by open connected sets. On each U a let there 
be given a family ella of functions such that the following conditions 
are satisfied: 

a) If l{Ja E ella, 1{J(3 E eIl/i, and if Va/i is a component of U a n Up, 
then l{Ja(P) = I{J/i(p) either for all p E VaP or for no such p. 
b) If l{Ja E ella, and Va/i is a component of Ua n UtI, then there 
exists a I{J/i E eIl/l such that l{Ja = I{Jp in Va/i. 

In these circumstances there exists a function I{J on W whose 
restriction to any U a belongs to ella. ;\'[oreover, I{J is uniquely deter­
mined by its restriction to a single U a' 

REMARK We have deliberately failed to specify the nature of the 
functions l{Ja E ella as being completely irrelevant. Actually, they are best 
thought of as nametags. A more abstract formulation would have its advan­
tages, but we have chosen one that comes as close as possible to the most 
common applications. 

PROOF Consider all pairs (p,l{J) such that p E Ua and I{J E <1>01. for 
some a. The relation (p,l{J) ,...., (q,I/I), if p = q and cp(p) = I/I(q), is an equiv­
alence relation. We denote the equivalence class of (p,l{!) by [p,I{J]. Let 
W* be the set of all such equivalence classes, and let f denote the function 
that maps [p,l{!] on p. 

For a given a and I{JOI. E <1>01. let U*[a,I{JOI.] denote the set of all [P,l{Ja] 
with p E U 01.' The map f sets up a one-to-one correspondence between 
U*[a,cpOl.] and Ua • This correspondence induces a topology on W*, and it 
is a consequence of (a) that the topology is Hausdorff. 

Let Wri be a component of W*. We contend that (W~,f) is a complete 
covering surface of W. To see this consider p* = [p,l{!] Ef-1(Ua). Then 
cp E eIl/i and p E Ua n UtI for some (3. By (b) there exists a 1/1 E ella such 
that l{J(p) = I/I(p), from which it follows that p* E U*[a,I/I]. On the 
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other hand, each U*[a,ip",l is contained in j-1(Uo ), and we have the 
representation 

j-1(U",) = U U*[a,if'",]' 
.. oE<I>", 

Here each U*[a,if'a] is open and connected, and by virtue of (a) the sets 
that correspond to different if'", are either identical or disjoint. Hence the 
U*[a,if'",] are the components of j-1(Uo ), and those that belong to w~ 
are the components of j-1(Uo ) n wci. Since they are in one-to-one corre­
spondence with U "" we have shown that (Wci,j) is a complete covering 
surface of W. 

Our assumption was that W is simply connected. Hencej: wci -~ W 
has an inverse, and j-1( U .. ) = U*[a,if'",l for a <P .. E <p ... If U .. n Ufj ¢ 0, 
the corresponding ipa,<PfJ coincide on u .. n Ufj, and together they define 
a global function <p. To make <P coincide with a given ipa. on U ao all 
that is needed is to choose Wci as the component of W* which contains 
U*[ao,ipa.]. 

Corollary 9-1 Assume that the complex-valued function F is con­
tinuous and ¢ 0 on a simply connected surface W. Then it is possi­
ble to define a continuous function j on W such that ef = F. 

PROOF Every po has an open connected neighborhood in which 
IF(p) - F(po) I < W(Po)l. Let the system U", consist of all such neighbor­
hoods, and define (log F)", as a single-valued continuous branch of log F in 
U ... The family <P", will consist of all functions (log F)", + n27ri with inte­
gral n. Conditions (a) and (b) are trivially fulfilled. Hence there exists a 
function f which is equal to some (log F)", + n27ri in each U ",. This func­
tion is continuous and satisfies ef = F. 

Corollary 9-2 Let u be a harmonic function on a simply connected 
surface W. Then u has a conjugate harmonic function on W. 

PROOF Choose the U a conform ally equivalent to a disk. Then u 
has a conj ugate harmonic function Va in each U ",. Let <Pa consist of all 
functions Va + C with constant c. The theorem permits us to find a global 
function v which is of the form Vo + c on each U ". 

NOTES Riemann's ideas were profound, but vaguely expressed. It 
seems that Klein was the first to understand conformal structure in its 
modern sense, although in a very informal setting. The present concept 
of Riemann surface, and its generalization to complex manifolds, goes back 
to Weyl's monumental "Die Idee der Riemannschen Flache" [66J. 

The reader is also advised to consult Springer [60] for a less arduous 
approach and Ahlfors and Sario [5J for more detail. 



10 
THE UNIFORMIZATION THEOREM 

10-1 EXISTENCE OF THE GREEN'S FUNCTION 

In this chapter we shall prove the famous unij01wization theorem of 
Koebe. This is perhaps the single most important theorem in the whole 
theory of analytic functions of one variable. It does for Riemann sur­
faces what Riemann's mapping theorem does for plane regions. As a 
matter of fact, as soon as the uniformization theorem is proved, it is not 
necessary to consider Riemann surfaces more general than the disk, the 
plane, and the sphere. It must be admitted, of course, that the reduction 
to these cases does not always simplify matters. 

