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Question 1

Problem 1(a) (Baire category theorem)

Let X be a complete metric space or a locally compact Hausdorff space. Show that every
countable collection of dense open sets has a dense intersection. Equivalently, show that the
union of every countable collection of closed nowhere dense sets has empty interior.
Remark: A subset of X is nowhere dense if its closure has empty interior.

Solution

This proof is standard. Different expositions can be found, for example, on Wikipedia, in
Chapter 48 of Munkres’ Topology (second edition), and in Chapter 5.3 of Folland’s Real
Analysis: Modern Techniques and Their Applications (second edition).

Problem 1(b)

Let F be a collection of continuous real-valued functions on a locally compact Hausdorff
space or a complete metric space X. Suppose that F is piecewise bounded in the sense that
for every x ∈ X, there exists M > 0 such that |f(x)| ≤ M for all f ∈ F . Show that F is
uniformly bounded on some open set U ⊆ X, meaning that there exists M > 0 such that
supx∈U |f(x)| ≤ M for all f ∈ F .
Hint: Consider An := {x ∈ X | |f(x)| ≤ n for all f ∈ F}.

Solution

Observe that An as defined in the hint is equal to ⋂f∈F f
−1([−n, n]), and is hence closed.

Moreover, X = ⋃∞
n=1An by the assumption that F is piecewise bounded. We claim that

some An has non-empty interior. By way of contradiction, suppose not; then {An}∞
n=1 is

a countable collection of closed nowhere dense sets, and hence X = ⋃∞
n=1An has empty

interior by the Baire category theorem. This is impossible (unless X = ∅, in which case
there is nothing to prove).
Thus, there exists some n ∈ N with Int(An) ̸= ∅. Setting U = Int(An) yields the desired
open set.

Problem 1(c)

Let f : R → R be a continuous function with the property that for every x ∈ R,
limn→∞ f(nx) = 0. Show that limx→∞ f(x) = 0.

Solution

Fix ε > 0. For each n ∈ N, define An = {x ∈ [0,∞) | |f(nx)| ≤ ε} and Bn = ⋂∞
m=nAm.

Then An is closed (as the preimage of the closed set [0, ε] under the continuous function
x 7→ |f(nx)|), hence so too is Bn. The assumption that limn→∞ f(nx) = 0 for every x ∈ R
implies that ⋃∞

n=1Bn = [0,∞). By the Baire category theorem, there exists an open interval
(a, b) contained in some BN . Given n > N and x ∈ (a, b), it follows that |f(nx)| ≤ ε; said
differently, |f(x)| ≤ ε for all x ∈ (na, nb). These intervals are of length n(b−a), which grows
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linearly in n; it follows that the union of all such intervals contains all sufficiently large x.
Thus |f(x)| ≤ ε for all sufficiently large x. This holds for all ε > 0, whence the conclusion.

Problem 1(d)

Let f : R → R be a function and let D be the set of all points in R at which f is continuous.
Show that D cannot be a countable dense set.
Hint: Show that D is a Gδ set.

Solution

Define

Dn =
{
x ∈ R | ∃δ > 0 such that |f(x1) − f(x2)| < 1

n
whenever x1, x2 ∈ (x− δ, x+ δ)

}
.

The condition defining membership in Dn is an open condition, so Dn is open. We claim
that D = ⋂∞

n=1Dn, whence it follows that D is a Gδ set. Indeed, if x ∈ D and n ∈ N, then
there exists a δ > 0 satisfying the ε-δ definition of continuity of f at x for ε = 1

2n ; then for
all x1, x2 ∈ (x− δ, x+ δ), the triangle inequality yields

|f(x1) − f(x2)| ≤ |f(x1) − f(x)| + |f(x) − f(x2)| < 1
2n + 1

2n = 1
n
,

so x ∈ Dn. This holds for all n and x, hence D ⊆
⋂∞

n=1Dn. Conversely, suppose x ∈⋂∞
n=1Dn. Given ε > 0, choose n ∈ N such that 1

n < ε; then taking x2 = x in the definition
of Dn shows that f is continuous at x, hence x ∈ D.
Suppose D is dense. Then Dc = ⋃∞

n=1D
c
n has empty interior; in particular, each Dc

n has
empty interior, and is thus nowhere dense (as Dc

n is also closed). From this it follows that
D must be uncountable: if it were the case that D were countable, then

R = D ∪Dc =
( ⋃

x∈D

{x}
)

∪
∞⋃

n=1
Dc

n,

which would express R as a countable union of nowhere dense sets. This is impossible by
the Baire category theorem.

