Bethe Ansatz Methods in

Stochastic Integrable Models

Craig A. Tracy UC Davis

Joint Work with Harold Widom UC Santa Cruz

November, 2012

Outline

- Brief history: Bethe Ansatz \& quantum spin systems
- Modifications for interacting particle systems
- Asymmetric Simple Exclusion Process (ASEP) on integer lattice \mathbb{Z}
- Multi-species ASEP
- ASEP on half-line \mathbb{Z}^{+}
- H. Bethe, 1931: "On the Theory of Metals, I. Eigenvalues and Eigenfunctions of a Linear Chain of Atoms" [English translation].
- H. Bethe, 1931: "On the Theory of Metals, I. Eigenvalues and Eigenfunctions of a Linear Chain of Atoms" [English translation].
- This is the only paper Bethe ever wrote on Bethe Ansatz.
- H. Bethe, 1931: "On the Theory of Metals, I. Eigenvalues and Eigenfunctions of a Linear Chain of Atoms" [English translation].
- This is the only paper Bethe ever wrote on Bethe Ansatz.
- Method was developed in the 1960s by E. Lieb, J. McGuire, M. Gaudin, C.N. Yang, C.P. Yang, B. Sutherland,
- H. Bethe, 1931: "On the Theory of Metals, I. Eigenvalues and Eigenfunctions of a Linear Chain of Atoms" [English translation].
- This is the only paper Bethe ever wrote on Bethe Ansatz.
- Method was developed in the 1960s by E. Lieb, J. McGuire, M. Gaudin, C.N. Yang, C.P. Yang, B. Sutherland,
- M. T. Bachelor, "The Bethe Ansatz After 75 Years", Physics Today, January 2007.
- H. Bethe, 1931: "On the Theory of Metals, I. Eigenvalues and Eigenfunctions of a Linear Chain of Atoms" [English translation].
- This is the only paper Bethe ever wrote on Bethe Ansatz.
- Method was developed in the 1960s by E. Lieb, J. McGuire, M. Gaudin, C.N. Yang, C.P. Yang, B. Sutherland,
- M. T. Bachelor, "The Bethe Ansatz After 75 Years", Physics Today, January 2007.
- In 1966 Yang \& Yang extended the Bethe Ansatz to study the spectral theory of the XXZ quantum spin chain. The Hamiltonian is defined on a Hilbert space $\bigotimes_{j=1}^{L} \mathbb{C}_{j}^{2}$

$$
H_{X X Z}=-\sum_{1 \leq j \leq L}\left(\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta \sigma_{j}^{z} \sigma_{j+1}^{z}\right)
$$

where σ_{j}^{α} are Pauli spin matrices acting in slot j and the identity elsewhere. Assume periodic boundary conditions. (Bethe considered $\Delta=1$.)

- H. Bethe, 1931: "On the Theory of Metals, I. Eigenvalues and Eigenfunctions of a Linear Chain of Atoms" [English translation].
- This is the only paper Bethe ever wrote on Bethe Ansatz.
- Method was developed in the 1960s by E. Lieb, J. McGuire, M. Gaudin, C.N. Yang, C.P. Yang, B. Sutherland,
- M. T. Bachelor, "The Bethe Ansatz After 75 Years", Physics Today, January 2007.
- In 1966 Yang \& Yang extended the Bethe Ansatz to study the spectral theory of the XXZ quantum spin chain. The Hamiltonian is defined on a Hilbert space $\bigotimes_{j=1}^{L} \mathbb{C}_{j}^{2}$

$$
H_{X X Z}=-\sum_{1 \leq j \leq L}\left(\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta \sigma_{j}^{z} \sigma_{j+1}^{z}\right)
$$

where σ_{j}^{α} are Pauli spin matrices acting in slot j and the identity elsewhere. Assume periodic boundary conditions. (Bethe considered $\Delta=1$.)

- What are the essential ideas of Bethe Ansatz? Will explain in terms of $H_{X x z}$.
- First note the operator $M=\sum_{j} \sigma_{j}^{3}$ commutes with $H_{X X Z}$. Not the case for $H_{X Y Z}$ Hamiltonian (see Baxter).
- First note the operator $M=\sum_{j} \sigma_{j}^{3}$ commutes with $H_{X X Z}$. Not the case for $H_{X Y Z}$ Hamiltonian (see Baxter).
- Want to solve the Schrödinger equation

$$
H_{X x Z} \Psi=E \Psi
$$

i.e. physics dictates that interesting question is the spectral theory of $H_{X X Z}$. (Though time-dependent questions are interesting!)

- First note the operator $M=\sum_{j} \sigma_{j}^{3}$ commutes with $H_{X X Z}$. Not the case for $H_{X Y Z}$ Hamiltonian (see Baxter).
- Want to solve the Schrödinger equation

$$
H_{X x z} \Psi=E \Psi
$$

i.e. physics dictates that interesting question is the spectral theory of $H_{X X Z}$. (Though time-dependent questions are interesting!)

- Let $\left\{e_{X}\right\}$ denote basis in subspace with m up spins,

$$
e_{X}=\sigma_{x_{1}}^{+} \cdots \sigma_{x_{m}}^{+}|\downarrow \cdots \downarrow\rangle=\left|\cdots \underset{x_{1}}{\uparrow} \cdots \uparrow_{x_{2}} \cdots \underset{x_{m}}{\uparrow_{m}} \cdots\right\rangle
$$

Expand

$$
\Psi=\sum_{X} \psi\left(x_{1}, \ldots, x_{m}\right) e_{X}
$$

- Bethe Ansatz gives an Ansatz for the coordinate eigenfunctions

$$
\psi\left(x_{1}, \ldots, x_{m}\right)=\sum_{\sigma \in \mathcal{S}_{m}} A_{\sigma} \mathrm{e}^{\mathrm{i} \sum_{j} x_{j} p_{j}}
$$

- Bethe Ansatz gives an Ansatz for the coordinate eigenfunctions

$$
\psi\left(x_{1}, \ldots, x_{m}\right)=\sum_{\sigma \in \mathcal{S}_{m}} A_{\sigma} \mathrm{e}^{\mathrm{i} \sum_{j} x_{j} p_{j}}
$$

- The parameters p_{j} must satisfy certain transcendental equations (Bethe's equations) in order that $\psi\left(x_{1}, \ldots, x_{m}\right)$ is an eigenfunction.
- Bethe Ansatz gives an Ansatz for the coordinate eigenfunctions

$$
\psi\left(x_{1}, \ldots, x_{m}\right)=\sum_{\sigma \in \mathcal{S}_{m}} A_{\sigma} \mathrm{e}^{\mathrm{i} \sum_{j} x_{j} p_{j}}
$$

- The parameters p_{j} must satisfy certain transcendental equations (Bethe's equations) in order that $\psi\left(x_{1}, \ldots, x_{m}\right)$ is an eigenfunction.
- The main issues that remain are
- Taking thermodynamic limit $L \rightarrow \infty$
- Issues related to the completeness of the eigenfunctions found via Bethe Ansatz
- Bethe Ansatz gives an Ansatz for the coordinate eigenfunctions

$$
\psi\left(x_{1}, \ldots, x_{m}\right)=\sum_{\sigma \in \mathcal{S}_{m}} A_{\sigma} \mathrm{e}^{\mathrm{i} \sum_{j} x_{j} p_{j}}
$$

- The parameters p_{j} must satisfy certain transcendental equations (Bethe's equations) in order that $\psi\left(x_{1}, \ldots, x_{m}\right)$ is an eigenfunction.
- The main issues that remain are
- Taking thermodynamic limit $L \rightarrow \infty$
- Issues related to the completeness of the eigenfunctions found via Bethe Ansatz
- Here we want to explain how these ideas get applied (and modified) to ASEP.

