Games for Baire classes and partition classes

Hugo Nobrega
University of Amsterdam

Research supported by a CAPES Science Without Borders grant

Outline

(1) Introduction
(2) Games for Baire classes
(3) Games for partition classes (wip)

Infinite games in descriptive set theory

The use of infinite games in descriptive set theory has a well-established tradition.

Infinite games in descriptive set theory

The use of infinite games in descriptive set theory has a well-established tradition.

For example, the Gale-Stewart games and the related determinacy axioms have deep and far-reaching consequences for set theory and the foundation of mathematics.

Infinite games in descriptive set theory

The use of infinite games in descriptive set theory has a well-established tradition.

For example, the Gale-Stewart games and the related determinacy axioms have deep and far-reaching consequences for set theory and the foundation of mathematics.

The games we will focus on today are those for characterizing classes of functions.

The tree game

Given $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$, we can think of the task of finding a value $f(x)$ as the goal of a player in an infinite two-player game called the tree game (due to Semmes).

The tree game

Given $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$, we can think of the task of finding a value $f(x)$ as the goal of a player in an infinite two-player game called the tree game (due to Semmes).

At each round $n \in \mathbb{N}$,
(1) player I picks a natural number x_{n}, and
(2) player II plays a finite labeled tree $\left(T_{n}, \phi_{n}\right)$, i.e., a finite tree $T_{n} \subseteq \mathbb{N}^{<\mathbb{N}}$ and a labeling function $\phi_{n}: T_{n} \backslash\{\langle \rangle\} \rightarrow \mathbb{N}$.

The tree game

Given $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$, we can think of the task of finding a value $f(x)$ as the goal of a player in an infinite two-player game called the tree game (due to Semmes).

At each round $n \in \mathbb{N}$,
(1) player I picks a natural number x_{n}, and
(2) player II plays a finite labeled tree $\left(T_{n}, \phi_{n}\right)$, i.e., a finite tree $T_{n} \subseteq \mathbb{N}<\mathbb{N}$ and a labeling function $\phi_{n}: T_{n} \backslash\{\langle \rangle\} \rightarrow \mathbb{N}$.

Letting $x:=\left\langle x_{0}, x_{1}, x_{2}, \ldots\right\rangle \in \mathbb{N}^{\mathbb{N}}$ and $(T, \phi):=\bigcup_{n}\left(T_{n}, \phi_{n}\right)$, the rules are:

- for all $n \in \mathbb{N}$ we have $T_{n} \subseteq T_{n+1}$ and $\phi_{n} \subseteq \phi_{n+1}$; and
- if $x \in \operatorname{dom}(f)$ then T has a unique infinite branch.

The tree game

Given $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$, we can think of the task of finding a value $f(x)$ as the goal of a player in an infinite two-player game called the tree game (due to Semmes).

At each round $n \in \mathbb{N}$,
(1) player I picks a natural number x_{n}, and
(2) player II plays a finite labeled tree $\left(T_{n}, \phi_{n}\right)$, i.e., a finite tree $T_{n} \subseteq \mathbb{N}<\mathbb{N}$ and a labeling function $\phi_{n}: T_{n} \backslash\{\langle \rangle\} \rightarrow \mathbb{N}$.

Letting $x:=\left\langle x_{0}, x_{1}, x_{2}, \ldots\right\rangle \in \mathbb{N}^{\mathbb{N}}$ and $(T, \phi):=\bigcup_{n}\left(T_{n}, \phi_{n}\right)$, the rules are:

- for all $n \in \mathbb{N}$ we have $T_{n} \subseteq T_{n+1}$ and $\phi_{n} \subseteq \phi_{n+1}$; and
- if $x \in \operatorname{dom}(f)$ then T has a unique infinite branch.

Player II wins the run iff she follows the rules and we have that if $x \in \operatorname{dom}(f)$ then the sequence of labels along the unique infinite branch of T is exactly $f(x)$.

Tree game characterizes Borel functions

Theorem (Semmes)
f is Borel iff II has a winning strategy in the tree game for f.

Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff II has a winning strategy in the tree game for f.
Given $0<\alpha \leq \beta<\omega_{1}$, let us write

$$
\boldsymbol{\Lambda}_{\alpha, \beta}:=\left\{f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}} ; \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0} \cdot f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0}\right\} .
$$

Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff II has a winning strategy in the tree game for f.
Given $0<\alpha \leq \beta<\omega_{1}$, let us write

$$
\boldsymbol{\Lambda}_{\alpha, \beta}:=\left\{f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}} ; \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0} \cdot f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0}\right\} .
$$

Goal: find a rule $R_{\alpha, \beta}$ that when added to the tree game characterizes $\boldsymbol{\Lambda}_{\alpha, \beta}$.

Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff II has a winning strategy in the tree game for f.
Given $0<\alpha \leq \beta<\omega_{1}$, let us write

$$
\boldsymbol{\Lambda}_{\alpha, \beta}:=\left\{f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}} ; \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0} \cdot f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0}\right\} .
$$

Goal: find a rule $R_{\alpha, \beta}$ that when added to the tree game characterizes $\boldsymbol{\Lambda}_{\alpha, \beta}$.

Theorem

(1) $R_{1,1}:=T$ is linear (Wadge);

Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff II has a winning strategy in the tree game for f.
Given $0<\alpha \leq \beta<\omega_{1}$, let us write

$$
\boldsymbol{\Lambda}_{\alpha, \beta}:=\left\{f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}} ; \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0} \cdot f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0}\right\} .
$$

Goal: find a rule $R_{\alpha, \beta}$ that when added to the tree game characterizes $\boldsymbol{\Lambda}_{\alpha, \beta}$.

Theorem

(1) $R_{1,1}:=T$ is linear (Wadge);
(2) $R_{1,2}:=T$ is fin. branching (Duparc);

Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff II has a winning strategy in the tree game for f.
Given $0<\alpha \leq \beta<\omega_{1}$, let us write

$$
\boldsymbol{\Lambda}_{\alpha, \beta}:=\left\{f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}} ; \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0} \cdot f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0}\right\} .
$$

Goal: find a rule $R_{\alpha, \beta}$ that when added to the tree game characterizes $\boldsymbol{\Lambda}_{\alpha, \beta}$.

Theorem

(1) $R_{1,1}:=T$ is linear (Wadge);
(2) $R_{1,2}:=T$ is fin. branching (Duparc);
(3) $R_{2,2}:=T$ is fin. branching at the root and linear elsewhere (Andretta, Jayne-Rogers);

Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff II has a winning strategy in the tree game for f.
Given $0<\alpha \leq \beta<\omega_{1}$, let us write

$$
\boldsymbol{\Lambda}_{\alpha, \beta}:=\left\{f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}} ; \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0} \cdot f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0}\right\} .
$$

Goal: find a rule $R_{\alpha, \beta}$ that when added to the tree game characterizes $\boldsymbol{\Lambda}_{\alpha, \beta}$.

Theorem

(1) $R_{1,1}:=T$ is linear (Wadge);
(2) $R_{1,2}:=T$ is fin. branching (Duparc);
(3) $R_{2,2}:=T$ is fin. branching at the root and linear elsewhere (Andretta, Jayne-Rogers);
(4) $R_{1,3}:=$ nodes that are not on an inf. branch are fin. branching (Semmes);

Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff II has a winning strategy in the tree game for f.
Given $0<\alpha \leq \beta<\omega_{1}$, let us write

$$
\boldsymbol{\Lambda}_{\alpha, \beta}:=\left\{f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}} ; \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0} \cdot f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0}\right\} .
$$

Goal: find a rule $R_{\alpha, \beta}$ that when added to the tree game characterizes $\boldsymbol{\Lambda}_{\alpha, \beta}$.