The early proofs of the uniformization theorem were long and un­
perspicuous. By taking advantage of all simplifications that are now 
available the proof can be reduced to manageable proportions. The only 
constructive element is contained in the Perron method for solving the 
Dirichlet problem. In addition, the proof rests on repeated applications 
of the maximum principle. In the final stage we shall make use of a 
special argument due to Heins which in one step eliminates several 
difficulties in the classic proofs. 
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We shall first discuss the existence of Green's function on a Rie­
mann surface. As already indicated, the discussion is based on Perron's 
method, which uses sub harmonic functions. We recall that subharmo­
nicity is invariant under conformal mappings. It is for this reason that it 
is possible to consider subharmonic functions on Riemann surfaces. 

It is customary to require subharmonic functions to be upper semi­
continuous and to allow - 00 as a value. For our purposes, however, it 
is sufficient to consider only continuous subharmonic functions, except 
that we include functions which tend to - 00 at isolated points. 

Let W be a Riemann surface. A Perron family is a family V of sub­
harmonic functions on W subject to the following conditions: 

i) If VI and V2 are in V, so is max (VI,V2). 

ii) Let.:1 be a Jordan region on W. Suppose that V E V and let ii 
be a function which is harmonic in .:1 with the same boundary values 
as v, and which agrees with v on the complement of .:1. It is well 
known that ii is subharmonic. For a Perron family we require that 
iiE V. 

Observe that ii always exists and can be constructed by means of 
the Poisson integral. 

The basic property of Perron families is the following: 

Theorem 10-1 If V is a Perron family, the function u defined by 
u(p) = sup v(p) for v E V is either harmonic or identically + 00 • 

For plane regions the theorem is proved in C.A., pp. 240-241, and 
the proof easily generalizes to Riemann surfaces. 

Consider a point po E Wand let z be a local variable at Po with 
z(po) = O. Let Vpo be the family of functions V with the following 
properties: 

a) v is defined and su bharmonic on W - {Po I. 
b) v is identically zero outside a compact set. 

c) lim [v(p) + log /z(p) IJ < 00. 
p-+po 

It is quite evident that Vpo is a Perron family. If sup v is finite, and 
hence harmonic, we say that W has a Green's function with a pole at po, 
and we denote sup v(p) by g(p,po). The Green's function does not depend 
on the choice of local variable z(p) at po, for condition (c) is clearly inde­
pendent of that choice. We shall see later that the existence or non­
existence of g is also independent of Po. 

Suppose that the disk /zl ~ ro is contained in the range of z(p). Set 
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Vo(p) = log ro - log Iz(p) I when Iz(p) I ~ To and Vo(p) = 0 everywhere else 
on W. Then 110 E Vpo so that g(p,po) ~ vo(p). We conclude above all that 
g(p,po) - 00 when p - po. In particular, g(p,po) is not constant. 

If W is compact, the Green's function cannot exist, for in that case 
g(p,po) would have a minimum, and this cannot happen since g(p,po) is 
not a constant and harmonic everywhere except at po. 

We list the following important properties of the Green's function: 

Al g(p,po) > o. 
All inf g(p,po) = o. 

AlII g(p,po) + log Iz(p) I has a harmonic extension to a neighbor­
hood of po. 

The first property follows from the fact that 0 is in V Po. The others 
are not as obvious and will be proved later. 

10-2 HARMONIC MEASURE AND THE 
MAXIMUM PRINCIPLE 

A noncompact surface is also said to be open. It can be compactified by 
adding a single point "at infinity" whose neighborhoods are the sets with 
compact complement. In the theory of Riemann surfaces the added point 
is also referred to as the ideal boundary. A sequence (Pn) converges to 00, 

or to the ideal boundary, if pn lies outside any given compact set for all 
sufficiently large n. 

Let W be an open Riemann surface and let K be a compact set 
whose complement W - K is connected. We introduce a Perron family 
V K as follows: 

i) v E V K is defined and subharmonic on W - K. 
ii) v E V K is ~ 1 on W - K. 

iii) If 11 C V K, then lim V(Pn) ~ 0 when pn _ 00. 

A more precise version of (iii) would read: Given any E > 0 there 
exists a compact set K. such that v(p) < E when pEW - K •. 

lt is immediately evident that V K is a Perron family. Because the 
v E V K are uniformly bounded, the harmonic function UK = sup v will 
always exist, and 0 ~ UK ~ 1. It may happen that UK = 0 or UK = 1. 

We can rule out the first possibility by insisting that K have an 
interior point. To see this, let KO be the interior of K and let po be a 
boundary point of KO. Suppose that a local variable z maps a neighborhood 
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of po on the disk Izl < 1. Then there exist concentric disks Iz - zol < 5 
and Iz - zol < 25, both contained in Izi < 1, such that the smaller disk is 
contained in z(K) while the larger is not. We define a function v by the 
following rule: (1) If z(p) is defined and satisfies 5 < Iz(p) - zol < 25, 
we set 

v(p) = logl ( ) l: log2 ; z p - zo 
25 

(2) otherwise we set v(p) = O. The restriction of v to W - K belongs to 
V K and is not identically zero. Hence UK > O. 