ASEP on Integer Lattice

suppressed

both suppressed

- Each particle has an independent clock-when it rings with probability $p(q)$ it makes a jump to the right (left) if site empty; otherwise, jump is suppressed.

Start with N-particle ASEP

A state $X=\left(x_{1}, \ldots, x_{N}\right)$ is specified by giving the location

$$
x_{1}<x_{2}<\cdots<x_{N}, \quad x_{i} \in \mathbb{Z}
$$

of the N particles on the lattice \mathbb{Z}. Want

$$
\begin{aligned}
P_{Y}(X ; t)= & \text { probability of state } X \text { at time } t \\
& \text { given that we are in state } Y \text { at } t=0
\end{aligned}
$$

Start with N-particle ASEP

A state $X=\left(x_{1}, \ldots, x_{N}\right)$ is specified by giving the location

$$
x_{1}<x_{2}<\cdots<x_{N}, \quad x_{i} \in \mathbb{Z}
$$

of the N particles on the lattice \mathbb{Z}. Want

$$
\begin{aligned}
P_{Y}(X ; t)= & \text { probability of state } X \text { at time } t \\
& \text { given that we are in state } Y \text { at } t=0
\end{aligned}
$$

$P_{Y}(X ; t)$ satisfies a differential equation, called the Kolmogorov forward equation or the master equation.

Formally,

$$
\begin{gathered}
P_{Y}(X ; t)=\langle X| e^{t L}|Y\rangle, \quad P_{Y}(X ; 0)=\delta_{X, Y} \\
L=\text { generator of the Markov process }
\end{gathered}
$$

- Fact: The generator L is a similarity (not unitary) transformation of the XXZ spin Hamiltonian $H_{X X Z}$ (observed in early 1990s). Suggests Bethe Ansatz ideas are relevant for ASEP. Consider ASEP on finite lattice with periodic boundary conditions.

$$
P_{Y}(X ; t)=\langle X| \mathrm{e}^{t L}|Y\rangle=\sum_{n}\left\langle X \mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid Y\right\rangle \mathrm{e}^{t E_{n}}
$$

- Fact: The generator L is a similarity (not unitary) transformation of the XXZ spin Hamiltonian $H_{X X Z}$ (observed in early 1990s). Suggests Bethe Ansatz ideas are relevant for ASEP. Consider ASEP on finite lattice with periodic boundary conditions.

$$
P_{Y}(X ; t)=\langle X| \mathrm{e}^{t L}|Y\rangle=\sum_{n}\left\langle X \mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid Y\right\rangle \mathrm{e}^{t E_{n}}
$$

- Problems
- Eigenfunctions are complicated by fact that Bethe equations are difficult to analyze.
- Assuming we have the eigenfunctions under control, must compute inner products and carry out sum.
- Fact: The generator L is a similarity (not unitary) transformation of the XXZ spin Hamiltonian $H_{X X Z}$ (observed in early 1990s). Suggests Bethe Ansatz ideas are relevant for ASEP. Consider ASEP on finite lattice with periodic boundary conditions.

$$
P_{Y}(X ; t)=\langle X| \mathrm{e}^{t L}|Y\rangle=\sum_{n}\left\langle X \mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid Y\right\rangle \mathrm{e}^{t E_{n}}
$$

- Problems
- Eigenfunctions are complicated by fact that Bethe equations are difficult to analyze.
- Assuming we have the eigenfunctions under control, must compute inner products and carry out sum.
- New approach (first by G. Schütz for TASEP, 1997): Work on infinite lattice \mathbb{Z} and avoid Bethe equations. This is the TW approach we now explain.
$N=1$: The differential equation is

$$
\frac{d P}{d t}(x ; t)=p P(x-1 ; t)+q P(x+1 ; t)-P(x ; t), x \in \mathbb{Z}
$$

Want solution that satisfies the initial condition

$$
P(x ; 0)=\delta_{x, y}
$$

$N=1$: The differential equation is

$$
\frac{d P}{d t}(x ; t)=p P(x-1 ; t)+q P(x+1 ; t)-P(x ; t), x \in \mathbb{Z}
$$

Want solution that satisfies the initial condition

$$
P(x ; 0)=\delta_{x, y}
$$

- DE is linear and separable in x and t
$N=1$: The differential equation is

$$
\frac{d P}{d t}(x ; t)=p P(x-1 ; t)+q P(x+1 ; t)-P(x ; t), x \in \mathbb{Z}
$$

Want solution that satisfies the initial condition

$$
P(x ; 0)=\delta_{x, y}
$$

- DE is linear and separable in x and t
- Let $\xi \in \mathbb{C}$ be arbitrary. Easy to see there are solutions of the form

$$
u(x ; t)=f(\xi) \xi^{x} \mathrm{e}^{t \varepsilon(\xi)}, \quad \varepsilon(\xi)=\frac{p}{\xi}+q \xi-1
$$

where f is any function of ξ.
$N=1$: The differential equation is

$$
\frac{d P}{d t}(x ; t)=p P(x-1 ; t)+q P(x+1 ; t)-P(x ; t), x \in \mathbb{Z}
$$

Want solution that satisfies the initial condition

$$
P(x ; 0)=\delta_{x, y}
$$

- DE is linear and separable in x and t
- Let $\xi \in \mathbb{C}$ be arbitrary. Easy to see there are solutions of the form

$$
u(x ; t)=f(\xi) \xi^{x} \mathrm{e}^{t \varepsilon(\xi)}, \quad \varepsilon(\xi)=\frac{p}{\xi}+q \xi-1
$$

where f is any function of ξ.

- DE is linear-take linear superposition

$$
\int f(\xi) \xi^{x} \mathrm{e}^{t \varepsilon(\xi)} d \xi
$$

- Set $f(\xi)=\xi^{-y-1} /(2 \pi i)$ and choose contour of integration to be a circle centered at the origin of radius r

$$
P_{y}(x ; t)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{r}} \xi^{x-y-1} \mathrm{e}^{t \varepsilon(\xi)} d \xi
$$

- Set $f(\xi)=\xi^{-y-1} /(2 \pi i)$ and choose contour of integration to be a circle centered at the origin of radius r

$$
P_{y}(x ; t)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{r}} \xi^{x-y-1} \mathrm{e}^{t \varepsilon(\xi)} d \xi
$$

- Satisfies initial condition

$$
P_{y}(x ; 0)=\delta_{x, y}
$$

by residue theorem.

- Set $f(\xi)=\xi^{-y-1} /(2 \pi i)$ and choose contour of integration to be a circle centered at the origin of radius r

$$
P_{y}(x ; t)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{r}} \xi^{x-y-1} \mathrm{e}^{t \varepsilon(\xi)} d \xi
$$

- Satisfies initial condition

$$
P_{y}(x ; 0)=\delta_{x, y}
$$

by residue theorem.