Theorem

(1) $R_{1,1}:=T$ is linear (Wadge);
(2) $R_{1,2}:=T$ is fin. branching (Duparc);
(3) $R_{2,2}:=T$ is fin. branching at the root and linear elsewhere (Andretta, Jayne-Rogers);
(4) $R_{1,3}:=$ nodes that are not on an inf. branch are fin. branching (Semmes);
(5) $R_{2,3}:=$ non-root nodes are fin. branching (Semmes);

Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff II has a winning strategy in the tree game for f.
Given $0<\alpha \leq \beta<\omega_{1}$, let us write

$$
\boldsymbol{\Lambda}_{\alpha, \beta}:=\left\{f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}} ; \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0} \cdot f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0}\right\} .
$$

Goal: find a rule $R_{\alpha, \beta}$ that when added to the tree game characterizes $\boldsymbol{\Lambda}_{\alpha, \beta}$.

Theorem

(1) $R_{1,1}:=T$ is linear (Wadge);
(2) $R_{1,2}:=T$ is fin. branching (Duparc);
(3) $R_{2,2}:=T$ is fin. branching at the root and linear elsewhere (Andretta, Jayne-Rogers);
(4) $R_{1,3}:=$ nodes that are not on an inf. branch are fin. branching (Semmes);
(5) $R_{2,3}:=$ non-root nodes are fin. branching (Semmes);
(6) $R_{3,3}:=$ non-root nodes are linear (Semmes, Andretta);

Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff II has a winning strategy in the tree game for f.
Given $0<\alpha \leq \beta<\omega_{1}$, let us write

$$
\boldsymbol{\Lambda}_{\alpha, \beta}:=\left\{f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}} ; \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0} \cdot f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0}\right\} .
$$

Goal: find a rule $R_{\alpha, \beta}$ that when added to the tree game characterizes $\boldsymbol{\Lambda}_{\alpha, \beta}$.

Theorem

(1) $R_{1,1}:=T$ is linear (Wadge);
(2) $R_{1,2}:=T$ is fin. branching (Duparc);
(3) $R_{2,2}:=T$ is fin. branching at the root and linear elsewhere (Andretta, Jayne-Rogers);
(4) $R_{1,3}:=$ nodes that are not on an inf. branch are fin. branching (Semmes);
(5) $R_{2,3}:=$ non-root nodes are fin. branching (Semmes);
(6) $R_{3,3}:=$ non-root nodes are linear (Semmes, Andretta);
(1) $R_{1, \alpha+1}:=$? (Louveau-Semmes, unpublished).

Outline

(1) Introduction
(2) Games for Baire classes
(3) Games for partition classes (wip)

The pruning derivative operation

Given a tree T, we define its pruning derivative as
$\mathrm{PD}(T):=\{\sigma \in T ; \sigma$ has descendants at arbitrary levels of $T\}$.

The pruning derivative operation

Given a tree T, we define its pruning derivative as
$\mathrm{PD}(T):=\{\sigma \in T ; \sigma$ has descendants at arbitrary levels of $T\}$.

The pruning derivative operation

Given a tree T, we define its pruning derivative as
$\mathrm{PD}(T):=\{\sigma \in T ; \sigma$ has descendants at arbitrary levels of $T\}$.

The pruning derivative operation

Given a tree T, we define its pruning derivative as
$\mathrm{PD}(T):=\{\sigma \in T ; \sigma$ has descendants at arbitrary levels of $T\}$.

The pruning derivative operation

Given a tree T, we define its pruning derivative as
$\operatorname{PD}(T):=\{\sigma \in T ; \sigma$ has descendants at arbitrary levels of $T\}$.