There remain two possibilities: either 0 < UK < 1 or UK = 1. In the 
first case we call UK the harmonic measure of K; in the second case we say 
that the harmonic measure does not exist. Weare going to show that 
these alternatives do not depend on K, but only on the surface W. It is 
therefore natural to say that the existence of the harmonic measure is a 
property of the ideal boundary. 

There is one more important property relating to a compact set K 
on W. Let U be harmonic and bounded above on W - K. We say that the 
maximum principle is valid on W - K if lim u(p) :S 0 implies U :S 0 on 

p--+K 

W-K. 
Observe that we would not expect this to hold unless u is known to be 

bounded, that is, to satisfy some inequality of the form u :S M. Again, we 
shall find that the validity of the maximum principle depends only on W 
and not on K. For the maximum principle it is not necessary to assume 
that K has interior points. 

10-3 EQUIVALENCE OF THE BASIC CONDITIONS 

We turn now to the main theorem linking the concepts introduced above. 

Theorem 10-2 The following properties of an open Riemann sur­
face are equivalent: 

i) Green's function exists. 
ii) Harmonic measure exists. 

iii) The maximum principle is not valid. 

~-Iore precisely, we shall label these statements (i)p" (ii)K, (iii)K 
when they refer to a specific po or K. We claim that all statements are 
simultaneously true or false, regardless of the choice of po or K. 
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It is evidently sufficient to establish the following implications: 

I (i)po => (iii)K if po E K. 
II (ii)K => (i) Po if po E KO (=int K). 

III (iii)K => (ii)K' for all K and K'. 

PROOF OF I The function -g(p,po) has a maximum rn on K. It is 
bounded above by 0 on W - K. If the maximum principle were valid in 
W - K, we would have -g(p,po) ~ rn in W - K. Hence rn would be the 
maximum value of -g(p,po) in the whole plane, and it would be assumed 
at an interior point of the complemen.t of I po I. This contradicts the classic 
maximum principle. 

PROOF OF II We choose a neighborhood of po, contained in K, which 
is conformally equivalent to Izl < 1 with po corresponding to z = O. Let 
K1 and K2 be the sets on W that correspond to the closed disks Izl ~ rl 
and Izl ~ r2 with 0 < rl < r2 < 1, and denote their boundaries by aK1, 

aK2• If UK exists, as we assume, so does UK,. Consider v E V po and replace 
it by v+ = max (v,O) which is also in V Po' The inequality 

v+(p) ~ (max V+)UK,(P) 
K, 

holds near the ideal boundary and also on aK 1. Hence it holds outside of 
K 1, and we obtain in particular 

max v+ ~ (max v+)(max UK,). (10-1) 
iJK, ilK, ilK, 

Next we consider the function v+(p) + (1 + E) log Iz(p)1 on K2 with 
E > O. It becomes negatively infinite when p ----t Po. Therefore, its maxi­
mum is taken on aK2, and we obtain 

max v+ + (1 + E) log r1 ~ max v+ + (1 + E) log r2. (10-2) 
iJK, iJ~ 

On combining (10-1) with (10-2) and letting E become zero we find 

r2 
max v+ ~ (1 - max uK)-llog-, 
iJK, aK, r1 

where it is known that max UK, < 1. It follows that v+, and consequently 
iJK, 

v, is uniformly bounded above on aK l • Hence g(p,po) exists. 

PROOF OF III We show that the nonexistence of UK' implies that the 
maximum principle is valid in W - K. 

Assume first that K' C K. Let U be harmonic outside of K with 

U ~ 1 and lim u(p) ~ 0 as p approaches K. Consider any v E V K'. Then 
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lI(p) + U(p) ::::; 1 outside of K, for this inequality holds when p tends to 
00 and also when p approaches K. But if UK' does not exist, v can be 
chosen so that v(p) is arbitrarily close to 1. It follows that u(p) ::::; 0, so 
that the maximum principle is valid. 

If K and K' are arbitrary, we choose K" so that K n K' C int K". 
Let U be as before. We have just seen that the maximum principle is valid 
in W - K". Hence u ::::; max u outside of K". If max u were > 0, the 

ilK" ilK" 

inequality u ~ max u would also hold in K" - K. Thus u would attain 
ilK" 

its maximum in W - K on aK", and necessarily at an interior point. 
Since this is impossible, we have u SOon aK". On applying the maxi­
mum principle separately to K" - K and W - K" it follows that u S 0 
in W - K, which is what we wanted to show. 

It remains to prove properties (All) and (All 1) of g(p,po). We again 
use a standard local variable z with z(Po) = O. Let mer) denote the maxi­
mum of g(p,po) when Iz(p) I = r. From (10-2) we conclude that mer) + log r 
is an increasing function of r. Hence g(p,po) + log Iz(p) I is bounded above 
near po. On the other hand, define v(p) as -log Iz(p) I + log ro for Iz(p)1 < 1'0 

and zero elsewhere. It is evident that this function belongs to V POl so that 
g(p,po) ~ -log Iz(p) I + log roo Classically, an isolated singularity of a 
bounded harmonic function is removable. Property (AlII) has been 
proved. 

