Games for Baire classes and partition classes

Hugo Nobrega

University of Amsterdam

Research supported by a CAPES Science Without Borders grant

Introduction

Outline

1 Introduction

2 Games for Baire classes

3 Games for partition classes (wip)

Infinite games in descriptive set theory

The use of infinite games in descriptive set theory has a well-established tradition.

Infinite games in descriptive set theory

The use of infinite games in descriptive set theory has a well-established tradition.

For example, the Gale-Stewart games and the related determinacy axioms have deep and far-reaching consequences for set theory and the foundation of mathematics.

Infinite games in descriptive set theory

The use of infinite games in descriptive set theory has a well-established tradition.

For example, the Gale-Stewart games and the related determinacy axioms have deep and far-reaching consequences for set theory and the foundation of mathematics.

The games we will focus on today are those for characterizing classes of functions.

Given $f :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$, we can think of the task of finding a value f(x) as the *goal* of a player in an infinite two-player game called the tree game (due to Semmes).

Given $f :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$, we can think of the task of finding a value f(x) as the goal of a player in an infinite two-player game called the tree game (due to Semmes).

At each round $n \in \mathbb{N}$,

- 1 player I picks a natural number x_n , and
- **2** player II plays a finite labeled tree (T_n, ϕ_n) , i.e., a finite tree $T_n \subseteq \mathbb{N}^{<\mathbb{N}}$ and a labeling function $\phi_n : T_n \smallsetminus \{\langle \rangle\} \to \mathbb{N}$.

Given $f :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$, we can think of the task of finding a value f(x) as the goal of a player in an infinite two-player game called the tree game (due to Semmes).

At each round $n \in \mathbb{N}$,

- 1 player I picks a natural number x_n , and
- **2** player II plays a finite labeled tree (T_n, ϕ_n) , i.e., a finite tree $T_n \subseteq \mathbb{N}^{<\mathbb{N}}$ and a labeling function $\phi_n : T_n \smallsetminus \{\langle \rangle\} \to \mathbb{N}$.

Letting $x := \langle x_0, x_1, x_2, \ldots \rangle \in \mathbb{N}^{\mathbb{N}}$ and $(T, \phi) := \bigcup_n (T_n, \phi_n)$, the rules are:

- ▶ for all $n \in \mathbb{N}$ we have $T_n \subseteq T_{n+1}$ and $\phi_n \subseteq \phi_{n+1}$; and
- if $x \in \text{dom}(f)$ then T has a unique infinite branch.

Given $f :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$, we can think of the task of finding a value f(x) as the goal of a player in an infinite two-player game called the tree game (due to Semmes).

At each round $n \in \mathbb{N}$,

- 1 player I picks a natural number x_n , and
- **2** player II plays a finite labeled tree (T_n, ϕ_n) , i.e., a finite tree $T_n \subseteq \mathbb{N}^{<\mathbb{N}}$ and a labeling function $\phi_n : T_n \smallsetminus \{\langle \rangle\} \to \mathbb{N}$.

Letting $x := \langle x_0, x_1, x_2, \ldots \rangle \in \mathbb{N}^{\mathbb{N}}$ and $(T, \phi) := \bigcup_n (T_n, \phi_n)$, the rules are:

- ▶ for all $n \in \mathbb{N}$ we have $T_n \subseteq T_{n+1}$ and $\phi_n \subseteq \phi_{n+1}$; and
- if $x \in \text{dom}(f)$ then T has a unique infinite branch.

Player II wins the run iff she follows the rules and we have that if $x \in \text{dom}(f)$ then the sequence of labels along the unique infinite branch of T is exactly f(x).

Introduction

Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff ${\bf II}$ has a winning strategy in the tree game for f.

Introduction

Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff II has a winning strategy in the tree game for f.

Given $0 < \alpha \leq \beta < \omega_1$, let us write

$$\mathbf{\Lambda}_{\alpha,\beta} := \{ f : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} ; \, \forall X \in \mathbf{\Sigma}_{\alpha}^{0} . \, f^{-1}[X] \in \mathbf{\Sigma}_{\beta}^{0} \}.$$

Theorem (Semmes)

f is Borel iff II has a winning strategy in the tree game for f.

