Discrete Mathematics Predicates and Quantifiers

Predicates

Propositional logic is not enough to express the meaning of all statements in mathematics and natural language.

Examples:

Is "x > 1" True or False?

roperty of the subject = Predicate

Is "x is a great tennis player" True or False?

Predicate Logic

Variables: x, y, z, etc.

• Predicates: P(x), Q(x), etc.

Quantifiers: Universal and Existential.

Connectives from propositional logic carry over to predicate logic.

A **predicate** P(x) is a declarative sentence whose truth value depends on one or more variables.

P(x) is also said to be the value of the **propositional function** P at x.

P(x) becomes a **proposition** when a value of x is assigned from the domain U.

Examples (Propositional Functions):

- 1. Let P(x) be " $x \ge 1$." Determine the truth value of

2 >1 True

- 2. Let R(x, y, z) be "x + y = z." Find these truth values:

b. R(x,3,z)

P T O H

© 2020, I. Perepelitsa

Quantifiers

We need *quantifiers* to express the meaning of English words including *all* and *some*:

- "All students in this class are computer science majors"
- "There is a math major student in this class"

The two most important quantifiers are:

- *Universal Quantifier*, "For all," symbol: ∀
- Existential Quantifier, "There exists," symbol: 3

We write as in $\forall x P(x)$ and $\exists x P(x)$.

• $\forall x P(x)$ asserts P(x) is true for every x in the domain.

If =
$$\{x_1, x_2, ..., x_n\}$$
, then $\forall x P(x) = P(x_1) \land P(x_2) ... \land P(x_n)$.

• $\exists x P(x)$ asserts P(x) is true for some x in the domain.

If =
$$\{x_1, x_2, ..., x_n\}$$
, then $\exists x P(x) = P(x_1) \lor P(x_2) ... \lor P(x_n)$.

Examples:

- 1. Let P(x): "x > -x" with the domain of all positive real numbers. Find the truth value of $\forall x P(x)$.
- 2. Let P(x): "x > -x" with the domain of all real numbers. Find the truth value of $\forall x P(x)$.

• The truth value of $\exists x P(x)$ and $\forall x P(x)$ depends BOTH on the propositional function P(x) and on the domain U.

Quantifiers		
Statement	When True?	When False?
$\forall x P(x)$	P(x) is true for every x .	There is an x for which $P(x)$ is false.
$\exists x \ P(x)$	There is an x for which $P(x)$ is true.	P(x) is false for every x .

Example: Suppose the domain of the propositional function $P(x): x^2 \le x$ consists of $\{1, 2, 3\}$. Write out each of the following propositions using conjunction or disjunction and determine its truth value.

ermine its truth value.

1.
$$\forall x P(x) = P(0) \land P(2) \land P(3)$$

Thue

An element for which P(x) is false is called a **counterexample of** $\forall x P(x)$

Precedence of Quantifiers

The quantifiers \forall and \exists have higher precedence than all the logical operators.

Example: $\forall x \ P(x) \lor Q(x)$ means $(\forall x \ P(x)) \lor Q(x)$. $\forall x \ (P(x) \lor Q(x))$ means something different.

Negating Quantifiers

De Morgan laws for quantifiers (the rules for negating quantifiers) are:

$$\neg \forall x \ P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x \ P(x) \equiv \forall x \neg P(x)$$

Example: Express each of these statements using quantifiers. Then form a negation of the statement, so that no negation is left of a quantifier. Next, express the negation in simple English.

1. "Some old dogs can learn new tricks."

T(x) = x can learn new tricks

Domain = old dogs

$$\exists \times T(x)$$
 $\exists \times T(x)$

No old dog can learn new tricks.

All old dogs cannot learn © 2020, I. Perepelitsa new tricks.

2. "Every bird can fly."

$$F(x) = x \quad can \quad fly$$

$$Domain = birdS$$

$$4 \times F(x) \qquad 7 \quad 4 \times F(x) = 3 \times 7 \quad F(x)$$

Some birds cannot fly.
There exists a bird that cannot fly.

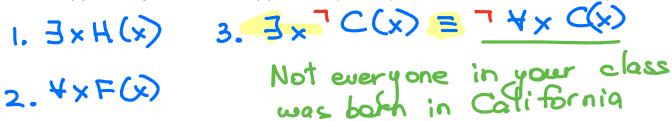
 $3. \ \forall x(x^2 > x)$

Translating from English into Logical Expressions

Examples: Translate the statements into the logical symbols. Let x be in set of all students in this class.

- 1. Someone in your class can speak Hindi.
- 2. Everyone in your class is friendly.
- 3. There is a student in your class who was not born in California.

H(x) =" x speaks Hindi", F(x) =" x is friendly, "C(x) =" x was born in California."



Example: Translate the following sentence into predicate logic and give its negation:

"Every student in this class has taken a course in Java."

Solution:

First, decide on the domain *U*!

Solution 1: If U is all students in this class, define a propositional function I(x)denoting "x has taken a course in Java" and translate as $\forall x. I(x)$

Solution 2: But if U is all people, also define a propositional function S(x) denoting "x" is a student in this class" and translate as

$$((x)U^{-}(x)Z) \times W$$

$$((x)U^{-}(x)Z) \times E = ((x)U^{-}(x)Z) \times W$$

$$((x)U^{-}(x)Z^{-}) \times E = ((x)U^{-}(x)Z^{-}) \times E = ((x)U^$$

Example: Translate the following sentence into predicate logic:

"Some student in this class has taken a course in Java."

Solution:

First, decide on the domain *U*!

Solution 1: If *U* is all students in this class, translate as $\frac{1}{2}$

(X) L×E

Solution 2: But if *U* is all people, then translate as

$$((x) \cup (x) \otimes (x)$$