Question 1

Problem 1(a) (Baire category theorem)

Let X be a complete metric space or a locally compact Hausdorff space. Show that every countable collection of dense open sets has a dense intersection. Equivalently, show that the union of every countable collection of closed nowhere dense sets has empty interior. Remark: A subset of X is nowhere dense if its closure has empty interior.

Solution

This proof is standard. Different expositions can be found, for example, on Wikipedia, in Chapter 48 of Munkres' Topology (second edition), and in Chapter 5.3 of Folland's Real Analysis: Modern Techniques and Their Applications (second edition).

Problem 1(b)

Let \mathcal{F} be a collection of continuous real-valued functions on a locally compact Hausdorff space or a complete metric space X. Suppose that \mathcal{F} is piecewise bounded in the sense that for every $x \in X$, there exists $M>0$ such that $|f(x)| \leq M$ for all $f \in \mathcal{F}$. Show that \mathcal{F} is uniformly bounded on some open set $U \subseteq X$, meaning that there exists $M>0$ such that $\sup _{x \in U}|f(x)| \leq M$ for all $f \in \mathcal{F}$.
Hint: Consider $A_{n}:=\{x \in X| | f(x) \mid \leq n$ for all $f \in \mathcal{F}\}$.

Solution

Observe that A_{n} as defined in the hint is equal to $\bigcap_{f \in \mathcal{F}} f^{-1}([-n, n])$, and is hence closed. Moreover, $X=\bigcup_{n=1}^{\infty} A_{n}$ by the assumption that \mathcal{F} is piecewise bounded. We claim that some A_{n} has non-empty interior. By way of contradiction, suppose not; then $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a countable collection of closed nowhere dense sets, and hence $X=\bigcup_{n=1}^{\infty} A_{n}$ has empty interior by the Baire category theorem. This is impossible (unless $X=\varnothing$, in which case there is nothing to prove).
Thus, there exists some $n \in \mathbb{N}$ with $\operatorname{Int}\left(A_{n}\right) \neq \varnothing$. Setting $U=\operatorname{Int}\left(A_{n}\right)$ yields the desired open set.

Problem 1(c)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with the property that for every $x \in \mathbb{R}$, $\lim _{n \rightarrow \infty} f(n x)=0$. Show that $\lim _{x \rightarrow \infty} f(x)=0$.

Solution

Fix $\varepsilon>0$. For each $n \in \mathbb{N}$, define $A_{n}=\{x \in[0, \infty)| | f(n x) \mid \leq \varepsilon\}$ and $B_{n}=\bigcap_{m=n}^{\infty} A_{m}$. Then A_{n} is closed (as the preimage of the closed set $[0, \varepsilon]$ under the continuous function $x \mapsto|f(n x)|)$, hence so too is B_{n}. The assumption that $\lim _{n \rightarrow \infty} f(n x)=0$ for every $x \in \mathbb{R}$ implies that $\bigcup_{n=1}^{\infty} B_{n}=[0, \infty)$. By the Baire category theorem, there exists an open interval (a, b) contained in some B_{N}. Given $n>N$ and $x \in(a, b)$, it follows that $|f(n x)| \leq \varepsilon$; said differently, $|f(x)| \leq \varepsilon$ for all $x \in(n a, n b)$. These intervals are of length $n(b-a)$, which grows
linearly in n; it follows that the union of all such intervals contains all sufficiently large x. Thus $|f(x)| \leq \varepsilon$ for all sufficiently large x. This holds for all $\varepsilon>0$, whence the conclusion.

Problem 1(d)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and let D be the set of all points in \mathbb{R} at which f is continuous. Show that D cannot be a countable dense set.
Hint: Show that D is a G_{δ} set.