Given $0 < \alpha \leq \beta < \omega_1$, let us write

$$\boldsymbol{\Lambda}_{\alpha,\beta} := \{ f : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} ; \, \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0}. \, f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0} \}.$$

Goal: find a rule $R_{\alpha,\beta}$ that when added to the tree game characterizes $\Lambda_{\alpha,\beta}$.

Introduction

Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff II has a winning strategy in the tree game for f.

Given $0 < \alpha \leq \beta < \omega_1$, let us write

$$\boldsymbol{\Lambda}_{\alpha,\beta} := \{ f : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} ; \, \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0}. \, f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0} \}.$$

Goal: find a rule $R_{\alpha,\beta}$ that when added to the tree game characterizes $\Lambda_{\alpha,\beta}$.

$$1 R_{1,1} := T is linear (Wadge);$$

Introduction

Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff II has a winning strategy in the tree game for f.

Given $0 < \alpha \leq \beta < \omega_1$, let us write

$$\boldsymbol{\Lambda}_{\alpha,\beta} := \{ f : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} ; \, \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0}. \, f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0} \}.$$

Goal: find a rule $R_{\alpha,\beta}$ that when added to the tree game characterizes $\Lambda_{\alpha,\beta}$.

- 1 $R_{1,1} := T$ is linear (Wadge);
- **2** $R_{1,2} := T$ is fin. branching (Duparc);

Theorem (Semmes)

f is Borel iff ${\bf II}$ has a winning strategy in the tree game for f.

Given $0 < \alpha \leq \beta < \omega_1$, let us write

$$\boldsymbol{\Lambda}_{\alpha,\beta} := \{ f : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} ; \, \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0}. \, f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0} \}.$$

Goal: find a rule $R_{\alpha,\beta}$ that when added to the tree game characterizes $\Lambda_{\alpha,\beta}$.

- $1 R_{1,1} := T is linear (Wadge);$
- **2** $R_{1,2} := T$ is fin. branching (Duparc);
- **③** $R_{2,2} := T$ is fin. branching at the root and linear elsewhere (Andretta, Jayne-Rogers);

Theorem (Semmes)

f is Borel iff ${\bf II}$ has a winning strategy in the tree game for f.

Given $0 < \alpha \leq \beta < \omega_1$, let us write

$$\boldsymbol{\Lambda}_{\alpha,\beta} := \{ f : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} ; \, \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0}. \, f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0} \}.$$

Goal: find a rule $R_{\alpha,\beta}$ that when added to the tree game characterizes $\Lambda_{\alpha,\beta}$.

- $1 R_{1,1} := T is linear (Wadge);$
- **2** $R_{1,2} := T$ is fin. branching (Duparc);
- **③** $R_{2,2} := T$ is fin. branching at the root and linear elsewhere (Andretta, Jayne-Rogers);
- **4** $R_{1,3} :=$ nodes that are not on an inf. branch are fin. branching (Semmes);

Theorem (Semmes)

f is Borel iff ${\bf II}$ has a winning strategy in the tree game for f.

Given $0 < \alpha \leq \beta < \omega_1$, let us write

$$\boldsymbol{\Lambda}_{\alpha,\beta} := \{ f : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} ; \, \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0}. \, f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0} \}.$$

Goal: find a rule $R_{\alpha,\beta}$ that when added to the tree game characterizes $\Lambda_{\alpha,\beta}$.

- $1 R_{1,1} := T is linear (Wadge);$
- **2** $R_{1,2} := T$ is fin. branching (Duparc);
- **③** $R_{2,2} := T$ is fin. branching at the root and linear elsewhere (Andretta, Jayne-Rogers);
- **4** $R_{1,3} :=$ nodes that are not on an inf. branch are fin. branching (Semmes);
- **5** $R_{2,3} :=$ non-root nodes are fin. branching (Semmes);

Theorem (Semmes)

f is Borel iff ${\bf II}$ has a winning strategy in the tree game for f.