This can be iterated transfinitely as usual

$$
\begin{aligned}
\operatorname{PD}(T, 0) & :=T \\
\operatorname{PD}(T, \alpha+1) & :=\operatorname{PD}(\operatorname{PD}(T, \alpha)) \\
\operatorname{PD}(T, \lambda) & :=\bigcap_{\alpha<\lambda} \operatorname{PD}(T, \alpha) \text { for limit } \lambda
\end{aligned}
$$

Bisimulations and bisimilarity

Definition

Let $\mathcal{T}=\left(T, \phi_{T}\right)$ and $\mathcal{S}=\left(S, \phi_{S}\right)$ be labeled trees. A relation $Z \subseteq T \times S$ is a bisimulation between \mathcal{T} and \mathcal{S} if whenever $\sigma Z \tau$:
(1) $|\sigma|=|\tau|$ and $\phi_{T}(\sigma)=\phi_{S}(\tau)$
(2) $\sigma \neq\langle \rangle \Rightarrow \sigma \upharpoonright(|\sigma|-1) Z \tau \upharpoonright(|\tau|-1)$
(3) for any $\sigma^{\prime} \supset \sigma$ in T there is $\tau^{\prime} \supset \tau$ in S such that $\sigma^{\prime} Z \tau^{\prime}$
(4) vice versa.

Bisimulations and bisimilarity

Definition

Let $\mathcal{T}=\left(T, \phi_{T}\right)$ and $\mathcal{S}=\left(S, \phi_{S}\right)$ be labeled trees. A relation $Z \subseteq T \times S$ is a bisimulation between \mathcal{T} and \mathcal{S} if whenever $\sigma Z \tau$:
(1) $|\sigma|=|\tau|$ and $\phi_{T}(\sigma)=\phi_{S}(\tau)$
(2) $\sigma \neq\langle \rangle \Rightarrow \sigma \upharpoonright(|\sigma|-1) Z \tau \upharpoonright(|\tau|-1)$
(3) for any $\sigma^{\prime} \supset \sigma$ in T there is $\tau^{\prime} \supset \tau$ in S such that $\sigma^{\prime} Z \tau^{\prime}$
(4) vice versa.

The union of all bisimulations between \mathcal{T} and \mathcal{S} is itself a bisimulation between \mathcal{T} and \mathcal{S}, and the trees are called bisimilar if this relation is non-empty.

Tree game, revisited

In the tree game, the rule
"if $x \in \operatorname{dom}(f)$ then T has a unique infinite branch"
can be rewritten as
"if $x \in \operatorname{dom}(f)$ then $\operatorname{PD}\left(T, \omega_{1}\right)$ is non-empty and linear."

Tree game, revisited

In the tree game, the rule

$$
\text { "if } x \in \operatorname{dom}(f) \text { then } T \text { has a unique infinite branch" }
$$

can be rewritten as

$$
\text { "if } x \in \operatorname{dom}(f) \text { then } \mathrm{PD}\left(T, \omega_{1}\right) \text { is non-empty and linear." }
$$

It will be a consequence of our theorems that this rule can be relaxed to
"if $x \in \operatorname{dom}(f)$ then $\operatorname{PD}\left(T, \omega_{1}\right)$ is bisimilar to a non-empty and linear tree."

Tree game, revisited

In the tree game, the rule

$$
\text { "if } x \in \operatorname{dom}(f) \text { then } T \text { has a unique infinite branch" }
$$

can be rewritten as

$$
\text { "if } x \in \operatorname{dom}(f) \text { then } \mathrm{PD}\left(T, \omega_{1}\right) \text { is non-empty and linear." }
$$

It will be a consequence of our theorems that this rule can be relaxed to
"if $x \in \operatorname{dom}(f)$ then $\operatorname{PD}\left(T, \omega_{1}\right)$ is bisimilar to a non-empty and linear tree."

We call the resulting game the relaxed tree game.

Main theorem: characterization of each Baire class

Recall that every ordinal α can be uniquely written as $\lambda+n$ for some limit λ and natural n. We then define

$$
\begin{array}{lll}
\alpha \downarrow & := & \lambda+\left\lceil\frac{n}{2}\right\rceil \\
\alpha \downarrow & := & \lambda+\left\lfloor\frac{n}{2}\right\rfloor
\end{array}
$$

Main theorem: characterization of each Baire class

Recall that every ordinal α can be uniquely written as $\lambda+n$ for some limit λ and natural n. We then define

$$
\begin{array}{lll}
\alpha \downarrow & := & \lambda+\left\lceil\frac{n}{2}\right\rceil \\
\alpha \downarrow & := & \lambda+\left\lfloor\frac{n}{2}\right\rfloor
\end{array}
$$