Solution

Define

$$
D_{n}=\left\{x \in \mathbb{R} \mid \exists \delta>0 \text { such that }\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\frac{1}{n} \text { whenever } x_{1}, x_{2} \in(x-\delta, x+\delta)\right\} .
$$

The condition defining membership in D_{n} is an open condition, so D_{n} is open. We claim that $D=\bigcap_{n=1}^{\infty} D_{n}$, whence it follows that D is a G_{δ} set. Indeed, if $x \in D$ and $n \in \mathbb{N}$, then there exists a $\delta>0$ satisfying the $\varepsilon-\delta$ definition of continuity of f at x for $\varepsilon=\frac{1}{2 n}$; then for all $x_{1}, x_{2} \in(x-\delta, x+\delta)$, the triangle inequality yields

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq\left|f\left(x_{1}\right)-f(x)\right|+\left|f(x)-f\left(x_{2}\right)\right|<\frac{1}{2 n}+\frac{1}{2 n}=\frac{1}{n}
$$

so $x \in D_{n}$. This holds for all n and x, hence $D \subseteq \bigcap_{n=1}^{\infty} D_{n}$. Conversely, suppose $x \in$ $\bigcap_{n=1}^{\infty} D_{n}$. Given $\varepsilon>0$, choose $n \in \mathbb{N}$ such that $\frac{1}{n}<\varepsilon$; then taking $x_{2}=x$ in the definition of D_{n} shows that f is continuous at x, hence $x \in D$.
Suppose D is dense. Then $D^{c}=\bigcup_{n=1}^{\infty} D_{n}^{c}$ has empty interior; in particular, each D_{n}^{c} has empty interior, and is thus nowhere dense (as D_{n}^{c} is also closed). From this it follows that D must be uncountable: if it were the case that D were countable, then

$$
\mathbb{R}=D \cup D^{c}=\left(\bigcup_{x \in D}\{x\}\right) \cup \bigcup_{n=1}^{\infty} D_{n}^{c},
$$

which would express \mathbb{R} as a countable union of nowhere dense sets. This is impossible by the Baire category theorem.

Problem 1(e) (bonus)

Equip $C([0,1])$ with the supremum metric making it a complete metric space. For each $n \in \mathbb{N}$, let F_{n} be the subset of $\left(C\left([0,1], d_{\text {sup }}\right)\right.$ consisting of functions for which there is a point $x_{0} \in[0,1]$ such that $\left|f(x)-f\left(x_{0}\right)\right| \leq n\left|x-x_{0}\right|$ for all $x \in[0,1]$. Show that F_{n} is a closed nowhere dense set. Using the Baire category theorem, conclude that the set of continuous nowhere differentiable functions is dense in $C([0,1])$.

Solution

First, we introduce some terminology and notation:

- The uniform norm $\|\cdot\|_{u}$ on $C([0,1])$ is defined by $\|f\|_{u}=\sup _{x \in[0,1]}|f(x)|$, so that

$$
d_{\text {sup }}(f, g)=\|f-g\|_{u} .
$$

- A subset F of a topological space X is called meagre if it is a countable union of nowhere dense sets.
- The complement of a meagre set is called residual. If X is a complete metric space or locally compact Hausdorff space (so that the Baire category theorem holds), then every residual subset of X is dense in X.
F_{n} is closed: We show that every convergent sequence $\left(f_{k}\right)_{k=1}^{\infty}$ in F_{n} with limit f satisfies $f \in F_{n}$ (note that f is automatically continuous as it is the uniform limit of a sequence of continuous functions). For each $k \in \mathbb{N}$, choose $x_{k} \in[0,1]$ such that

$$
\left|f_{k}(x)-f_{k}\left(x_{k}\right)\right| \leq n\left|x-x_{k}\right|, \quad \forall x \in[0,1] .
$$

Since $[0,1]$ is compact, the sequence $\left(x_{k}\right)_{k=1}^{\infty}$ has a subsequence converging to some $x_{0} \in[0,1]$. By replacing the sequence $\left(f_{k}\right)_{k=1}^{\infty}$ with the corresponding subsequence, we may assume that $x_{k} \rightarrow x_{0}$. Then $f_{k} \rightarrow f$ uniformly and $x_{k} \rightarrow x_{0}$. Note that $\left|f_{k}\left(x_{k}\right)-f\left(x_{0}\right)\right| \leq$ $\left|f_{k}\left(x_{k}\right)-f\left(x_{k}\right)\right|+\left|f\left(x_{k}\right)-f\left(x_{0}\right)\right|$; the first term tends to 0 since $f_{k} \rightarrow f$ uniformly, and the second term tends to 0 since f is continuous and $x_{k} \rightarrow x_{0}$. It follows that $f_{k}\left(x_{k}\right) \rightarrow f\left(x_{0}\right)$. Then for all $x \in[0,1]$, we have

$$
\left|f(x)-f\left(x_{0}\right)\right|=\lim _{k \rightarrow \infty}\left|f_{k}(x)-f_{k}\left(x_{k}\right)\right| \leq \lim _{k \rightarrow \infty} n\left|x-x_{k}\right|=n\left|x-x_{0}\right| .
$$

