n

25.2) Let the sequence of functions { f,,} be defined by f,(z) = L on [—1,1]. First we find the pointwise
n
limit f. Let € [—1,1]. Then we have

n

lim f,(z)= lim T

n—oo n—oo N
Since |x| < 1, the following inequality holds

n
L v
n-n _n
Clearly, the following limits are true
1
lim —= lim —— =0.

T—00 M r—00 n

Then,
xn

lim — =0
n—oo N

by the Squeeze Theorem (Exercise 8.5). Thus, we choose to define f(z) =0 Va € [-1,1] so that {f,} — f
onz € [—1,1].
Now we show the uniform convergence. Let ¢ > 0 be given and x € [—1,1]. We have

xn

n

1
< —
n

[fu(z) = f(z)| =

So

\fn<x>—f<x>\<f@%<e@n>%

Choose N = 1 Thus,
€
Vn > N = |fu(z) — f(x)| <e€

Since z € [—1, 1] was arbitrary, it holds for all € [—1,1]. Therefore, {f,} = f on [—1, 1] by definition.

25.4) Let the sequence of functions {f,} on S C R. Suppose {f,} = f on S. Let ¢ > 0 be given. Note
[fn(@) = fm(@)| = |ful2) = f(x) + f(2) = fm(@)| < [fo(@) = [(@)] + | fm(2) = f(2)| V2 €S

by the Triangle Inequality.
Consider the number % > 0. Since {f,} =2 f, there exists N such that

Yn>N VzeS=|fulz)— f(2)] <§. (1)
Moreover, we have
Ym > N VxES:>|fm(x)—f(x)]<§. (2)
Thus,
Vi > N Vo € 8 = |fal@) = fn(@)] < 1fale) = f@)]+ () = f@)| < 5+ 5 =



by (1) and (2). Therefore, {f,} is uniformly Cauchy on S by definition.

25.6) (a) Suppose Y |ag| < oo (i.e. a convergent series of numbers). Here we have a sequence {|ax|}
of nonnegative numbers with 3~ |ay| < co. Consider the power series > axz® on [—1,1]. Since |z| < 1, we
have

lapz®| = |ag||z¥| < |ax| Yk and Vz € [-1,1].

Thus, the power series S az* converges uniformly on [—1, 1] by the Weierstrass M-Test. Clearly, a power
series is a series of continuous functions (since they are just polynomials). Therefore, > azz* converges
uniformly to a continuous functions by Theorem 25.5.

1 1
(b) Yes. Since a, = yE) >0 Vk, and ) yE) is a convergent p-series, the power series 3 —z* converges

L2
uniformly to a continuous function on [—1,1] by the assertion proved in part (a).

25.12) Suppose Y gi is a series of continuous functions g on [a, b] that converges uniformly to g on
[a,b]. Define the corresponding sequence of partial sums {f,} defined by fn(z) = > ;_; gr(x) for all n
and x € [a,b]. Notice for all n that f, is continuous (since addition preserves continuity), and we have
{fn} = g on [a,b] by definition of uniform convergence on a series of functions. From Theorem 25.2, we
have

/a g(z) x—hm/fn xzhrgo/abigk( x—nlggoZ/a gr(x dw—Z/@ gr(x

since the integral 'distributes’ over addition (Theorem 35.8), proving the claim.

25.14) Suppose > gi is a series of functions that converges uniformly to g on S, and h is a bounded
function on S. h is bounded on S means there exists an M € R such that |h(z)| < M Vz € S. Notice

n n

> h(@)gi(x) = h(a)g(@) = (@)l Y gi(@) = g(2)| < M| Y gilz) —
k=1

k=1 k=1

€
Let € > 0 be given, and consider the value i > (0. Since the series of functions converges uniformly to

g on S, there exists an N such that

Vn > N VweS:\ng(:c)—g(x)\<

M.
k=1

For this N, we have

Vn > N VmeS#]Zh(m)gk(w) h(z) ]<M|ng |<M—f
k=1

Therefore, the series of functions Y hgy converges uniformly to hg on S by definition.



