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Abstract

It is shown that the space X [0,1], of continuous maps [0, 1] → X with
the compact-open topology, is not locally compact for any space X
having a nonconstant path of closed points. For a T1-space X, it
follows that X [0,1] is locally compact if and only if X is locally compact
and totally path-disconnected.
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1 Introduction

There were two definitions of local compactness under consideration in the
1970’s. One definition hypothesized the existence of a compact neighborhood
of each point, and hence included all compact spaces. The other required
that each point have arbitrarily small compact neighborhoods. Although the
two are equivalent for Hausdorff spaces, the latter definition is easily seen to
be stronger, as there are compact spaces that are not locally compact in the
latter sense. For example, take any space X which is not locally compact,
add a point ∗, and define U ⊆ X ∪ {∗} to be open if (1) U = X ∪ {∗} or (2)
∗ 6∈ U and U is open in X.

Local compactness arises in the consideration of suitable topologies on
function spaces as discussed by R.H. Fox in his 1945 paper “On topologies
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for function spaces” [2]. A space Y is called exponentiable if, for every space
Z, there is a topology on the function space ZY so that continuous maps
X×Y → Z correspond, in the obvious way, to continuous maps X → ZY , for
every space X. Local compactness (in the stronger sense) is precisely what is
needed for exponentiability of Hausdorff spaces [8] (or more generally, sober
spaces [4]), and the topology on ZY is the compact-open topology. The
question of local compactness of these spaces arose in recent work by the
author on homotopy pullbacks and exponentiability [11]. It turns out that
[0, 1][0,1] is not locally compact by either definition, and the proof works for
a much wider class of spaces.

We begin, in Section 2, by proving that X [0,1] is not locally compact, if
X has a nonconstant path of closed points (Theorem 2.2). We then apply
this result to characterize the local compactness of X [0,1], for T1-spaces X
(Theorem 2.6). We conclude, in Section 3, by showing that the proof of
Theorem 2.2 can be used to obtain a new proof of the well-known result that
the category of compact Hausdorff spaces is not closed under exponentiation
(i.e., is not cartesian closed).

Finally, I would like to thank the referees for their useful suggestions.

2 Path Spaces

Recall that the compact-open topology on X [0,1] is generated by the sets of
the form 〈K, W 〉 = {σ ∈ X [0,1]|σ(K) ⊆ W}, where K is compact in [0, 1] and
W is open in X. We will consider the open sets 〈t,W 〉 = 〈{t}, W 〉, where
t ∈ [0, 1]. Note that a path has 〈t,W 〉 as a neighborhood if its graph passes
through the opening in the fence corresponding to W on the vertical axes.

Lemma 2.1 If the path component of a closed point x in X is nontrivial,
then the same holds for any neighborhood W of x. Moreover, every noncon-
stant path from x in X contains a nonconstant path from x in W .
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Proof. Suppose the path component of the closed point x is nontrivial, and
let σ be a path in X such that σ(0) = x and σ(1) 6= x. Since σ−1(W ) is
locally path-connected as an open subspace of [0, 1], the component of 0 in
σ−1(W ) is of the form [0, m), for some m. Then σ(m) 6= x since σ(m) 6∈ W ,
and so σ is not constant on [0, m), for otherwise [0, m) = σ−1({x}) ∩ [0, m],
which is closed in [0, m] since {x} is closed. Then t 7→ σ(mt) is a nonconstant
path from x in W whose image is contained in that of σ. 2

Theorem 2.2 If X has a nonconstant path consisting of closed points, then
X [0,1] is not locally compact by either definition.

Proof. Suppose σ is a nonconstant path of closed points in X, and let x =
σ(0). It suffices to show that the constant x-valued path σx: [0, 1] → X has
no compact neighborhood in X [0,1].

Suppose N is compact in X [0,1] and σx ∈ 〈K, W 〉 ⊆ N . Since x ∈ W ,
applying Lemma 2.1, we can assume that the image of σ is a subset of W
and y = σ(1) is a closed point of X such that y 6= x. We claim that

C =
{
〈0, X \ {x}〉

}
∪

{
〈 1

n
, X \ {y}〉

}
n>1

is an open cover of N which has no finite subcover.

Let τ be any element of X [0,1]. If τ(0) 6= x, then τ ∈ 〈0, X \ {x}〉.
Otherwise, τ(0) = x 6= y, and so τ

(
[0, 1

k
)
)
⊆ X \ {y}, for some k, and it

follows that τ ∈ 〈 1
n
, X \ {y}〉, for all n > k. Thus, C covers X [0,1], and hence

N . Now, suppose some finite subfamily F covers N , let n be the largest
integer such that 〈 1

n
, X \ {y}〉 ∈ F , and define τ : [0, 1] → X by

τ(t) =


σ(nt) t ≤ 1

n

y t ≥ 1
n

Then τ ∈ 〈K, W 〉 ⊆ N but τ is not in any member of F . Therefore, N is
not compact, and it follows that X [0,1] is not locally compact. 2

Corollary 2.3 [0, 1][0,1] is not locally compact (hence, not compact). 2
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Corollary 2.4 If X has a locally closed subspace S with a nonconstant path
of points closed in S, then X [0,1] is not locally compact (in the stronger sense).

