

Modeling and simulation of Microfluidics systems

By : Alireza Akbarinia

Introduction to MEMS

Micro Elector Mechanical Systems

Do you use MEMS ???

flash memory, cd/dvd drives ...

airbag sensors & actuators

Scaling Issues

• the nature of phenomena changes with reducing sizes. e.g., gravitational force, surface tension effect, magnetic force, etc.

What is different between fluid flow in a normal scale and in a microchannel

In a normal size we can assume that near the wall (at wall-fluid interface), velocity of fluid is zero, but due to the small size in microchannel, this assumption is not true. We can characterize microfluidic with Knudsen number (Kn).

$$Kn = \frac{\lambda}{D_h}$$
, $D_h = 2W$ and λ is the mean free path of fluid

 $Kn \le 0.001$ continuum flow regime, $0.001 < Kn \le 0.1$ slip flow regime

 $0.1 < Kn \le 10$ transition flow regime, Kn > 10 free molecular flow regime

To reach this assumption, researchers suggest the following expression:

$$U = \left(\frac{2 - \sigma_{V}}{\sigma_{V}}\right) Kn \frac{\partial U}{\partial y} + \frac{3}{2\pi} \frac{(\gamma - 1)}{\gamma} \frac{Kn^{2} \operatorname{Re}}{Ec} \frac{\partial \theta}{\partial X} \qquad U = Kn \frac{\partial U}{\partial n}$$
$$\theta - \theta_{wall} = \left(\frac{2 - \sigma_{T}}{\sigma_{T}}\right) \left(\frac{2\gamma}{\gamma + 1}\right) \frac{Kn}{\Pr} \frac{\partial \theta}{\partial y} \qquad \theta - \theta_{wall} = \frac{Kn}{\beta} \frac{\partial \theta}{\partial n}$$

At wall (y=0, y=W):

$$u=v=0, x_1 \le x \le x_2$$
: $T = T_s$
 $0 \le x < x_1$ and $x_2 < x \le L$: $\frac{\partial T}{\partial y} = 0$
also: near the wall $U = Kn \frac{\partial U}{\partial n}$
 $\theta - \theta_{wall} = \frac{Kn}{\beta} \frac{\partial \theta}{\partial n}$
 $\beta = \binom{r+1}{2r} Pr$

Governing equations

$$\frac{\partial u_j}{\partial x_j} = 0$$

$$\frac{\partial}{\partial x_j}(\rho u_i u_j) = \frac{\partial}{\partial x_j} \left(\mu(\frac{\partial u_i}{\partial x_j}) \right) - \frac{\partial p}{\partial x_i}$$

Energy:
$$\frac{\partial}{\partial x_i} \left(\rho c_p \, u_i T \right) = k \frac{\partial}{\partial x_i} \left(\frac{\partial T}{\partial x_i} \right)$$

Non-dimensional equations

$$X_{i} = \frac{x_{i}}{D_{h}}$$
, $U_{i} = \frac{u_{i}}{u_{in}}$, $\theta = \frac{T - T_{in}}{T_{wall} - T_{in}}$, $P = \frac{p}{\rho u_{in}^{2}}$

 $D_h = \frac{4A}{S}$, $D_h = \frac{4WH}{2(W+H)}$ and also H >> W So: $D_h = 2W$

$$\Pr = \frac{\mu c_p}{k}$$
, $\operatorname{Re} = \frac{\rho u_{in} D_h}{\mu}$, $Pe = \operatorname{Re} \Pr$

Continuity:
$$\frac{\partial l}{\partial x}$$

$$\frac{\partial U_j}{\partial X_j} = 0$$

Momentum:
$$\frac{\partial}{\partial X_{j}}(U_{i}U_{j}) = \frac{1}{\text{Re}}(\frac{\partial^{2}U_{i}}{\partial X_{j}^{2}}) - \frac{\partial P}{\partial X_{i}}$$

Energy:
$$\frac{\partial}{\partial X_i} (U_i \theta) = \frac{1}{Pe} \frac{\partial^2 \theta}{\partial X_i}$$

Discretization Methods

Finite element method
Finite difference method
Finite volume method (Control volume technique)
Other methods...

Finite volume technique

- First order upwind scheme
- Second order upwind scheme
- QUICK (Quadratic Upwind Interpolation)
- Power law scheme
- ...

Velocity- Pressure coupling method

- **SIMPEL** (Semi-Implicit Method for Pressure-Linked Equations)
- SIMPLER
- SIMPLEC
- SIMPLEX
- •

Numerical procedure

- Control volume technique
- Power law scheme
- SIMPLER
- The discretization grid is non-uniform. It is finer near the tube entrance and near the wall where the velocity and temperature gradient are significant.

Validation and Comparison

Universität Bremen

Results

Thanks for your consideration