Thus $f \in F_{n}$.
F_{n} is nowhere dense: We need a few results before proceeding.
Proposition 1.1. Fix $n \in \mathbb{N}$.
(1) If $\psi \in C([0,1])$ is piecewise linear and each linear piece of ψ has slope greater than or equal to $2 n$ in absolute value, then $\psi \notin F_{n}$.
(2) For all $f \in C([0,1])$ and $\varepsilon>0$, there exists $\psi \in C([0,1])$ as in (1) which additionally satisfies $\|f-\psi\|_{u}<\varepsilon$.

For a detailed proof of Proposition 1.1, see the following section.
Since F_{n} is closed, it is nowhere dense if and only if it has empty interior, if and only if every $f \in C([0,1])$ is the (uniform) limit of some sequence $\left(f_{k}\right)_{k=1}^{\infty}$ in $C([0,1]) \backslash F_{n}$. By Proposition 1.1(2), there exists a sequence of piecewise linear functions f_{k} such that $\left\|f_{k}-f\right\|_{u}<\frac{1}{k}$ and the linear pieces of each f_{k} have slopes greater than or equal to $2 n$ in absolute value. Each f_{k} is in $C([0,1]) \backslash F_{n}$ by Proposition 1.1(1), so we are done.
Continuous, nowhere differentiable functions are dense in $C([0,1])$:
Suppose $f \in C([0,1])$ is differentiable at a point $x_{0} \in[0,1]$. Then there exists $\delta>0$ such that

$$
\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-f^{\prime}\left(x_{0}\right)\right| \leq 1 \text { whenever } 0<\left|x-x_{0}\right|<\delta .
$$

Applying the reverse triangle inequality and rearranging, we obtain

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq\left(1+\left|f^{\prime}\left(x_{0}\right)\right|\right)\left|x-x_{0}\right| \text { whenever }\left|x-x_{0}\right|<\delta .
$$

If instead $\left|x-x_{0}\right| \geq \delta$, then

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq 2\|f\|_{u}=\frac{2\|f\|_{u}}{\left|x-x_{0}\right|}\left|x-x_{0}\right| \leq \frac{2\|f\|_{u}}{\delta}\left|x-x_{0}\right| .
$$

Thus, if $n \geq \max \left(1+\left|f^{\prime}\left(x_{0}\right)\right|, 2\|f\|_{u} / \delta\right)$, then $f \in F_{n}$.
It follows that the set $F \subset C([0,1])$ of functions differentiable at some point is contained inside $\bigcup_{n=1}^{\infty} F_{n}$. Each F_{n} is nowhere dense, so $\bigcup_{n=1}^{\infty} F_{n}$ is meagre. A subset of a meagre set is itself meagre, so F is meagre. Thus, F^{c} is residual in $C([0,1])$ (and in particular dense), and F^{c} is precisely the nowhere differentiable continuous functions.

Proof of Proposition 1.1

Proof of Proposition 1.1(1). Fix $x_{0} \in[0,1]$. For sufficiently small $\varepsilon>0$, we have that ψ is affine linear on at least one of the intervals $\left[x_{0}, x_{0}+\varepsilon\right]$ or $\left[x_{0}-\varepsilon, x_{0}\right]$, with slope m satisfying $|m| \geq 2 n$. Set $x=x_{0} \pm \frac{\varepsilon}{2}$, the sign chosen so that x lies in such an interval. Then

$$
\left|\psi(x)-\psi\left(x_{0}\right)\right|=|m|\left|x-x_{0}\right| \geq 2 n\left|x-x_{0}\right|>n\left|x-x_{0}\right|,
$$

the strict inequality holding because $\left|x-x_{0}\right| \neq 0$.
We prove Proposition 1.1(2) in a two-step process: first, show that every $f \in C([0,1])$ can be uniformly approximated by some piecewise linear function. Then, show that every piecewise linear function can be uniformly approximated by a piecewise linear function with slopes greater than or equal to $2 n$ in absolute value.

