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6. Recursion on Well-Founded Relations

We work in ZF without foundation for the following:

6.1 Recall: For a binary relation R (may be a proper class):

(i) predR(a) = {z|〈z, a〉 ∈ R}

(ii) R is set-like iff for each a ∈ V : predR(a) is a set, i.e. predR(a) ∈ V .

(iii) If R is set-like then for any A ∈ V we let

T0 = A

Tn+1 =
⋃
a∈Tn

predR(a)

and then we let the transitive closure of A with respect to A:

(End of Chapter 2)

trclR(A) =
⋃
n∈ω

Tn

Note that trcl∈(A) = trcl(A).

(iv) R (now need R to bet set-like) is well-founded iff every nonempty A has an R-
minimal element, i.e. some element a ∈ A such that:

〈z, a〉 /∈ R for all z ∈ A.

Equivalently: A∩ predR(a) = ∅.

6.2 Theorem: Construction by Recursion on Well-Founded Relations; Bar
Induction/Recursion

Assume R is a binary relation that is well-founded and set-like. Let

G : V → V

be a class function. Then there is a unique class function F : V → V such that

F (x) = G(F � predR(x)) for all x ∈ V .
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Proof. Uniqueness: Assume F , F ′ are two such functions and F 6= F ′.

So X = {a ∈ V |F (a) 6= F (a′)} is a nonempty class. We proved before that if R is
well-founded + set-like and X 6= ∅ then X has an R-minimal element. So let b ∈ X be
R-minimal. Then predR(b) ∩X = ∅. Hence, F (y) = F ′(y) for all y ∈ predR(b). So F �
predR(b) = F ′ � predR(b). Hence

F (b) = G(F � predR(b)) = G(F ′ � predR(b)) = F ′(b)

Existence: We show: to each x ∈ V there is a unique function

fx : trclR({x})→ V

such that

(1) fx(z) = G(fx � predR(z)) for all z ∈ trclR({x}).

This implies that if x, x′ ∈ V then:

(2) fx = fx′ whenever z ∈ dom(fx)∩ dom(fx′) = trclR({x})∩ trclR({x′})

This is because if z ∈ trclR({x})∩ trclR({x′}) then trclR({x}) ⊆ trclR({x})∩ trclR({x′}).
So fx � trclR({z}) = fz = fx′ � trclR({z}) because fx, fx′ and fz follow (1).

Hence fx(z) = fz(z) = fx′(z).

So if we let

F = the class of all functions fx satisfying (1)

we can let

F =
⋃
F .

Then check that this is as required.

Now show that we have these functions:

Uniqueness: Pick x and show that there is at most one fx satisfying (1). This is like
the proof of uniqueness above.

Existence: Show that fx exists for each x ∈ V . If not:

Y = the class for all x ∈ V such that there is no fx as in (1).

Then Y 6= ∅. Since R is well-founded and set-like: Y has an R-minimal element c.

This means that fz exists and is unique for each z ∈ predR(c).

By the fact that predR(c) is a set + Replacement:⋃
z∈predR(c)

fz is a set function.

In fact: f ′ = F � predR(c), then fx = f ′ ∪ {〈x,G(f ′)〉}.
So x /∈ Y after all, a contradiction. This proves existence.
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6.3 Corollary:

Let R be a binary relation that is well-founded and set-like. Then there is a unique
class function σ : R→ On such that:

σ(x) = sup{σ(y) + 1|y ∈ x}

Notice: 〈x, x′〉 ∈ R⇒ σ(x) < σ(x′).

Moreover: If σ′ is any map such that 〈x, x′〉 ∈ R ⇒ σ′(x) < σ′(x′) then σ(x) ≤ σ′(x)
for all x ∈ Field(R) = dom(R)∪ rng(R).

6.4 Definition: Rank

Let R be a binary relation that is well-founded and set-like. The unique map from
6.3 is called the rank. We write rankR(x) instead of σ(x).

6.5 Example (Foundation):

We write rank(x) instead of rank∈(x).

In fact:

rank(x) =the unique α ∈ On such that x ∈ Vα+1 − Vα.

6.6 Definition: Extensional Binary Relation

A binary relation R is extensional iff for all x, y we have

predR(x) = predR(y)⇒ x = y

Equivalently,

(∀z)(zRx↔ zRy)⇒ x = y

6.7 Example:

By the Axiom of Extensionality, ∈ is extensional.

6.8 Theorem: (Mostowski Collapsing Theorem)

Let A be a class and let R ⊆ A× A be a binary relation that is

- set-like

- extensional

- well-founded

Then there is a unique pair (U, σ) such that

- U is a transitive class
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- σ : (A,R)→ (U,∈) is an isomorphism

Proof. U is transitive: (U is a class by T.6.2). Let a ∈ U . Then a = σ(x) for some x ∈ A.
Now if b ∈ a then b = σ(z) for some b such that bRa since a = σ(x) = {σ(z)|zRx}. So
b ∈ rng(σ) = U .

Uniqueness: Since σ is an isomorphism for each x ∈ A we have

(∀z) zRx↔ σ(z) ∈ σ(x) which means that σ(x) = {σ(z)|zRx}

By the theorem on construction by recursion T.6.2 there is a unique σ that satisfies
this recursion formula. Since U = σ[A], U is also unique.

Existence: By T.6.2 there is some σ : V → V that satisfies σ(x) = {σ(z)|zRx}. Let
U be σ[A]. From now on write σ instead of σ � A. Then

(i) σ : A→ U is surjective

(ii) zRx⇒ σ(z) ∈ σ(x) for all x, z ∈ A.

We show that σ : (A,R)→ (U,∈) is an isomorphism.

σ is injective: Suppose not. This means that we have some x, y ∈ A such that x 6= y
and σ(x) = σ(y). Because R is set-like and well-founded, we can minimize x, i.e. we can
find an x ∈ A such that

(a) σ(x) = σ(y) for some y 6= x

(b) If zRx then σ(z) 6= σ(z′) whenever z 6= z′.

We show: predR(x) ⊆ predR(y).

Pick zRx. Then σ(z) ∈ σ(x) by the definition of σ. Since σ(x) = σ(y) we have
σ(z) ∈ σ(y) = {σ(z′)|z′Ry}. Hence there is some z′ such that z′Ry and σ(z′) = σ(z). But
by (b) above: z′ = z. Hence zRy.

A symmetric argument shows: predR(y) ⊆ predR(x). (Check this!)

So we have: predR(x) = predR(y).

Because R is extensional: we have that x = y. Contradiction, as we assumed x 6= y.

This proves injectivity of σ.

σ(z) ∈ σ(x)⇒ zRx for all z, x ∈ A:
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If σ(z) ∈ σ(x) then σ(z) = σ(z′) for some z′ such that z′Rx because σ(x) =
{σ(z′)|z′Rx} by definition. Since σ is injective: z = z′. So zRx.

This has finished the proof of the theorem.

6.9 Example:

Let 〈A,<〉 be a well-ordered set. Notice that < is extensional on A. So by Mostowski
there is exactly one transitive set α and exactly one map σ such that σ : 〈A,<〉 → 〈α,∈〉
is an isomorphism. Notice: α = otp(A,<). Similarly, if A is a proper class and < is a set-
like well-ordering on A then (A,<) is isomorphic to (On,∈) and the isomorphism is unique.

6.10 Proposition: (ZF)

Assume U,U ′ are transitive classes and

σ : (U,∈)→ (U ′,∈)

is an isomorphism. Then U = U ′ and σ = id.

Proof: Immediate from Mostowski.

6.11 Corollary: (ZF)

If M is a proper class and σ : (M,∈) → (V,∈) is an isomorphism, then M = V and
σ = id.

7. Elements of Cardinal Arithmetic

For the moment we work without Foundation in ZF.

Recall that if α ∈ On then a set A ⊆ α is cofinal in α or unbounded in α iff

(∀ξ < α)(∃ζ ∈ A)(ξ ≤ ζ).

If α is a limit ordinal then we can replace “ξ ≤ ζ” by “ξ < ζ”.

7.1 Definition: Cofinality of an Ordinal

Let α ∈ On. The cofinality of α is the least ordinal γ such that there is a set A ⊆ α
cofinal in α such that otp(A) = γ. We denote it by cf(α). So:

cf(α)=min{ otp(A)|A ⊆ α is cofinal in α}

7.2 Proposition:

If α is a successor ordinal then cf(α) = 1.