Denote inf g(p,po) by c. Since we no\v know that g(p,po) + log Iz(p) I 
has a finite limit when p ~ po, we may conclude that (1 - E)V(p) S 
(f(p,po) - c for every v E V Po' It follows that c S 0 and therefore in fact 
c = 0 as asserted in (All). 

Definition 10-1 An open Riemann surface with one, and hence all 
the properties listed in Theorem 10-2, is said to be hyperbolic. An 
open Riemann surface which does not have these properties is called 
parabolic. 

For instance, a disk is hyperbolic and the whole complex plane is 
parabolic. The Riemann sphere is compact, and hence neither hyperbolic 
nor parabolic. Parabolic surfaces share many properties with compact 
surfaces. As an exercise, let us prove the follmving: 

Proposition A positive harmonic function on a parabolic surface is a 
constant. 
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PROOF Let u be positive and harmonic on a parabolic Riemann 
surface W. Let p and q be points on W. The function -u is harmonic and 
bounded above. We apply the maximum principle to - u on W - {p} 
and W - {q}, respectively, to obtain -u(q) ~ -u(p) ~ -u(q), showing 
that u is constant. 

10-4 PROOF OF THE UNIFORMIZA TION 
THEOREM (PART I) 

Topologically equivalent surfaces may carry different conformal struc­
tures. The most obvious example is a disk and the plane which have the 
same topological structure but are not conformally equivalent. As a rule 
a topological surface can carry very many conformal structures. The uni­
formization theorem points out the exceptions. It asserts that a topo­
logical sphere has only one conformal structure and that a topological 
disk has two. It is convenient to combine these assertions into a single 
statement concerning simply connected surfaces. 

Theorem 10-3 (The uniformization theorem) Every simply con­
nected Riemann surface is conformally equivalent to a disk, to the 
complex plane, or to the Riemann sphere. 

Since the existence of Green's function is a conform ally invariant 
property, it is clear from the beginning that a Riemann surface can be 
conformally equivalent to a disk only if it is hyperbolic and to the whole 
plane only if it is parabolic. The spherical type is characterized by com­
pactness. The three cases will be considered separately. 

The hyperbolic case. W is a simply connected Riemann surface 
whose Green's function g(p,po) exists for every po. Each p ~ po has a 
neighborhood Ua which does not contain po and is conform ally equivalent 
to a disk. Let ka be a conjugate harmonic function of g(p,po) in Ua; it is 
determined up to an additive constant. The function fa(P) = e-(u+iha) is 
analytic in Ua and determined up to a constant factor of absolute value 1. 

In a neighborhood U a. of po we can similarly determine a conjugate 
harmonic function ka.(p) of g(p,po) + log Iz(p) I for some choice of the local 
variable z. We write fa.(P) = e-(u+ika.) for p r!- po and fa.(Po) = O. 

We are now in a position to apply Theorem 9-5. Indeed, the U", form 
an open covering of W, and in each U IX we have defined a family of func­
tions fa. In the overlap of Ua and U(1 the quotient f",/f(1 has constant 
absolute value and is therefore itself a constant on each component of 



THE UNIFORMIZATION THEOREM 143 

Van U{J. It follows that fa and f{J are either everywhere equal or every­
where unequal on each component of UQ n U{J, and if fa is given in a 
component the constant initJ can be adjusted so that fa = itJ. The theorem 
guarantees the existence of an analytic function f(p,po) on W, which 
vanishes for p = po and satisfies log If(p,po) I = - g(p,po) for p ~ po. 
Observe that If(p,po)/ < 1 and that f(p,po) = 0 only for p = po. 

To prove the theorem it suffices to show that f(p,po) is one to one, 
for then W is conformally equivalent to a bounded plane region and we 
can appeal to the Riemann mapping theorem to conclude that W is con­
formally equivalent to the unit disk. Actually, the standard proof of the 
mapping theorem would show that f(p,po) is itself a mapping onto the 
unit disk. 

The idea for the remaining part of the proof is to compare f(p,po) 
with f(P,PI) for PI ~ po. Consider the function 

F(p) = [f(p,po) - f(Pl,PO)]: [1 - ](PI,Po)f(p,po)]. (10-3) 

Because if(PI,PO) I < 1, the fraction on the right is pole-free, and F is 
analytic on W with IFI < 1 and F(Pl) = O. 

We recall from Sec. 10-1 that every v E V p' is subharmonic, vanishes 
near the ideal boundary, and satisfies lim [v(p) + log lZI(P)j] < 00, where 

P--+PI 

Zl is a local variable with Zl(Pl) = O. Since F(P)/ZI(P) is regular at PI, it 
follows that lim [v(p) + (1 + f) log IF(p)/J = - 00 for E > O. By use of 

p ..... P, 

the maximum principle we conclude that v(p) + (1 + E) log IF(p) I ~ 0 
on W. On passing to the limit we obtain 

g(P,PI) + log IF(p) I ~ o. (10-4) 

This can also be written as lFCp) I ~ IfCp,Pl)l. For p = po the inequality 
yields If(Pl,PO) I ~ If(Po,Pl) I. But po and PI are interchangeable, so we 
have in fact proved that IfCPI,PO) I = If(Po,PI) I· 

As a result (10-4) becomes an equality for p = po. The left-hand 
member is thus a harmonic function which attains its maximum. We con­
clude that it must be identically zero so that IFCp) I = If(p,PI) I, and hence 
F(p) = ei8f(p,PI) with constant real O. We further conclude that F(p) = 0 
only for]l = PI, and by (10-3) this means that f(p,po) = f(PI,PO) only for 
p = Pl. We have shown that f(p,po) is indeed univalent. 

