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Abstract

Geometric visual hallucinations are seen by many observers after taking hal-
lucinogens such as LSD, cannabis, mescaline or psilocybin, on viewing bright
flickering lights, on waking up or falling asleep, in “near death” experiences,
and in many other syndromes. Klüver organized the images into four groups
called “form constants”: (1) tunnels and funnels, (2) spirals, (3) lattices, in-
cluding honeycombs and triangles, and (4) cobwebs. In general the images do
not move with the eyes. We interpret this to mean that they are generated
in the brain. Here we present a theory of their origin in visual cortex (area
V1), based on the assumption that the form of the retino–cortical map and the
architecture of V1 determine their geometry. We model V1 as the continuum
limit of a lattice of interconnected hypercolumns, each of which itself comprises
a number of interconnected iso-orientation columns. Based on anatomical evi-
dence we assume that the lateral connectivity between hypercolumns exhibits
symmetries rendering it invariant under the action of the Euclidean group E(2),
composed of reflections and translations in the plane, and a (novel) shift–twist
action. Using this symmetry, we show that the various patterns of activity
that spontaneously emerge when V1’s spatially uniform resting state becomes
unstable, correspond to the form constants when transformed to the visual field
using the retino–cortical map. The results are sensitive to the detailed spec-
ification of the lateral connectivity and suggest that the cortical mechanisms
which generate geometric visual hallucinations are closely related to those used
to process edges, contours, textures and surfaces.
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1 Introduction

Seeing vivid visual hallucinations is an experience described in almost all human

cultures. Painted hallucinatory images are found in prehistoric caves (Clottes &

Lewis-Williams, 1998) and scratched on petroglyphs (Patterson, 1992). Hallucina-

tory images are seen both when falling asleep (Dybowski, 1939), and on waking up

(Mavromatis, 1987), following sensory deprivation (Zubek, 1969), after taking ke-

tamine and related anaesthetics (Collier, 1972), after seeing bright flickering light

(Purkinje, 1823; Helmholtz, 1925; Smythies, 1960), or on applying deep binocular

pressure on the eyeballs (Tyler, 1978), in “near death” experiences (Blackmore, 1992),

and most strikingly, shortly after taking hallucinogens containing ingredients such as

LSD, cannabis, mescaline, or psilocybin (Siegel & Jarvik, 1975). The images do not

move with the eyes and sometimes are fixed in the visual field. We interpret this to

mean that they are generated in the brain. One possible location for their origin is

provided by fMRI studies of visual imagery which suggest that V1 is activated when

human subjects are instructed to inspect the fine details of an imagined visual object

(Miyashita, 1995). In 1928 Klüver (1966) organized such images into four groups

called form constants: (I) tunnels and funnels, (II) spirals, (III) lattices, including

honeycombs and triangles, and (IV) cobwebs, all of which contain repeated geometric

structures. Figure 1 shows their appearance in the visual field. In 1979 Ermentrout

& Cowan provided a first account of a theory of the generation of such form constants

(Ermentrout & Cowan, 1979). Here we develop and elaborate this theory in light of

the anatomical and physiological data which has accumulated since then.

1.1 Form constants and the retino–cortical map

Assuming that form constants are generated in part in V1, the first step in construct-

ing a theory of their origin is to compute their appearance in V1 coordinates. This is

done using the topographic map between the visual field and V1. It is well established

that the central region of the visual field has a much bigger representation in V1 than

does the peripheral field (Drasdo, 1977; Sereno, Dale, Reppas, Kwong, Belliveau,

Brady, Rosen, & Tootell, 1995). Such a non-uniform retino–cortical magnification is
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(I) (II)

(III) (IV)