Problem 1(e) (bonus)

Equip C([0, 1]) with the supremum metric making it a complete metric space. For each
n ∈ N, let Fn be the subset of (C([0, 1], dsup) consisting of functions for which there is a
point x0 ∈ [0, 1] such that |f(x) − f(x0)| ≤ n|x − x0| for all x ∈ [0, 1]. Show that Fn is
a closed nowhere dense set. Using the Baire category theorem, conclude that the set of
continuous nowhere differentiable functions is dense in C([0, 1]).

Solution

First, we introduce some terminology and notation:

• The uniform norm ∥ · ∥u on C([0, 1]) is defined by ∥f∥u = supx∈[0,1] |f(x)|, so that
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dsup(f, g) = ∥f − g∥u.
• A subset F of a topological space X is called meagre if it is a countable union of

nowhere dense sets.
• The complement of a meagre set is called residual. If X is a complete metric space

or locally compact Hausdorff space (so that the Baire category theorem holds), then
every residual subset of X is dense in X.

Fn is closed: We show that every convergent sequence (fk)∞
k=1 in Fn with limit f satisfies

f ∈ Fn (note that f is automatically continuous as it is the uniform limit of a sequence of
continuous functions). For each k ∈ N, choose xk ∈ [0, 1] such that

|fk(x) − fk(xk)| ≤ n|x− xk|, ∀x ∈ [0, 1].

Since [0, 1] is compact, the sequence (xk)∞
k=1 has a subsequence converging to some x0 ∈ [0, 1].

By replacing the sequence (fk)∞
k=1 with the corresponding subsequence, we may assume

that xk → x0. Then fk → f uniformly and xk → x0. Note that |fk(xk) − f(x0)| ≤
|fk(xk) − f(xk)| + |f(xk) − f(x0)|; the first term tends to 0 since fk → f uniformly, and the
second term tends to 0 since f is continuous and xk → x0. It follows that fk(xk) → f(x0).
Then for all x ∈ [0, 1], we have

|f(x) − f(x0)| = lim
k→∞

|fk(x) − fk(xk)| ≤ lim
k→∞

n|x− xk| = n|x− x0|.

Thus f ∈ Fn.
Fn is nowhere dense: We need a few results before proceeding.

Proposition 1.1. Fix n ∈ N.

(1) If ψ ∈ C([0, 1]) is piecewise linear and each linear piece of ψ has slope greater than or
equal to 2n in absolute value, then ψ /∈ Fn.

(2) For all f ∈ C([0, 1]) and ε > 0, there exists ψ ∈ C([0, 1]) as in (1) which additionally
satisfies ∥f − ψ∥u < ε.

For a detailed proof of Proposition 1.1, see the following section.
Since Fn is closed, it is nowhere dense if and only if it has empty interior, if and only if every
f ∈ C([0, 1]) is the (uniform) limit of some sequence (fk)∞

k=1 in C([0, 1])\Fn. By Proposition
1.1(2), there exists a sequence of piecewise linear functions fk such that ∥fk − f∥u <

1
k and

the linear pieces of each fk have slopes greater than or equal to 2n in absolute value. Each
fk is in C([0, 1]) \ Fn by Proposition 1.1(1), so we are done.
Continuous, nowhere differentiable functions are dense in C([0, 1]):
Suppose f ∈ C([0, 1]) is differentiable at a point x0 ∈ [0, 1]. Then there exists δ > 0 such
that ∣∣∣∣f(x) − f(x0)

x− x0
− f ′(x0)

∣∣∣∣ ≤ 1 whenever 0 < |x− x0| < δ.

Applying the reverse triangle inequality and rearranging, we obtain

|f(x) − f(x0)| ≤ (1 + |f ′(x0)|)|x− x0| whenever |x− x0| < δ.

If instead |x− x0| ≥ δ, then

|f(x) − f(x0)| ≤ 2∥f∥u = 2∥f∥u

|x− x0|
|x− x0| ≤ 2∥f∥u

δ
|x− x0|.
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Thus, if n ≥ max(1 + |f ′(x0)|, 2∥f∥u/δ), then f ∈ Fn.
It follows that the set F ⊂ C([0, 1]) of functions differentiable at some point is contained
inside ⋃∞

n=1 Fn. Each Fn is nowhere dense, so ⋃∞
n=1 Fn is meagre. A subset of a meagre set

is itself meagre, so F is meagre. Thus, F c is residual in C([0, 1]) (and in particular dense),
and F c is precisely the nowhere differentiable continuous functions.