The parabolic case. The difficulty with this case is that we do not 
know a priori the existence of a single nonconstant harmonic or sub­
harmonic function even if we allow for a singularity. As a substitute for 
the Green's function we shall need a function u(p,po) which is harmonic 
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for p ;;6- po and behaves like Re l/z(p) in terms of a local variable with 
z(po) = o. It would be tempting to construct u(p,Po) by means of a Perron 
family which might be defined by a condition lim [v(p) - Re l/z(p)] ~ o. 

p-->po 

This approach must be abandoned because there is no easy way of 
ascertaining that the family in question is not empty. Instead we have to 
rely on a less direct method which in its essential features goes back to 
Neumann [40]. 

Lemma 10-1 Suppose that u(z) is harmonic for p ~ Jz/ ~ 1 and 
constant on Jz/ = p. Let Sr(U) = max u(z) - min u(z) be the oscilla-

I-I=r I-I=T 
tion of u on /z/ = r. Then 

ST(U) ~ q(r)Sl(u), (10-5) 

where q(r) depends only on rand q(r) - 0 when r - O. 

PROOF We may assume that the maximum and minimum of u on 
IzJ = r are attained at conjugate points Zo and zoo Consider the function 
u(z) - u(z) which is harmonic in the upper half annulus p ~ Izl ~ 1, 
1m z :2: O. It is zero on the real axis and the inner half circle, and it is 
~Sl(U) on the outer half circle. At Zo it is equal to Sr(U). It is majorized 
by the harmonic function in the full half disk which is Sl(U) on /zl = 1 
and zero on the diameter. In terms of the angle a indicated in Fig. 10-1 
we thus have 

Here a assumes its minimum for fixed r when Zo = ir, and we obtain 

ST(U) ~ (; arc tan r) Sl(U), 

which is of the desired form. 

FIGUHE 10-1 
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Lemma 10-2 Let z(p) be a local variable with z(Po) = 0 and denote 
the inverse image of Izl < p by d p • If W is parabolic, there exists a 
unique bounded harmonic function Up on W - .6p with the boundary 
values Re I/z(p). 

PROOF Perron's method is applicable to the family of bounded sub­
harmonic functions v on W - .6p that satisfy v ~ Re I/z(p) on the bound­
ary of d p • These functions are uniformly bounded because the maximum 
principle is valid in W - .6M and this is sufficient for Up = sup v to be 
harmonic. A well-kno\'m elementary argument (see C.A., p. 241) shows 
that Up has the right boundary values. The uniqueness is a consequence 
of the maximum principle. 

Lemma 10-3 The function Up of the preceding lemma satisfies 

J2 .. 0 . 
O - up(re,e) dO = O. 

or 
(10-6) 

PROOF Let DeW be a relatively compact region with smooth 
boundary such that .6p C D. Denote the harmonic measure of oflp with 
respect to D - .6p by w. Then 

f ( oup aw) f (aup ow) w - - Up - ds = w - - Up ~ ds, 
aap on on iW on on 

(10-7) 

where the line integrals and normal derivatives can be expressed in terms 
of local variables. 

We know that lui ~ lip by the maximum principle. Note further 
that w = 1 on aflp, w = 0 on aD, and that aw/an has constant sign on 
oflp and on aD. With these observations (10-7) leads to 

I { oup dS! < !! r ow dsl + !! r aw dS! = ~ I r aw dsl. 
jaap an - p jiJ!!.p an p jaD an p jaap an 

N ow we let D expand. Because .6p has no harmonic measure, w will 
tend to 1, uniformly in a neighborhood of adp (note that w can be ex­
tended by the symmetry principle). Hence aw/an converges uniformly to 
zero on oflp, and we conclude that 

f aup -ds = O. iJ!!.p an 

In terms of the local variable z this is (10-6) for r = p. However, the 
integral in (10-6) is independent of r. 

Lemma 10-4 As p ---+ 0 the functions Up tend to a harmonic function 
u on W - {Po I which is bounded outside of every flp and satis-
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fies lim [u(p) - Re 1/z(p)) = O. The function U is uniquely deter-
p-p~ 

mined by these conditions. 