Figure 1: Hallucinatory form constants. (I) funnel and (II) spiral images seen following
ingestion of LSD [redrawn from Siegel & Jarvik (1975), (III) honeycomb generated by mar-
ihuana [redrawn from Clottes & Lewis-Williams (1998)], (IV) cobweb petroglyph [Redrawn
from Patterson (1992)].
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generated by the non–uniform packing density of ganglion cells in the retina whose

axons in the optic nerve target neurons in the lateral geniculate nucleus (LGN), and

(subsequently) in V1, that are much more uniformly packed. Let rR = {rR, θR} be

the (polar) coordinates of a point in the visual field and r = {x, y} its corresponding

V1 coordinates. Given a retinal ganglion cell packing density ρR (cells per unit retinal

area) approximated by the inverse square law:

ρR =
1

(w0 + εrR)2
.

(Drasdo, 1977), and a uniform V1 packing density ρ, we derive a coordinate trans-

formation (Cowan, 1977) that reduces, sufficiently far away from the fovea (when

rR � w0/ε), to a scaled version of the complex logarithm (Schwartz, 1977)

x =
α

ε
ln

[
ε

w0

rR

]
, y =

βθR

ε
, (1.1)

where w0 and ε are constants. Estimates of w0 = 0.087 and ε = 0.051 in appropriate

units can be obtained from the published data, and α and β are constants. These

values correspond to a magnification factor of 11.5 mm/degrees of visual angle at the

fovea and 5.75 mm/degrees of visual angle at rR = w0/ε = 1.7 degrees of visual angle.

We can also compute how the complex logarithm maps local edges or contours in the

visual field, i.e. its tangent map. Let φR be the orientation preference of a neuron in

V1 whose receptive field is centered at the point rR in the visual field, and let {r, φ}
be the V1 image of {rR, φR}. It can be shown (Wiener, 1994; Cowan, 1997; Bressloff,

Cowan, Golubitsky, Thomas, & Wiener, 2001) that under the tangent map of the

complex logarithm, φ = φR−θR. Given the retino–cortical map {rR, φR} → {r, φ} we

can compute the form of logarithmic spirals, circles, and rays and their local tangents

in V1 coordinates. The equation for spirals can be written as θR = a ln[rR exp(−b)]+c

whence y − c = a(x − b) under the action rR → r. Thus logarithmic spirals become

oblique lines of constant slope a in V1. Circles and rays correspond to vertical (a = ∞)

and horizontal (a = 0) lines. Since the slopes of the local tangents to logarithmic

spirals are given by the equation tan(φR−θR) = a, and therefore in V1 coordinates by

tan φ = a, the local tangents in V1 lie parallel to the images of logarithmic spirals. It
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follows that type (I) and (II) form constants correspond to stripes of neural activity

at various angles in V1 and type (III) and (IV) to spatially periodic patterns of

local tangents in V1 as shown in Figure 2. On the average about 30 − 36 stripes

Visual Field

Striate Cortex

π/2

3π/2

y

x

π/2

−π/2

π/2

3π/2

(a)

(b)

(c)

Figure 2: (a) The retino–cortical transform. Logarithmic spirals in the visual field map to
straight lines in V1. (b) and (c) show the action of the map on the outlines of funnel and
spiral form constants.

and about 60 − 72 contours are perceived in the visual field, corresponding to a

wavelength of about 2.4 − 3.2 mm in human V1. This is comparable to estimates

of about twice V1 hypercolumn spacing (Hubel & Wiesel, 1974) derived from the
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responses of human subjects to perceived grating patterns (Tyler, 1982) and from

direct anatomical measurements (Horton & Hedley-Whyte, 1984). All these facts

and calculations reinforce the suggestion that the form constants are located in V1.

It might be argued that since hallucinatory images are seen as continuous across

the mid–line, and sometimes as stabilized in the visual field, they must be located

at higher levels in the visual pathway than V1. Our view is that since the form

constants have such a simple representation in V1, mechanisms to stabilize and “sew

together” the ipsi and contra–lateral images may well be operating at higher levels,

but their action is rapidly fed back to V1. Thus there is an implicit “top down”

aspect to our theory, in line with recent proposals in computational studies of vision

(Lee, Mumford, Romero, & Lamme, 1998), but here we analyze only the “bottom

up” aspect of the process that in our view generates the geometry of form constants

and provides a way to think about large–scale aspects of V1 operation.