Proof. Say α = ᾱ + 1. Then {ᾱ} is cofinal in α.
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7.3 Proposition:

For every ordinal α we have: cf(α) ≤ α.

Proof. This is because α is a cofinal subset of α.

7.4 Examples:

(a) cf(ω) = ω.

(b) cf(ω + ω) = ω; A = {ω, ω + 1, ..., ω + n, ...} = {ω + n|n ∈ ω}.

(c) cf(ω · ω) = ω; A = {ω · n|n ∈ ω}.

(d) cf(ωω) = ω; A = {ωn|n ∈ ω}.

(e) cf(ℵω) = ω; A = {ℵn|n ∈ ω}.

7.5 Proposition:

Let α be a limit ordinal. Then γ =cf(α) iff

(a) γ = the least ordinal such that there is a strictly increasing cofinal map f : γ → α.

(b) γ = the least ordinal such that there is a closed unbounded C ⊆ α in α with
otp(C) = γ.

(c) γ = the least ordinal such that there is a normal cofinal map f : γ → α. (Recall:
normal = strictly increasing and continuous).

Proof. (a) If γ =cf(α), we have some unbounded A ⊆ α with otp(A) = γ. Then if
f : γ → A is the corresponding isomorphism, it is also a strictly increasing cofinal map
in α. On the other hand: if γ̄ < γ and g : γ̄ → α is strictly increasing and cofinal then
let A = rng(g). Then A ⊆ α is cofinal and otp(A) = γ̄ < γ =cf(α).

Contradiction.

(b) Follows from HW1: If A ⊆ α cofinal and Ā = the topological closure of A in α
then otp(Ā) = otp(A).

(c) Then: if A ⊆ α is cofinal and otp(A) = γ =cf(α) then otp(Ā) = γ =cf(α). Now
if g : γ → Ā is the isomorphism then g : γ → α is normal and cofinal and by (a) there is
no such map with domain γ̄ < γ.

7.6 Proposition:

Assume α, δ are limit ordinals and f : δ → α is cofinal (not necessarily increasing).
Then cf(α) ≤ δ.

Proof. Let
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D = {ξ|ξ < δ such that f(ξ) > f(η) for all η < ξ}.

So D ⊆ δ. This means: otp(D) ≤ δ.

We show:

(i) f � D is strictly increasing.

(ii) f � D is cofinal in α.

(i) is immediate from the definition: if ξ̄ < ξ are in D then f(ξ) > f(η), in particular,
f(ξ) > f(ξ̄).

(ii) Pick some ᾱ < α. Assume for a contradiction that f(ξ) < ᾱ for all ξ ∈ D. But
we know f is cofinal, so there is some θ < δ such that f(θ) ≥ ᾱ. Let

θ∗ = the least θ such that f(θ) ≥ ᾱ.

Then: If θ < θ∗ then f(θ) < ᾱ ≤ f(θ∗), so θ∗ ∈ D. Contradiction.

7.7 Proposition:

Let α be a limit ordinal.

(a) cf(cf(α))=cf(α)

(b) cf(α) is a cardinal.

Proof. (a) Suppose not. Let γ = cf(cf(α)). Since cf( cf(α)) ≤ cf(α) by P.7.3, we must
have γ < cf(α). By P.7.5:

There is a cofinal strictly increasing map f : γ → cf(α).

There is a cofinal strictly increasing map g : cf(α)→ α.

So g ◦ f : γ → α is a cofinal strictly increasing map into α (Exercise). This would
mean that cf(α) ≤ γ < cf(α). Contradiction.

(b) Assume α is not a cardinal. So let κ =card(α). So there is a surjection f : κ
onto−→ α.

Of course, f is cofinal by P.7.6: cf(α) ≤ κ < α (we assume that α is not a cardinal).
Since cf( cf(α)) = cf(α): cf(α) must be a cardinal.

7.8 Definition: Regular/Singular Cardinals

A cardinal κ is regular iff cf(κ) = κ.

Cardinals that are not regular are called singular.

Examples

(a) ω is regular — cf(ω) = ω.
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(b) If α ∈ (ω, ω1) cf(α) = ω.

(c) cf(ℵω) = ω so ℵω is singular.

7.9 Proposition:

Let α, β be limit ordinals. Assume there is a cofinal strictly increasing map f : α→ β.
Then cf(α) = cf(β).

Proof. We know there is a cofinal strictly increasing map g : cf(α) → α. Then f ◦ g :
cf(α)→ β is a cofinal strictly increasing map into β. So cf(β) ≤ cf(α).

We also know there is a cofinal strictly increasing map h : cf(β)→ β.

Notice: f−1 ◦ h need not be cofinal. So we need to define a new map: We define k :
cf(β)→ α by recursion:

k(ξ) = the least η < α such that

• f(η) ≥ h(ξ) (This will guarantee that f is cofinal).

• f(η) > k(ξ′) for all ξ′ < ξ. This will guarantee k is strictly increasing.

If k(ξ′) is defined for all values < ξ, then k s strictly increasing. So we have k � ξ.
Now ξ < cf(β) ≤ cf(β), so k � ξ cannot be cofinal in α.

So there is some η < α such that η > k(ξ′) for all ξ′ < ξ.

So we can find η < α such that f(η) > h(ξ) and η > k(ξ′) for all ξ′ < ξ.

This tells us that

(i) k(ξ) is defined for all ξ < cf(β)

(ii) k is strictly increasing.

(iii) k is cofinal. If η < α: Since h is cofinal in β we can find ξ < cf(β) such that
h(ξ) > f(η). Then k(ξ) ≥ η by the definition of k.

Conclusion: k : cf(β)→ α is a cofinal strictly increasing map. Hence, cf(α) ≤ cf(β).

Remark: Alternatively, we could define k′ : cf(β)→ α by dropping the second clause
in the definition of k. Then k′ is still cofinal in α but not necessarily strictly increasing.
By P.7.6 cf(α) ≤ cf( cf(β)) = cf(β).

What we proved so far about cofinalities is practically all what can be done in ZF
alone.

We have seen: examples where α was a limit ordinal and cf(α) = ω. This is all one
can prove in ZF alone, by the result of Gitik (1980):

Con(ZFC + (*))⇒ Con(ZF+ Every limit ordinal is ω-cofinal)
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Here (*) is so-called large cardinal axiom. See below.

7.10 Definition: Weakly Inaccessible Cardinal

A cardinal that is both regular and limit is called weakly inaccessible.

The following holds:

(i) It cannot be proved in ZF that a weakly inaccessible cardinal exists.

(ii) We have seen in 280A examples like CH where one could prove:

Con(ZFC)⇒ Con(ZFC+CH)

Con(ZFC)⇒ Con(ZFC+¬CH)

Let WI abbreviate the statement “there is a weakly inaccessible cardinal.”Then

Con(ZF)⇒ Con(ZF+¬WI)

is provable. However, the implication

Con(ZF)⇒ Con(ZF+WI)

cannot be proved in ZF. This resembles the situation where, letting

ZFfin : ZF without the Axiom of Infinity

Inf : Axiom of Infinity
Then

Con(ZF)⇒ Con(ZFfin +¬ Inf)

But

Con(ZFfin)⇒ Con(ZFfin + Inf)

is not provable in ZFfin.

For this reason, inaccessible cardinals are considered as “infinities of higher level.”

As of today: there is a decent collection of known large cardinal axioms. Interestingly,
they are all linearly ordered in terms of consistency. WI is the weakest of them.

From now on, work in ZFC.

7.11 Proposition: Let γ ≤ κ be cardinals and let 〈Aξ|ξ ≤ γ〉 by a sequence of sets
such that |Aξ| ≤ κ for all ξ < γ. Then
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∣∣ ⋃
ξ<γ

Aξ
∣∣ ≤ κ.

Proof. Since |Aξ| ≤ κ, there is a surjection fξ : κ → Aξ. So Fξ = {fξ|fξ : κ → Aξ is a
surjection } 6= ∅.

Notice: 〈Fξ|ξ < γ〉 is a set. By AC there is a sequence 〈fξ|ξ < γ〉 such that fξ ∈ Fξ,
i.e. fξ : κ→ Aξ is a surjection.

Now define a function g : γ × κ→
⋃
ξ<γ Aξ by

g(ξ, η) = fξ(η).

Since each fξ is a surjection onto Aξ, we have: g : γ × κ→
⋃
ξ<γ Aξ is a surjection.