Theorem

Adding the rule

$$
\begin{aligned}
R_{1, \alpha+1}:= & \mathrm{PD}(T, \alpha \downarrow) \text { is bisimilar to a linear tree and } \\
& \mathrm{PD}(T, \alpha \downarrow) \text { is bisimilar to a fin. branching tree }
\end{aligned}
$$

to the relaxed tree game characterizes $\boldsymbol{\Lambda}_{1, \alpha+1}$, i.e., the Baire class α functions.

Idea of the proof, hard direction

Assuming $f \in \boldsymbol{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$
f^{-1}[\sigma] \in \boldsymbol{\Sigma}_{\alpha+1}^{0}
$$

Idea of the proof, hard direction

Assuming $f \in \boldsymbol{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$
f^{-1}[\sigma]=\bigcup_{n} X_{\sigma, n}
$$

Idea of the proof, hard direction

Assuming $f \in \boldsymbol{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$
f^{-1}[\sigma]=\bigcup_{n} \bigcap_{m} \bigcup_{k} \cdots X_{\sigma, n, m, k, \cdots}
$$

Idea of the proof, hard direction

Assuming $f \in \boldsymbol{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$
f^{-1}[\sigma]=\bigcup_{n} \bigcap_{m} \bigcup_{k} \cdots X_{\sigma, n, m, k, \cdots}
$$

i.e.,

$$
\begin{equation*}
\sigma \subset f(x) \quad \text { iff } \quad \exists n \forall m \exists k \cdots x \in X_{\sigma, n, m, k, \ldots} \tag{1}
\end{equation*}
$$

Idea of the proof, hard direction

Assuming $f \in \boldsymbol{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$
f^{-1}[\sigma]=\bigcup_{n} \bigcap_{m} \bigcup_{k} \cdots X_{\sigma, n, m, k, \cdots}
$$

i.e.,

$$
\begin{equation*}
\sigma \subset f(x) \quad \text { iff } \quad \exists n \forall m \exists k \cdots x \in X_{\sigma, n, m, k, \ldots} \tag{1}
\end{equation*}
$$

- Each $\tau \in T$ guesses $f(x)(|\tau|-1)$ and the corresponding witness n for the first \exists in (1).

Idea of the proof, hard direction

Assuming $f \in \boldsymbol{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$
f^{-1}[\sigma]=\bigcup_{n} \bigcap_{m} \bigcup_{k} \cdots X_{\sigma, n, m, k, \cdots}
$$

i.e.,

$$
\begin{equation*}
\sigma \subset f(x) \quad \text { iff } \quad \exists n \forall m \exists k \cdots x \in X_{\sigma, n, m, k, \ldots} \tag{1}
\end{equation*}
$$

- Each $\tau \in T$ guesses $f(x)(|\tau|-1)$ and the corresponding witness n for the first \exists in (1).
- τ also "claims" that such a pair $\phi(\tau), n$ is minimum: for each $\ulcorner k, n\urcorner\urcorner\ulcorner\phi(\tau), n\urcorner$ we also make τ guess a witness for the first \exists in the negation of (1) when the first \forall is instantiated with n^{\prime}.

Idea of the proof, hard direction

Assuming $f \in \boldsymbol{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$
f^{-1}[\sigma]=\bigcup_{n} \bigcap_{m} \bigcup_{k} \cdots X_{\sigma, n, m, k, \cdots}
$$

i.e.,

$$
\begin{equation*}
\sigma \subset f(x) \quad \text { iff } \quad \exists n \forall m \exists k \cdots x \in X_{\sigma, n, m, k, \ldots} \tag{1}
\end{equation*}
$$

- Each $\tau \in T$ guesses $f(x)(|\tau|-1)$ and the corresponding witness n for the first \exists in (1).
- τ also "claims" that such a pair $\phi(\tau), n$ is minimum: for each $\ulcorner k, n\urcorner<\ulcorner\phi(\tau), n\urcorner$ we also make τ guess a witness for the first \exists in the negation of (1) when the first \forall is instantiated with n^{\prime}.
- every descendant τ^{\prime} of τ makes a guess for the " $\exists k$ " quantifier of (1) when the first \forall is instantiated with $\left|\tau^{\prime}\right|-|\tau|-1$, and so on.