- This solves $N=1$ ASEP. Solution is in Feller though not derived in the manner here.
- $N=2$ ASEP: $X=\left(x_{1}, x_{2}\right)$

If $x_{2}>x_{1}+1$:

$$
\begin{align*}
\frac{d P}{d t}\left(x_{1}, x_{2}\right)= & p P\left(x_{1}-1, x_{2}\right)+q P\left(x_{1}+1, x_{2}\right)+ \\
& p P\left(x_{1}, x_{2}-1\right)+q P\left(x_{1}, x_{2}+1\right)-2 P\left(x_{1}, x_{2}\right) \tag{1}
\end{align*}
$$

If $x_{2}=x_{1}+1$:

$$
\begin{equation*}
\frac{d P}{d t}\left(x_{1}, x_{2}\right)=p P\left(x_{1}-1, x_{2}\right)+q P\left(x_{1}, x_{2}+1\right)-P\left(x_{1}, x_{2}\right) \tag{2}
\end{equation*}
$$

- $N=2$ ASEP: $X=\left(x_{1}, x_{2}\right)$ If $x_{2}>x_{1}+1$:

$$
\begin{align*}
\frac{d P}{d t}\left(x_{1}, x_{2}\right)= & p P\left(x_{1}-1, x_{2}\right)+q P\left(x_{1}+1, x_{2}\right)+ \\
& p P\left(x_{1}, x_{2}-1\right)+q P\left(x_{1}, x_{2}+1\right)-2 P\left(x_{1}, x_{2}\right) \tag{1}
\end{align*}
$$

If $x_{2}=x_{1}+1$:

$$
\begin{equation*}
\frac{d P}{d t}\left(x_{1}, x_{2}\right)=p P\left(x_{1}-1, x_{2}\right)+q P\left(x_{1}, x_{2}+1\right)-P\left(x_{1}, x_{2}\right) \tag{2}
\end{equation*}
$$

- First equation is just "two $N=1$ problems". Second equation takes into account the exclusion. DE is now no longer constant coefficient.
- $N=2$ ASEP: $X=\left(x_{1}, x_{2}\right)$ If $x_{2}>x_{1}+1$:

$$
\begin{align*}
\frac{d P}{d t}\left(x_{1}, x_{2}\right)= & p P\left(x_{1}-1, x_{2}\right)+q P\left(x_{1}+1, x_{2}\right)+ \\
& p P\left(x_{1}, x_{2}-1\right)+q P\left(x_{1}, x_{2}+1\right)-2 P\left(x_{1}, x_{2}\right) \tag{1}
\end{align*}
$$

If $x_{2}=x_{1}+1$:

$$
\begin{equation*}
\frac{d P}{d t}\left(x_{1}, x_{2}\right)=p P\left(x_{1}-1, x_{2}\right)+q P\left(x_{1}, x_{2}+1\right)-P\left(x_{1}, x_{2}\right) \tag{2}
\end{equation*}
$$

- First equation is just "two $N=1$ problems". Second equation takes into account the exclusion. DE is now no longer constant coefficient.
- Bethe's first idea: Incorporate "hard equation" (2) into a boundary condition so that we have only to solve the "easy equation" (1).
- We now consider the "easy equation" on all of $X=\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}$:

$$
\begin{align*}
\frac{d u}{d t}\left(x_{1}, x_{2}\right)= & p u\left(x_{1}-1, x_{2}\right)+q u\left(x_{1}+1, x_{2}\right)+ \\
& p u\left(x_{1}, x_{2}-1\right)+q u\left(x_{1}, x_{2}+1\right)-2 u\left(x_{1}, x_{2}\right) \tag{3}
\end{align*}
$$

Require that the solution to (3) satisfy the boundary condition

$$
\begin{equation*}
p u\left(x_{1}, x_{1}\right)+q u\left(x_{1}+1, x_{1}+1\right)-u\left(x_{1}, x_{1}+1\right)=0, x_{1} \in \mathbb{Z} \tag{4}
\end{equation*}
$$

- We now consider the "easy equation" on all of $X=\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}$:

$$
\begin{align*}
\frac{d u}{d t}\left(x_{1}, x_{2}\right)= & p u\left(x_{1}-1, x_{2}\right)+q u\left(x_{1}+1, x_{2}\right)+ \\
& p u\left(x_{1}, x_{2}-1\right)+q u\left(x_{1}, x_{2}+1\right)-2 u\left(x_{1}, x_{2}\right) \tag{3}
\end{align*}
$$

Require that the solution to (3) satisfy the boundary condition

$$
\begin{equation*}
p u\left(x_{1}, x_{1}\right)+q u\left(x_{1}+1, x_{1}+1\right)-u\left(x_{1}, x_{1}+1\right)=0, x_{1} \in \mathbb{Z} \tag{4}
\end{equation*}
$$

- Observe that if $u\left(x_{1}, x_{2}\right)$ satisfies (4) then for $x_{2}=x_{1}+1$ it satisfies the "hard equation" (2).
- We now consider the "easy equation" on all of $X=\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}$:

$$
\begin{align*}
\frac{d u}{d t}\left(x_{1}, x_{2}\right)= & p u\left(x_{1}-1, x_{2}\right)+q u\left(x_{1}+1, x_{2}\right)+ \\
& p u\left(x_{1}, x_{2}-1\right)+q u\left(x_{1}, x_{2}+1\right)-2 u\left(x_{1}, x_{2}\right) \tag{3}
\end{align*}
$$

Require that the solution to (3) satisfy the boundary condition

$$
\begin{equation*}
p u\left(x_{1}, x_{1}\right)+q u\left(x_{1}+1, x_{1}+1\right)-u\left(x_{1}, x_{1}+1\right)=0, x_{1} \in \mathbb{Z} \tag{4}
\end{equation*}
$$

- Observe that if $u\left(x_{1}, x_{2}\right)$ satisfies (4) then for $x_{2}=x_{1}+1$ it satisfies the "hard equation" (2).
- Thus want solution to (3) that satisfies boundary condition (4) and initial condition $u\left(x_{1}, x_{2} ; 0\right)=\delta_{x_{1}, y_{1}} \delta_{x_{2}, y_{2}}$.
- We now consider the "easy equation" on all of $X=\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}$:

$$
\begin{align*}
\frac{d u}{d t}\left(x_{1}, x_{2}\right)= & p u\left(x_{1}-1, x_{2}\right)+q u\left(x_{1}+1, x_{2}\right)+ \\
& p u\left(x_{1}, x_{2}-1\right)+q u\left(x_{1}, x_{2}+1\right)-2 u\left(x_{1}, x_{2}\right) \tag{3}
\end{align*}
$$

Require that the solution to (3) satisfy the boundary condition

$$
\begin{equation*}
p u\left(x_{1}, x_{1}\right)+q u\left(x_{1}+1, x_{1}+1\right)-u\left(x_{1}, x_{1}+1\right)=0, x_{1} \in \mathbb{Z} \tag{4}
\end{equation*}
$$

- Observe that if $u\left(x_{1}, x_{2}\right)$ satisfies (4) then for $x_{2}=x_{1}+1$ it satisfies the "hard equation" (2).
- Thus want solution to (3) that satisfies boundary condition (4) and initial condition $u\left(x_{1}, x_{2} ; 0\right)=\delta_{x_{1}, y_{1}} \delta_{x_{2}, y_{2}}$.
- Note that since (3) holds in all \mathbb{Z}^{2} it is constant coefficient DE. How to find the solution that satisfies the boundary condition? Bethe's second idea.
- Let $\xi_{1}, \xi_{2} \in \mathbb{C}$. Then

$$
A_{12}(\xi) \xi_{1}^{x_{1}} \xi_{2}^{\chi_{2}} \mathrm{e}^{t\left(\varepsilon\left(\xi_{1}\right)+\varepsilon\left(\xi_{2}\right)\right)}
$$

is a solution to (3)

- Let $\xi_{1}, \xi_{2} \in \mathbb{C}$. Then

$$
A_{12}(\xi) \xi_{1}^{x_{1}} \xi_{2}^{x_{2}} \mathrm{e}^{t\left(\varepsilon\left(\xi_{1}\right)+\varepsilon\left(\xi_{2}\right)\right)}
$$

is a solution to (3)

- But we can permute $\xi_{1} \leftrightarrow \xi_{2}$ and still get a solution. Thus

$$
\left\{A_{12}(\xi) \xi_{1}^{x_{1}} \xi_{2}^{x_{2}}+A_{21}(\xi) \xi_{2}^{x_{1}} \xi_{1}^{x_{2}}\right\} \mathrm{e}^{t\left(\varepsilon\left(\xi_{1}\right)+\varepsilon\left(\xi_{2}\right)\right)}
$$

is a solution.