Since γ ≤ κ, we have |γ × κ| = κ. Hence there is a surjection of κ onto
⋃
ξ<γ Aξ.

7.12 Remark:

The previous proof can be “localized”in terms of hypothesis.

Let A be a class, κ be an infinite cardinal. Then

ACκ(A)

is the following statement:

Whenever 〈Xξ|ξ < κ〉 is a sequence of nonempty subsets of A, there is a sequence
〈aξ|ξ < κ〉 of elements a such that aξ ∈ Xξ for all ξ < κ.

Also, let ACκ stand for ACκ(V ).

It is easy to see that the conclusion in T.7.11 follows from ACκ.

7.13 Proposition:

For every infinite cardinal κ: we have κ+ is regular.

Proof. Suppose not then γ
def
= cf(κ+) < κ+. Since there are no cardinals in the interval

(κ, κ+) and cf(κ+) is a cardinal: γ ≤ κ. By P.7.5 there is a cofinal function f : γ → κ+.
Now each f(ξ) < κ+, so |f(ξ)| ≤ κ. But then

κ+ =
⋃
ξ<γ

f(ξ)

By P.7.11,
⋃
ξ<γ f(ξ) is of size ≤ κ. This gives |κ+| ≤ κ. Contradiction.

7.14 Remark:

The conclusion in P.7.13 can be proved from ACκ(P(κ)).

7.15 Example:
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(i) By the above: ω1, ω2, ..., ωn are all regular.

(ii) There is no sequence 〈αn|n ∈ ω〉 that would converge to ω1.

(iii) There are unboundedly many α < ω2 such that cf(α) = ω1.

Given β < ω2, we find α < ω2 such that α ≥ β and cf(α) = ω1.

By recursion define a function f : ω1 → ω2 as follows:

f(0) = β

f(ξ + 1) = some ordinal < ω2 that is larger than f(ξ).

f(ξ) = sup{f(ξ̄|ξ̄ < ξ} if ξ is a limit.

Note: f(ξ) is defined for all ξ < ω1:

- If f(ξ) is defined then f(ξ) < ω2 and ω2 is a limit ordinal. So this is an ordinal
in the interval (f(ξ), ω2).

- If ξ is limit and f(ξ̄) is defined for all ξ̄ < ξ, i.e. f � ξ is defined. Now
f � ξ cannot be cofinal in ω2 because ξ < ω1 < ω2 and cf(ω2) = ω2. Hence
sup{f(ξ̄|ξ̄ < ξ} < ω2. This sup is the value of f(ξ).

Now let α = supξ<ω1
f(ξ). Because cf(ω2) < ω2: α < ω2.

Moreover: f : ω1 → α is a strictly increasing cofinal map. So by 7.9, cf(α) =
cf(ω1) = ω1.

(iv) Also notice: If β < ω2 then β + ω1 < ω2 and (β + ω1) = ω1. I.e. the map
ξ 7→ β + ξ. (Or, in (iii) take “the least”instead of “some”).

7.16 Proposition:

From the above we have the following formulae:

(a) If κ, λ ∈ ω then ordinal arithmetic = cardinal arithmetic.

From now on, let at least one of κ, λ be infinite.

(b) κ+ 0 = κ

κ · 0 = 0

If both κ, λ > 0 then

κ+ λ = κ · λ = max(κ, λ)

(c) All cardinals:

κλ+µ = κλ · κµ

(κ · λ)µ = κµ · λµ

(κλ)µ = κλ·µ
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(d) If κ ≥ 2 then κλ > λ (Cantor Theorem).

(e) κ ≤ κ′ and λ ≤ λ′ ⇒ κλ ≤ κ′ λ
′

and similarly for + and · .

7.17 Definition:

Let λ ≤ κ be cardinals.

[κ]λ = {η ⊆ κ : |η| = λ} (= the set of all subsets of κ that have size λ).

The notation [κ]<λ, [κ]≤λ is then self-explanatory, as well as [A]λ, [A]<λ, [A]≤λ.

7.18 Proposition:

Let λ ≤ κ be cardinals and κ be infinite. Then

κλ = |[κ]λ|

Proof: application of Schroëder-Bernstein (HW).

7.19 Definition:

Let I 6= ∅ and 〈κi|i ∈ I〉 be an indexed system of cardinals.

(a)
∑
i∈I

κi =
∣∣⋃
i∈I

({i} × κi)
∣∣

(b)
∏
i∈I

κi =
∣∣×
i∈I

κi
∣∣

7.20 Remark:

(a) These definitions are consistent with the definitions of + and · if we let I = {0, 1}.

(b) Assume all κi agree, say κi = κ for all i ∈ I. Then∑
i∈I

κi =
∣∣⋃
i∈I

({i} × κi)
∣∣ =

∣∣⋃
i∈I

{i} × κ
∣∣ = |I × κ| = |I| · κ.

∏
i∈I

κi =
∣∣×
i∈I

κi
∣∣ = |κI | = κ|I|.

7.21 Proposition: Let 〈κi|i ∈ I〉 be an indexed system of cardinals, at least one κi
be infinite. Then ∑

i∈I

κi = |I| · sup
i∈I

κi.

Proof. Let κ = sup
i∈I

κi. So κi ≤ κ for all i ∈ I. Let fi : κi → κ. Then the map
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f :
⋃
i∈I

{i} × κi → I × κ

defined by

f(i, ξ) = (i, ξ)

is an injection. So
∑

i∈I κi ≤ |I| · κ.

For the converse, notice WLOG we may assume κi > 0 for all i ∈ I. (Check this!).

Then: κj ≤
∑

i∈I κi for all j ∈ I. Hence

(*) sup
j∈I

κj ≤
∑
i∈I

κi

Since we are assuming that κi > 0 for all i ∈ I:

(**) |I| =
∣∣⋃
i∈I

({i} × {0})
∣∣ ≤ ∣∣⋃

i∈I

{i} × κi
∣∣ =

∑
i∈I

κi

1 = {0} ≤ κi.

From (*) and (**) we get

sup
j∈I

κj · |I| ≤
(∑
i∈I

κi
)
·
(∑
i∈I

κi
)

=
∑
i∈I

κi.

Where the last step is justified because (
∑

i∈I κi) is infinite, because we are assuming that
at least one of κi is infinite.

7.22 Proposition:

Let λ be an infinite cardinal and 〈κξ|ξ < λ〉 be an increasing sequence of cardinals
such that κ0 > 0. Then the product∏

ξ<λ

κξ = (sup
ξ<λ

κξ)
λ

Proof. Let κ = supξ<λ κξ. Assume WLOG that 〈κξ|ξ < λ〉 is strictly increasing; for non-
strictly increasing , it then easily follows. (Either pick a strictly increasing subsequence
of else consider the largest element).

≤ is easy:
∏

ξ<λ κξ ≤
∏

ξ<λ κ = κλ, where the ≤ follows from the argument similar to
the proof of ≤ in P.7.21.

To see ≥: Since λ is infinite: λ ∼ λ × λ. So we can re-index the system 〈κξ|ξ < λ〉
and get 〈κ′ξ,η|ξ, η < λ〉 so that {κξ|ξ < λ} = {κ′ξ,η|ξ, η < λ}.

Notice: If we fix ξ = ξ0 then the set

{κ′ξ0,η|η < λ}
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is cofinal in κ = supξ<λ κξ. Why: Because Aξ0 has size λ but for every α < κ the set
{κξ|κξ < α} has size < λ: because let ξ∗ = the least ξ such that κξ ≥ α. Then

{κξ|κξ < α} = {κξ|ξ < ξ∗} and ξ∗ < λ.

Point: if B is a well-ordered set whose order type is a cardinal, and B′ is a proper initial
segment of B then |B′| < |B|.

So:
∏

ξ<λ κξ =
∏

ξ,η<λ κ
′
ξ,η =

∏
ξ<λ

(∏
η<λ κ

′
ξ,η

)
which is ≥ κ by the “Notice”above.

Then, that is ≥
∏

ξ<λ κ = κλ.

7.23 Proposition:

Let λ be a cardinal and 〈κξ|ξ < γ〉 be a sequence of cardinals. Then(∏
η<γ

κη
)λ

=
∏
η<γ

κλη

Proof. We construct a bijection directly. Let f ∈λ
(×η<γ

κη
)
, i.e. f : λ→×η<γ

κη.

We define

Ff : λ× γ → On by Ff (ξ, η) = f(ξ)(η).