1.2 Symmetries of V1 intrinsic circuitry

In recent years data concerning the functional organization and circuitry of V1 has

accrued from microelectrode studies (Gilbert & Wiesel, 1983), labeling and optical

imaging (Blasdel & Salama, 1986; Bosking, Zhang, Schofield, & Fitzpatrick, 1997).

Perhaps the most striking result is Blasdel and Salama’s demonstration of the large–

scale organization of iso-orientation patches in primates (Blasdel & Salama, 1986).

We can conclude that approximately every 0.7 mm. or so in V1 (in Macaque) there

is an iso–orientation patch of a given preference φ, and that each hypercolumn has

a full complement of such patches with preferences running from φ to φ + π. The

other striking result concerns the intrinsic horizontal connections in layers 2, 3 and

(to some extent) layer 5 of V1. The axons of these connections make terminal arbors

only every 0.7 mm.. or so along their tracks (Gilbert & Wiesel, 1983), and connect

mainly to cells with similar orientation preferences (Bosking et al., 1997). In addition

there is a pronounced anisotropy to the pattern of such connections: differing iso–

orientation patches preferentially connect to patches in neighboring hypercolumns in

such a way as to form continuous contours under the action of the retino–cortical map
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described above (Gilbert & Wiesel, 1983; Bosking et al., 1997). This contrasts with

the pattern of connectivity within any one hypercolumn which is much more isotropic:

any given iso–orientation patch connects locally in all directions to all neighboring

patches within a radius of less than 0.7 mm (Blasdel & Salama, 1986). Figure 3 shows

a diagram of such connection patterns.

HYPERCOLUMNS       LOCAL
CONNECTIONS

      LATERAL
CONNECTIONS

      WLAT(S) 

WLAT(s)

WLOC(φ)

Figure 3: Outline of the architecture of V1 represented by equation (1.2). Local connections
between iso-orientation patches within a hypercolumn are assumed to be isotropic. Lateral
connections between iso-orientation patches in different hypercolumns are assumed to be
anisotropic.

Since each location in the visual field is represented in V1, roughly speaking, by an

hypercolumn–sized region containing all orientations, we treat r and φ as independent

variables, so that all possible orientation preferences exist at each corresponding po-

sition rR in the visual field. This continuum approximation allows a mathematically

tractable treatment of V1 as a lattice of hypercolumns. Because the actual hypercol-

umn spacing (Hubel & Wiesel, 1974) is about half the effective cortical wavelength

of many of the images we wish to study, care must be taken in interpreting cortical
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activity patterns as visual percepts. In addition it is possible that lattice effects could

introduce deviations from the continuum model. Within the continuum framework,

let w(r, φ|r′, φ′) be the strength or weight of connections from the iso-orientation

patch at {x′, y′} = r′ in V1 with orientation preference φ′ to the patch at {x, y} = r

with preference φ. We decompose w in terms of local connections from elements

within the same hypercolumn, and patchy lateral connections from elements in other

hypercolumns, i.e.

w(r, φ|r′, φ′) = wLOC(φ − φ′)δ(r − r′) + βwLAT (s)δ(r − r′ − seφ)δ(φ − φ′) (1.2)

where δ(·) is the Dirac delta function, eφ is a unit vector in the φ–direction, β is

a parameter that measures the weight of lateral relative to local connections, and

wLAT (s) is the weight of lateral connections between iso–orientation patches sepa-

rated by a cortical distance s along a visuotopic axis parallel to their orientation

preference. The fact that the lateral weight depends on a rotated vector expresses

its anisotropy. Observations by Hirsch & Gilbert (1991) suggest that β is small and

therefore that the lateral connections modulate rather than drive V1 activity. It can

be shown (Wiener, 1994; Cowan, 1997; Bressloff et al., 2001) that the weighting func-

tion defined in equation (1.2) has a well defined symmetry: it is invariant with respect

to certain operations in the plane of V1–translations {r, φ} → {r + u, φ}, reflections