- Let $\xi_{1}, \xi_{2} \in \mathbb{C}$. Then

$$
A_{12}(\xi) \xi_{1}^{x_{1}} \xi_{2}^{x_{2}} \mathrm{e}^{t\left(\varepsilon\left(\xi_{1}\right)+\varepsilon\left(\xi_{2}\right)\right)}
$$

is a solution to (3)

- But we can permute $\xi_{1} \leftrightarrow \xi_{2}$ and still get a solution. Thus

$$
\left\{A_{12}(\xi) \xi_{1}^{x_{1}} \xi_{2}^{\chi_{2}}+A_{21}(\xi) \xi_{2}^{x_{1}} \xi_{1}^{\chi_{2}}\right\} \mathrm{e}^{t\left(\varepsilon\left(\xi_{1}\right)+\varepsilon\left(\xi_{2}\right)\right)}
$$

is a solution.

- Require this solution satisfy the boundary condition. Simple computation shows if we choose

$$
A_{21}=S\left(\xi_{2}, \xi_{1}\right) A_{12}
$$

where

$$
S\left(\xi, \xi^{\prime}\right)=-\frac{p+q \xi \xi^{\prime}-\xi}{p+q \xi \xi^{\prime}-\xi^{\prime}}
$$

then boundary condition satisfied.

- Choose $A_{12}=\xi_{1}^{-y_{1}-1} \xi_{2}^{-y_{2}-1}$, then we have the solution

$$
\int_{\mathcal{C}} \int_{\mathcal{C}}\left\{\xi_{1}^{x_{1}-y_{1}-1} \xi_{2}^{x_{2}-y_{2}-1}+S\left(\xi_{2}, \xi_{1}\right) \xi_{2}^{x_{1}-y_{2}-1} \xi_{1}^{x_{2}-y_{1}-1}\right\} \mathrm{e}^{t\left(\varepsilon\left(\xi_{1}\right)+\varepsilon\left(\xi_{2}\right)\right)} d \xi_{1} d \xi_{2}
$$

Here we've incorporated a factor of $(2 \pi i)^{-1}$ with each integration.

- Choose $A_{12}=\xi_{1}^{-y_{1}-1} \xi_{2}^{-y_{2}-1}$, then we have the solution

$$
\int_{\mathcal{C}} \int_{\mathcal{C}}\left\{\xi_{1}^{x_{1}-y_{1}-1} \xi_{2}^{x_{2}-y_{2}-1}+S\left(\xi_{2}, \xi_{1}\right) \xi_{2}^{x_{1}-y_{2}-1} \xi_{1}^{x_{2}-y_{1}-1}\right\} \mathrm{e}^{t\left(\varepsilon\left(\xi_{1}\right)+\varepsilon\left(\xi_{2}\right)\right)} d \xi_{1} d \xi_{2}
$$

Here we've incorporated a factor of $(2 \pi i)^{-1}$ with each integration.

- Does this solution satisfy the initial condition? If contour \mathcal{C}_{r} is chosen to be a circle of radius r centered at the origin, then the first term satisfies the initial condition. This means the second term must vanish at $t=0$.
- Choose $A_{12}=\xi_{1}^{-y_{1}-1} \xi_{2}^{-y_{2}-1}$, then we have the solution $\int_{\mathcal{C}} \int_{\mathcal{C}}\left\{\xi_{1}^{x_{1}-y_{1}-1} \xi_{2}^{x_{2}-y_{2}-1}+S\left(\xi_{2}, \xi_{1}\right) \xi_{2}^{x_{1}-y_{2}-1} \xi_{1}^{x_{2}-y_{1}-1}\right\} \mathrm{e}^{t\left(\varepsilon\left(\xi_{1}\right)+\varepsilon\left(\xi_{2}\right)\right)} d \xi_{1} d \xi_{2}$

Here we've incorporated a factor of $(2 \pi i)^{-1}$ with each integration.

- Does this solution satisfy the initial condition? If contour \mathcal{C}_{r} is chosen to be a circle of radius r centered at the origin, then the first term satisfies the initial condition. This means the second term must vanish at $t=0$.
- Actually, we need second term to vanish only in the physical region $x_{1}<x_{2}$. In this region it does vanish if we choose r sufficiently small so that the poles coming from the zeros of the denominator of S lie outside of \mathcal{C}_{r}.
- Choose $A_{12}=\xi_{1}^{-y_{1}-1} \xi_{2}^{-y_{2}-1}$, then we have the solution $\int_{\mathcal{C}} \int_{\mathcal{C}}\left\{\xi_{1}^{x_{1}-y_{1}-1} \xi_{2}^{x_{2}-y_{2}-1}+S\left(\xi_{2}, \xi_{1}\right) \xi_{2}^{x_{1}-y_{2}-1} \xi_{1}^{x_{2}-y_{1}-1}\right\} \mathrm{e}^{t\left(\varepsilon\left(\xi_{1}\right)+\varepsilon\left(\xi_{2}\right)\right)} d \xi_{1} d \xi_{2}$

Here we've incorporated a factor of $(2 \pi i)^{-1}$ with each integration.

- Does this solution satisfy the initial condition? If contour \mathcal{C}_{r} is chosen to be a circle of radius r centered at the origin, then the first term satisfies the initial condition. This means the second term must vanish at $t=0$.
- Actually, we need second term to vanish only in the physical region $x_{1}<x_{2}$. In this region it does vanish if we choose r sufficiently small so that the poles coming from the zeros of the denominator of S lie outside of \mathcal{C}_{r}.
- Thus have solved for the transition probability for $N=2$ ASEP.
- Choose $A_{12}=\xi_{1}^{-y_{1}-1} \xi_{2}^{-y_{2}-1}$, then we have the solution $\int_{\mathcal{C}} \int_{\mathcal{C}}\left\{\xi_{1}^{x_{1}-y_{1}-1} \xi_{2}^{x_{2}-y_{2}-1}+S\left(\xi_{2}, \xi_{1}\right) \xi_{2}^{x_{1}-y_{2}-1} \xi_{1}^{x_{2}-y_{1}-1}\right\} \mathrm{e}^{t\left(\varepsilon\left(\xi_{1}\right)+\varepsilon\left(\xi_{2}\right)\right)} d \xi_{1} d \xi_{2}$ Here we've incorporated a factor of $(2 \pi i)^{-1}$ with each integration.
- Does this solution satisfy the initial condition? If contour \mathcal{C}_{r} is chosen to be a circle of radius r centered at the origin, then the first term satisfies the initial condition. This means the second term must vanish at $t=0$.
- Actually, we need second term to vanish only in the physical region $x_{1}<x_{2}$. In this region it does vanish if we choose r sufficiently small so that the poles coming from the zeros of the denominator of S lie outside of \mathcal{C}_{r}.
- Thus have solved for the transition probability for $N=2$ ASEP.
- S is the Yang-Yang S-matrix in ASEP variables.