PROOF We assume that the range of z(p) contains Izl :$ 1. Apply 
Lemma 10-1 to u - Re liz. We obtain 

Sr (u - Re~) :$ q(r)SI (u - Re~} (10-8) 

and hence 

(10-9) 

On the other hand, the maximum principle on W - ~p yields 

SI(Up) :$ Sr(U p). (10-10) 

We conclude from (10-9) and (10-10) that 

S ( ) < 2q(r) + 1. 
I Up - 1 _ q(r) (10-11) 

For a fixed r = ro < 1 it follows from (10-11) that SI(Up ) is less than 
a constant C independent of p. We return to (10-8) to obtain 

1 
SrUp - Re - :$ (C + 2)q(r). (10-12) 

z 

Lemma 10-3 shows that the mean value of Up over a circle Izl = r is inde­
pendent of r. Since Re liz has mean value zero, it follows that the mean of 
Up - Re liz is also zero, and we conclude from (10-12) that 

max I Up - Re! I :$ (C + 2)q(r), (10-13) 
Izl ~r z 

and hence also 
max Iup - up'! :$ 2(C + 2)q(r) 
Izl =r 

(10-14) 

for p, p' < r. By the maximum principle !up - up.1 has the same bound 
in the whole complement of Ar • This proves the existence of U = lim Up 

p-->O 

as a uniform limit outside of any neighborhood of po. 
From (4-13) and (4-14) we now obtain 

max I U - Re! I :$ (C + 2)q(r) 
1,1"r z 

and max !up - u! :$ 2(C + 2)q(r). 
l'l=r 
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The first inequality proves that u - Re liz ~ 0 for P ~ Po, and the 
second shows that u is bounded outside of d p • Finally, the uniqueness of 
u follows by the maximum principle. 

10-5 PROOF OF THE UNIFORMIZATION 
THEOREM (PART II) 

We continue our discussion of the parabolic case. Having constructed our 
function it we observe that every point on W, including po, has a neighbor­
hood in which u has a conjugate function v which is determined up to an 
additive constant. By use of Theorem 9-5 we can form a global mero­
morphic function f = u + iv with a development 

1 
f(p) = - + az + . (10-15) 

Z 

in terms of the local variable at po. This normalization determines f 
uniquely. 

Suppose that we replace z by z = -iz. There is a corresponding 
function l, and in terms of the original variable we have 

"-l(p) = - + bz + . . . . (10-16) 
z 

We shall show that] = if. For this purpose we consider an arbitrary 
d p and assume that IRefl ~ M and IRell ~ 1If outside of d p • There 
exists a point p 1 ~ po in d p such that Re f(PI) > M and Re ](PI) > M; 
it suffices to choose PI close to po with arg Z(PI) = 11'/4. Thenf(p) ~ f(PI) 
for P outside of d p , and since Re [f(p) - f(PI)] < 0 on iMp, it follows by 
the argument principle that f(p) - f(PI) has PI as its only zero, this zero 
being simple. The same applies to J. We therefore have expansions of the 
form 

F(p) f(p) = ~ + B + 
f(p) - f(PI) Z - Zl 

FCp) = ](p). = ~ + E + 
](p) - f(PI) Z - Zl 

(10-17) 

Due to our choice of PI we have 

IF( )1 < 1 + If(PI) I 
P - Ref(PI) - M 

for P outside of d p , and a similar bound for F. Hence the linear combination 
AF - AF is bounded and analytic on the whole surface. Since W is 
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parabolic, this function must reduce to a constant, and we conclude that 
j = TU), where T is a fractionallineH,r transformation. The developments 
(10-15) and (10-16) show that the only possibility is to have j = if. 

The relation j = if shows that f itself, and not only Re f, is bounded 
outside of d p• Suppose that If(p) I < M 1 outside of d p and choose any 
PI ~ po in d p such that If(PI) I > MI. Then F, as defined by the first line 
in (10-17), is again bounded outside of d p , and the argument principle 
(or RouchC's theorem) shows that the only singularity of F is a simple 
pole at Pl. 

Althoughfis not uniquely determined by po, we shall make a definite 
choice of the local variable z and denote the corresponding f by f(p,po). 
For PI E d p we then define f(p,P1) by use of the same z. We compare 
the developments of f(P,P1) and F(p) which have the same singular point. 
Because the surface is parabolic, it follows that F(p) = af(p,lJt) + b with 
constant coeffieients, and hencef(p,P1) is a linear fractional transformation 
of f(p,po). This is true even when PI is not close to po, for we can pass 
from po to PI through a sequence of intermediate points, each close to the 
preceding one. Let us write, explicitly, f(P,Pl) = S[f(p,po)]. 

It is now easy to conclude that f(p,po) is one to one. In fact, suppose 
that f(p,po) = f(P1,PO). With S defined as above we then have 

and hence p = PI since PI is the only pole of f(P,P1). 
We have shown that W is conform ally equivalent to an open subset 

of C V { <:X) I. This set cannot be the whole Riemann sphere, for then W 
would be compact. Neither can its complement consist of more than one 
point, for if it did the Riemann mapping theorem would show that W is 
hyperbolic. An inversion throws the complementary point to <:X) , and we 
have completed our task of mapping W on the whole complex plane. 

The compact case. One possibility would be to remove a point Po 
and show that W - {pol is parabolic. The objection is that it is not quite 
trivial to prove by topological methods that W - {po I is simply connected. 

The alternative is to repeat the proof given for the parabolic case. 
Lemmas 10-2 to 10-4 remain in force, the proofs being somewhat simpler 
because only the classic maximum principle is needed. The functionf(p,po) 
is constructed as before, and the same reasoning shows that it is a one-to­
one mapping. The range of f(p,po) is an open and compact subset of the 
Riemann sphere, and hence the whole sphere. 