Proof of Proposition 1.1

Proof of Proposition 1.1(1). Fix x0 ∈ [0, 1]. For sufficiently small ε > 0, we have that ψ is
affine linear on at least one of the intervals [x0, x0 + ε] or [x0 − ε, x0], with slope m satisfying
|m| ≥ 2n. Set x = x0 ± ε

2 , the sign chosen so that x lies in such an interval. Then

|ψ(x) − ψ(x0)| = |m||x− x0| ≥ 2n|x− x0| > n|x− x0|,

the strict inequality holding because |x− x0| ≠ 0. ■

We prove Proposition 1.1(2) in a two-step process: first, show that every f ∈ C([0, 1]) can be
uniformly approximated by some piecewise linear function. Then, show that every piecewise
linear function can be uniformly approximated by a piecewise linear function with slopes
greater than or equal to 2n in absolute value.

Lemma 1.2. For all f ∈ C([0, 1]) and ε > 0, there exists a piecewise linear ϕ ∈ C([0, 1]) such
that ∥f − ϕ∥u < ε.

Proof. Since [0, 1] is compact, f is uniformly continuous on [0, 1]; hence there exists N ∈ N
such that |f(x) − f(y)| < ε

4 whenever |x− y| ≤ 1
N . Set xk = k

N , so that 0 = x0 < x1 < · · · <
xN = 1. We define ϕ ∈ C([0, 1]) by ϕ(xk) = f(xk) and linearly interpolating between the
xk’s, i.e.

ϕ(x) := f(xk) − f(xk−1)
1/N (x− xk−1) + f(xk−1), ∀x ∈ (xk−1, xk).

Fix x ∈ [0, 1]. If x = xk for some k, then f(x) = ϕ(x); otherwise, x ∈ (xk−1, xk) for some k,
and

|f(x) − ϕ(x)| ≤ |f(x) − f(xk−1)| + |f(xk) − f(xk−1)| x− xk−1
1/N

≤ |f(x) − f(xk−1)| + |f(xk) − f(xk−1)|
< ε/4 + ε/4.

It follows that ∥f − ϕ∥u ≤ ε/2 < ε. ■

Lemma 1.3. Fix n ∈ N and ε > 0. If ϕ ∈ C([0, 1]) is piecewise linear, then there exists a
piecewise linear ψ ∈ C([0, 1]) whose linear pieces have slopes greater than or equal to 2n in
absolute value, and such that ∥ϕ− ψ∥u < ε.

Proof. We claim that if ϕ(x) = mx + c is affine linear on [a, b] and |y0 − ϕ(a)| ≤ ε
2 , then

there exists ψ piecewise linear on [a, b] such that ψ(a) = y0, each linear piece of ψ has slope
greater than or equal to 2n in absolute value, and

|ψ(x) − ϕ(x)| ≤ ε

2 , ∀x ∈ [a, b].
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Indeed, if |m| ≥ 2n, then ψ(x) = m(x− a) + y0 works. Otherwise, approximate mx+ c with
a “see-saw” function whose slopes have absolute value 2n (Figure 1.1).
From this, the lemma follows easily: let 0 = x0 < x1 < . . . < xN = 1 be such that each
ϕ|[xk−1,xk] is affine linear. Apply the claim on [0, x1] with y0 = ϕ(0) to define ψ on [0, x1].
Then apply the claim on [x1, x2] with y0 = ψ(x1) (which satisfies |y0 − ϕ(x1)| ≤ ε

2 by
construction) to define ψ on [x1, x2]. Continuing this iterative process defines ψ on [0, 1]. By
construction, ψ is piecewise linear and each linear piece has slope greater than or equal to
2n in absolute value, and

∥ϕ− ψ∥u ≤ ε

2 < ε.

■

Proof of Proposition 1.1(2). By Lemma 1.2, there exists a piecewise linear ϕ ∈ C([0, 1]) such
that ∥f−ϕ∥u < ε/2. By Lemma 1.3, there exists a piecewise linear ψ ∈ C([0, 1]) whose linear
pieces have slopes greater than or equal to 2n in absolute value, and such that ∥ϕ−ψ∥u < ε/2.
By the triangle inequality,

∥f − ψ∥u ≤ ∥f − ϕ∥u + ∥ϕ− ψ∥u < ε.

■

Figure 1.1: Approximating ϕ when |m| < 2n.

Question 2

Problem 2(a)

Show that every second-countable, locally compact Hausdorff space is metrizable. Conclude
that every n-manifold is metrizable.