Idea of the proof, hard direction

Assuming $f \in \boldsymbol{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$
f^{-1}[\sigma]=\bigcup_{n} \bigcap_{m} \bigcup_{k} \cdots X_{\sigma, n, m, k, \cdots}
$$

i.e.,

$$
\begin{equation*}
\sigma \subset f(x) \quad \text { iff } \quad \exists n \forall m \exists k \cdots x \in X_{\sigma, n, m, k, \ldots} \tag{1}
\end{equation*}
$$

- Each $\tau \in T$ guesses $f(x)(|\tau|-1)$ and the corresponding witness n for the first \exists in (1).
- τ also "claims" that such a pair $\phi(\tau), n$ is minimum: for each $\ulcorner k, n\urcorner<\ulcorner\phi(\tau), n\urcorner$ we also make τ guess a witness for the first \exists in the negation of (1) when the first \forall is instantiated with n^{\prime}.
- every descendant τ^{\prime} of τ makes a guess for the " $\exists k$ " quantifier of (1) when the first \forall is instantiated with $\left|\tau^{\prime}\right|-|\tau|-1$, and so on. (If no more quantifiers, then only add τ^{\prime} to T in case the corresponding formula is true (open)/still possibly true (closed).)

Idea of the proof, heart of the argument

We can make it so that all possible "collections" of plausible guesses are eventually made by some $\tau \in T$.

Idea of the proof, heart of the argument

We can make it so that all possible "collections" of plausible guesses are eventually made by some $\tau \in T$.

Lemma (Heart of proof)
(1) If τ makes a wrong guess, then $\tau \notin \mathrm{PD}(T, \alpha \downarrow)$.

Idea of the proof, heart of the argument

We can make it so that all possible "collections" of plausible guesses are eventually made by some $\tau \in T$.

Lemma (Heart of proof)

(1) If τ makes a wrong guess, then $\tau \notin \mathrm{PD}(T, \alpha \downarrow)$.
(2) If τ and predecessors only make correct guesses, then τ is part of an infinite path of T.
($\Rightarrow \mathrm{PD}(T, \alpha \downarrow)$ is composed exactly of infinite paths with $f(x)$ as label)

Idea of the proof, heart of the argument

We can make it so that all possible "collections" of plausible guesses are eventually made by some $\tau \in T$.

Lemma (Heart of proof)

(1) If τ makes a wrong guess, then $\tau \notin \mathrm{PD}(T, \alpha \downarrow)$.
(2) If τ and predecessors only make correct guesses, then τ is part of an infinite path of T.
($\Rightarrow \mathrm{PD}(T, \alpha \downarrow)$ is composed exactly of infinite paths with $f(x)$ as label)
© If the "first guess" $\phi(\tau), n$ that τ makes is bigger than the least correct pair, then $\tau \notin \mathrm{PD}(T, \alpha \not$,$) .$
($\Rightarrow \mathrm{PD}\left(T, \alpha_{\downarrow}\right)$ is bisimilar to a f.b. tree)

Outline

(1) Introduction

(2) Games for Baire classes

(3) Games for partition classes (wip)

Partition classes

Let " $\mathrm{BC} \alpha$ on $\boldsymbol{\Pi}_{\beta}^{0}$ " be the class of functions f for which there exists a partition of dom (f) into countably many $\boldsymbol{\Pi}_{\beta}^{0}$ parts, such that the restriction of f to each part is Baire class α.

Partition classes

Let " $\mathrm{BC} \alpha$ on $\boldsymbol{\Pi}_{\beta}^{0}$ " be the class of functions f for which there exists a partition of $\operatorname{dom}(f)$ into countably many $\boldsymbol{\Pi}_{\beta}^{0}$ parts, such that the restriction of f to each part is Baire class α.