$P_{Y}(X ; t)$ for N-particle ASEP

- $X \in \mathbb{Z}^{N}$

$$
X_{i}^{ \pm}=\left\{x_{1}, \ldots, x_{i-1}, x_{i} \pm 1, x_{i+1}, \ldots, x_{N}\right\}
$$

The "free equation" on $\mathbb{Z}^{N} \times \mathbb{R}$ is

$$
\frac{d u}{d t}(X)=\sum_{i=1}^{N}\left(p u\left(X_{i}^{-} ; t\right)+q u\left(X_{i}^{+} ; t\right)-u(X ; t)\right)
$$

$P_{Y}(X ; t)$ for N-particle ASEP

- $X \in \mathbb{Z}^{N}$

$$
X_{i}^{ \pm}=\left\{x_{1}, \ldots, x_{i-1}, x_{i} \pm 1, x_{i+1}, \ldots, x_{N}\right\}
$$

The "free equation" on $\mathbb{Z}^{N} \times \mathbb{R}$ is

$$
\frac{d u}{d t}(X)=\sum_{i=1}^{N}\left(p u\left(X_{i}^{-} ; t\right)+q u\left(X_{i}^{+} ; t\right)-u(X ; t)\right)
$$

- The boundary conditions are

$$
\begin{array}{r}
p u\left(x_{1}, \ldots, x_{i}, x_{i}, \ldots, x_{N} ; t\right)+q u\left(x_{1}, \ldots, x_{i}+1, x_{i}+1, \ldots, x_{N}\right) \\
=u\left(x_{1}, \ldots, x_{i}, x_{i}+1, \ldots, x_{N}, \quad i=1,2, \ldots, N-1\right.
\end{array}
$$

This boundary condition comes when particle at x_{i} is neighbor to particle at $x_{i+1}=x_{i}+1$

$P_{Y}(X ; t)$ for N-particle ASEP

- $X \in \mathbb{Z}^{N}$

$$
X_{i}^{ \pm}=\left\{x_{1}, \ldots, x_{i-1}, x_{i} \pm 1, x_{i+1}, \ldots, x_{N}\right\}
$$

The "free equation" on $\mathbb{Z}^{N} \times \mathbb{R}$ is

$$
\frac{d u}{d t}(X)=\sum_{i=1}^{N}\left(p u\left(X_{i}^{-} ; t\right)+q u\left(X_{i}^{+} ; t\right)-u(X ; t)\right)
$$

- The boundary conditions are

$$
\begin{array}{r}
p u\left(x_{1}, \ldots, x_{i}, x_{i}, \ldots, x_{N} ; t\right)+q u\left(x_{1}, \ldots, x_{i}+1, x_{i}+1, \ldots, x_{N}\right) \\
=u\left(x_{1}, \ldots, x_{i}, x_{i}+1, \ldots, x_{N}, \quad i=1,2, \ldots, N-1\right.
\end{array}
$$

This boundary condition comes when particle at x_{i} is neighbor to particle at $x_{i+1}=x_{i}+1$

- Check that no new boundary conditions are needed, e.g. when 3 or more particles are all adjacent.

$P_{Y}(X ; t)$ for N-particle ASEP

- $X \in \mathbb{Z}^{N}$

$$
X_{i}^{ \pm}=\left\{x_{1}, \ldots, x_{i-1}, x_{i} \pm 1, x_{i+1}, \ldots, x_{N}\right\}
$$

The "free equation" on $\mathbb{Z}^{N} \times \mathbb{R}$ is

$$
\frac{d u}{d t}(X)=\sum_{i=1}^{N}\left(p u\left(X_{i}^{-} ; t\right)+q u\left(X_{i}^{+} ; t\right)-u(X ; t)\right)
$$

- The boundary conditions are

$$
\begin{array}{r}
p u\left(x_{1}, \ldots, x_{i}, x_{i}, \ldots, x_{N} ; t\right)+q u\left(x_{1}, \ldots, x_{i}+1, x_{i}+1, \ldots, x_{N}\right) \\
=u\left(x_{1}, \ldots, x_{i}, x_{i}+1, \ldots, x_{N}, \quad i=1,2, \ldots, N-1\right.
\end{array}
$$

This boundary condition comes when particle at x_{i} is neighbor to particle at $x_{i+1}=x_{i}+1$

- Check that no new boundary conditions are needed, e.g. when 3 or more particles are all adjacent.
- Require initial condition $u(X ; 0)=\delta_{X, Y}$ in physical region.
- Look for solutions of the form (Bethe's second idea)

$$
u(X ; t)=\int_{\mathcal{C}_{r}} \cdots \int_{\mathcal{C}_{r}} \sum_{\sigma \in \mathbb{S}_{N}} A_{\sigma}(\xi) \prod \xi_{i} \xi_{\sigma(i)}^{x_{i}-y_{\sigma(i)}-1} \mathrm{e}^{t \sum_{i} \varepsilon\left(\xi_{i}\right)} d \xi_{1} \cdots d \xi_{N}
$$

\mathbb{S}_{N} is the permutation group.

- Look for solutions of the form (Bethe's second idea)

$$
u(X ; t)=\int_{\mathcal{C}_{r}} \cdots \int_{\mathcal{C}_{r}} \sum_{\sigma \in \mathbb{S}_{N}} A_{\sigma}(\xi) \prod_{i} \xi_{\sigma(i)}^{x_{i}-y_{\sigma(i)}-1} \mathrm{e}^{t \sum_{i} \varepsilon\left(\xi_{i}\right)} d \xi_{1} \cdots d \xi_{N}
$$

\mathbb{S}_{N} is the permutation group.

- Find boundary conditions are satisfied if the A_{σ} satisfy

$$
A_{\sigma}(\xi)=\prod\left\{S\left(\xi_{\beta}, \xi_{\alpha}\right):\{\beta, \alpha\} \text { is an inversion in } \sigma\right\}
$$

The inversions in $\sigma=(3,1,4,2)$ are $\{3,1\},\{3,2\},\{4,2\}$. Thus $A_{\text {id }}=1$.

- Look for solutions of the form (Bethe's second idea)

$$
u(X ; t)=\int_{\mathcal{C}_{r}} \cdots \int_{\mathcal{C}_{r}} \sum_{\sigma \in \mathbb{S}_{N}} A_{\sigma}(\xi) \prod_{i} \xi_{\sigma(i)}^{x_{i}-y_{\sigma(i)}-1} \mathrm{e}^{t \sum_{i} \varepsilon\left(\xi_{i}\right)} d \xi_{1} \cdots d \xi_{N}
$$

\mathbb{S}_{N} is the permutation group.

- Find boundary conditions are satisfied if the A_{σ} satisfy

$$
A_{\sigma}(\xi)=\prod\left\{S\left(\xi_{\beta}, \xi_{\alpha}\right):\{\beta, \alpha\} \text { is an inversion in } \sigma\right\}
$$

The inversions in $\sigma=(3,1,4,2)$ are $\{3,1\},\{3,2\},\{4,2\}$. Thus $A_{\text {id }}=1$.

- Final step: Show $u(X ; t)$ satisfies the initial condition. As before, the term corresponding to the identity permutation gives $\delta_{X, Y}$. We must show the sum of the $N!-1$ other terms sum to zero in the physical region! True if r is chosen so that all singularities coming from the A_{σ} lie outside the contour \mathcal{C}_{r} (we assume $p \neq 0$). Our original article had an error (see the erratum). Morally, the initial value problem is the same issue as completeness of eigenfunctions. We return at the end of the lecture to a sketch of the proof.

Multispecies ASEP on Integer Lattice

Multispecies ASEP with M distinct species: Configurations

$$
\mathcal{X}=(X, \pi), \quad X=\left(x_{1}, \ldots, x_{N}\right), \pi:[1, N] \rightarrow[1, M]
$$

Higher species number means higher priority, i.e. $\pi=(1,2,2,2)$ has left-most particle 2nd class and other three first class.