Solution

Let X be a second-countable, locally compact Hausdorff space. In view of Urysohn’s metriza-
tion theorem, it suffices to show that X is regular.
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Case 1. If X is compact, then recall that compact + Hausdorff =⇒ normal, hence in
particular X is regular.
Case 2. If X is not compact, then consider its one-point compactification X∗ (see Problem
Set 4 Q4). Since X∗ is compact and Hausdorff, it is normal, hence in particular regular.
Since the property of being regular is hereditary and the original topology on X coincides
with the subspace topology induced by the inclusion X ↪→ X∗, it follows that X is regular.

In particular, every n-manifold is by definition second-countable, Hausdorff, and locally
homeomorphic to Rn. Since Rn is locally compact, so too is every n-manifold; thus manifolds
are metrizable.

Problem 2(b)

For a topological space, a sequence {Kn}n∈N of compact sets is called an exhaustion of X
by compact sets if the ⋃nKn = X and Kn ⊆ IntKn+1 for every n ∈ N. Show that every
second countable, locally compact Hausdorff space, and in particular an n-manifold, admits
an exhaustion by compact sets.

Solution

We claim that X has a countable basis consisting of precompact open sets (i.e., open sets
whose closures are compact). To show this, start with any countable basis B0 of X. Since
X is locally compact, every x ∈ X admits an open neighbourhood U and a compact set K
such that x ∈ U ⊆ K. Since X is Hausdorff, K is closed. Consider Nx = {B ∈ B0 | B ⊆ U}.
Each B ∈ Nx satisfies B ⊆ U ⊆ K = K, so B is compact (as a closed subset of the compact
set K). Then

B :=
⋃

x∈X

Nx

is the desired basis (note that B ⊆ B0, so B is also countable).
Indexing B = {Un}∞

n=1, we define an exhaustion {Kn}∞
n=1 by compact sets inductively. First,

set K1 = U1. Suppose that Kn has been defined. Since Kn is compact and B is an open
cover, there are finitely many subindices n1, . . . , nj such that Kn ⊆ Un1 ∪ · · · ∪Unj . We then
define Kn+1 = Un+1 ∪ Un1 ∪ · · · ∪ Unj . This is compact (as a finite union of compact sets)
and satisfies

Kn ⊆ Un+1 ∪ Un1 ∪ · · · ∪ Unj ⊆ Int
(
Un+1 ∪ Un1 ∪ · · · ∪ Unj

)
= IntKn+1.

The collection {Kn}∞
n=1 covers X as each x ∈ X belongs to some Un (since B is a basis),

which is a subset of Kn by construction.

Problem 2(c)

Let X be a second countable, locally compact Hausdorff space and let {Uα}α∈J be an open
cover for X. Show that there exists an open cover {Vα}α∈J such that V α ⊆ Uα and that for
every x ∈ X, there exists a neighbourhood of x that intersects Vα for finitely many α ∈ J .
Hint: Fix an exhaustion {Kn}n∈N by compact sets and define An := Kn+1 \ IntKn and
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Un := IntKn+2 \Kn−1.

Solution

With Kn, An, and Un defined as in the hint, we have that An is compact, Un is open, and
An ⊆ Un. The collection O = {U ⊆ X open | U ⊆ Uα for some α ∈ J} is an open cover
of X; thus, for each n ∈ N, there is a finite subcover Un ⊆ O of An. Then U = ⋃∞

n=1 Un is
another open cover of X with the property that every x ∈ X admits an open neighbourhood
that intersects finitely many sets in U . For each W ∈ U , there exists some α ∈ J such that
W ⊆ Uα. Choosing one such α for each W ∈ U defines a function f : U → J . Then setting

Vα =
⋃

W ∈f−1(α)
W

yields the desired open cover {Vα}α∈J .

Problem 2(d) (bonus)

Generalize our proof for the existence of a partition of unity to second countable, locally
compact Hausdorff spaces and, in particular, to n-manifolds.

Solution

See Theorem 4.85 in Lee’s Introduction to Topological Manifolds.

Question 3

Problem 3(a)

Show that if X is Hausdorff and A is a retract of X, then A is closed.