Given $0 < \alpha \leq \beta < \omega_1$, let us write

$$\boldsymbol{\Lambda}_{\alpha,\beta} := \{ f : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} ; \, \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0}. \, f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0} \}.$$

Goal: find a rule $R_{\alpha,\beta}$ that when added to the tree game characterizes $\Lambda_{\alpha,\beta}$.

- $1 R_{1,1} := T is linear (Wadge);$
- **2** $R_{1,2} := T$ is fin. branching (Duparc);
- **③** $R_{2,2} := T$ is fin. branching at the root and linear elsewhere (Andretta, Jayne-Rogers);
- **4** $R_{1,3}$:= nodes that are not on an inf. branch are fin. branching (Semmes);
- **6** $R_{2,3} :=$ non-root nodes are fin. branching (Semmes);
- **6** $R_{3,3} :=$ non-root nodes are linear (Semmes, Andretta);

Theorem (Semmes)

f is Borel iff ${\bf II}$ has a winning strategy in the tree game for f.

Given $0 < \alpha \leq \beta < \omega_1$, let us write

$$\boldsymbol{\Lambda}_{\alpha,\beta} := \{ f : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} ; \, \forall X \in \boldsymbol{\Sigma}_{\alpha}^{0}. \, f^{-1}[X] \in \boldsymbol{\Sigma}_{\beta}^{0} \}.$$

Goal: find a rule $R_{\alpha,\beta}$ that when added to the tree game characterizes $\Lambda_{\alpha,\beta}$.

- $1 R_{1,1} := T is linear (Wadge);$
- **2** $R_{1,2} := T$ is fin. branching (Duparc);
- (3) $R_{2,2} := T$ is fin. branching at the root and linear elsewhere (Andretta, Jayne-Rogers);
- **4** $R_{1,3}$:= nodes that are not on an inf. branch are fin. branching (Semmes);
- **6** $R_{2,3} :=$ non-root nodes are fin. branching (Semmes);
- **6** $R_{3,3} :=$ non-root nodes are linear (Semmes, Andretta);
- ? $R_{1,\alpha+1} := ?$ (Louveau-Semmes, unpublished).

Outline

Introduction

2 Games for Baire classes

③ Games for partition classes (wip)

The pruning derivative operation

Given a tree T, we define its pruning derivative as

 $PD(T) := \{ \sigma \in T \, ; \, \sigma \text{ has descendants at arbitrary levels of } T \}.$

The pruning derivative operation

Given a tree T, we define its pruning derivative as

 $PD(T) := \{ \sigma \in T ; \sigma \text{ has descendants at arbitrary levels of } T \}.$

The pruning derivative operation

Given a tree T, we define its pruning derivative as

 $PD(T) := \{ \sigma \in T ; \sigma \text{ has descendants at arbitrary levels of } T \}.$

The pruning derivative operation

Given a tree T, we define its pruning derivative as

 $PD(T) := \{ \sigma \in T ; \sigma \text{ has descendants at arbitrary levels of } T \}.$

The pruning derivative operation

Given a tree T, we define its pruning derivative as

 $PD(T) := \{ \sigma \in T ; \sigma \text{ has descendants at arbitrary levels of } T \}.$

This can be iterated transfinitely as usual

$$\begin{array}{rcl} \operatorname{PD}(T,0) &:= & T \\ \operatorname{PD}(T,\alpha+1) &:= & \operatorname{PD}(\operatorname{PD}(T,\alpha)) \\ \operatorname{PD}(T,\lambda) &:= & \bigcap_{\alpha < \lambda} \operatorname{PD}(T,\alpha) & \text{for limit } \lambda \end{array}$$

Bisimulations and bisimilarity

Definition

Let $\mathcal{T} = (T, \phi_T)$ and $\mathcal{S} = (S, \phi_S)$ be labeled trees. A relation $Z \subseteq T \times S$ is a bisimulation between \mathcal{T} and \mathcal{S} if whenever $\sigma Z \tau$:

$$\begin{array}{l} \bullet \quad |\sigma| = |\tau| \text{ and } \phi_T(\sigma) = \phi_S(\tau) \\ \bullet \quad \sigma \neq \langle \rangle \Rightarrow \sigma \upharpoonright (|\sigma| - 1) \ Z \ \tau \upharpoonright (|\tau| - 1) \\ \bullet \quad \text{ or any } \sigma' \supset \sigma \text{ in } T \text{ there is } \tau' \supset \tau \text{ in } S \text{ such that } \sigma' \ Z \ \tau' \end{array}$$

4 vice versa.