Lemma 1.2. For all $f \in C([0,1])$ and $\varepsilon>0$, there exists a piecewise linear $\phi \in C([0,1])$ such that $\|f-\phi\|_{u}<\varepsilon$.

Proof. Since $[0,1]$ is compact, f is uniformly continuous on $[0,1]$; hence there exists $N \in \mathbb{N}$ such that $|f(x)-f(y)|<\frac{\varepsilon}{4}$ whenever $|x-y| \leq \frac{1}{N}$. Set $x_{k}=\frac{k}{N}$, so that $0=x_{0}<x_{1}<\cdots<$ $x_{N}=1$. We define $\phi \in C([0,1])$ by $\phi\left(x_{k}\right)=f\left(x_{k}\right)$ and linearly interpolating between the x_{k} 's, i.e.

$$
\phi(x):=\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{1 / N}\left(x-x_{k-1}\right)+f\left(x_{k-1}\right), \quad \forall x \in\left(x_{k-1}, x_{k}\right) .
$$

Fix $x \in[0,1]$. If $x=x_{k}$ for some k, then $f(x)=\phi(x)$; otherwise, $x \in\left(x_{k-1}, x_{k}\right)$ for some k, and

$$
\begin{aligned}
|f(x)-\phi(x)| & \leq\left|f(x)-f\left(x_{k-1}\right)\right|+\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \frac{x-x_{k-1}}{1 / N} \\
& \leq\left|f(x)-f\left(x_{k-1}\right)\right|+\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \\
& <\varepsilon / 4+\varepsilon / 4 .
\end{aligned}
$$

It follows that $\|f-\phi\|_{u} \leq \varepsilon / 2<\varepsilon$.
Lemma 1.3. Fix $n \in \mathbb{N}$ and $\varepsilon>0$. If $\phi \in C([0,1])$ is piecewise linear, then there exists a piecewise linear $\psi \in C([0,1])$ whose linear pieces have slopes greater than or equal to $2 n$ in absolute value, and such that $\|\phi-\psi\|_{u}<\varepsilon$.

Proof. We claim that if $\phi(x)=m x+c$ is affine linear on $[a, b]$ and $\left|y_{0}-\phi(a)\right| \leq \frac{\varepsilon}{2}$, then there exists ψ piecewise linear on $[a, b]$ such that $\psi(a)=y_{0}$, each linear piece of ψ has slope greater than or equal to $2 n$ in absolute value, and

$$
|\psi(x)-\phi(x)| \leq \frac{\varepsilon}{2}, \quad \forall x \in[a, b] .
$$

Indeed, if $|m| \geq 2 n$, then $\psi(x)=m(x-a)+y_{0}$ works. Otherwise, approximate $m x+c$ with a "see-saw" function whose slopes have absolute value $2 n$ (Figure 1.1).
From this, the lemma follows easily: let $0=x_{0}<x_{1}<\ldots<x_{N}=1$ be such that each $\left.\phi\right|_{\left[x_{k-1}, x_{k}\right]}$ is affine linear. Apply the claim on $\left[0, x_{1}\right]$ with $y_{0}=\phi(0)$ to define ψ on $\left[0, x_{1}\right]$. Then apply the claim on $\left[x_{1}, x_{2}\right]$ with $y_{0}=\psi\left(x_{1}\right)$ (which satisfies $\left|y_{0}-\phi\left(x_{1}\right)\right| \leq \frac{\varepsilon}{2}$ by construction) to define ψ on $\left[x_{1}, x_{2}\right]$. Continuing this iterative process defines ψ on $[0,1]$. By construction, ψ is piecewise linear and each linear piece has slope greater than or equal to $2 n$ in absolute value, and

$$
\|\phi-\psi\|_{u} \leq \frac{\varepsilon}{2}<\varepsilon .
$$

Proof of Proposition 1.1(2). By Lemma 1.2, there exists a piecewise linear $\phi \in C([0,1])$ such that $\|f-\phi\|_{u}<\varepsilon / 2$. By Lemma 1.3, there exists a piecewise linear $\psi \in C([0,1])$ whose linear pieces have slopes greater than or equal to $2 n$ in absolute value, and such that $\|\phi-\psi\|_{u}<\varepsilon / 2$. By the triangle inequality,

$$
\|f-\psi\|_{u} \leq\|f-\phi\|_{u}+\|\phi-\psi\|_{u}<\varepsilon .
$$

Figure 1.1: Approximating ϕ when $|m|<2 n$.

