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The games we will focus on today are those for characterizing classes of functions.
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Given f:C NN — NN, we can think of the task of finding a value f(z) as the goal
of a player in an infinite two-player game called the tree game (due to Semmes).
At each round n € N,

@ player I picks a natural number z,,, and

@ player II plays a finite labeled tree (T, ¢,,), i.e., a finite tree T,, C N<N and
a labeling function ¢, : T, ~ {()} = N.

Letting 2 := (29, 21, 72, ...) € NV and (T, ¢) := U,,(Tn, én), the rules are:
» for all n € N we have T}, C T, 11 and ¢, C ¢, 41; and
> if 2 € dom(f) then T has a unique infinite branch.

Player IT wins the run iff she follows the rules and we have that if € dom(f)
then the sequence of labels along the unique infinite branch of T is exactly f(z).
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Tree game characterizes Borel functions

Theorem (Semmes)

f is Borel iff IT has a winning strategy in the tree game for f.

Given 0 < a < 8 < wy, let us write
Aop={fCNY N vXex) X e}
Goal: find a rule R, g that when added to the tree game characterizes A, g.
@® Ry, := T is linear (Wadge);
@® Ry := T is fin. branching (Duparc);

© Ry := T is fin. branching at the root and linear elsewhere (Andretta,
Jayne-Rogers);

@ R; 3 := nodes that are not on an inf. branch are fin. branching (Semmes);
@ R, 3 := non-root nodes are fin. branching (Semmes);

@ R33 := non-root nodes are linear (Semmes, Andretta);

@ Rio+1 =7 (Louveau-Semmes, unpublished).
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The pruning derivative operation

Given a tree T, we define its pruning derivative as

PD(T) := {0 € T; o has descendants at arbitrary levels of T'}.

PD(PD(T))

This can be iterated transfinitely as usual

PD(T,0) := T
PD(T,a+1) := PD(PD(T a))
PD(T,)\) := ﬂ PD(T,a) for limit A

a<
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Bisimulations and bisimilarity

Definition
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Definition
Let T = (T,¢r) and S = (S, ¢s) be labeled trees. A relation Z C T x S is a
bisimulation between 7 and S if whenever o Z 7:

® [0 =|7] and ¢1(0) = ps(7)

@oc#()=ol(ol-1)Z7[(r[-1)

® for any ¢/ D o in T thereis 7/ D 7 in S such that ¢/ Z 7/

O vice versa.

The union of all bisimulations between 7 and S is itself a bisimulation between T
and S, and the trees are called bisimilar if this relation is non-empty.
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Tree game, revisited

In the tree game, the rule

“if € dom(f) then T has a unique infinite branch”

can be rewritten as

“if € dom(f) then PD(T,w1) is non-empty and linear.”

It will be a consequence of our theorems that this rule can be relaxed to

“if € dom(f) then PD(T,wy) is bisimilar to a non-empty and linear tree.”

We call the resulting game the relaxed tree game.
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Recall that every ordinal o can be uniquely written as A + n for some limit A and
natural n. We then define

al = A+ [F]

al A+ [5]

Adding the rule

Ry ot1:= PD(T,al) is bisimilar to a linear tree and
PD(T,«\) is bisimilar to a fin. branching tree

to the relaxed tree game characterizes A;j 441, i.e., the Baire class « functions.
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o C f(z) iff Invm3Ik---z€ X pmok,... (1)

» Each 7 € T guesses f(z)(|7| — 1) and the corresponding witness 7 for the
first 3 in (1).

> 7 also “claims” that such a pair ¢(7), n is minimum: for each
Tk,n'7 <T¢(r),n” we also make 7 guess a witness for the first 3 in the
negation of (1) when the first V is instantiated with n'.

> every descendant 7’ of 7 makes a guess for the “Jk"” quantifier of (1) when
the first V is instantiated with |7'| — |7| — 1, and so on.

(If no more quantifiers, then only add 7’ to T in case the corresponding
formula is true (open)/still possibly true (closed).)
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|dea of the proof, heart of the argument

We can make it so that all possible “collections” of plausible guesses are eventually
made by some 7 € T.

Lemma (Heart of proof)

@ If 7 makes a wrong guess, then 7 € PD(T, o).

® If 7 and predecessors only make correct guesses, then 7 is part of an infinite
path of T.
(= PD(T,«al) is composed exactly of infinite paths with f(z) as label)

© If the “first guess” ¢(7), n that 7 makes is bigger than the least correct pair,
then 7 ¢ PD(T, o).
(= PD(T,«l) is bisimilar to a f.b. tree)
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Let “BC « on H%” be the class of functions f for which there exists a partition of

dom(f) into countably many H% parts, such that the restriction of f to each part
is Baire class a.

For o > (3 this just gives the Baire class « functions.

It is conjectured that for every 1 < a < 3 there exist o/, 8’ such that
Anp="BCa onIlp".

® Az = "BC 0 on IT)" (Jayne-Rogers);

0 A
© As;

“BC 1 on TI9" (Semmes);
“BC 0 on TI9" (Andretta-Semmes);
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Two definitions

The product T x (5, ¢g) of a tree T and a labeled tree (S, ¢g) is the labeled tree
with underlying set T x S and labeling function inherited from (5, ¢g):

¢(0,7) = ds(7)

Given a tree T and o € N<N, we denote

T, ={reT;0CTorT Co}.
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For a < 3, “BC a on HOB” is characterized by the tree game with additional rules
@ PD(T,p) is linear;
® PD(T, 1) is fin. branching; and
© for each n € N there exist a tree S and a labeled tree (U, ¢7) such that
(1] (T(n>a¢> ~ 8% (U7¢U)a
® PD(S,51 — 1) is linear; and
® PD(U,«l) is linear; and
@ PD(U,al) is fin. branching.

The games by Andretta, Semmes, and Andretta-Semmes are particular cases.

Thanks for your attention!
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