Bisimulations and bisimilarity

Definition

Let $\mathcal{T} = (T, \phi_T)$ and $\mathcal{S} = (S, \phi_S)$ be labeled trees. A relation $Z \subseteq T \times S$ is a bisimulation between \mathcal{T} and \mathcal{S} if whenever $\sigma Z \tau$:

$$\begin{array}{l} \bullet \ |\sigma| = |\tau| \text{ and } \phi_T(\sigma) = \phi_S(\tau) \\ \bullet \ \sigma \neq \langle \rangle \Rightarrow \sigma \upharpoonright (|\sigma| - 1) \ Z \ \tau \upharpoonright (|\tau| - 1) \\ \bullet \ \text{for any } \sigma' \supset \sigma \ \text{in } T \ \text{there is } \tau' \supset \tau \ \text{in } S \ \text{such that } \sigma' \ Z \ \tau \\ \bullet \ \text{vice versa.} \end{array}$$

The union of all bisimulations between T and S is itself a bisimulation between T and S, and the trees are called bisimilar if this relation is non-empty.

Tree game, revisited

In the tree game, the rule

```
"if x \in dom(f) then T has a unique infinite branch"
```

can be rewritten as

"if $x \in dom(f)$ then $PD(T, \omega_1)$ is non-empty and linear."

Tree game, revisited

In the tree game, the rule

```
"if x \in \operatorname{dom}(f) then T has a unique infinite branch".
```

can be rewritten as

"if $x \in dom(f)$ then $PD(T, \omega_1)$ is non-empty and linear."

It will be a consequence of our theorems that this rule can be relaxed to "if $x \in dom(f)$ then $PD(T, \omega_1)$ is bisimilar to a non-empty and linear tree."

Tree game, revisited

In the tree game, the rule

```
"if x \in dom(f) then T has a unique infinite branch"
can be rewritten as
"if x \in dom(f) then PD(T, \omega_1) is non-empty and linear."
```

It will be a consequence of our theorems that this rule can be relaxed to "if $x \in \text{dom}(f)$ then $\text{PD}(T, \omega_1)$ is bisimilar to a non-empty and linear tree."

We call the resulting game the relaxed tree game.

Main theorem: characterization of each Baire class

Recall that every ordinal α can be uniquely written as $\lambda+n$ for some limit λ and natural n. We then define

$$\begin{array}{rcl} \alpha \downarrow & := & \lambda + \left\lfloor \frac{n}{2} \right\rfloor \\ \alpha \downarrow & := & \lambda + \left\lfloor \frac{n}{2} \right\rfloor \end{array}$$

Main theorem: characterization of each Baire class

Recall that every ordinal α can be uniquely written as $\lambda+n$ for some limit λ and natural n. We then define

$$\begin{array}{rcl} \alpha \downarrow & := & \lambda + \left[\frac{n}{2}\right] \\ \alpha \downarrow & := & \lambda + \left\lfloor\frac{n}{2}\right\rfloor \end{array}$$

Theorem

Adding the rule

$$\begin{array}{rcl} R_{1,\alpha+1} := & \operatorname{PD}(T,\alpha\downarrow) \text{ is bisimilar to a linear tree and} \\ & \operatorname{PD}(T,\alpha\downarrow) \text{ is bisimilar to a fin. branching tree} \end{array}$$

to the relaxed tree game characterizes $\Lambda_{1, \alpha+1}$, i.e., the Baire class lpha functions.