Proof. First, note that S[0,1] is locally closed in X [0,1], whenever S is locally
closed in X, for suppose S = U ∩ F , where U is open and F is closed. Then
S[0,1] = U [0,1]∩F [0,1], and U [0,1] is clearly open in X [0,1] since U [0,1] = 〈[0, 1], U〉.
To see that F [0,1] is closed, suppose σ 6∈ F [0,1]. Then σ(t) 6∈ F , for some
t ∈ [0, 1], and it easily follows that σ ∈ 〈t,X \ F 〉 ⊆ X [0,1] \ F [0,1].

Now, suppose X [0,1] is locally compact in the stronger sense. Then so is
the locally closed subspace S[0,1], contradicting Theorem 2.2. 2

Recall that X is called totally path-disconnected if the path components
in X are the points. Thus, adding a T1 assumption, Corollary 2.4 becomes:

Corollary 2.5 If X has a T1 locally closed subspace that is not totally path-
disconnected, then X [0,1] is not locally compact (in the stronger sense). 2

Finally, if X itself is T1, then a characterization of local compactness
(under either definition) of the path space X [0,1] is given by:

Theorem 2.6 The following are equivalent for a T1-space X.

(1) X [0,1] is locally compact.

(2) X is locally compact and totally path-disconnected.

Proof. Suppose X [0,1] is locally compact. Then every path in X is constant
by Theorem 2.2, and so X is totally path-disconnected. Thus, X [0,1] ∼= X,
and it follows that X is locally compact, as well. Conversely, suppose X
is locally compact and totally path-disconnected. Then X [0,1] ∼= X, and so
X [0,1] is locally compact. 2

Note that Theorems 2.2 and 2.6 can be adapted to the path spaces
P (X, x0) and the loop space Ω(X, x0) (in the sense of [13]).

We conclude this section with a simple example showing that X [0,1] can be
locally compact without the disconnectivity assumption on X, if we relax the
T1 requirement. First, suppose Y is a locally compact space, and consider
2Y , where 2 = {0, 1} is the Sierpinski space with {0} open but not {1}.
Identifying 2Y with the set O(Y ) of open subsets of Y , the open set 〈K, {0}〉
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is identified with ↑K = {U ∈ O(Y )|K ⊆ U}. To show that 2Y is locally
compact in the stronger sense, suppose U ∈ ↑K. Since Y is locally compact,
there is an open set V and a compact set L such that K ⊆ V ⊆ L ⊆ U .
Then U ∈ ↑L ⊆ ↑V ⊆ ↑K. Since ↑V is compact in 2Y , it follows that 2Y is
locally compact, and it follows that 2[0,1] is locally compact. More generally,
if X is any injective space, then the compact-open topology agrees with the
Scott topology on X [0,1], and the latter is locally compact since X [0,1] is a
continuous lattice (see [3] for details).

3 Exponentiability

As noted in the introduction, local compactness is precisely what is needed
for exponentiability of sober spaces. Categories in which every object is
exponentiable (i.e., cartesian closed categories) provide models for lambda
calculus and hence, functional programming languages.

According to [1], a necessary and sufficient condition for exponentiability
of any space Y is that the lattice O(Y ) of open subsets is (what later became
known in [12] as) a continuous lattice. The author’s interest in exponentia-
bility began in 1978 [9] with a generalization of [1] to spaces over a base, and
was followed by a series of related papers, the most recent being [10]. For
a further discussion of local compactness, function space problems, and the
influence of [1], the reader is referred to Isbell’s survey paper [6]. For more
on function spaces and cartesian closed categories of continuous lattices, see
[3].

It is well-known that if one would like to work in a cartesian closed cat-
egory of spaces which contains all compact Hausdorff spaces (respectively,
locally compact spaces), one must move to a larger category, for example
compactly generated spaces (respectively, locally compactly generated spaces),
see [7]. Moreover, the topology on the product of spaces in such a category
is finer than the usual product topology. It turns out that the open cover
constructed in Theorem 2.2 can be used to show that no category of locally
compact spaces can be cartesian closed if it contains [0, 1]. Here is a proof
for compact Hausdorff spaces (see also [5], for another). The general case is
similar.

Corollary 3.1 The category of compact Hausdorff spaces is not cartesian
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closed.

Proof. Since the proof of Theorem 2.2 uses only compact-open sets of the
form 〈t,W 〉, to show that [0, 1][0,1] has an open cover with no finite subcover,
it suffices to prove that these sets would be open in [0, 1][0,1], if the category
of compact Hausdorff spaces were cartesian closed. But, 〈t,W 〉 = ev−1

t (W ),
where evt is the evaluation map at t, which would be continuous since it is
given by the composite

[0, 1][0,1] 〈id,t〉−→ [0, 1][0,1] × [0, 1]
ev−→ [0, 1]

Therefore, the category of compact Hausdorff spaces is not cartesian closed.
2
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