Math 1311 Popper 16
Find the values of certain numbers associated with the logistic formula

$$
N=\frac{K}{1+b e^{-r t}} \quad b=\frac{K}{N(0)}-1
$$

Question 1: Find b if the optimum yield level is 400 and the initial population is 200.
a) 2
b) 3
c) 4
d) 5

Question 2: Find the optimum yield level if $b=5$ and the initial population is 150.
a) 250
h) 350
c) 450
d) 550

$$
\begin{array}{ll}
b=5 & 5=\frac{k}{150}-1 \\
N(0)=150 & +1 \\
& 1506=\frac{k}{58}
\end{array}
$$

a) 250
b) 350
c) 450
d) 550

Question 4: The r value is 0.3 per year. What percentage growth rate would the population show in the absence of constraints?

$$
\begin{array}{lll}
a=e^{r} & r=\ln a & \\
r=.3 & a=e^{.3} & 1.35-1=.35 \\
a-? & a=1.35 & .35(100)=35 \%
\end{array}
$$

a) 15%
b) 25%
c) 35%
d) 45%

Question 5: The r value is 0.7 per year. What percentage growth rate would the population show in the absence of constraints?
a) 101%

$$
r=.7 \quad a=e^{.1}
$$

$$
2.01-1=1.01
$$

b) 201%
c) 301% $a-?$

$$
a=2.01
$$

d) 401%

$$
1.01(100)=101 \%
$$

$$
\begin{aligned}
& \begin{array}{ll}
5=\frac{k}{150}-1 & K=900 \\
+1 & \text { OwL }=\frac{k}{2}=\frac{900}{2}
\end{array} \\
& 150.6=\frac{k}{150} \cdot 186 \\
& =450
\end{aligned}
$$

$$
\begin{aligned}
& \text { Question 3: Find the initial population if the carrying capacity is } 1000 \text { and } b=3 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& N(0)-\text { ? }
\end{aligned}
$$