{x, y, φ} → {x,−y,−φ}, and a rotation defined as {r, φ} → {Rθ[r], φ+θ} where Rθ[r]

is the vector r rotated by the angle θ. This form of the rotation operation follows

from the anisotropy of the lateral weighting function and comprises a translation or

shift of the orientation preference label φ to φ+θ, together with a rotation or twist of

the position vector r by the angle θ. Such a shift–twist operation (Zweck & Williams,

2000) provides a novel way to generate the Euclidean group E(2) of rigid motions

in the plane. The fact that the weighting function is invariant with respect to this

form of E(2) has important consequences for any model of the dynamics of V1. In

particular, the equivariant branching lemma (Golubitsky & Schaeffer, 1985) guaran-

tees that when the homogeneous state a(r, φ) = 0 becomes unstable new states with

the symmetry of certain subgroups E(2) can arise. These new states will be linear

combinations of patterns we call “planforms”.

10



2 A model of the dynamics of V1

Let a(r, φ, t) be the average membrane potential or activity in an iso–orientation patch

at the point r with orientation preference φ. The activity variable a(r, φ, t) evolves

according to a generalization of the Wilson–Cowan equations (Wilson & Cowan, 1973)

that incorporates an additional degree of freedom to represent orientation preference

and the continuum limit of the weighting function defined in equation (1.2):

∂a(r, φ, t)

∂t
= −αa(r, φ, t) +

µ

π

∫ π

0

wLOC(φ − φ′)σ[a(r, φ′, t)]

+ν

∫ ∞

−∞
wLAT (s)σ[a(r + seφ, φ, t)]ds, (2.3)

where α, µ and ν = µβ are respectively time and coupling constants, and σ[a] is a

smooth sigmoidal function of the activity a. It remains only to specify the form of

the functions wLOC(φ) and wLAT (s). In the single population model considered here

we do not distinguish between excitatory and inhibitory neurons and we therefore

assume both wLOC(φ) and wLAT (s) to be “Mexican Hats” of the generic form:

σ−1
1 exp(−x2/2σ2

1) − σ−1
2 exp(−x2/2σ2

2) (2.4)

with Fourier transform:

W (p) = exp(−σ2
1p

2) − exp(−σ2
2p

2),

(σ1 < σ2), such that iso–orientation patches at nearby locations mutually excite if they

have similar orientation preferences, and inhibit otherwise, and similar iso–orientation

patches at locations at least r0 mm. apart mutually inhibit. In models that distinguish

between excitatory and inhibitory populations it is possible to achieve similar results

using inverted Mexican Hat functions that incorporate short range inhibition and long

range excitation. Such models may provide a better fit to anatomical data (Levitt,

Lund, & Yoshioka, 1996).

An equation F [a] = 0 is said to be equivariant with respect to a symmetry operator

γ if it commutes with it, i.e. if γF [a] = F [γa]. It follows from the Euclidean symmetry

of the weighting function w(r, φ|r′, φ′) with respect to the shift–twist action, that
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equation (2.3) is equivariant with respect to it. This has important implications for

the dynamics of our model of V1. Let a(r, φ) = 0 be a homogeneous stationary

state of equation (2.3) which depends smoothly on the coupling parameter µ. When

no iso–orientation patches are activated it is easy to show that a(r, φ) = 0 is stable

for all values of µ less than a critical value µ0 (Ermentrout, 1998). However the

parameter µ can reach µ0 if, for example, the excitability of V1 is increased by the

action of hallucinogens on brain stem nuclei such as the locus coerulus or the raphé

nucleus, which secrete the monoamines serotonin and noradrenalin. In such a case

the homogeneous stationary state a(r, φ) = 0 becomes unstable. If µ remains close

to µ0 then new stationary states develop that are approximated by (finite) linear

combinations of the eigenfunctions of the linearized version of equation (2.3). The

equivariant branching lemma (Golubitsky & Schaeffer, 1985) then guarantees the

existence of new states with the symmetry of certain subgroups of the Euclidean group