Idea of the proof, hard direction

Assuming $f \in \mathbf{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$f^{-1}[\sigma] \in \Sigma^0_{\alpha+1}$$

Idea of the proof, hard direction

Assuming $f \in \mathbf{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$f^{-1}[\sigma] = \bigcup_n X_{\sigma,n}$$

Idea of the proof, hard direction

Assuming $f \in \mathbf{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$f^{-1}[\sigma] = \bigcup_n \bigcap_m \bigcup_k \cdots X_{\sigma,n,m,k,\dots}$$

Idea of the proof, hard direction

Assuming $f\in \mathbf{\Lambda}_{1,\alpha+1}$, for each $\sigma\in \mathbb{N}^{<\mathbb{N}}$ we have

$$f^{-1}[\sigma] = \bigcup_n \bigcap_m \bigcup_k \cdots X_{\sigma,n,m,k,\dots}$$

i.e.,

$$\sigma \subset f(x) \quad \text{iff} \quad \exists n \forall m \exists k \cdots x \in X_{\sigma,n,m,k,\dots}$$
(1)

Assuming $f\in \mathbf{\Lambda}_{1,\alpha+1}$, for each $\sigma\in \mathbb{N}^{<\mathbb{N}}$ we have

$$f^{-1}[\sigma] = \bigcup_n \bigcap_m \bigcup_k \cdots X_{\sigma,n,m,k,\dots}$$

i.e.,

$$\sigma \subset f(x) \quad \text{iff} \quad \exists n \forall m \exists k \cdots x \in X_{\sigma,n,m,k,\dots} \tag{1}$$

Each τ ∈ T guesses f(x)(|τ| − 1) and the corresponding witness n for the first ∃ in (1).

Assuming $f \in \mathbf{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$f^{-1}[\sigma] = \bigcup_n \bigcap_m \bigcup_k \cdots X_{\sigma,n,m,k,\dots}$$

i.e.,

$$\sigma \subset f(x) \quad \text{iff} \quad \exists n \forall m \exists k \cdots x \in X_{\sigma,n,m,k,\dots}$$
(1)

- ► Each $\tau \in T$ guesses $f(x)(|\tau| 1)$ and the corresponding witness n for the first \exists in (1).
- ▶ τ also "claims" that such a pair $\phi(\tau)$, n is minimum: for each $\ulcorner k, n' \urcorner < \ulcorner \phi(\tau), n \urcorner$ we also make τ guess a witness for the first \exists in the negation of (1) when the first \forall is instantiated with n'.

Assuming $f \in \mathbf{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$f^{-1}[\sigma] = \bigcup_n \bigcap_m \bigcup_k \cdots X_{\sigma,n,m,k,\dots}$$

i.e.,

$$\sigma \subset f(x) \quad \text{iff} \quad \exists n \forall m \exists k \cdots x \in X_{\sigma,n,m,k,\dots}$$
(1)

- ► Each $\tau \in T$ guesses $f(x)(|\tau| 1)$ and the corresponding witness n for the first \exists in (1).
- τ also "claims" that such a pair φ(τ), n is minimum: for each
 ¬k, n'¬ < ¬φ(τ), n¬ we also make τ guess a witness for the first ∃ in the
 negation of (1) when the first ∀ is instantiated with n'.
 </p>
- every descendant τ' of τ makes a guess for the "∃k" quantifier of (1) when the first ∀ is instantiated with |τ'| − |τ| − 1, and so on.

Assuming $f \in \mathbf{\Lambda}_{1, \alpha+1}$, for each $\sigma \in \mathbb{N}^{<\mathbb{N}}$ we have

$$f^{-1}[\sigma] = \bigcup_n \bigcap_m \bigcup_k \cdots X_{\sigma,n,m,k,\dots}$$

i.e.,

$$\sigma \subset f(x) \quad \text{iff} \quad \exists n \forall m \exists k \cdots x \in X_{\sigma,n,m,k,\dots}$$
(1)

- ► Each $\tau \in T$ guesses $f(x)(|\tau| 1)$ and the corresponding witness n for the first \exists in (1).
- τ also "claims" that such a pair φ(τ), n is minimum: for each
 ¬k, n'¬ < ¬φ(τ), n¬ we also make τ guess a witness for the first ∃ in the
 negation of (1) when the first ∀ is instantiated with n'.
 </p>
- every descendant τ' of τ makes a guess for the "∃k" quantifier of (1) when the first ∀ is instantiated with |τ'| |τ| 1, and so on.
 (If no more quantifiers, then only add τ' to T in case the corresponding formula is true (open)/still possibly true (closed).)