Question 2

Problem 2(a)

Show that every second-countable, locally compact Hausdorff space is metrizable. Conclude that every n-manifold is metrizable.

Solution

Let X be a second-countable, locally compact Hausdorff space. In view of Urysohn's metrization theorem, it suffices to show that X is regular.

Case 1. If X is compact, then recall that compact + Hausdorff \Longrightarrow normal, hence in particular X is regular.
Case 2. If X is not compact, then consider its one-point compactification X^{*} (see Problem Set 4 Q 4$)$. Since X^{*} is compact and Hausdorff, it is normal, hence in particular regular. Since the property of being regular is hereditary and the original topology on X coincides with the subspace topology induced by the inclusion $X \hookrightarrow X^{*}$, it follows that X is regular.

In particular, every n-manifold is by definition second-countable, Hausdorff, and locally homeomorphic to \mathbb{R}^{n}. Since \mathbb{R}^{n} is locally compact, so too is every n-manifold; thus manifolds are metrizable.

Problem 2(b)

For a topological space, a sequence $\left\{K_{n}\right\}_{n \in \mathbb{N}}$ of compact sets is called an exhaustion of X by compact sets if the $\bigcup_{n} K_{n}=X$ and $K_{n} \subseteq \operatorname{Int} K_{n+1}$ for every $n \in \mathbb{N}$. Show that every second countable, locally compact Hausdorff space, and in particular an n-manifold, admits an exhaustion by compact sets.

Solution

We claim that X has a countable basis consisting of precompact open sets (i.e., open sets whose closures are compact). To show this, start with any countable basis \mathcal{B}_{0} of X. Since X is locally compact, every $x \in X$ admits an open neighbourhood U and a compact set K such that $x \in U \subseteq K$. Since X is Hausdorff, K is closed. Consider $\mathcal{N}_{x}=\left\{B \in \mathcal{B}_{0} \mid B \subseteq U\right\}$. Each $B \in \mathcal{N}_{x}$ satisfies $\bar{B} \subseteq \bar{U} \subseteq \bar{K}=K$, so \bar{B} is compact (as a closed subset of the compact set K). Then

$$
\mathcal{B}:=\bigcup_{x \in X} \mathcal{N}_{x}
$$

is the desired basis (note that $\mathcal{B} \subseteq \mathcal{B}_{0}$, so \mathcal{B} is also countable).
Indexing $\mathcal{B}=\left\{U_{n}\right\}_{n=1}^{\infty}$, we define an exhaustion $\left\{K_{n}\right\}_{n=1}^{\infty}$ by compact sets inductively. First, set $K_{1}=\overline{U_{1}}$. Suppose that K_{n} has been defined. Since K_{n} is compact and \mathcal{B} is an open cover, there are finitely many subindices n_{1}, \ldots, n_{j} such that $K_{n} \subseteq U_{n_{1}} \cup \cdots \cup U_{n_{j}}$. We then define $K_{n+1}=\overline{U_{n+1}} \cup \overline{U_{n_{1}}} \cup \cdots \cup \overline{U_{n_{j}}}$. This is compact (as a finite union of compact sets) and satisfies

$$
K_{n} \subseteq U_{n+1} \cup U_{n_{1}} \cup \cdots \cup U_{n_{j}} \subseteq \operatorname{Int}\left(\overline{U_{n+1} \cup U_{n_{1}} \cup \cdots \cup U_{n_{j}}}\right)=\operatorname{Int} K_{n+1}
$$

The collection $\left\{K_{n}\right\}_{n=1}^{\infty}$ covers X as each $x \in X$ belongs to some U_{n} (since \mathcal{B} is a basis), which is a subset of K_{n} by construction.

Problem 2(c)

Let X be a second countable, locally compact Hausdorff space and let $\left\{U_{\alpha}\right\}_{\alpha \in J}$ be an open cover for X. Show that there exists an open cover $\left\{V_{\alpha}\right\}_{\alpha \in J}$ such that $\bar{V}_{\alpha} \subseteq U_{\alpha}$ and that for every $x \in X$, there exists a neighbourhood of x that intersects V_{α} for finitely many $\alpha \in J$. Hint: Fix an exhaustion $\left\{K_{n}\right\}_{n \in \mathbb{N}}$ by compact sets and define $A_{n}:=K_{n+1} \backslash \operatorname{Int} K_{n}$ and
$U_{n}:=\operatorname{Int} K_{n+2} \backslash K_{n-1}$.