E(2). This mechanism, by which dynamical systems with Mexican Hat interactions

can generate spatially periodic patterns that displace a homogeneous equilibrium,

was first introduced by Turing (1952) in his 1952 paper on the chemical basis of

morphogenesis.

2.1 Eigenfunctions of V1

Computing the eigenvalues and associated eigenfunctions of the linearized version

of equation (2.3) is non–trivial, largely because of the presence of the anisotropic

lateral connections. However, given that lateral effects are only modulatory, so that

β 	 1, degenerate Rayleigh–Schrödinger perturbation theory can be used to compute

them (Bressloff et al., 2001). The results can be summarized as follows. Let σ1 be

the slope of σ[a] at the stationary equilibrium a = 0. Then to lowest order in β, the

eigenvalues λ± are

λ±(p, q) = −α + µσ1[WLOC(p) + β{WLAT (0, q) ± WLAT (2p, q)}] (2.5)

where WLOC(p) is the pth Fourier mode of wLOC(φ) and

WLAT (p, q) = (−1)p

∫ ∞

0

wLAT (s)J2p(qs) ds
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is the Fourier transform of the lateral weight distribution with J2p(x) the Bessel

function of x of integer order 2p. To these eigenvalues belong the associated eigen-

functions:

ν±(r, φ) = cn u±(φ − φn)exp[ikn · r] + c∗n u±∗(φ − φn)exp[−ikn · r] (2.6)

where kn = {q cos φn, q sin φn} and (to lowest order in β), u±(φ) = cos 2pφ or sin 2pφ,

and the ∗ operator is complex conjugation. These functions will be recognized as plane

waves modulated by even or odd phase–shifted π–periodic functions cos[2p(φ − φn)]

or sin[2p(φ− φn)]. The relation between the eigenvalues λ± and the wave numbers p

and q given in equation (2.5) is called a dispersion relation. In case λ± = 0 at µ = µ0

equation (2.5) can be rewritten as:

µc =
α

σ1[WLOC(p) + β{WLAT (0, q) + WLAT (2p, q)}] (2.7)

and gives rise to the marginal stability curves plotted in figure 4. Examination of

these curves indicates that the homogeneous state a(r, φ) = 0 can lose its stability in

four differing ways, as shown in Table 1.

Wave numbers Local interactions Lateral interactions Eigenfunction

pc = qc = 0 excitatory excitatory cn

pc = 0, qc �= 0 excitatory Mexican hat cn cos[kn · r]
pc �= 0, qc = 0 Mexican hat excitatory cnu±(φ − φn) + c∗nu±∗(φ − φn)

pc �= 0, qc �= 0 Mexican hat Mexican hat cnu±(φ − φn) cos[kn · r]

Table 1: Instabilities of V1

We call responses with pc = 0 (rows 1 and 2) the “Hubel–Wiesel mode” of V1

operation. In such a mode any orientation tuning must be extrinsic to V1, gener-

ated for example by local anisotropies of the geniculo–cortical map (Hubel & Wiesel,

1962). We call responses with pc �= 0 (rows 3 and 4) the “coupled ring mode” of

V1 operation (Somers, Nelson, & Sur, 1996; Hansel & Sompolinsky, 1997; Mundel,

Dimitrov, & Cowan, 1997). In both cases the model reduces to a system of cou-

pled hypercolumns each of which is modeled as a ring of interacting iso–orientation