REMAHK In our definition of surface and Riemann surface ",.e never 
required that the underlying space satisfy the second axiom of counta-
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bility, nor did our proof overtly or covertly make use of this property. It 
is indeed a remarkable feature of the Perron method that it uses only local 
constructions so that global countability never enters the picture. In the 
proof of Lemma 10-3 we used an exhaustion by expanding regions D, but 
D expands in the sense of partial ordering by inclusion and no sequences 
are required. Therefore, by proving the uniformization theorem we have 
shown that every simply connected Riemann surface satisfies the second 
countability axiom, and by passing to the universal covering it follows 
that the same is true for an arbitrary Riemann surface. This observation 
is due to Rad6 [55J. 

10-6 ARBITRARY RIEMANN SURFACES 

We shall now drop the condition of simple connectivity. We showed in 
Chap. 9 that every Riemann surface W has an essentially unique universal 
covering surface W. It was defined by the condition 1I"1(W) = 1, and this 
property characterizes W up to conformal equivalence as the only simply 
connected covering surface of W. 

Because W is simply connected, we can apply the uniformization 
theorem to conclude that W is conform ally equivalent to either the 
Riemann sphere, the complex plane, or the unit disk. Since conformal 
mapping does not change the relevant properties of a Riemann surface, 
we are free to assume that W is one of these three surfaces. For the 
moment we wish to give a parallel treatment of all cases, and for this 
reason we shall not yet specify whether W is hyperbolic, parabolic, or 
compact. In any case points on W can be regarded as complex numbers z, 
possibly including z = 00. 

~10re precisely, the universal covering surface is a pair (W,j), where 
f: W - W is the projection map. We can regard j(z) as an analytic func­
tion on W with values on W. 

Recall that a homeomorphism cp: W - W is a cover transformation 
if f 0 cp = f. We remarked at the beginning of Sec. 9-5 that every cover 
transformation is a conformal homeomorphism, and according to Theorem 
9-3 a cover transformation has no fixed points (unless it is the identity). 

In all three cases, namely, for the sphere, the plane, and the disk, 
we know that all conformal self-mappings are given by linear transforma­
tions cp(z) = (az + b)/(ez + d), ad - be ~ o. Every such mapping has 
at least one fixed point on the sphere. Therefore, if W is the sphere, cp 
can only be the identity. If W is the plane, the only fixed point must be 
at 00, and this implies <p(z) = z + b so that <p is a parallel translation. 
Finally, if W is the unit disk, the fixed points must lie on the unit circle. 
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In this case I{J is either a parabolic or a hyperbolic transformation of the 
form cp(z) = (az + b)/(bz + a). As such cp may be regarded as a non­
euclidean motion which is not a rotation. 

By Theorem 9-4 the cover transformations form a group which in 
the present case (D = 1) is isomorphic to 'll'l(W). If W is the sphere, we 
conclude that 'll'l(W) = 1. Since W is compact, so is its projection W, and 
we conclude by the uniformization theorem that W is conformally a sphere, 
in one-to-one correspondence with W. This trivial case can be ignored. 
In the remaining cases 1I'1(W) can be represented as a group of parallel 
translations of the euclidean plane, or as a group of fixed point-free motions 
of the noneuclidean plane. 

There is an additional property of the cover transformations which 
we have not yet taken into account. Each point pEW has a neighborhood 
V which is in one-to-one correspondence \vith its projectionf(V). If cp is a 
cover transformation other than the identity, it follows that V and cp(V) 
are disjoint. Indeed, if p E V n cp(V), we would have p = cp(q) with 
p,q E V, and hencef(p) = f[cp(q)] = f(q) , which is possible only if p = q. 
But then p = cp(p) is a fixed point, so that cp must be the identity. To 
repeat, every point of W has a neighborhood which does not meet its 
images under the cover transformation. We express this by saying that 
the group of cover transformations is properly discontinuous on W. 

When W is the plane, we know now that the group r of cover trans­
formations is a properly discontinuous group of parallel translations. It is 
classic that there are only three types of such groups: (1) the identity, 
(2) the infinite cyclic group generated by cp(z) = z + b, b ,c. 0, (3) the 
abelian group generated by CPl(Z) = Z + b1 and CP2(Z) = z + b2 with a non­
real ratio bdh The surface W is recovered by identifying points that 
correspond to each other under the transformations in r. In case (1) W is 
the plane; in case (2) it is an infinite cylinder, conformally equivalent 
with the punctured plane; and in case (3) it is a torus obtained by identify­
ing opposite sides of a parallelogram. The theory of analytic functions 
on the torus is equivalent to the theory of elliptic functions. 

In all cases except the ones listed above W is the disk. The group r 
is a properly discontinuous group of fixed point-free linear transformations 
which map the disk on itself. Conversely, if r is such a group, we obtain 
a Riemann surface by identifying points that are equivalent under the 
group. We collect all this in a theorem. 

Theorem 10-4 If a Riemann surface W is not conformally equiva­
lent to a sphere, a plane, or a punctured plane, there exists a properly 
discontinuous group r of fixed point-free linear transformations map­
ping the unit disk Ll onto itself such that the Riemann surface Ll/r 
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obtained by identifying equivalent points under the group is con­
formally equivalent to W. 