Again try Bethe Ansatz

$$
P_{\mathcal{Y}}(\mathcal{X} ; t)=\sum_{\sigma \in \mathcal{S}_{N}} \int_{\mathcal{C}_{r}^{N}} A_{\sigma}^{\pi}(\xi) \prod_{i} \xi_{\sigma(i)}^{x_{i}} \prod_{i}\left(\xi_{i}^{-y_{i}-1} \mathrm{e}^{t \varepsilon\left(\xi_{i}\right)}\right) d^{N} \xi
$$

For 1-species ASEP

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\sum_{i=1}^{N}\left\{p u\left(x_{i}-1\right)\left(1-\delta\left(x_{i}-x_{i-1}-1\right)\right)+q u\left(x_{i}+1\right)\left(1-\delta\left(x_{i+1}-x_{i}-1\right)\right)\right. \\
\left.-p u\left(x_{i}\right)\left(1-\delta\left(x_{i+1}-x_{i}-1\right)\right)-q u\left(x_{i}\right)\left(1-\delta\left(x_{i}-x_{i-1}-1\right)\right)\right\}
\end{gathered}
$$

For multispecies ASEP must account for additional possibilities. Let T_{i} denote transposition operator, e.g.

$$
T_{3}(3,1, \mathbf{4}, \mathbf{6}, 2,5)=(3,1, \mathbf{6}, 4,2,5)
$$

Additional contributions to forward equation

$$
\begin{aligned}
& \pi=(1,2) \\
& (2,1) \rightarrow(1,2) \\
& (1,2) \rightarrow(2,1) \\
& \frac{\partial u^{(1,2)}}{\partial t}=\cdots+p u^{(2,1)}-q u^{(1,2)}+\cdots \\
& \frac{\partial u^{(2,1)}}{\partial t}=\cdots+q u^{(1,2)}-p u^{(2,1)}+\cdots
\end{aligned}
$$

$$
\alpha_{i}(\pi)= \begin{cases}0 & \text { if } \pi_{i}=\pi_{i+1} \\ p & \text { if } \pi_{i}<\pi_{i+1} \\ q & \text { if } \pi_{i}>\pi_{i+1}\end{cases}
$$

and $\beta_{i}(\pi)=\alpha_{i}(\pi)_{p \leftrightarrow q}$, then term that must be added to above DE is

$$
\sum_{i=1}^{N-1}\left\{\alpha_{i}(\pi) u^{T_{i} \pi}\left(x_{i}, x_{i+1}\right)-\beta_{i}(\pi) u^{\pi}\left(x_{i}, x_{i+1}\right)\right\} \delta\left(x_{i+1}-x_{i}-1\right)
$$

Bethe's first idea: Consider the free equation

$$
\frac{\partial u^{\pi}}{\partial t}=\sum_{i=1}^{N}\left\{p u^{\pi}\left(x_{i}-1\right)+q u^{\pi}\left(x_{i}+1\right)-u^{\pi}\left(x_{i}\right)\right\}
$$

with BC to take care of the interaction \longrightarrow Modify the BC to incorporate the new additional terms

$$
\begin{array}{r}
p u^{\pi}\left(x_{i}, x_{i}\right)+q u^{\pi}\left(x_{i}+1, x_{i}+1\right)-u^{\pi}\left(x_{i}, x_{i}+1\right) \\
-\alpha_{i}(\pi) u^{T_{i} \pi}\left(x_{i}, x_{i+1}\right)+\beta_{i}(\pi) u^{\pi}\left(x_{i}, x_{i}+1\right)=0
\end{array}
$$

with initial condition

$$
u^{\pi}(X ; 0)=\delta_{Y}(X) \delta_{\nu}(\pi)
$$

Bethe's first idea: Consider the free equation

$$
\frac{\partial u^{\pi}}{\partial t}=\sum_{i=1}^{N}\left\{p u^{\pi}\left(x_{i}-1\right)+q u^{\pi}\left(x_{i}+1\right)-u^{\pi}\left(x_{i}\right)\right\}
$$

with $B C$ to take care of the interaction \longrightarrow Modify the $B C$ to incorporate the new additional terms

$$
\begin{array}{r}
p u^{\pi}\left(x_{i}, x_{i}\right)+q u^{\pi}\left(x_{i}+1, x_{i}+1\right)-u^{\pi}\left(x_{i}, x_{i}+1\right) \\
-\alpha_{i}(\pi) u^{T_{i} \pi}\left(x_{i}, x_{i+1}\right)+\beta_{i}(\pi) u^{\pi}\left(x_{i}, x_{i}+1\right)=0
\end{array}
$$

with initial condition

$$
u^{\pi}(X ; 0)=\delta_{Y}(X) \delta_{\nu}(\pi)
$$

Choose A_{σ}^{π} to satisfy BC : First set

$$
A_{\sigma}^{\pi}:=h_{\sigma}^{\pi} A_{\sigma}
$$

Find equations

$$
h_{T_{i} \sigma}^{\pi}=h_{\sigma}^{\pi}+\left(1+S\left(\xi_{\sigma(i)}, \xi_{\sigma(i+1)}\right)\right)\left[\alpha_{i}(\pi) h_{\sigma}^{T_{i} \sigma}-\beta_{i}(\pi) h_{\sigma}^{\pi}\right]
$$

Must show that these formulas together with $h_{\text {id }}^{\pi}=\delta_{\nu}(\pi)$ define h_{σ}^{π} consistently.

- In this formulation we have a representation of transposition operators T_{i}
- Let \mathcal{H}_{0} denote set of all functions $h: \pi \rightarrow$ function of ξ and $\mathcal{H}=\mathcal{S}_{N} \times \mathcal{H}_{0}$. Define

$$
T_{i}^{0}(\sigma, h)=h+\left(1+S\left(\xi_{\sigma(i)}, \xi_{\sigma(i+1)}\right)\right)\left[\alpha_{i} \cdot\left(h \circ T_{i}\right)-\beta_{i} \cdot h\right]
$$

Must show these T_{i}^{0} satisfy the braid relations

$$
\begin{aligned}
T_{i} T_{i} & =l \\
T_{i} T_{j} & =T_{j} T_{i} \text { when }|i-j|>1 \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1}
\end{aligned}
$$

- First two are easy to verify and for third enough to check for $N=3$. Do this by computer verification.

Remarks

- Can reformulate problem in terms of Yang-Baxter equations. This multispecies model was shown to be "Yang-Baxter solvable" by F. Alcaraz and R. Bariev in 2000.

Remarks

- Can reformulate problem in terms of Yang-Baxter equations. This multispecies model was shown to be "Yang-Baxter solvable" by F. Alcaraz and R. Bariev in 2000.
- Alcaraz \& Bariev claim that via various mappings to multistate 6 -vertex models, the YB solvability goes back to J. Perk and C. Schultz, 1983.

Remarks

- Can reformulate problem in terms of Yang-Baxter equations. This multispecies model was shown to be "Yang-Baxter solvable" by F. Alcaraz and R. Bariev in 2000.
- Alcaraz \& Bariev claim that via various mappings to multistate 6 -vertex models, the YB solvability goes back to J. Perk and C. Schultz, 1983.
- Changing the rates on transitions from 1st, 2nd, etc. class particles to values other than p and q breaks solvability.