Solution

With K_{n}, A_{n}, and U_{n} defined as in the hint, we have that A_{n} is compact, U_{n} is open, and $A_{n} \subseteq U_{n}$. The collection $\mathcal{O}=\left\{U \subseteq X\right.$ open $\mid \bar{U} \subseteq U_{\alpha}$ for some $\left.\alpha \in J\right\}$ is an open cover of X; thus, for each $n \in \mathbb{N}$, there is a finite subcover $\mathcal{U}_{n} \subseteq \mathcal{O}$ of A_{n}. Then $\mathcal{U}=\bigcup_{n=1}^{\infty} \mathcal{U}_{n}$ is another open cover of X with the property that every $x \in X$ admits an open neighbourhood that intersects finitely many sets in \mathcal{U}. For each $W \in \mathcal{U}$, there exists some $\alpha \in J$ such that $\bar{W} \subseteq U_{\alpha}$. Choosing one such α for each $W \in \mathcal{U}$ defines a function $f: \mathcal{U} \rightarrow J$. Then setting

$$
V_{\alpha}=\bigcup_{W \in f^{-1}(\alpha)} W
$$

yields the desired open cover $\left\{V_{\alpha}\right\}_{\alpha \in J}$.

Problem 2(d) (bonus)

Generalize our proof for the existence of a partition of unity to second countable, locally compact Hausdorff spaces and, in particular, to n-manifolds.

Solution

See Theorem 4.85 in Lee's Introduction to Topological Manifolds.

Question 3

Problem 3(a)

Show that if X is Hausdorff and A is a retract of X, then A is closed.

Solution

Let $r: X \rightarrow A$ be a retraction. We will show that A is closed by showing that $X \backslash A$ is open. Given $x \in X \backslash A$, we have $r(x) \neq x$; since X is Hausdorff, there are disjoint open neighbourhoods U and V of x and $r(x)$, respectively. Then $V \cap A$ is open in A and contains $r(x)$, hence $r^{-1}(V \cap A)$ is open in X and contains x. Define $U_{x}=r^{-1}(V \cap A) \cap U$. Then U_{x} is an open neighbourhood of x which is disjoint from A, for if there existed $y \in U_{x} \cap A$, then $r(y)=y \in V \cap A$ and $y \in U$; this is impossible, as $U \cap V=\varnothing$. Since

$$
X \backslash A=\bigcup_{x \in X \backslash A} U_{x},
$$

this shows that $X \backslash A$ is open.

Problem 3(b)

Suppose that A is a retract of X, Show that for any $x_{0} \in A$, the homomorphism $\iota_{*}: \pi\left(A, x_{0}\right) \rightarrow \pi\left(X, x_{0}\right)$ induced by the inclusion map $\iota: A \rightarrow X$ is injective and the homomorphism $r_{*}: \pi\left(X, x_{0}\right) \rightarrow \pi\left(A, x_{0}\right)$ induced by the retraction r is surjective. Conclude that a retract of a simply connected space is simply connected.

Solution

To say that $r: X \rightarrow A$ is a retraction is equivalent to saying that $r \circ \iota=\operatorname{id}_{A}$, where $\iota: A \hookrightarrow X$ is the inclusion. Thus, for any $x_{0} \in A$, the induced maps on fundamental groups $\iota_{*}: \pi_{1}\left(A, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ and $r_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(A, x_{0}\right)$ satisfy

$$
r_{*} \circ \iota_{*}=(r \circ \iota)_{*}=\left(\operatorname{id}_{A}\right)_{*}=\operatorname{id}_{\pi_{1}\left(A, x_{0}\right)} .
$$

Whenever a composition $g \circ f$ of functions is bijective, the function f must be injective and the function g must be surjective. Thus ι_{*} is injective and r_{*} is surjective.
In particular, if X is simply connected, then so is A : it is the image of the path-connected space X under r, hence path-connected, and since $\pi_{1}\left(X, x_{0}\right)=0$, the homomorphism r_{*} is a surjective map from the trivial group to $\pi_{1}\left(A, x_{0}\right)$, which shows that $\pi_{1}\left(A, x_{0}\right)=0$.

