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Introduction

Infinite games in descriptive set theory

The use of infinite games in descriptive set theory has a well-established tradition.

For example, the Gale-Stewart games and the related determinacy axioms have
deep and far-reaching consequences for set theory and the foundation of
mathematics.

The games we will focus on today are those for characterizing classes of functions.
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Introduction

The tree game

Given f :⊆ NN → NN, we can think of the task of finding a value f (x) as the goal
of a player in an infinite two-player game called the tree game (due to Semmes).

At each round n ∈ N,
1 player I picks a natural number xn, and
2 player II plays a finite labeled tree (Tn, φn), i.e., a finite tree Tn ⊆ N<N and
a labeling function φn : Tn r {〈〉} → N.

Letting x := 〈x0, x1, x2, . . .〉 ∈ NN and (T , φ) :=
⋃

n(Tn, φn), the rules are:
I for all n ∈ N we have Tn ⊆ Tn+1 and φn ⊆ φn+1; and
I if x ∈ dom(f ) then T has a unique infinite branch.

Player II wins the run iff she follows the rules and we have that if x ∈ dom(f )
then the sequence of labels along the unique infinite branch of T is exactly f (x).
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Introduction

Tree game characterizes Borel functions

Theorem (Semmes)
f is Borel iff II has a winning strategy in the tree game for f .

Given 0 < α ≤ β < ω1, let us write
Λα,β := {f :⊆ NN → NN ; ∀X ∈ Σ0

α. f−1[X ] ∈ Σ0
β}.

Goal: find a rule Rα,β that when added to the tree game characterizes Λα,β .

Theorem
1 R1,1 := T is linear (Wadge);
2 R1,2 := T is fin. branching (Duparc);
3 R2,2 := T is fin. branching at the root and linear elsewhere (Andretta,
Jayne-Rogers);

4 R1,3 := nodes that are not on an inf. branch are fin. branching (Semmes);
5 R2,3 := non-root nodes are fin. branching (Semmes);
6 R3,3 := non-root nodes are linear (Semmes, Andretta);
7 R1,α+1 := ? (Louveau-Semmes, unpublished).
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Games for Baire classes

The pruning derivative operation
Given a tree T , we define its pruning derivative as

PD(T ) := {σ ∈ T ; σ has descendants at arbitrary levels of T}.

This can be iterated transfinitely as usual

PD(T , 0) := T
PD(T , α+ 1) := PD(PD(T , α))

PD(T , λ) :=
⋂
α<λ

PD(T , α) for limit λ
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Games for Baire classes

Bisimulations and bisimilarity

Definition
Let T = (T , φT) and S = (S , φS) be labeled trees. A relation Z ⊆ T × S is a
bisimulation between T and S if whenever σ Z τ :

1 |σ| = |τ | and φT(σ) = φS(τ)
2 σ 6= 〈〉 ⇒ σ �(|σ| − 1) Z τ �(|τ | − 1)
3 for any σ′ ⊃ σ in T there is τ ′ ⊃ τ in S such that σ′ Z τ ′

4 vice versa.

The union of all bisimulations between T and S is itself a bisimulation between T
and S, and the trees are called bisimilar if this relation is non-empty.
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Games for Baire classes

Tree game, revisited

In the tree game, the rule

“if x ∈ dom(f ) then T has a unique infinite branch”

can be rewritten as

“if x ∈ dom(f ) then PD(T , ω1) is non-empty and linear.”

It will be a consequence of our theorems that this rule can be relaxed to

“if x ∈ dom(f ) then PD(T , ω1) is bisimilar to a non-empty and linear tree.”