We can make it so that all possible "collections" of plausible guesses are eventually made by some $\tau \in T.$

We can make it so that all possible "collections" of plausible guesses are eventually made by some $\tau \in {\cal T}.$

Lemma (Heart of proof)

1 If τ makes a wrong guess, then $\tau \notin PD(T, \alpha \downarrow)$.

We can make it so that all possible "collections" of plausible guesses are eventually made by some $\tau \in {\cal T}.$

Lemma (Heart of proof)

- 1 If τ makes a wrong guess, then $\tau \notin PD(T, \alpha \downarrow)$.
- **2** If τ and predecessors only make correct guesses, then τ is part of an infinite path of T.

 $(\Rightarrow PD(T, \alpha\downarrow)$ is composed exactly of infinite paths with f(x) as label)

We can make it so that all possible "collections" of plausible guesses are eventually made by some $\tau \in {\cal T}.$

Lemma (Heart of proof)

- 1 If τ makes a wrong guess, then $\tau \notin PD(T, \alpha \downarrow)$.
- Ø If τ and predecessors only make correct guesses, then τ is part of an infinite path of T.
 (⇒ PD(T, α↓) is composed exactly of infinite paths with f(x) as label)

If the "first guess" φ(τ), n that τ makes is bigger than the least correct pair, then τ ∉ PD(T, α↓).
 (⇒ PD(T, α↓) is bisimilar to a f.b. tree)

Outline

Introduction

2 Games for Baire classes

3 Games for partition classes (wip)

Let "BC α on Π^0_{β} " be the class of functions f for which there exists a partition of $\operatorname{dom}(f)$ into countably many Π^0_{β} parts, such that the restriction of f to each part is Baire class α .

Let "BC α on Π_{β}^{0} " be the class of functions f for which there exists a partition of $\operatorname{dom}(f)$ into countably many Π_{β}^{0} parts, such that the restriction of f to each part is Baire class α .

For $\alpha \geq \beta$ this just gives the Baire class α functions.

Let "BC α on Π^0_{β} " be the class of functions f for which there exists a partition of $\operatorname{dom}(f)$ into countably many Π^0_{β} parts, such that the restriction of f to each part is Baire class α .

For $\alpha \geq \beta$ this just gives the Baire class α functions.

It is conjectured that for every $1 < \alpha \leq \beta$ there exist α', β' such that $\Lambda_{\alpha,\beta} = \text{"BC } \alpha' \text{ on } \Pi^0_{\beta'}$ ".

Let "BC α on Π^0_{β} " be the class of functions f for which there exists a partition of $\operatorname{dom}(f)$ into countably many Π^0_{β} parts, such that the restriction of f to each part is Baire class α .

For $\alpha \geq \beta$ this just gives the Baire class α functions.

It is conjectured that for every $1 < \alpha \leq \beta$ there exist α', β' such that $\Lambda_{\alpha,\beta} = \text{"BC } \alpha' \text{ on } \Pi^0_{\beta'}$ ".

Theorem

1
$$\Lambda_{2,2} = "BC 0 \text{ on } \Pi_1^0"$$
 (Jayne-Rogers);

Let "BC α on Π^0_{β} " be the class of functions f for which there exists a partition of $\operatorname{dom}(f)$ into countably many Π^0_{β} parts, such that the restriction of f to each part is Baire class α .

For $\alpha \geq \beta$ this just gives the Baire class α functions.

It is conjectured that for every $1 < \alpha \leq \beta$ there exist α', β' such that $\Lambda_{\alpha,\beta} = \text{"BC } \alpha' \text{ on } \Pi^0_{\beta'}$ ".