Remarks

- Can reformulate problem in terms of Yang-Baxter equations. This multispecies model was shown to be "Yang-Baxter solvable" by F. Alcaraz and R. Bariev in 2000.
- Alcaraz \& Bariev claim that via various mappings to multistate 6 -vertex models, the YB solvability goes back to J. Perk and C. Schultz, 1983.
- Changing the rates on transitions from 1st, 2nd, etc. class particles to values other than p and q breaks solvability.
- TW contribution is the computation of $P_{\mathcal{Y}}(\mathcal{X} ; t)$. (Alcaraz-Bariev examined eigenfunctions of generator.) This means we must show the initial condition is satisfied. True if contours \mathcal{C}_{r} contain no singularities other than those at zero.
- Note: We don't have closed formulas for A_{σ}^{π} except in a few very specific cases.

Remarks

- Can reformulate problem in terms of Yang-Baxter equations. This multispecies model was shown to be "Yang-Baxter solvable" by F. Alcaraz and R. Bariev in 2000.
- Alcaraz \& Bariev claim that via various mappings to multistate 6 -vertex models, the YB solvability goes back to J. Perk and C. Schultz, 1983.
- Changing the rates on transitions from 1st, 2nd, etc. class particles to values other than p and q breaks solvability.
- TW contribution is the computation of $P_{\mathcal{Y}}(\mathcal{X} ; t)$. (Alcaraz-Bariev examined eigenfunctions of generator.) This means we must show the initial condition is satisfied. True if contours \mathcal{C}_{r} contain no singularities other than those at zero.
- Note: We don't have closed formulas for A_{σ}^{π} except in a few very specific cases.
- Analysis of marginals and thermodynamic limit are completely open problems.

ASEP on Nonnegative Integer Lattice

Must impose additional BC on free equation on \mathbb{Z} :

$$
-p u\left(-1, x_{2}, \ldots, x_{N}\right)+q u\left(0, x_{2}, \ldots, x_{N}\right)=0
$$

- Known since Gaudin's work in 1971 on the Bose gas, that Bethe Ansatz has to be modified for half-line problems

$$
\mathcal{S}_{N}=A_{N-1} \longrightarrow B_{N} \text { (Weyl groups) }
$$

- Known since Gaudin's work in 1971 on the Bose gas, that Bethe Ansatz has to be modified for half-line problems

$$
\mathcal{S}_{N}=A_{N-1} \longrightarrow B_{N} \text { (Weyl groups) }
$$

- Identify B_{N} with the group of signed permutations, e.g.

$$
\sigma=\left(\begin{array}{rrrrrr}
1 & 2 & 3 & 4 & 5 & 6 \\
-2 & 4 & -5 & -1 & 6 & 3
\end{array}\right)
$$

with

$$
\sigma(-i)=-\sigma(i)
$$

Order of group is $2^{N} N$!.

- Known since Gaudin's work in 1971 on the Bose gas, that Bethe Ansatz has to be modified for half-line problems

$$
\mathcal{S}_{N}=A_{N-1} \longrightarrow B_{N} \text { (Weyl groups) }
$$

- Identify B_{N} with the group of signed permutations, e.g.

$$
\sigma=\left(\begin{array}{rrrrrr}
1 & 2 & 3 & 4 & 5 & 6 \\
-2 & 4 & -5 & -1 & 6 & 3
\end{array}\right)
$$

with

$$
\sigma(-i)=-\sigma(i)
$$

Order of group is $2^{N} N$!.

- Inversions in B_{N} : A pair $(\pm \sigma(i), \sigma(j))$ with $i<j$ such that $\pm \sigma(i)>\sigma(j)$, e.g. if $\sigma=(-3,1,-2)$ inversions are

$$
(3,1),(3,-2),(-1,-2),(1,-2)
$$

- Known since Gaudin's work in 1971 on the Bose gas, that Bethe Ansatz has to be modified for half-line problems

$$
\mathcal{S}_{N}=A_{N-1} \longrightarrow B_{N} \text { (Weyl groups) }
$$

- Identify B_{N} with the group of signed permutations, e.g.

$$
\sigma=\left(\begin{array}{rrrrrr}
1 & 2 & 3 & 4 & 5 & 6 \\
-2 & 4 & -5 & -1 & 6 & 3
\end{array}\right)
$$

with

$$
\sigma(-i)=-\sigma(i)
$$

Order of group is $2^{N} N$!.

- Inversions in B_{N} : A pair $(\pm \sigma(i), \sigma(j))$ with $i<j$ such that $\pm \sigma(i)>\sigma(j)$, e.g. if $\sigma=(-3,1,-2)$ inversions are

$$
(3,1),(3,-2),(-1,-2),(1,-2)
$$

- Let $\tau=p / q$ and note that $\varepsilon(\xi)=p / \xi+q \xi-1$ is unchanged when $\xi \rightarrow \tau / \xi$. Define $\xi_{-a}=\tau / \xi_{a}$

Bethe Ansatz for solution of forward equation for half-line ASEP:

$$
P_{Y}(X ; t)=\sum_{\sigma \in B_{N}} \int_{\mathcal{C}_{r}^{N}} A_{\sigma}(\xi) \prod_{i} \xi_{\sigma(i)}^{x_{i}} \prod_{i}\left(\xi_{i}^{-y_{i}-1} \mathrm{e}^{t \varepsilon\left(\xi_{i}\right)}\right) d^{N} \xi
$$

Bethe Ansatz for solution of forward equation for half-line ASEP:

$$
P_{Y}(X ; t)=\sum_{\sigma \in B_{N}} \int_{\mathcal{C}_{r}^{N}} A_{\sigma}(\xi) \prod_{i} \xi_{\sigma(i)}^{x_{i}} \prod_{i}\left(\xi_{i}^{-y_{i}-1} \mathrm{e}^{t \varepsilon\left(\xi_{i}\right)}\right) d^{N} \xi
$$

- How to choose A_{σ} to satisfy usual ASEP BC and new BC from half-line restriction?

Bethe Ansatz for solution of forward equation for half-line ASEP:

$$
P_{Y}(X ; t)=\sum_{\sigma \in B_{N}} \int_{\mathcal{C}_{r}^{N}} A_{\sigma}(\xi) \prod_{i} \xi_{\sigma(i)}^{x_{i}} \prod_{i}\left(\xi_{i}^{-y_{i}-1} \mathrm{e}^{t \varepsilon\left(\xi_{i}\right)}\right) d^{N} \xi
$$

- How to choose A_{σ} to satisfy usual ASEP BC and new BC from half-line restriction?
- BC satisfied if

$$
\sum_{\sigma \in B_{N}} A_{\sigma}\left(1-\tau \xi_{\sigma(1)}^{-1}\right)=0
$$

or

$$
\sum_{\sigma \in B_{N}} A_{\sigma}\left(1-\xi_{-\sigma(1)}\right)=0
$$

Pair permutations σ and σ^{\prime} where $\sigma^{\prime}(1)=-\sigma(1)$. Then BC satisfied if

$$
\frac{A_{\sigma^{\prime}}}{1-\xi_{\sigma^{\prime}(1)}}=-\frac{A_{\sigma}}{1-\xi_{\sigma(1)}}
$$

- Then check for $\sigma \in B_{N}$ that

$$
A_{\sigma}=\prod_{\sigma(i)<0} r\left(\xi_{\sigma(i)}\right) \prod_{\text {inversions }(b, a)} S\left(\xi_{b}, \xi_{a}\right)
$$

satisfies both BCs where

$$
r(\xi):=-\frac{1-\xi}{1-\tau \xi^{-1}}
$$

- Then check for $\sigma \in B_{N}$ that

$$
A_{\sigma}=\prod_{\sigma(i)<0} r\left(\xi_{\sigma(i)}\right) \prod_{\text {inversions }(b, a)} S\left(\xi_{b}, \xi_{a}\right)
$$

satisfies both BCs where

$$
r(\xi):=-\frac{1-\xi}{1-\tau \xi^{-1}}
$$

- Problem of initial condition (choice of contours). For $N=1$

$$
P_{y}(x ; t)=\int_{\mathcal{C}}\left[\xi^{x-y-1}-\left(\frac{1-\tau / \xi}{1-\xi}\right) \tau^{x} \xi^{-x-y-1}\right] \mathrm{e}^{t \varepsilon(\xi)} d \xi
$$

Small contours do not satisfy initial condition since second term (with $t=0$) does not vanish for $x, y \geq 0$. Does vanish if contour $\mathcal{C}=\mathcal{C}_{R}$ with $R \gg 1$. So choose large contours?