We call the resulting game the relaxed tree game.
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Games for Baire classes

Main theorem: characterization of each Baire class

Recall that every ordinal α can be uniquely written as λ+ n for some limit λ and
natural n. We then define

α↓ := λ+ dn
2 e

α

� := λ+ bn
2 c

Theorem
Adding the rule

R1,α+1 := PD(T , α↓) is bisimilar to a linear tree and
PD(T , α � ) is bisimilar to a fin. branching tree

to the relaxed tree game characterizes Λ1,α+1, i.e., the Baire class α functions.
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Games for Baire classes

Idea of the proof, hard direction

Assuming f ∈ Λ1,α+1, for each σ ∈ N<N we have

f−1[σ] ∈ Σ0
α+1

i.e.,
σ ⊂ f (x) iff ∃n∀m∃k · · · x ∈ Xσ,n,m,k,... (1)

I Each τ ∈ T guesses f (x)(|τ | − 1) and the corresponding witness n for the
first ∃ in (1).

I τ also “claims” that such a pair φ(τ),n is minimum: for each
pk,n′q < pφ(τ),nq we also make τ guess a witness for the first ∃ in the
negation of (1) when the first ∀ is instantiated with n′.

I every descendant τ ′ of τ makes a guess for the “∃k” quantifier of (1) when
the first ∀ is instantiated with |τ ′| − |τ | − 1, and so on.
(If no more quantifiers, then only add τ ′ to T in case the corresponding
formula is true (open)/still possibly true (closed).)
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I Each τ ∈ T guesses f (x)(|τ | − 1) and the corresponding witness n for the
first ∃ in (1).

I τ also “claims” that such a pair φ(τ),n is minimum: for each
pk,n′q < pφ(τ),nq we also make τ guess a witness for the first ∃ in the
negation of (1) when the first ∀ is instantiated with n′.

I every descendant τ ′ of τ makes a guess for the “∃k” quantifier of (1) when
the first ∀ is instantiated with |τ ′| − |τ | − 1, and so on.
(If no more quantifiers, then only add τ ′ to T in case the corresponding
formula is true (open)/still possibly true (closed).)



Games for Baire classes

Idea of the proof, heart of the argument

We can make it so that all possible “collections” of plausible guesses are eventually
made by some τ ∈ T .

Lemma (Heart of proof)
1 If τ makes a wrong guess, then τ 6∈ PD(T , α↓).
2 If τ and predecessors only make correct guesses, then τ is part of an infinite
path of T .
(⇒ PD(T , α↓) is composed exactly of infinite paths with f (x) as label)

3 If the “first guess” φ(τ),n that τ makes is bigger than the least correct pair,
then τ 6∈ PD(T , α � ).
(⇒ PD(T , α � ) is bisimilar to a f.b. tree)
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Games for partition classes (wip)

Partition classes

Let “BC α on Π0
β” be the class of functions f for which there exists a partition of

dom(f ) into countably many Π0
β parts, such that the restriction of f to each part

is Baire class α.

For α ≥ β this just gives the Baire class α functions.

It is conjectured that for every 1 < α ≤ β there exist α′, β′ such that
Λα,β = “BC α′ on Π0

β′”.

Theorem
1 Λ2,2 = “BC 0 on Π0

1” (Jayne-Rogers);
2 Λ2,3 = “BC 1 on Π0

2” (Semmes);
3 Λ3,3 = “BC 0 on Π0

2” (Andretta-Semmes);
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Games for partition classes (wip)

Two definitions

The product T × (S , φS) of a tree T and a labeled tree (S , φS) is the labeled tree
with underlying set T × S and labeling function inherited from (S , φS):

φ(σ, τ) = φS(τ)

Given a tree T and σ ∈ N<N, we denote

Tσ := {τ ∈ T ; σ ⊆ τ or τ ⊆ σ}.
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The game

Theorem
For α < β, “BC α on Π0

β” is characterized by the tree game with additional rules
1 PD(T , β↓) is linear;
2 PD(T , β � ) is fin. branching; and
3 for each n ∈ N there exist a tree S and a labeled tree (U , φU ) such that

1 (T〈n〉, φ) ' S × (U , φU );
2 PD(S , β↓ − 1) is linear; and
3 PD(U , α↓) is linear; and
4 PD(U , α � ) is fin. branching.

The games by Andretta, Semmes, and Andretta-Semmes are particular cases.

Thanks for your attention!
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