Theorem

1
$$\Lambda_{2,2} = "BC \ 0 \text{ on } \Pi_1^{0"}$$
 (Jayne-Rogers);
2 $\Lambda_{2,3} = "BC \ 1 \text{ on } \Pi_2^{0"}$ (Semmes);

Let "BC α on Π^0_{β} " be the class of functions f for which there exists a partition of $\operatorname{dom}(f)$ into countably many Π^0_{β} parts, such that the restriction of f to each part is Baire class α .

For $\alpha \geq \beta$ this just gives the Baire class α functions.

It is conjectured that for every $1 < \alpha \leq \beta$ there exist α', β' such that $\Lambda_{\alpha,\beta} = \text{"BC } \alpha' \text{ on } \Pi^0_{\beta'}$ ".

Theorem

Two definitions

The product $T \times (S, \phi_S)$ of a tree T and a labeled tree (S, ϕ_S) is the labeled tree with underlying set $T \times S$ and labeling function inherited from (S, ϕ_S) :

$$\phi(\sigma,\tau) = \phi_S(\tau)$$

Two definitions

The product $T \times (S, \phi_S)$ of a tree T and a labeled tree (S, ϕ_S) is the labeled tree with underlying set $T \times S$ and labeling function inherited from (S, ϕ_S) :

$$\phi(\sigma,\tau) = \phi_S(\tau)$$

Given a tree T and $\sigma \in \mathbb{N}^{<\mathbb{N}},$ we denote

$$T_{\sigma} := \{ \tau \in T \, ; \, \sigma \subseteq \tau \text{ or } \tau \subseteq \sigma \}.$$

The game

Theorem

For $\alpha < \beta$, "BC α on Π_{β}^{0} " is characterized by the tree game with additional rules

- 1 $PD(T, \beta\downarrow)$ is linear;
- **2** $PD(T, \beta_{\ddagger})$ is fin. branching; and
- (3) for each $n \in \mathbb{N}$ there exist a tree S and a labeled tree (U, ϕ_U) such that

 $\begin{array}{l} \bullet \ (T_{\langle n \rangle}, \phi) \simeq S \times (U, \phi_U); \\ \bullet \ \mathrm{PD}(S, \beta \downarrow -1) \text{ is linear; and} \\ \bullet \ \mathrm{PD}(U, \alpha \downarrow) \text{ is linear; and} \\ \bullet \ \mathrm{PD}(U, \alpha \downarrow) \text{ is fin. branching.} \end{array}$

The game

Theorem

For $\alpha < \beta$, "BC α on Π_{β}^{0} " is characterized by the tree game with additional rules

- 1 $PD(T, \beta\downarrow)$ is linear;
- **2** $PD(T, \beta_{\ddagger})$ is fin. branching; and
- (3) for each $n \in \mathbb{N}$ there exist a tree S and a labeled tree (U, ϕ_U) such that

 $(T_{\langle n \rangle}, \phi) \simeq S \times (U, \phi_U);$ $PD(S, \beta \downarrow -1)$ is linear; and $PD(U, \alpha \downarrow)$ is linear; and $PD(U, \alpha \downarrow)$ is fin. branching.

The games by Andretta, Semmes, and Andretta-Semmes are particular cases.

The game

Theorem

For $\alpha < \beta$, "BC α on Π_{β}^{0} " is characterized by the tree game with additional rules

- 1 $PD(T, \beta\downarrow)$ is linear;
- **2** $PD(T, \beta_{\downarrow})$ is fin. branching; and
- (3) for each $n \in \mathbb{N}$ there exist a tree S and a labeled tree (U, ϕ_U) such that

1 $(T_{\langle n \rangle}, \phi) \simeq S \times (U, \phi_U);$ **2** $PD(S, \beta \downarrow -1)$ is linear; and **3** $PD(U, \alpha \downarrow)$ is linear; and **4** $PD(U, \alpha \downarrow)$ is fin. branching.

The games by Andretta, Semmes, and Andretta-Semmes are particular cases.

Thanks for your attention!