13
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Figure 4: Dispersion curves showing the marginal stability of the homogeneous mode of
V1. Solid lines correspond to odd eigenfunctions, dashed lines to even ones. If V1 is in
the Hubel–Wiesel mode (pc = 0) eigenfunctions in the form of unmodulated plane waves
or roll patterns can appear first at the wavenumbers (a) qc = 0 and (b) qc = 1. If V1
is in the coupled–ring mode (pc = 1), odd modulated eigenfunctions can form first at the
wavenumbers (c) qc = 0 and (d) qc = 1.
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patches with local excitation and inhibition. Even if the lateral interactions are weak

(β 	 1), the orientation preferences become spatially organized in a pattern given by

some combination of the eigenfunctions ν±(r, φ).

3 Planforms and V1

It remains to compute the actual patterns of V1 activity that develop when the

uniform state loses stability. These patterns will be linear combinations of the eigen-

functions described above, which we call planforms. To compute them we find those

planforms which are left invariant by the axial subgroups of E(2) under the shift–

twist action. An axial subgroup is a restricted set of the symmetry operators of a

group, whose action leaves invariant a one–dimensional vector subspace containing

essentially one planform. We limit these planforms to regular tilings of the plane

(Golubitsky, Stewart, & Schaeffer, 1988), by restricting our computation to doubly–

periodic planforms. Given such a restriction there are only a finite number of shift–

twists to consider (modulo an arbitrary rotation of the whole plane) and the axial

subgroups and their planforms have either rhombic, square, or hexagonal symmetry.

To determine which planforms are stabilized by the nonlinearities of the system, we

use Liapunov–Schmidt reduction (Golubitsky et al., 1988) and Poincaré–Lindstedt

perturbation theory (Walgraef, 1997) to reduce the dynamics to a set of nonlinear

equations for the amplitudes cn in equation (2.6) above. Euclidean symmetry restricts

the structure of the amplitude equations to the form (on rhombic and square lattices):

d

dt
cn = cn[(µ − µ0) − γ0|cn|2 − 2

2∑
m�=n

γnm|cm|2] (3.8)

where γnm depends on ∆φ, the angle between the two eigenvectors of the lattice. We

find that all rhombic planforms with 30o ≤ ∆φ ≤ 60o are stable. Similar equations

obtain for hexagonal lattices. In general all such planforms on rhombic, and hexagonal

lattices are stable (in appropriate parameter regimes) with respect to perturbations

with the same lattice structure. However square planforms on square lattices are

unstable, and give way to simple roll planforms comprising one eigenfunction.
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3.1 Form constants as stable planforms

Figure 5 shows some of the (mostly) stable planforms defined above in V1 coordinates

and Figure 6 in visual field coordinates, generated by plotting at each point r a contour

element at the orientation φ most strongly signaled at that point, i.e. at that point

for which a(r, φ) is largest.

It will be seen that these planforms are either contoured or else non–contoured,

and correspond closely to Kluver’s form constants. In what we call the Hubel–Wiesel

mode interactions between iso–orientation patches in a single hypercolumn are weak

and purely excitatory, so individual hypercolumns do not amplify any particular orien-

tation. However if the long–range interactions are stronger and effectively inhibitory,

then plane waves of cortical activity can emerge, with no label for orientation pref-

erence. The resulting planforms are called non–contoured, and correspond to the

type (I) and (II) form constants, as originally proposed by Ermentrout & Cowan

(1979). On the other hand, if coupled ring mode interactions between neighboring

iso–orientation patches are strong enough so that even weakly biased activity can

trigger a sharply tuned response, under the combined action of many interacting hy-

percolumns, plane waves labeled for orientation preference can emerge. The resulting

planforms correspond to type (III) and (IV) form constants. These results suggest

that the circuits in V1 which are normally involved in the detection of oriented edges

and in the formation of contours, are also responsible for the generation of the form