Now let

gf,η : λ→ On defined by gf,η(ξ) = Ff (ξ, η) = f(ξ)(η) ∈ κη

(We are fixing the first argument, then we are fixing the second argument.)

So gf,η ∈ (λκη). Now let

gf : γ → V defined by gf (η) = gf,η ∈ (λκη)

So gf ∈×η<γ
κλη

We defined a function

from λ
(×
η<γ

κη
)

into×η<γ
κλη by f 7→ gf .

Injectivity: Assume f 6= f ′. Then there is some ξ < λ such that f(ξ) 6= f ′(ξ). Hence there is
some η < γ such that f(ξ)(η) 6= f ′(ξ)(η) ⇒ gf (η)(ξ) 6= g′f (η)(ξ). Hence, gf (η) 6=
g′f (η), i.e. gf 6= g′f .

Surjectivity: Switch the coordinates back. Given g ∈×η<γ
(λκη). Let f : λ→×η<γ

κξ be defined

by f(ξ)(η) = g(η)(ξ). Then gf = g.

7.24 Proposition:

Let 〈κξ|ξ < λ〉 be an increasing sequence of cardinals.

Then, letting κ = supξ<λ κξ:
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κλ =
∏
ξ<λ

κλξ

Proof.
∏
ξ<λ

κλξ
7.23
=
(∏
ξ<λ

κξ
)λ 7.22

= (κλ)λ = κλ

7.25 Definition: ג
The function ג (third hebrew letter of alphabet) is defined by:

κ 7→ κcf(κ)

The function ג is fundamental in cardinal arithmetic, because it completely determines

the value of ℵℵβα .

Before we prove the theorem, one more proposition:

7.26 Proposition: Let λ be a limit cardinal, say λ = supξ<γ λξ where 〈λξ|ξ < λ〉 is
strictly increasing and 〈2λξ |ξ < γ〉 is increasing, but not eventually constant.

2λ = ג
(

supξ<γ 2λξ
)

Proof. ≥: supξ<γ 2λξ ≤ 2λ

cf(supξ<γ 2λξ) ≤ γ. This is true if 〈2λξ |ξ < γ〉 is not eventually constant because
ξ 7→ 2λξ is a cofinal map from γ into supξ<γ 2λξ by 7.6.

So supξ<γ)ג 2λξ) ≤ (2λ)γ = 2λ

≤: We inject P(λ) into×ξ<γ
P(λξ) by

A 7→ 〈A ∩ λξ|ξ < γ〉

Easy to see this is an injection.

But
∣∣×
ξ<γ

P(λξ)
∣∣ =

∏
ξ<γ

2λξ .

Let K ≤ γ be such that ξ 7→ 2λξ is strictly increasing on K. Also, choose such a K
with smallest possible order-type. Then the above argument shows that the assignment

〈A ∩ λξ|ξ ∈ K〉

is injective as well. But then∣∣×
ξ∈K
P(λξ)

∣∣ =
∏
ξ∈K

2λξ
7.22
=
(

sup
ξ∈K

2λξ
)|K| (1)

= ג
(

sup
ξ∈K

2λξ
)

(1) is because |K| = otp(K) = cf(supξ∈K 2λξ).
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7.27 Theorem:

The value κλ are completely determined by function .ג

Proof. By induction on κ, we show that the values κλ for all λ ≤ κ are determined by .ג
This sufices, as if λ > κ then κλ = λλ.

For κ ≥ 2:

2λ ≤ κλ ≤ λλ ≤ (2λ)λ = 2λ·λ = 2λ

Induction: Assume λ ≤ κ and κλ
′

is determined by ג for all λ′ < λ. Want to compute
κλ.

Claim 1: λ < cf(κ).

κλ = |λκ| (1)
=
∣∣ ⋃
λ<α<κ

(λα)
∣∣ (2)

= sup
α<κ
|α|λ

(1) Since λ < cf(κ) : Every f : λ→ κ is bounded.

(2) Note: α < β so (λα) ( (λβ).

The rest follows from the fact: If 〈Xα|α < κ〉 (X0 6= ∅) is an increasing sequence
with respect to ⊆ sequence of sets, then |

⋃
α<κ(Xα) = κ · supα<κ |Xα| since

|Xβ| ≤
∣∣⋃
α

< κ
∣∣ κ ≤

∣∣ ⋃
α<κ

Xα

∣∣ (1)

⇒ supβ<κ |Xβ| ≤
∣∣⋃

α<κXα

∣∣.
Converse:

⋃
ξ<κXξ =

⋃
ξ<κ(Xξ+1 −Xξ) = ...

Where the above is a disjoint union.

Or else: notice ∣∣ ⋃
ξ<κ

Xξ

∣∣ ≤ ∣∣ ⋃
ξ<κ

{ξ} ×Xξ

∣∣ = κ · sup
ξ<κ
|Xξ|.

Now since λ < α: λ ≤ |α| so we already know that |α|λ is determined by ג by the
induction hypothesis, as |α| < κ. This means that

κλ = sup
λ<α<κ

|α|λ

Is determined by .ג
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Case 2: cf(κ) ≤ λ < κ.

Hence cf(κ) < κ so κ is a singular cardinal. Let 〈κξ|ξ < cf(κ)〉 be a strictly
increasing sequence of cardinals converging to κ.

Case 2A: The values κλξ for ξ < cf(κ) are eventually constant. Then

κλ
7.24
=
∏

ξ<cfκ κ
λ
ξ

(1)
=
∏

ξ0<ξ<cfκ
κλξ = (κλξ0)

cf(κ) = κ
λ·cf(κ)
ξ0

= κλξ0

(1) ξ0 is such that κλξ = κλξ0 for all ξ > ξ0. Use Schroëder-Bernstein.

Now pick ξ0 so that λ < κξ0 . This is possible, as λ < κ.

So we have κλ = κλξ0 and this value is determined by ג by the induction hy-
pothesis.

Case 2B: Otherwise. In this case we can pick the sequence 〈κξ|ξ < cf(κ)〉 so that the
values of κλξ are strictly increasing. So we get

κλ
7.24
=

∏
ξ<cf(κ)

κλξ

7.22
=
(

sup
ξ<cf(κ)

κλξ
)cf(κ)

=
(

sup
ξ<cf(κ)

κλξ
)cf(supξ<cf(κ) κ

λ
ξ = )ג sup

ξ<cf(κ)

κλξ )

Notice the function ξ 7→ κλξ is a strictly increasing function from cf(κ) into

supξ<cf(κ) κ
λ
ξ . By 7.9: cf(supξ<cf(κ) κ

λ
ξ ) = cf( cf(κ)) which is the same as cf(κ).

Case 3: λ = κ

Case 3A: κ is regular. Then cf(κ) = κ. So κκ = κcf(κ) = .(κ)ג

Case 3B: κ is singular.

κκ = 2κ = ג
(

supµ<κ 2µ
)

Where µµ is known by the induction hypothesis.

7.28 Definition: Strong Limit Cardinal

A cardinal κ is strong limit iff

2µ < κ for all µ < κ.

7.29 Proposition:

If κ is strong limit singular cardinal then

17



2κ = (κ)ג

Proof. 2κ
7.26
= supµ<κ)ג 2µ) = (κ)ג

Where the middle supremum is equal to κ since µ < 2µκ (κ is strong limit).

7.30 Definition: Strongly Inaccessible Cardinal

A cardinal that is that is both strong limit and regular is called strongly inaccessible.

So in particular:

κ strongly inaccessible ⇒ κ weakly inaccessible.

Hence the existence of strongly inaccessible cardinals cannot be proved in ZFC, and
actually the statement

Con(ZF+SI)

cannot be proved in ZFC (where SI=“There is a strongly inaccessible cardinal”).

On the other hand, the following is provable:

Con(ZFC+WI)⇔Con(ZFC+SI)

7.31 Proposition:

Let I 6= ∅ be a nonempty index set and κi ≤ λi, i ∈ I be cardinals such that λi > 1.
Then ∑

i∈I

κi ≤
∏
i∈I

λi

7.32 Theorem: (König’s Inequality)

Let I be a nonempty index set κi ≤ λi, i ∈ I be cardinals. Then∑
i∈I

κi <
∏
i∈I

λi.

