25.2) Let the sequence of functions $\left\{f_{n}\right\}$ be defined by $f_{n}(x)=\frac{x^{n}}{n}$ on $[-1,1]$. First we find the pointwise limit f. Let $x \in[-1,1]$. Then we have

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{x^{n}}{n}
$$

Since $|x| \leq 1$, the following inequality holds

$$
-\frac{1}{n} \leq \frac{x^{n}}{n} \leq \frac{1}{n} \quad \forall n
$$

Clearly, the following limits are true

$$
\lim _{x \rightarrow \infty} \frac{1}{n}=\lim _{x \rightarrow \infty}-\frac{1}{n}=0
$$

Then,

$$
\lim _{n \rightarrow \infty} \frac{x^{n}}{n}=0
$$

by the Squeeze Theorem (Exercise 8.5). Thus, we choose to define $f(x)=0 \forall x \in[-1,1]$ so that $\left\{f_{n}\right\} \rightarrow f$ on $x \in[-1,1]$.

Now we show the uniform convergence. Let $\epsilon>0$ be given and $x \in[-1,1]$. We have

$$
\left|f_{n}(x)-f(x)\right|=\left|\frac{x^{n}}{n}-0\right|=\left|\frac{x^{n}}{n}\right| \leq \frac{1}{n}
$$

So

$$
\left|f_{n}(x)-f(x)\right|<\epsilon \Leftrightarrow \frac{1}{n}<\epsilon \Leftrightarrow n>\frac{1}{\epsilon}
$$

Choose $N=\frac{1}{\epsilon}$. Thus,

$$
\forall n>N \Rightarrow\left|f_{n}(x)-f(x)\right|<\epsilon
$$

Since $x \in[-1,1]$ was arbitrary, it holds for all $x \in[-1,1]$. Therefore, $\left\{f_{n}\right\} \rightrightarrows f$ on $[-1,1]$ by definition.
25.4) Let the sequence of functions $\left\{f_{n}\right\}$ on $S \subseteq \mathbb{R}$. Suppose $\left\{f_{n}\right\} \rightrightarrows f$ on S. Let $\epsilon>0$ be given. Note

$$
\left|f_{n}(x)-f_{m}(x)\right|=\left|f_{n}(x)-f(x)+f(x)-f_{m}(x)\right| \leq\left|f_{n}(x)-f(x)\right|+\left|f_{m}(x)-f(x)\right| \forall x \in S
$$

by the Triangle Inequality.
Consider the number $\frac{\epsilon}{2}>0$. Since $\left\{f_{n}\right\} \rightrightarrows f$, there exists N such that

$$
\begin{equation*}
\forall n>N \quad \forall x \in S \Rightarrow\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{2} . \tag{1}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\forall m>N \quad \forall x \in S \Rightarrow\left|f_{m}(x)-f(x)\right|<\frac{\epsilon}{2} . \tag{2}
\end{equation*}
$$

Thus,

$$
\forall m, n>N \quad \forall x \in S \Rightarrow\left|f_{n}(x)-f_{m}(x)\right| \leq\left|f_{n}(x)-f(x)\right|+\left|f_{m}(x)-f(x)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

by (1) and (2). Therefore, $\left\{f_{n}\right\}$ is uniformly Cauchy on S by definition.
25.6) (a) Suppose $\sum\left|a_{k}\right|<\infty$ (i.e. a convergent series of numbers). Here we have a sequence $\left\{\left|a_{k}\right|\right\}$ of nonnegative numbers with $\sum\left|a_{k}\right|<\infty$. Consider the power series $\sum a_{k} x^{k}$ on $[-1,1]$. Since $|x| \leq 1$, we have

$$
\left|a_{k} x^{k}\right|=\left|a_{k}\right|\left|x^{k}\right| \leq\left|a_{k}\right| \forall k \text { and } \forall x \in[-1,1]
$$

Thus, the power series $\sum a_{k} x^{k}$ converges uniformly on $[-1,1]$ by the Weierstrass M-Test. Clearly, a power series is a series of continuous functions (since they are just polynomials). Therefore, $\sum a_{k} x^{k}$ converges uniformly to a continuous functions by Theorem 25.5.
(b) Yes. Since $a_{k}=\frac{1}{k^{2}}>0 \forall k$, and $\sum \frac{1}{k^{2}}$ is a convergent p-series, the power series $\sum \frac{1}{k^{2}} x^{k}$ converges uniformly to a continuous function on $[-1,1]$ by the assertion proved in part (a).
25.12) Suppose $\sum g_{k}$ is a series of continuous functions g_{k} on $[a, b]$ that converges uniformly to g on $[a, b]$. Define the corresponding sequence of partial sums $\left\{f_{n}\right\}$ defined by $f_{n}(x)=\sum_{k=1}^{n} g_{k}(x)$ for all n and $x \in[a, b]$. Notice for all n that f_{n} is continuous (since addition preserves continuity), and we have $\left\{f_{n}\right\} \rightrightarrows g$ on $[a, b]$ by definition of uniform convergence on a series of functions. From Theorem 25.2, we have

$$
\int_{a}^{b} g(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} \sum_{k=1}^{n} g_{k}(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \int_{a}^{b} g_{k}(x) d x=\sum_{k=1}^{\infty} \int_{a}^{b} g_{k}(x) d x
$$

since the integral 'distributes' over addition (Theorem 35.8), proving the claim.
25.14) Suppose $\sum g_{k}$ is a series of functions that converges uniformly to g on S, and h is a bounded function on S. h is bounded on S means there exists an $M \in \mathbb{R}$ such that $|h(x)| \leq M \forall x \in S$. Notice

$$
\left|\sum_{k=1}^{n} h(x) g_{k}(x)-h(x) g(x)\right|=|h(x)|\left|\sum_{k=1}^{n} g_{k}(x)-g(x)\right| \leq M\left|\sum_{k=1}^{n} g_{k}(x)-g(x)\right|
$$

Let $\epsilon>0$ be given, and consider the value $\frac{\epsilon}{M}>0$. Since the series of functions converges uniformly to g on S, there exists an N such that

$$
\forall n>N \quad \forall x \in S \Rightarrow\left|\sum_{k=1}^{n} g_{k}(x)-g(x)\right|<\frac{\epsilon}{M}
$$

For this N, we have

$$
\forall n>N \quad \forall x \in S \Rightarrow\left|\sum_{k=1}^{n} h(x) g_{k}(x)-h(x) g(x)\right| \leq M\left|\sum_{k=1}^{n} g_{k}(x)-g(x)\right|<M \frac{\epsilon}{M}=\epsilon
$$

Therefore, the series of functions $\sum h g_{k}$ converges uniformly to $h g$ on S by definition.