constants. Since 20% of the (excitatory) lateral connections in layers 2 and 3 of V1

end on inhibitory interneurons (Hirsch & Gilbert, 1991), the overall action of the

lateral connections can become inhibitory, especially at high levels of activity. The

mathematical consequence of this inhibition is the selection of odd planforms which

do not form continuous contours. We have shown that even planforms, which do

form continuous contours can be selected even when the overall action of the lateral

connection is inhibitory, if the model assumes deviation away from the visuotopic axis

by at least 45 degrees in the pattern of lateral connections (Bressloff et al., 2001) (as

opposed to our first model, in which connections between iso-orientation patches are

oriented along the visuotopic axis).

This might seem paradoxical given observations which suggest that there are at
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(a)

(c)

(b)

(d)

V1 planforms

Figure 5: V1 Planforms corresponding to some axial subgroups. (a) and (b): roll and
hexagonal patterns generated in V1 when it is in the Hubel–Wiesel operating mode. (c)
and (d) honeycomb and square patterns generated when V1 is in the coupled–ring operating
mode.
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(a) (b)

(c) (d)

Visual field planforms

Figure 6: The same planforms as shown in Figure 5 drawn in visual field coordinates.
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least two circuits in V1, one dealing with contrast edges, in which the relevant lateral

connections have the anisotropy found by Bosking et al. (1997), and others that might

be involved with the processing of textures, surfaces and color contrast, which seem to

have a much more isotropic lateral connectivity (Livingstone & Hubel, 1984). How-

ever, there are several intriguing possibilities which make the analysis more plausible.

The first can occur in case V1 operates in the Hubel–Wiesel mode (pc = 0). In such an

operating mode if the lateral interactions are not as weak as we have assumed in our

analysis, then even contoured planforms can form. The second related possibility can

occur if at low levels of activity, V1 operates initially in the Hubel–Wiesel mode and

the lateral and long–range interactions are all excitatory (pc = qc = 0), so that a bulk

instability occurs if the homogeneous state becomes unstable, which can be followed

by the emergence of patterned non-contoured planforms at the critical wavelength of

about 2.67 mm., when the level of activity rises, and the longer ranged inhibition is

activated (pc = 0, qc �= 0), until V1 operates in the coupled–ring mode when the short

range inhibition is also activated (pc �= 0, qc �= 0). In such a case even planforms can

be selected by the anistropic connectivity, since the degeneracy has already between

broken by the non–contoured planforms. A third possibility is related to an impor-

tant gap in our current model: we have not properly incorporated the observation

that the distribution of orientation preferences in V1 is not spatially homogeneous. In

fact the well known orientation “pinwheel” singularities originally found by Blasdel &

Salama (1986) turn out to be regions in which the scatter or rate of change |∆φ/∆r|
of differing orientation preference labels is high, about 20 degrees, whereas in linear

regions it is only about 10 degrees (Maldonado & Gray, 1996). Such a difference

leads to a second model circuit (centered on the orientation pinwheels) with a lateral

patchy connectivity that is effectively isotropic (Yan, Dimitrov, & Cowan, 2001) and

therefore consistent with observations of the connectivity of pinwheel regions (Liv-

ingstone & Hubel, 1984). In such a case even planforms are selected in the coupled

ring mode. Type (I) and (II) non–contoured form constants could also arise from

a “filling-in” process similar to that embodied in the retinex algorithm of Land &

McCann (1971) following the generation of type (III) or (IV) form constants in the

coupled ring mode. The model allows for oscillating or propagating waves, as well as
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stationary patterns, to arise from a bulk instability. Such waves are in fact observed:

many subjects who have taken LSD and similar hallucinogens report seeing bright

white light at the center of the visual field which then “explodes” into a hallucinatory

image(Siegel, 1977) in at most 3 sec, corresponding to a propagation velocity in V1 of

about 2.5 cm. per sec. suggestive of slowly moving epileptiform activity (Senseman,

1999). In this respect it is worth noting that in the continuum approximation we

use in this study both planforms arising when the long–range interactions are purely

excitatory correspond to the perception of a uniform bright white light.