Proof. Notice: WLOG κi > 0 for all i ∈ I. Then λi > κi ≥ 1. So 7.31 applies and we get
≤. We want to see that < holds, i.e.:
There is no surjection F :

⋃
i∈I({i} × κi)→×i∈I λi. So let

F :
⋃
i∈I

({i} × κi)→×
i∈I

λi.

We find a function f ∈×i∈I λi that is not in rng(F ). This is a diagonal argument.

To each (i, ξ) ∈
⋃
i∈I({i} × κi), F (i, ξ) is a function in×i∈I λi. If we fix i ∈ I then

Ai = {F (i, ξ)(i)|ξ ∈ κi} is of size ≤ κi.

18



(Because F (i, ξ)(i) depends only on ξ and there are κi many ξs).

By the assumption that κi < λi: λi−Ai 6= ∅. So if f ∈×i∈I λi such that f(i) ∈ λi−Ai
then f 6= F (i, ξ) for all ξ ∈ κi. So let f ∈×i∈I λi be defined by

f(i) = min(λi − Ai).

Then f(i) 6= F (i, ξ)(i) for all i ∈ I and all ξ ∈ κi, so f 6= F (i, ξ) for all i ∈ I and all
ξ ∈ κi.

This means: f /∈ rng(F ).

7.33 Proposition:

(a) Let κ be a cardinal. Notice:

1 < 2

1 + 1 + ...+ 1︸ ︷︷ ︸
κ

< 2 · 2... · 2︸ ︷︷ ︸
κ

So κ < 2κ

(Cantor)

(b) κ < cf(2κ) (tells us that you cannot split the continuum into countably many sets).

If κ is regular, this follows from (a). Now assume that κ is singular. Let γ = cf(2κ).
Let 〈κξ|ξ < γ〉 be a strictly ascending sequence of cardinals converging to 2κ. As-
sume γ ≤ κ.

2κ(
7.21
= γ · supξ<γ κξ) =

∑
ξ<γ κxi <

∏
ξ<γ 2κ = (2κ)γ = 2κ·γ = 2κ.

So 2κ < 2κ, a contradiction.

(c) κ < ,(κ)ג κ infinite.

Again, if κ is regular, this follows from (a). If κ is singular, then pick a strictly
increasing sequence 〈κξ|ξ < cf(κ)〉 converging to κ. Then

κ
7.21
=

∑
ξ<cf(κ)

κξ
Konig
<

∏
ξ<cf(κ)

κ = κcf(κ) = .(κ)ג

Since (b)⇒ (a) in 7.33, we can summarize the known facts about the function κ 7→ 2κ

as follows:

(i) κ ≤ λ⇒ 2κ ≤ 2λ

(ii) κ < cf(2κ).
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For regular cardinals, this is all one can prove in ZFC, by a theorem of Easton.

Easton (1970): Assume E is a class of ordinals and

f : E → On

is a function satisfying for each α, β ∈ E

(i) α ≤ β → ℵf(α) ≤ ℵf(β)

(ii) cf(ℵf(α)) > ℵα

If ℵα is regular for all α ∈ E then the statement

(∀α ∈ E)(ℵf(α) = 2ℵα)

is consistent with ZFC.

However, this is not the case for singular cardinals.

Silver (1974): If κ is a singular cardinal with uncountable cofinality and 2µ = µ+

for all (acually only “many”) µ < κ then 2κ = κ+.

Jensen (1974): If κ is a singular strong limit cardinal and 2κ > 2κ
+

then Con(ZFC+SI).

(He actually proved: there is an inner model L and a nontrivial elementary embedding
J : L→ L).

If ϕ(v1, ..., vl) is a formula, then for any a1, ..., al

L| = ϕ(a1, ..., al)⇔ L| = ϕ(j(a1), ..., j(al)).

7.34 Definition: Singular Cardinal Hypothesis (SCH)

SCH is the following statement: for a singular cardinal κ:

SCHκ: (κ)ג = κ+.

We saw that if κ is singular strong limit then (κ)ג = 2κ so for singular strong limit κ:

SCHκ ⇔ 2κ = κ+ ≡ GCHκ

SCH is one of the major topics in set theory with many questions open.

Milestones:

κ singular strong limit and 2κ > κ+ ⇒ Con(ZFC+ o(κ) = κ++)

(Mitchell 1980s)

And ⇐ by Magidor; early 1970s.
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Where o(κ) = κ++ is a very strong large cardinal axiom; much larger than SI.

Another milestone: Galvin-Hajval-Shelah?

2ℵ0 < ℵω ⇒ (ℵω)ג < ℵω4 in ZFC

Major open question:

2ℵ0 < ℵω
?⇒ (ℵω)ג < ℵω1

8. Boolean Algebras, Filters and Ideals

8.1 Definition: Boolean Algebra

A Boolean Algebra is a structure B = (B,∧,∨,′ , 0, 1) where ∨,∧ are binary operations,
′ is a unary operation and 0, 1 ∈ B.

And the following equalities hold:

Commutativity:

x ∨ y = y ∨ x; x ∧ y = y ∧ x

Associativity:

(x ∨ y) ∨ z = x ∨ (y ∨ z); (x ∧ y) ∧ z = x ∧ (y ∧ z)

Absorbtion:

x ∧ (x ∨ y) = x; x ∨ (x ∧ y) = x

x ∧ x = x; x ∨ x = x

Distributivity:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z); x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Complementation:

x ∧ x′ = 0; x ∨ x′ = 1

8.2 Example:

Given any set A we have the power set algebra (P(A),∩,∪,′ ,∅, A).

8.3 Proposition:

(i) x ∧ 0 = 0, x ∨ 0 = x, x ∧ 1 = x, x ∨ 1 = 1.

(ii) x′ is unique.

21



(iii) (x ∧ y)′ = x′ ∨ y′, (x ∨ y)′ = x′ ∧ y′.

Proof: Exercise. Regarding (iii): Show (x∧y)∧(x′∨y′) = 0 and (x∧y)∨(x′∨y′) = 1.

8.4 Proposition:

If B is a Boolean Algebra we define a binary relation ≤ on it by

x ≤ y iff x ∧ y = x.

Then

(i) ≤ is a partial ordering on B.

(ii) 0 is the least element and 1 is the largest element.

(iii) x ≤ y iff x ∨ y = y.

Proof. To see (i): x ∧ x = x, so x ≤ x.

If x ≤ y and y ≤ x then x ∧ y = x, x ∧ y = y. This implies x = y.

x ≤ y and y ≤ z then x ∧ z = (x ∧ y) ∧ z = x ∧ (y ∧ z) = x ∧ y = x.

In the above proposition, x∨ y is the sup of x, y, i.e. the least upper bound. That is,

z = x ∨ y iff x ≤ z, y ≤ z and if z′ is such that x, y ≤ z′ then z ≤ z′.

Dually: x ∧ y is the infimum of x, y, i.e. the greatest lower bound.

8.5 Definition:

Let B be a Boolean Algebra and X ⊆ B.∨
X is the supremum (join) of X, if it exists. In general,

∨
X need not exist.

Similarly,
∧
X is the infimum (meet) of X if exists.

So: ∨
X = the least upper bound on X∧

X = the greatest lower bound on X.

8.6 Exercise:

Let B be a Boolean Algebra and X ⊆ B. If
∨
X exists and b ∈ B then also∨

x∈X

(b ∧ x) holds and

b ∧
(∨

X
)

=
∨
x∈X

(b ∧ x).
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Similarly with
∧
X.

8.7 Definition: κ-Complete

Let B be a Boolean Algebra and κ be a cardinal. B is κ-complete iff
∧
X,
∨
X exist

for any X ⊆ B such that |X| < κ.

(So by definition, every B is ω-complete). (By exercise 8.6 + DeMorgan it would
suffice to postulate just the existence of

∧
X or just

∨
X).

8.8 Definition:

Let B be a Boolean Algebra.

(a) A filter on B is a set F ⊆ B such that

(i) 1 ∈ F and 0 /∈ F .

(ii) x, y ∈ F ⇒ x ∧ y ∈ F .

(iii) (x ∈ F and x ≤ y)⇒ y ∈ F

(b) An ideal on B is a set I ⊆ B such that:

(i) 0 ∈ I and 1 /∈ I.

(ii) x, y ∈ I ⇒ x ∨ y ∈ I.

(iii) (x ∈ I and y ≤ x)⇒ y ∈ I.

A filter F on B is

(1) Principal iff there is some a ∈ B such that

F = {x ∈ B|a ≤ x}

(2) Maximal iff there is no filter F ′ on B such that F ′ ) F .