The theory of analytic functions on W becomes the theory of 
automorphic functions under the group r. The hyperbolic metric of 
the disk carries over to the Poincare metric on W with constant 
curvature -1. In particular, we conclude that every plane region 
whose complement with respect to the plane has more than one 
point carries a Poincare metric (see 1-1-7). 

NOTES All classic proofs of the uniformization theorem make use 
of the <loil speck" method, which consists in exhausting the surface by a 
sequence of relatively compact subregions. The Perron method makes it 
possible to dispense with this method and to define Green's function and 
harmonic measure directly. Otherwise our proof is akin to the alternating 
method of Schwarz and Neumann, for the comparisons in Theorem 10-2 
use the same classic estimates. In Sees. 10-4 and 10-5 the reasoning is 
modeled on Heins [31]. 
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ERRATA 

Unfortunately, a substantial number of typographical errors escaped detection 
when the book first went into print. Our thanks to the many colleagues who have 
made contributions to this list of corrections. We fear, however, that other errors 
may still have escaped detection. Caveat lector! 

Page vi, lines 16 and 18. Loewner's should read Lowner's. 

Page 13, Lemma 1-1. K(p) ~ 1 should read 

Page 19, equation 1-29. 
4 -log 

should read 4 -log 

Page 21, line 6. [58, ... ] should read [59, ... ]. 

Page 29, line -4. unit disk should read exterior of the unit disk. 

Page 29, line -3. comprises should read contains. 

Page 29, line -2. 12:: ilbl should read 1 2:: 1/ (4Ibl) . 

Page 30, line 4. lin [( ~~ ) 2 + (~~) 2] dxdy should read 

lin [(~:f + (~;)2] dxdy. 

Page 32, line 1. nonincreasing should read nondecreasing. 

Page 36, lines 9, 10. [59] and [54] should read [61] and [52], respectively. 

Page 40, last line. {Izl > R} should read {Izl > R, Imz > O}. 

Page 42, line 1. [61] should read [6]. 

Page 43, line 14. 

dlogM(r) 4 1 M() ld d dlogM(r) 4 1 M() 
< -- og r shou rea d log r 2:: 7rO(r) og r. dlogr - 7rO(r) 

Page 43, line 18. log[l - w(ro)] ~ . . . should read 1 - w(ro) ~ .... 

Page44,line-3. logM(r) ~ ll~~~lOgM shouldread logM(r) ~ 1~fR1ogM. 
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160 ERRATA 

Page 45, line 8. [60] should read [62]. 

Page 45, Lemma 3-1. its minimum on Izl = R at R, and its maximum on ... 
should read its maximum on Izl = R at R, and its minimum on ... 

Page 46, line 4. g( r;) should read g( -p, r;) . 
Page 46, equation after (3-9). 

~ r ... - tw(ai) = should read ~ r .. , + tw(ai) = . 
27f } C 1 27f } C 1 

Page 49, line 1. 1/(0)1 ::S: ... should read I/(zo)I::S:···. 
Page 51, line 13. L(f,p) = L(f',p') should read L(-y,p) = L(-y',p'). 

Page 51, Definition 4-1. 

supp L(f,p)2 

A(O,p) 
should read 

L(f,p)2 
sup A(O ) p ,p 

Page 67, lines 5,6. dn(E1 ,E2) ~ l/D(u) should read dn (E1 ,E2)::S: l/D(u). 

Page 72, line 11. e27rM (r) should read e27rM (R). 

Page 74, line -2. p should read p. 

Page 77, line 9. E~ and E~ ... should read E~ and E~ ... 
Page 78, Corollary. J: dx/()(x) ~ ~ should read J: dx/()(x) ~ 1. 

Page 79, line 16. d(Cr,E)::S: a should read d(Cr ,E) ::S: a/27f. 

Page 79, line -12. (4-26) should read (4-24). 

Page 80, line -6. Theorem 4-8 should read Theorem 4-9. 

Page 80, line -4. -(1/7f) log E should read -(1/7f) log cap E . 

Page 81, line -3. Theorems 4-5 and 4-6 should read Theorems 4-4 and 4-5. 

Page 84, line 1. g(z) = zh(z2) 1 should read g(z) = zh(z2) . 

Page 88, inequality (5-11). ICll3 should read IClI2. 
Page 88, displayed inequality between (5-12) and (5-13). In the first term on the 

right-hand side, the denominator 3(1 -lbl I2)2 should read 3(1 - Ibl l2) . 
Page 90, line 11. Pommerenke [52,53] should read Pommerenke [53,54]. 

Page 101, line 7. f(zo, z) 1~;: should read f(zo, z) t~:o . 
Page 103, line -6. e-io< [B( () + A~O) ] should read e-io< [B( () + ~] . 
Page 110, line 15. Q(z) = 0 should read Q(z) ~ O. 

Page 146, equation (10-12). Srup - Re ~ should read Sr(Up - Re~). 

Page 146, line -3. (4-13) and (4-14) should read (10-13) and (10-14). 

Page 153, reference [15]. Minimal" Surfaces should read Minimal Surfaces" . 
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