Finally it should be emphasized that many variants of the Klüver form constants

have been described, some of which cannot be understood in terms of the model

we have introduced. For example the Lattice–tunnel shown in Figure 7a is more

(a) (b)

Figure 7: (a) lattice tunnel hallucination seen following the taking of marihuana [redrawn
from Siegel & Jarvik (1975) with permission of Alan D. Iselin]. (b) simulation of the lattice
tunnel generated by an even hexagonal roll pattern on a square lattice.

complicated than any of the simple form constants shown earlier. One intriguing

possibility is that this image is generated as a result of a mismatch between the

corresponding planform, and the underlying structure of V1. We have (implicitly)

assumed that V1 has patchy connections that endow it with lattice properties. It is
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clear from the optical image data (Blasdel & Salama, 1986; Bosking et al., 1997) that

the cortical lattice is somewhat disordered. Thus one might expect some distortions to

occur when planforms are spontaneously generated in such a lattice. Figure 7b shows

a computation of the appearance in the visual field of a roll pattern on a hexagonal

lattice represented on a square lattice, so that there is a slight incommensurability

between the two. It will be seen that the resulting pattern matches quite well the

hallucinatory image shown in Figure 7a.

4 Discussion

The current work extends previous work on the cortical mechanisms underlying vi-

sual hallucinations (Ermentrout & Cowan, 1979) by explicitly considering cells with

differing orientation preferences, and by considering the action of the retino-cortical

map on oriented edges and local contours. This is carried out by the tangent map as-

sociated with the complex logarithm, one consequence of which is that φ, the V1 label

for orientation preference, is not exactly equal to orientation preference in the visual

field, φR, but differs from it by the angle θR, the polar angle of receptive field position.

It follows that elements tuned to the same angle φ should be connected along lines

at that angle in V1. This is consistent with the observations of Blasdel & Sincich

[Personal Communication] and Bosking et al. (1997) and with one of Mitchison &

Crick’s hypotheses on the lateral connectivity of V1 (Mitchison & Crick, 1982). Note

that near the vertical meridian (where most of the observations have been made),

changes in φ approximate closely changes in φR. However, such changes should be

relatively large and detectable with optical imaging near the horizontal meridian.

Another major feature outlined in this paper is the presumed Euclidean symmetry

of V1. Many systems exhibit Euclidean symmetry: what is novel here is the way in

which such a symmetry is generated: by a shift {r, φ} → {r+s, φ} followed by a twist

{r, φ} → {Rθ[r], φ + θ}, as well as by the usual translations and reflections. It is the

twist φ → φ + θ which is novel, and is required to match the observations of Bosking

et al. (1997). In this respect it is interesting that Zweck & Williams (2000) recently

introduced a set of basis functions with the same shift–twist symmetry as part of
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an algorithm to implement contour completion. Their reason for doing so is to bind

sparsely distributed receptive fields together functionally, so as to perform Euclidean

invariant computations. It remains to explain the precise relationship between the

Euclidean invariant circuits we have introduced here, and Euclidean invariant recep-

tive field models. Finally we note that our analysis indicates the possibility that V1

can operate in two different dynamical modes, the Hubel–Wiesel mode or the cou-

pled ring mode, depending on the levels of excitability of its various excitatory and

inhibitory cell populations. We have shown that the Hubel–Wiesel mode can spon-

taneously generate non–contoured planforms, and the coupled ring mode contoured

ones. Such planforms are seen as hallucinatory images in the visual field, and their

geometry is a direct consequence of the architecture of V1. We conjecture that the

ability of V1 to process edges, contours, textures and surfaces is closely related to the

existence of these two modes.
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