Choice of Contours

- Suppose we have inversion $(a,-b)$ in σ where $a>0, b>0$: Get factor

$$
S\left(\xi_{a}, \xi_{-b}\right)=S\left(\xi_{a}, \tau / \xi_{b}\right)=-\frac{\xi_{a}+\xi_{b}-p^{-1} \xi_{a} \xi_{b}}{\xi_{a}+\xi_{b}-q^{-1}}
$$

and if $\xi_{a}, \xi_{b} \in \mathcal{C}_{R}$ with $R \gg 1$ have

$$
\mathcal{C}_{R} \cap\left(q^{-1}-\mathcal{C}_{R}\right) \neq \varnothing
$$

- Let ξ_{a} run over circles with center $1 / 2 q$ and different radii.
- Let ξ_{a} run over circles with center $1 / 2 q$ and different radii.
- But argument for cancellation of integrals at $t=0$ requires the domain of integration to be symmetric in the ξ_{a}
- Let ξ_{a} run over circles with center $1 / 2 q$ and different radii.
- But argument for cancellation of integrals at $t=0$ requires the domain of integration to be symmetric in the ξ_{a}
- Average over radii: Fix $R_{1}<\cdots<R_{N}, R_{a} \gg 1$, and denote by \mathcal{C}_{a} the circle with center $1 / 2 q$ and radius R_{a}. The domain of integration is then

$$
\bigcup_{\mu \in S_{N}} \mathcal{C}_{\mu(1)} \times \cdots \times \mathcal{C}_{\mu(N)}
$$

- Let ξ_{a} run over circles with center $1 / 2 q$ and different radii.
- But argument for cancellation of integrals at $t=0$ requires the domain of integration to be symmetric in the ξ_{a}
- Average over radii: Fix $R_{1}<\cdots<R_{N}, R_{a} \gg 1$, and denote by \mathcal{C}_{a} the circle with center $1 / 2 q$ and radius R_{a}. The domain of integration is then

$$
\bigcup_{\mu \in S_{N}} \mathcal{C}_{\mu(1)} \times \cdots \times \mathcal{C}_{\mu(N)}
$$

- With this domain of integration we show the initial condition is satisfied.

ASEP on \mathbb{Z} : Sketch of Proof of Initial Condition

Let \mathcal{C}_{r} be the circle with center zero, radius r.
Theorem: If $p \neq 0$ and r is small enough then

$$
P_{Y}(X ; t)=\sum_{\sigma} \int_{\mathcal{C}_{r}^{N}} A_{\sigma}(\xi) \prod_{i} \xi_{\sigma(i)}^{x_{i}} \prod_{i} \xi_{i}^{-y_{i}-1} \mathrm{e}^{t \varepsilon\left(\xi_{i}\right)} d^{N} \xi
$$

If $I(\sigma)$ is the σ-summand with $t=0$ we have to show

$$
\sum_{\sigma \neq i d} I(\sigma)=0
$$

Proof by induction on N.

ASEP on \mathbb{Z} : Sketch of Proof of Initial Condition

Let \mathcal{C}_{r} be the circle with center zero, radius r.
Theorem: If $p \neq 0$ and r is small enough then

$$
P_{Y}(X ; t)=\sum_{\sigma} \int_{\mathcal{C}_{r}^{N}} A_{\sigma}(\xi) \prod_{i} \xi_{\sigma(i)}^{x_{i}} \prod_{i} \xi_{i}^{-y_{i}-1} \mathrm{e}^{t \varepsilon\left(\xi_{i}\right)} d^{N} \xi
$$

If $I(\sigma)$ is the σ-summand with $t=0$ we have to show

$$
\sum_{\sigma \neq i d} I(\sigma)=0
$$

Proof by induction on N.
For those σ with $\sigma(N)=N$ use the induction hypothesis.

If $\sigma(N)<N$ make the substitution

$$
\xi_{N} \longrightarrow \frac{\eta}{\prod_{i<N} \xi_{i}}
$$

The product of S-factors involving ξ_{N} becomes

$$
\prod_{\text {inversions }(N, j)} S\left(\frac{\eta}{\prod_{i<N} \xi_{i}}, \xi_{j}\right)
$$

and the product of powers of the ξ_{i} becomes

$$
\eta^{x_{\sigma-1}(N)}-y_{N}-1 \prod_{i<N} \xi_{i}^{x_{\sigma}-1(i)-x_{\sigma-1}(N)+y_{N}-y_{i}-1}
$$

This is zero at $\xi_{j}=0$ for all inversions (N, j).

If $\sigma(N)<N$ make the substitution

$$
\xi_{N} \longrightarrow \frac{\eta}{\prod_{i<N} \xi_{i}}
$$

The product of S-factors involving ξ_{N} becomes

$$
\prod_{\text {inversions }(N, j)} S\left(\frac{\eta}{\prod_{i<N} \xi_{i}}, \xi_{j}\right)
$$

and the product of powers of the ξ_{i} becomes

$$
\eta^{x_{\sigma-1}(N)}-y_{N}-1 \prod_{i<N} \xi_{i}^{x_{\sigma}-1(i)-x_{\sigma-1}(N)+y_{N}-y_{i}-1}
$$

This is zero at $\xi_{j}=0$ for all inversions (N, j).
If $\sigma(N)=N-1$ there is only one inversion (N, j), the j-factor is analytic for ξ_{j} inside \mathcal{C}_{r} except for a simple pole at zero, so $I(\sigma)=0$.

If $\sigma(N)=N-2$ consider all permutations with inversions (N, j) and (N, k). Integrate with respect to ξ_{j} by shrinking the contour. There is a pole from the k-factor. Integrate the residue with respect to ξ_{k} by shrinking the contour. There is a pole from the j-factor. We get an
($N-2$)-dimensional integral in which $\xi_{j}=\xi_{k}$.

Pair σ and σ^{\prime} if they are the same except that the positions of j and k are interchanged. Then the integrands for σ and σ^{\prime} are negatives of each other since $S\left(\xi_{j}, \xi_{k}\right)$ is a factor for one and not the other and it equals -1 when $\xi_{j}=\xi_{k}$. (The other factors involving ξ_{j} or ξ_{k} are equal when $\xi_{j}=\xi_{k}$.)

Therefore $I(\sigma)+I\left(\sigma^{\prime}\right)=0$.

If $\sigma^{-1}(N)=N-3$ consider all permutations with inversion $(N, j),(N, k),(N, \ell)$. All $I(\sigma)$ are sums of integrals in which $\xi_{j}=\xi_{k}, \xi_{j}=\xi_{\ell}$, or $\xi_{k}=\xi_{\ell}$.

For each of these, pair permutations as before. The corresponding integrands are negatives of each other.

And so on, for general $\sigma(N)$.
Thus $\sum_{\sigma \neq i d} I(\sigma)=0$, as claimed.