Solution

Let r : X → A be a retraction. We will show that A is closed by showing that X \A is open.
Given x ∈ X \A, we have r(x) ̸= x; since X is Hausdorff, there are disjoint open neighbour-
hoods U and V of x and r(x), respectively. Then V ∩ A is open in A and contains r(x),
hence r−1(V ∩ A) is open in X and contains x. Define Ux = r−1(V ∩ A) ∩ U . Then Ux is
an open neighbourhood of x which is disjoint from A, for if there existed y ∈ Ux ∩ A, then
r(y) = y ∈ V ∩A and y ∈ U ; this is impossible, as U ∩ V = ∅. Since

X \A =
⋃

x∈X\A

Ux,

this shows that X \A is open.
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Problem 3(b)

Suppose that A is a retract of X, Show that for any x0 ∈ A, the homomorphism
ι∗ : π(A, x0) → π(X,x0) induced by the inclusion map ι : A → X is injective and the
homomorphism r∗ : π(X,x0) → π(A, x0) induced by the retraction r is surjective. Conclude
that a retract of a simply connected space is simply connected.

Solution

To say that r : X → A is a retraction is equivalent to saying that r ◦ ι = idA, where
ι : A ↪→ X is the inclusion. Thus, for any x0 ∈ A, the induced maps on fundamental groups
ι∗ : π1(A, x0) → π1(X,x0) and r∗ : π1(X,x0) → π1(A, x0) satisfy

r∗ ◦ ι∗ = (r ◦ ι)∗ = (idA)∗ = idπ1(A,x0) .

Whenever a composition g ◦ f of functions is bijective, the function f must be injective and
the function g must be surjective. Thus ι∗ is injective and r∗ is surjective.
In particular, if X is simply connected, then so is A: it is the image of the path-connected
space X under r, hence path-connected, and since π1(X,x0) = 0, the homomorphism r∗ is a
surjective map from the trivial group to π1(A, x0), which shows that π1(A, x0) = 0.

Problem 3(c)

Show that for any n ∈ N, Sn−1 is a retract of Rn \ {0}. Conclude that R2 \ {0} is not simply
connected.

Solution

A retract r : Rn \ {0} → Sn−1 is given by r(x) = x/∥x∥, where ∥ · ∥ denotes the Euclidean
norm. By part (b), it follows that r∗ : π1(Rn\{0}) → π1(Sn−1) is a surjective homomorphism
(suppressing the choice of basepoint from our notation). Specializing to n = 2, we see that
there is a surjection π1(R2 \ {0}) → π1(S1) ∼= Z. Thus π1(R2 \ {0}) ̸= 0.

Problem 3(d)

Show that the torus T = S1 × S1 is not simply connected by finding a retract that is
homeomorphic to S1.

Solution

Many choices of retraction are possible. For instance, fix any p ∈ S1 and define a map
r : S1 ×S1 → S1 ×{p} by r(x, y) = (x, p). This is a retraction, and S1 ×{p} is homeomorphic
to S1 via the projection S1 × {p} → S1.

Problem 3(e)

Let n ≥ 2 and let N be the north pole in Sn. Let p ∈ Sn \{N}. Show that any loop based at
p is path-homotopic to one that doesn’t contain N . Conclude that Sn is simply connected.
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Hint: Recall that Sn \ {N} is homeomorphic to Rn.

Solution

Let U ⊂ Sn be an open neighbourhood of N which is homeomorphic to a disk. Let V be
an open neighbourhood of Sn \ U which does not contain N . For any loop γ : [0, 1] → Sn

based at p, the preimages γ−1(U) and γ−1(V ) are open subsets of [0, 1], hence together form
a collection of intervals which are open in [0, 1]. By compactness, there exist finitely many
numbers 0 = t0 < t1 < . . . < tn = 1 such that γi := γ|[ti,ti+1] has image contained in either
U or V . For those intervals [ti, ti+1] with image contained in U , observe that U \ {N} is
path-connected (this step uses that n ≥ 2), hence there exists a path γ′

i parametrized by the
same interval which has the same start and endpoints as γi, but avoids N . For those intervals
[ti, ti+1] with image contained in V , we simply set γ′

i = γi. Then γ is path-homotopic to the
concatenation of the γi’s, which is path-homotopic to the concatenation of the γ′

i’s; this loop
avoids N .
From this, it follows that Sn is simply connected for n ≥ 2: any loop based at p ∈ Sn \{N} is
path-homotopic to one with image contained in Sn \ {N}. Since Sn \ {N} is homeomorphic
to Rn and the latter space is simply connected, it follows that Sn is also simply connected.

Problem 3(f) (bonus)

Define the figure eight Y ⊂ R2 to be the union of the circles of radius one and centres (0, 1)
and (0,−1). Show that Y is not simply connected.

Solution

Let A = {(x, y) | x2 + (y − 1)2 = 1} ⊂ Y be the top circle in Y . Then there is a retraction
r : Y → A given by r(x, y) = (x, |y|). Since A is homeomorphic to S1, the same reasoning as
in parts (c) and (d) shows that Y is not simply connected.
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