For $\alpha \geq \beta$ this just gives the Baire class α functions.

Partition classes

Let " $\mathrm{BC} \alpha$ on $\boldsymbol{\Pi}_{\beta}^{0}$ " be the class of functions f for which there exists a partition of $\operatorname{dom}(f)$ into countably many $\boldsymbol{\Pi}_{\beta}^{0}$ parts, such that the restriction of f to each part is Baire class α.

For $\alpha \geq \beta$ this just gives the Baire class α functions.
It is conjectured that for every $1<\alpha \leq \beta$ there exist $\alpha^{\prime}, \beta^{\prime}$ such that $\boldsymbol{\Lambda}_{\alpha, \beta}=$ " $\mathrm{BC} \alpha^{\prime}$ on $\boldsymbol{\Pi}_{\beta^{\prime}}^{0}$ ".

Partition classes

Let "BC α on Π_{β}^{0} " be the class of functions f for which there exists a partition of dom (f) into countably many $\boldsymbol{\Pi}_{\beta}^{0}$ parts, such that the restriction of f to each part is Baire class α.

For $\alpha \geq \beta$ this just gives the Baire class α functions.
It is conjectured that for every $1<\alpha \leq \beta$ there exist $\alpha^{\prime}, \beta^{\prime}$ such that $\boldsymbol{\Lambda}_{\alpha, \beta}=$ " $\mathrm{BC} \alpha^{\prime}$ on $\boldsymbol{\Pi}_{\beta^{\prime}}^{0}$ ".

Theorem
(1) $\boldsymbol{\Lambda}_{2,2}=$ "BC 0 on $\boldsymbol{\Pi}_{1}^{0 " \prime}$ (Jayne-Rogers);

Partition classes

Let "BC α on Π_{β}^{0} " be the class of functions f for which there exists a partition of dom (f) into countably many $\boldsymbol{\Pi}_{\beta}^{0}$ parts, such that the restriction of f to each part is Baire class α.

For $\alpha \geq \beta$ this just gives the Baire class α functions.
It is conjectured that for every $1<\alpha \leq \beta$ there exist $\alpha^{\prime}, \beta^{\prime}$ such that $\boldsymbol{\Lambda}_{\alpha, \beta}=$ " $\mathrm{BC} \alpha^{\prime}$ on $\boldsymbol{\Pi}_{\beta^{\prime}}^{0}$ ".

Theorem
(1) $\boldsymbol{\Lambda}_{2,2}=$ " BC 0 on $\boldsymbol{\Pi}_{1}^{0 "}$ (Jayne-Rogers);
(2) $\boldsymbol{\Lambda}_{2,3}=$ "BC 1 on $\boldsymbol{\Pi}_{2}^{0 "}$ (Semmes);

Partition classes

Let " $\mathrm{BC} \alpha$ on $\boldsymbol{\Pi}_{\beta}^{0}$ " be the class of functions f for which there exists a partition of $\operatorname{dom}(f)$ into countably many $\boldsymbol{\Pi}_{\beta}^{0}$ parts, such that the restriction of f to each part is Baire class α.

For $\alpha \geq \beta$ this just gives the Baire class α functions.
It is conjectured that for every $1<\alpha \leq \beta$ there exist $\alpha^{\prime}, \beta^{\prime}$ such that $\boldsymbol{\Lambda}_{\alpha, \beta}=$ " $\mathrm{BC} \alpha^{\prime}$ on $\boldsymbol{\Pi}_{\beta^{\prime}}^{0}$ ".