Problem 3(c)

Show that for any $n \in \mathbb{N}, S^{n-1}$ is a retract of $\mathbb{R}^{n} \backslash\{0\}$. Conclude that $\mathbb{R}^{2} \backslash\{0\}$ is not simply connected.

Solution

A retract $r: \mathbb{R}^{n} \backslash\{0\} \rightarrow S^{n-1}$ is given by $r(x)=x /\|x\|$, where $\|\cdot\|$ denotes the Euclidean norm. By part (b), it follows that $r_{*}: \pi_{1}\left(\mathbb{R}^{n} \backslash\{0\}\right) \rightarrow \pi_{1}\left(S^{n-1}\right)$ is a surjective homomorphism (suppressing the choice of basepoint from our notation). Specializing to $n=2$, we see that there is a surjection $\pi_{1}\left(\mathbb{R}^{2} \backslash\{0\}\right) \rightarrow \pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$. Thus $\pi_{1}\left(\mathbb{R}^{2} \backslash\{0\}\right) \neq 0$.

Problem 3(d)

Show that the torus $T=S^{1} \times S^{1}$ is not simply connected by finding a retract that is homeomorphic to S^{1}.

Solution

Many choices of retraction are possible. For instance, fix any $p \in S^{1}$ and define a map $r: S^{1} \times S^{1} \rightarrow S^{1} \times\{p\}$ by $r(x, y)=(x, p)$. This is a retraction, and $S^{1} \times\{p\}$ is homeomorphic to S^{1} via the projection $S^{1} \times\{p\} \rightarrow S^{1}$.

Problem 3(e)

Let $n \geq 2$ and let N be the north pole in S^{n}. Let $p \in S^{n} \backslash\{N\}$. Show that any loop based at p is path-homotopic to one that doesn't contain N. Conclude that S^{n} is simply connected.

Hint: Recall that $S^{n} \backslash\{N\}$ is homeomorphic to \mathbb{R}^{n}.

Solution

Let $U \subset S^{n}$ be an open neighbourhood of N which is homeomorphic to a disk. Let V be an open neighbourhood of $S^{n} \backslash U$ which does not contain N. For any loop $\gamma:[0,1] \rightarrow S^{n}$ based at p, the preimages $\gamma^{-1}(U)$ and $\gamma^{-1}(V)$ are open subsets of $[0,1]$, hence together form a collection of intervals which are open in $[0,1]$. By compactness, there exist finitely many numbers $0=t_{0}<t_{1}<\ldots<t_{n}=1$ such that $\gamma_{i}:=\left.\gamma\right|_{\left[t_{i}, t_{i+1}\right]}$ has image contained in either U or V. For those intervals $\left[t_{i}, t_{i+1}\right]$ with image contained in U, observe that $U \backslash\{N\}$ is path-connected (this step uses that $n \geq 2$), hence there exists a path γ_{i}^{\prime} parametrized by the same interval which has the same start and endpoints as γ_{i}, but avoids N. For those intervals $\left[t_{i}, t_{i+1}\right]$ with image contained in V, we simply set $\gamma_{i}^{\prime}=\gamma_{i}$. Then γ is path-homotopic to the concatenation of the γ_{i}^{\prime} 's, which is path-homotopic to the concatenation of the $\gamma_{i}^{\prime \prime}$ s; this loop avoids N.
From this, it follows that S^{n} is simply connected for $n \geq 2$: any loop based at $p \in S^{n} \backslash\{N\}$ is path-homotopic to one with image contained in $S^{n} \backslash\{N\}$. Since $S^{n} \backslash\{N\}$ is homeomorphic to \mathbb{R}^{n} and the latter space is simply connected, it follows that S^{n} is also simply connected.

Problem 3(f) (bonus)

Define the figure eight $Y \subset \mathbb{R}^{2}$ to be the union of the circles of radius one and centres $(0,1)$ and $(0,-1)$. Show that Y is not simply connected.

Solution

Let $A=\left\{(x, y) \mid x^{2}+(y-1)^{2}=1\right\} \subset Y$ be the top circle in Y. Then there is a retraction $r: Y \rightarrow A$ given by $r(x, y)=(x,|y|)$. Since A is homeomorphic to S^{1}, the same reasoning as in parts (c) and (d) shows that Y is not simply connected.