For ideals, we define these notions dually.

Intuition: Members of a filter are “large”while members of ideals are “small”.

Given a filter F on B, we let

F̆ = {x′|x ∈ F}

Easy to check: F̆ is an ideal on B. This ideal is called the ideal dual to F .

Dually, if I is an ideal on B then

Ĭ = {x′|x ∈ I}
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is the filter dual to I.

In particular, we have

˘̆
F = F and

˘̆
I = I

If I is an ideal on B then

I+ = B − I

The elements of I+ are called I-positive.

If F is a filter on B then F+ def
= (F̆ )+.

Notice: a ∈ F+ iff a ∧ x 6= 0 for all x ∈ F . (Check this).

8.9 Definition: Ultrafilter

A filter F on B is an ultrafilter iff for every x ∈ B we have

x ∈ F or x′ ∈ F .

8.10 Definition: Filter Base

Let B be a Boolean Algebra. A set X ⊆ B is a filter base or a centered system iff∧
X ′ 6= 0 for all Finite X ′ ⊆ X.

A base for an ideal is defined dually.

8.11 Proposition:

If B is a Boolean Algebra and X ⊆ B is a filter base, then

F = {x ∈ B|∃ finite X ′ ⊆ X with
∧
X ′ ≤ x}

is a filter; this filter is called the filter generated by X. Dually for ideals.

8.12 Proposition:

Let B be a Boolean Algebra and F be a filter on B. Then

either F ∪ {a} or F ∪ {a′} is a filter base.

Proof is as in Fall quarter with sets.

8.13 Proposition:

Let B be a Boolean Algebra and F be a filter on B

(i) F is an ultrafilter iff F is maximal.
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(ii) F can be extended to an ultrafilter.

Proof: As in Fall.

8.14 Definition: Prime Ideal

An ideal I on a Boolean Algebra B is a prime ideal iff Ĭ is an ultrafilter. So an ideal
is a prime ideal iff it is a maximal ideal.

Notice: if I is a prime ideal, then I+ = Ĭ.

8.15 Definition + Proposition:

An atom in a Boolean Algebra B is an element a > 0 such that for every x ∈ B:
x ≤ a⇒ x = a or x = 0.

An ultrafilter F is principal iff there is an atom a such that

F = {x ∈ B|a ≤ x}

Next come a few remarks to exercise 8.6:

8.16 Proposition:

Let B be a Boolean Algebra. Then

(i) (a ≤ a∗ and b ≤ b∗)⇒ a ∧ b ≤ a∗ ∧ b∗ ; a ∨ b ≤ a∗ ∨ b∗

(ii) a ≤ b⇔ a ∧ b′ = 0.

Proof. Toward the proof of 8.6. We assume that A ⊆ B and
∨
A exists.

Want to show: for every b ∈ B:
∨
a∈A(b ∧ a) exists and

b ∧
∨
A =

∨
a∈A

(b ∧ a)

≥ is easy, as b ∧
∨
A ≥ b ∧ a for each a ∈ A using P.8.16.

≤: Assume x is an upper bound on all b ∧ a where a ∈ A. So

b ∧ a ≤ x⇒ (x′ ∧ b) ∧ a = x′ ∧ (b ∧ a)
P.8.16(ii)

= 0

Since (x′ ∧ b) ∧ a = 0, by 8.16(ii) we have a ≤ (x′ ∧ b)′ for all a ∈ A.

So
∨
A ≤ (x′ ∧ b)′ 8.16⇒ (x′ ∧ b) ∧

∨
A = 0 and this tells us that b ∧

∨
A ≤ x.

Summary: (∀a ∈ A)(b ∧ a ≤ x)⇒ b ∧
∨
A ≤ x.

So: b ∧
∨
A is an upper bound on all b ∧ a, a ∈ A and if x is any upper bound on all

b ∧ a then b ∧
∨
A ≤ x.

This says:

b ∧
∨
A =

∨
a∈A

(b ∧ a).
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This proves 8.6.

We defined κ-complete Boolean Algebra. Now:

8.17 Definition: Complete Boolean Algebra

A Boolean Algebra is complete iff it is κ-complete for all κ.

8.18 Definition:

Let B be a κ-complete Boolean Algebra and F be a filter on B. We say that F is
κ-complete iff for every X we have:

(X ⊆ F and |X| < κ)⇒
∧
X ∈ F .

κ-complete ideal is defined dually.

8.19 Definition:

Let B1, B2 be Boolean Algebras and h : B1 → B2.

(a) The map h is a homomorphism iff h preserves the operations (including mapping 0
to 0 and 1 to 1).

(b) An injective homomorphism is called an embedding.

(c) If both B1 and B2 are κ-complete then a homomorphism h : B1 → B2 is κ-complete
iff h preserves joins and meets of size < κ.

(d) If h : B1 → B2 is a homomorphism of complete Boolean Algebras then h is complete
iff it preserves all joins (and meets).

8.20 Definition:

Let B1, B2 be Boolean Algebras with domains B1, B2.

(a) We say that B1 is a subalgebra of B2 iff B1 ⊆ B2 and the operations of B1, B2 agree
on B1. Equivalently, B1 is a subalgebra of B2 iff id : B1 → B2 is an embedding.

(b) B1 is a κ-complete (complete) subalgebra of B2 iff B1 is a subalgebra of B2 and the
meet and join of size < κ (all meets and joins) agree in B1,B2.

Equivalently: iff id : B1 → B2 is a κ-complete (complete) embedding.

Definition for isomorphism is obvious.

8.21 Notation:

We will write
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a− b for a ∧ b′ (difference)

a∆b = (a− b) ∨ (b− a) (symmetric difference)

8.22 Definition + Proposition:

Let B be a Boolean Algebra and I be an ideal on B. We define a binary relation ∼ by

a ∼ b iff a∆b ∈ I.

Then ∼ is an equivalence relation on B. We define the quotient algebra B/I by

B/I = the set of all equivalence classes [a] where a ∈ B.

The operations are defined in the obvious way:

[0]B/I = [0B], [1]B/I = [1B], [x] ∧B/I [y] = [x ∧ y]... etc.

These operations are well-defined and

B/I = (B/I,∨B/I ,∧B/I ,′B/I , 0B/I , 1B/I) is a Boolean algebra

(check this). From this we get the quotient map

k : B→ B/I

Defined by k(a) = [a]. By what we said above, k is a homomorphism. Moreover

ker(k) = k−1[{0}] = I

because a∆0 = (a− 0) ∨ (0− a) = a. We also have the usual factor theorem:

If h : B → C is a homomorphism of Boolean Algebras then ker(h) is an ideal on B
and we have a unique isomorphism i that makes the following diagram commutate:

B h−→ C
k

↘
i

↗
B/ ker(h)

8.23 Proposition:

Assume B is a κ-complete BA and I is a κ-complete ideal on B. Then B/I is κ-
complete.
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Proof. If γ < κ and 〈xξ|ξ < γ〉, 〈yξ|ξ < γ〉 are such that [xξ] = [yξ] for all ξ < γ, then( ∨
ξ<γ

xξ
)
∆
( ∨
ξ<γ

yξ
)

=
( ∨
ξ<γ

xξ −
∨
ξ<γ

yξ
)
∨
( ∨
ξ<γ

yξ −
∨
ξ<γ

xξ
)

8.6
=
∨
ξ<γ

(
xξ −

∨
µ<γ

yµ
)

≤
∨
ξ<γ

(xξ − yµ) (2)

∈ I (3)

where (1) comes from yξ ≤
∨
ξ<γ yξ, and (2) since I is κ-complete.

This shows: the definition ∨
ξ<γ

[xξ] = [
∨
ξ<γ

xξ]

is meaningful.

8.24 Definitions:

Let B be a BA.

(a) Two elements a, b ∈ B are incompatible iff a ∧ b = 0 for a, b 6= 0.

(b) X ⊆ B is an antichain on B iff X consists of pairwise incompatible elements.

(c) The algebra B is κ-saturated (or κ-c.c.) iff every antichain in B is of size < κ.

The smallest cardinal κ such that B is κ-saturated is called the saturation of B,
sat(B).

It can be shown that sat(B) is always a regular cardinal.

(d) Let I be an ideal. Elements a, b ∈ B are incompatible mod I iff a ∧ b ∈ I for
a, b ∈ I+.

(e) X ⊆ B is an antichain mod I iff every a, b ∈ X are incompatible mod I.