Theorem

(1) $\boldsymbol{\Lambda}_{2,2}=$ "BC 0 on $\boldsymbol{\Pi}_{1}^{0 "}$ (Jayne-Rogers);
(2) $\boldsymbol{\Lambda}_{2,3}=$ "BC 1 on $\boldsymbol{\Pi}_{2}^{0 "}$ (Semmes);
(3) $\boldsymbol{\Lambda}_{3,3}=$ " BC 0 on $\boldsymbol{\Pi}_{2}^{0 \text { " }}$ (Andretta-Semmes);

Two definitions

The product $T \times\left(S, \phi_{S}\right)$ of a tree T and a labeled tree $\left(S, \phi_{S}\right)$ is the labeled tree with underlying set $T \times S$ and labeling function inherited from (S, ϕ_{S}):

$$
\phi(\sigma, \tau)=\phi_{S}(\tau)
$$

Two definitions

The product $T \times\left(S, \phi_{S}\right)$ of a tree T and a labeled tree $\left(S, \phi_{S}\right)$ is the labeled tree with underlying set $T \times S$ and labeling function inherited from (S, ϕ_{S}):

$$
\phi(\sigma, \tau)=\phi_{S}(\tau)
$$

Given a tree T and $\sigma \in \mathbb{N}^{<\mathbb{N}}$, we denote

$$
T_{\sigma}:=\{\tau \in T ; \sigma \subseteq \tau \text { or } \tau \subseteq \sigma\} .
$$

The game

Theorem

For $\alpha<\beta$, " $\mathrm{BC} \alpha$ on $\boldsymbol{\Pi}_{\beta}^{0}$ " is characterized by the tree game with additional rules
(1) $\mathrm{PD}(T, \beta \downarrow)$ is linear;
(2) $\mathrm{PD}\left(T, \beta_{\downarrow}\right)$ is fin. branching; and
(3) for each $n \in \mathbb{N}$ there exist a tree S and a labeled tree $\left(U, \phi_{U}\right)$ such that
(1) $\left(T_{\langle n\rangle}, \phi\right) \simeq S \times\left(U, \phi_{U}\right)$;
(2) $\mathrm{PD}\left(S, \beta_{\downarrow}-1\right)$ is linear; and
(3) $\mathrm{PD}(U, \alpha \downarrow)$ is linear; and
(4) $\mathrm{PD}(U, \alpha \downarrow)$ is fin. branching.

The game

Theorem

For $\alpha<\beta$, " $\mathrm{BC} \alpha$ on $\boldsymbol{\Pi}_{\beta}^{0}$ " is characterized by the tree game with additional rules
(1) $\mathrm{PD}(T, \beta \downarrow)$ is linear;
(2) $\mathrm{PD}\left(T, \beta_{\ddagger}\right)$ is fin. branching; and
(3) for each $n \in \mathbb{N}$ there exist a tree S and a labeled tree $\left(U, \phi_{U}\right)$ such that
(1) $\left(T_{\langle n\rangle}, \phi\right) \simeq S \times\left(U, \phi_{U}\right)$;
(2) $\mathrm{PD}(S, \beta \downarrow-1)$ is linear; and
(3) $\mathrm{PD}(U, \alpha \downarrow)$ is linear; and
(4) $\mathrm{PD}(U, \alpha \downarrow)$ is fin. branching.

The games by Andretta, Semmes, and Andretta-Semmes are particular cases.

The game

Theorem

For $\alpha<\beta$, " $\mathrm{BC} \alpha$ on Π_{β}^{0} " is characterized by the tree game with additional rules
(1) $\mathrm{PD}(T, \beta \downarrow)$ is linear;
(2) $\mathrm{PD}\left(T, \beta_{\downarrow}\right)$ is fin. branching; and
(3) for each $n \in \mathbb{N}$ there exist a tree S and a labeled tree $\left(U, \phi_{U}\right)$ such that
(1) $\left(T_{\langle n\rangle}, \phi\right) \simeq S \times\left(U, \phi_{U}\right)$;
(2) $\mathrm{PD}(S, \beta \downarrow-1)$ is linear; and
(3) $\mathrm{PD}(U, \alpha \downarrow)$ is linear; and
(4) $\mathrm{PD}(U, \alpha \downarrow)$ is fin. branching.

The games by Andretta, Semmes, and Andretta-Semmes are particular cases.

Thanks for your attention!