(f) I is κ-saturated iff every antichain has size < κ. The saturation of I is the least κ
such that mod I is κ-saturated.

Remark: (a)–(c) are just special cases of I = {0}.

8.25 Proposition: Let B be a BA and I be an ideal on B. Then I is κ-saturated iff
B/I is κ-saturated.
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Proof (sketch): a ∧ b ∈ I iff [a] ∧ [b] = [0]. Exercise.

8.26 Proposition:

Let B be a BA and X ⊆ B. Let X∗ be the downward closure of X, i.e.

X∗ = {z ∈ B|(∃x ∈ X)(z ≤ x)}

and let A ⊆ X∗ be an antichain that is maximal among all antichains contained in X∗.

If the join of one of these sets exists then the two other joins exist and are equal. In
particular, if

∨
A exists, then also

∨
X∗ and

∨
X exist and∨

X =
∨
X∗ =

∨
A.

Proof. Do the nontrivial one:
∨
X =

∨
A. Notice: Enough to prove

∨
A is an upper

bound on X.

If not: we have some x ∈ X such that x �
∨
A. Hence y = x −

∨
A 6= 0. But if

a ∈ A then a ∧ y ≤ (
⋃
A) ∧ y = 0.

Also, y ∈ X∗, as y ≤ x. Hence, A ∪ {y} ⊆ X∗ is an antichain. This contradicts the
maximality of A.

8.27 Proposition:

Let B be a BA that is κ-complete and κ-saturated. Then B is complete.

Proof. It is enough to check that
∨
A exists whenever A is an antichain in B. By satura-

tion, if A is an antichain in B then |A| < κ. By κ-completeness of B,
∨
A exists.

8.28 Proposition:

Let B be a κ-complete BA and I be a κ-saturated κ-complete ideal on B. Then B/I
is complete.

Proof. From 8.23, 8.25 and 8.27.

The obvious Boolean Algebra is (P(A),∩,∪,′ ,∅, A). We show that any BA can be
represented this way.

8.29 Definition:

Let B be a BA. We let

S(B) = {U ∈ P(B)|U is an ultrafilter on B}

To each a ∈ B let

Na = {U ∈ S(B)|a ∈ U}
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8.30 Proposition:

Let B be a BA,

B∗ = {Na|a ∈ B}

and

B∗ = (B∗,∩,∪,′ ,∅, S(B))

Then B∗ is a Boolean subalgebra of P(S(B)) and the map

a 7→ Na

is an isomorphism.

Proof. N0 = ∅ because no ultrafilter contains 0.

N1 = S(B) because every ultrafilter contains 1.

Na∧b = Na ∩Nb because any filter contains a, b iff it contains a ∧ b.

Na∨b = Na ∪Nb because any ultrafilter contains a∨ b iff it contains at least one of the
elements a, b.

Na′ = S(B)−Na because any ultrafilter contains a′ iff it does not contain a.

8.31 Remark:

P.8.30 is called Stone representation theorem and S(B) is called the Stone space of B
(named by Marshall Stone).

8.32 Proposition:

B∗ is a base for topology on S(B).

Proof. (i)
⋃
a∈B∗ Na = S(B) since S(B) = N1.

(ii) If G1, ..., Gn ∈ B∗ then G1 ∩ ... ∩Gn can be expressed as a union of elements of B∗.
In any case:

Na1 ∩ ... ∩Nak = Na1∧...∧ak

8.33 Proposition:

The topological space S(B) is
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(a) 0−dimensional; this means: it has a base for topology consisting of clopen sets.

(b) Hausdorff (a topological space in which distinct points have disjoint neighborhoods).

(c) Compact.

Proof. —

(a) Na = S(B)−Na′ .

(b) If U1, U2 ∈ S(B) and U1 6= U2 then we have some a ∈ B such that e.g. a ∈ U1 and
a /∈ U2. But then a′ ∈ U2. So: U1 ∈ Na and U2 ∈ Na′ . Now Na ∩ Na′ = Na∧a′ =
N0 = ∅.

(c) Enough to prove: If C is a centered system of sets in B∗ then
⋂
C 6= ∅. (Notice:

{S(B) − A|A ∈ B∗} = B∗. So every closed set can be expressed as
⋂
X for some

X ⊆ B∗.)
So let C ⊆ B∗ be a centered system. Then we have some F ⊆ B such that C =
{Na|a ∈ F}. Now if a1, ..., ak ∈ F then

Na1∧...∧ak = Na1 ∩ ... ∩Nak 6= ∅, as we are assuming the system is centered.

Hence, a1 ∧ ... ∧ ak 6= 0. So we have:

a1, ..., ak ∈ F ⇒ a1 ∧ ... ∧ ak 6= 0

This means that F is a filter base. So we can extend F to some ultrafilter U ⊇ F ,
U ∈ S(B). But then a ∈ U for all a ∈ F , so U ∈ Na for all Na ∈ C. So

⋂
C 6= ∅.

8.34 Proposition:

Let (X, T ) be a 0−dimensional compact Hausdorff space. Then there is a BA B such
that X = S(B).

Proof. Let B = the collection of all clopen sets in (X, T ) and B = (B,∩,∪,′ ,∅, X). Now
define a map f : S(B)→ X by

f(U) = the unique element in
⋂
U .

This works, because if U is an ultrafilter on B, then
⋂
U is a singleton.

Why:
⋂
U 6= ∅, as U is a centered system of closed subsets of X.⋂

U cannot have more than one element: if x, y ∈ X, then we can separate x, y by
open sets since the space is Hausdorff. So e.g. we can find a clopen set A from the base
of clopen sets such that x ∈ A but y /∈ A. So y ∈ X −A. But then A ∈ U or X −A ∈ U .
But only one of A,X − A is in U .

So f is well-defined. Also f is injective, since if U1 6= U2, then we can find clopen A
such that A ∈ U1 and X − A ∈ U2, so (

⋂
U1) ∩ (

⋂
U2) = ∅.

Also, f is surjective: if x ∈ X then
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U = {A ∈ B|x ∈ A}

is easily seen to be an ultrafilter on B such that
⋂
U = {x}.

So f is a bijection. To see that f is a homeomorphism (a continuous function between
two topological spaces that has a continuous inverse function) it suffices to show that f
is continuous, as both X, S(B) are compact.

But notice: f(U) ∈ A iff A ∈ U iff U ∈ NA, i.e. f−1[A] = NA.

Conclusion: there is a 1-1 correspondence between Boolean Algebras and Compact
Hausdorff 0-dimensional spaces, called Stone duality. So everything about Boolean Alge-
bras can be expressed in the language of these spaces and vice versa, but the translation
is a “mirror image”: e.g.

If f : B1 → B2 is an injective homomorphism, then f ′ : S(B2)→ S(B1) is a surjective
continuous map. Etc...

Constructing Complete Boolean Algebras

8.35 Definition:

Let (X, T ) be a topological space. Let

• Ā= the topological closure of A.

• Ao= the topological interior of A.

Both of these operations are monotonic. Moreover:

A ∪B = Ā ∪ B̄ and (A ∩B)o = Ao ∩Bo.

A set A ⊆ X is regular open iff Ā◦ = A.

8.36 Proposition:

Let (X, T ) be a topological space and A ⊆ X.

(a) If A ⊆ X then Ā◦ is a regular open set.

(b) If A is open then Ā◦ is the smallest regular open set that contains A. (A open
⇒ A ⊆ Ā◦).

Proof. First: If A ⊆ X, then Ā◦ is regular open:

By the monotonicity of the operations, we have that Ā◦ ⊆ (Ā◦)◦.

On the other hand: (Ā◦) ⊆ Ā because Ā◦ ⊆ Ā. Hence Ā◦
◦
⊆ Ā◦.

Now assume that R is regular open and A ⊆ R. Then Ā◦ ⊆ R̄◦ = R.
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8.37 Proposition:

Let (X, T ) be a topological space and A,B ⊆ X be open sets. Then

A ∩B◦ 1
= (Ā ∩ B̄)◦ = Ā◦ ∩ B̄◦

Proof. Of (1) (the essential part), ⊆ is easy, as A ∩B ⊆ Ā∩ B̄, and in fact holds for any
A,B ⊆ X.

We prove ⊇:

Let G = (Ā ∩ B̄)◦ − A ∩B. It is enough to prove that G 6= ∅.

To see that G is empty, notice that G is open. G ⊆ Ā ∩ B̄. Therefore, if G 6= ∅ then
G ∩ A 6= ∅ and G ∩B 6= ∅.

Claim: (G ∩ A) ∩B = ∅, because G ∩ (Ā ∩ B̄) = ∅. (Need G ∩ A open here).

So: G ∩ A is open and nonempty, (G ∩ A) ∩B = ∅ and G ∩ A ⊆ B̄.

8.38 Theorem:

Let (X, T ) be a topological space. Let

RO(X)= the collection of all regular open subsets of X.

Then the Boolean Algebra ( RO(X),⊆) is a complete Boolean Algebra. We denote
this Boolean Algebra again by RO(X).

Proof. If a ⊆ RO(X), we let ∨
a =

⋃
a
◦

By 8.36,
∨
a is the smallest regular open set that contains all sets from a. We also let∧

a = (
⋂
a)◦.

Clearly (
⋂
a)◦ is the largest open set contained in all sets from a.

(
⋂
a)◦
◦
⊆ Ā◦ = A for all A ∈ a.

So: (
⋂
a)◦
◦
⊆
⋂
a. Since (

⋂
a)◦
◦

is open, we have (
⋂
a)◦
◦
⊆ (
⋂
a)◦.

This shows that (
⋂
a)◦
◦
⊆ (
⋂
a)◦; the converse is 8.36 (b).

In particular:

A1 ∨ ... ∨ An = A1 ∪ ... ∪ An
◦

A1 ∧ ... ∧ An = A1 ∩ ... ∩ An
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So RO(X) is a complete lattice. From this, we abstractly get commutativity and
associativity for ∨ and ∧. The absorbtion laws can be easily verified.

Distributivity: A∧ (B ∨C) = (A∧B)∨ (A∧C). (A∩B ∩ C◦ = (A ∩B) ∪ (A ∩ C)).

Equality:

(A ∩B) ∪ (A ∩ C)
◦

= A ∩ (B ∪ C)
◦ 8.36

= Ā◦ ∩B ∪ C◦ = A ∩B ∪ C◦.

Verification of the other distributive law is similar.

Complementation: If A ∈ RO(X) we let A′ = (X − A)◦ (= X − A◦).

Obviously: A ∧ A′ = A ∩ A′ = ∅. We must verify A ∨ A′ = A ∪ A′◦ = X.

Enough to prove: A ∪ A′ = X. However, G = X − A ∪ A′ is open and is disjoint
with A. So G ⊆ (X − A)◦ = A′. But G is also disjoint with A′, so G ⊆ A. This implies
G = ∅.

Remark: So RO(X) ⊆ P(X). The orderings are the same on both sets. But RO(X)
is not a subalgebra of P(X) because the operation ∨ is distinct in RO(X) and P(X).

Example 1: P(ω) is a complete BA. Notice:

sat(P(ω)) = ω1

Example 2: Let

I = the collection of all finite subsets of ω.

Then I is an ideal on P(ω).

sat(I) = (2ω)+.

Why: sat(I) ≤ (2ω)+ because |P(ω)| = 2ω.

However, there is an antichain a modulo I such that |a| = 2ω.

This means: if A,B ∈ a, then A ∩B is finite and a ⊆ I+.

The corresponding quotient algebra P(ω)/I, also referred to as P(ω)/fin, is a BA such
that sat(P(ω)/I) = (2ω)+ by 8.? (saturation of ideal same as saturation of quotient).

Notice we have the quotient homomorphism

h : P(ω)→ P(ω)/fin.
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8.39 Proposition:

Let B be a complete BA. Let κ be a cardinal and A ⊆ B. Then there is a smallest
κ-complete subalgebra B′ ⊆ B that contains A.

B’ is called the κ-complete subalgebra generated by A.

Proof. (1) Let

B= the family of all κ-complete subalgebras of B that contain A.

Then B′ =
⋂
B.

(2) By recursion define collections Σα, Πα:

Σ0 = A

Πα = {a′|a ∈ Σα}

Σα+1 = {
∨

x|x ∈
( ⋃
ᾱ<α

Πᾱ ∪
⋃
ᾱ<α

Σα

)<κ
Σα =

⋃
ᾱ<α

Σᾱ(=
⋃
ᾱ<α

Σᾱ ∪ Πᾱ)

if α is limit.

Next, we get a diagram with sigmas on top where sigma 0 points to pi 0 on bottom
nw arrow sigma 1 etc...

Easy to see: α < β ⇒ Σα ⊆ Σβ, Πα ⊆ Σβ.

Then B′ = Σκ+ . In fact: if κ is regular then B′ = Σκ.

To see the latter (the former then directly follows): Show Σκ+1 = Σκ.

Assume κ is regular and a ∈ Σκ+1. This means we have some sequence 〈aξ|ξ < γ〉
where aξ ∈ Σαξ , γ < κ and a =

∨
ξ<γ aξ.

Each aξ ∈
⋃
ξ<κ Σξ, i.e. to each ξ there is some αξ < κ such that aξ ∈ Σaξ .

Because κ is regular: there is some α such that αξ < α for ξ < γ. This means:
a ∈ Σα+1 ⊆ Σκ.

Example 3: Borel sets. Consider topological space (X, T ). Borel sets is the ω1-
complete subalgebra of P(X) generated by (X, T ).

8.40 Proposition:

Let B be a complete BA, B′ be a κ-complete subalgebra and I be a κ-complete ideal
on B. We can extend B′ to a κ-complete subalgebra B′I modulo I as follows:

a ∈ B′I ⇔ (∃b ∈ B′)(a∆b ∈ I).

Proof. Exercise. Similar to the proof that if an algebra is κ-complete, then its quotient
modulo any κ-complete ideal is again κ-complete.
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Example 4: Baire property. If (X, T ) is a topological space then a set K is nowhere
dense iff K̄◦ = ∅. A set is meager, or “of the first category”iff there is a countable
sequence of closed nowhere dense sets 〈Fi|i ∈ ω〉 such that A ⊆

⋃
i∈ω Fi. Letting

IM =the family of all meager subsets of X

we have: IM is an ω1-complete ideal on P(X).

Note: ω1-complete is the same as what is in mathematics called σ-complete. Let

Baire(X)=Borel(X)IM .

Then Baire(X) is the so-called family of all Baire sets, the sets with Baire property. By
8.40, Baire(X) is a σ-complete subalgebra of P(X) that contains all Borel sets.

Also notice: if F is closed then F − F ◦ is meager, and is even closed nowhere dense.
So F∆F ◦ ∈ IM . This gives an alternative characterization of Baire(X):

A ∈Baire(X) ⇔ there is some open set G such that A∆G ∈ IM .

Most interesting space (X, T ) for this example are complete separable metric spaces
def
= Polish spaces. E.g. Rn.

Another important example is the Baire space N = (ωω) = the topological product
of ω copies of ω with discrete topology.

So: Elements of N are infinite sequences x ∈ (ωω). Basic open sets have the form:

BS = {x ∈ (ωω)|x extends s (s ⊆ x)}

for s ∈ (<ωω).

We can define the metric:

d(x, y) = 1
k+1

when k = the least such that x(k) 6= y(k).

Note: N is homeomorphic to the space of irrational numbers.

Example 5: Let (X, T ) be a topological space. A set A ⊆ X is Gδ iff A is an
intersection of countably many open sets.

A measure µ on X is regular from above iff for any µ-measurable set K there is some
Gδ set A ⊇ K such that µ(K) = µ(A).

Notice:

IN = the family of all subsets K of X such that µ(K) = 0.

Then IN is an ω1-complete ideal, called the ideal of null sets. By 8.40, for regular measures
µ we can define

Measµ(X) =Borel(X)IN .
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Measµ(X) is the family of all µ-measurable sets.

This gives an alternative definition of Measµ(X). We can define measure on Borel(X)
first. Then we can let

IN = {Y ∈ P(X)| There is some A ∈Borel(X) with A ⊇ Y and µ(A) = 0}

Hence: A is µ-measurable iff A∆B ∈ IN for some Borel B.

8.41 Proposition:

Let (X, T ) be a Polish space and µ be a regular measure on (X, T ). Then both
IM , IN are ω1-saturated. I.e. if A is a family of Baire µ-Measurable sets such that for all
A,B ∈ A A,B ∈ I+

M and A ∩B ∈ IM , A,B ∈ I+
N and A ∩B ∈ IN .
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