A function is differentiable at a point if it has a derivative there. In other words: The function f is differentiable at x if

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text { exists. }
$$

Thus, the graph of f has a non-vertical tangent line at $(x, f(x))$. The value of the limit and the slope of the tangent line are the derivative of f at x_{0}.
A function can fail to be differentiable at point if:

1. The function is not continuous at the point.

How can you make a tangent line here?
2. The graph has a sharp corner at the point.

3. The graph has a vertical line at the point.

H is not continuous at 0 , so it is not differentiable at 0 .
The general fact is:
Theorem 2.1: A differentiable function is continuous:
If $f(x)$ is differentiable at $x=a$, then $f(x)$ is also continuous at $x=a$.
Proof: Since f is differentiable at a,

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \text { exists. }
$$

Then

$$
\lim _{x \rightarrow a}(f(x)-f(a))=\lim _{x \rightarrow a}(x-a) \cdot \frac{f(x)-f(a)}{x-a}
$$

This is okay because $x-a \neq 0$ for limit at a.

$$
=\lim _{x \rightarrow a}(x-a) \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=0
$$

Thus, $f^{\prime}(a)=0$. Hence, $\lim _{x \rightarrow a}(f(x)-f(a))=0$, and if we add the constant $f(a)$ to both sides, and use Law 2, we get

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

which is the definition of continuity of f at $x=a$.

At $x=0$, there is a corner at $(0,0)$. Picture is different to the left and right of $(0,0$. Suggests we try left- and right-hand limits.

$$
\begin{aligned}
\lim _{h \rightarrow 0_{+}} \frac{f(h)-f(0)}{h} & =\lim _{h \rightarrow 0_{+}} \frac{h-0}{h} \quad \text { cancellation of } h \text { okay, since } h \neq 0 \text { for limit at } 0 \\
& =\lim _{h \rightarrow 0_{+}} 1 \\
& =1
\end{aligned}
$$

But

$$
\begin{aligned}
\lim _{h \rightarrow 0-} \frac{f(h)-f(0)}{h} & =\lim _{h \rightarrow 0-} \frac{-h-0}{h} \quad \text { cancellation of } h \text { okay, since } h \neq 0 \text { for limit at } 0 \\
& =\lim _{h \rightarrow 0_{-}}-1 \\
& =-1
\end{aligned}
$$

Since the left- and right-hand limits do not agree,

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}
$$

Does not exits, and so $|x|$ is not differentiable at $x=0$.

Example 3:

The graph is smooth at $x=0$, but does appear to have a vertical tangent.

$$
\lim _{h \rightarrow 0} \frac{(0+h)^{1 / 3}-0^{1 / 3}}{h}=\lim _{h \rightarrow 0} \frac{(h)^{1 / 3}}{h}=\lim _{h \rightarrow 0} \frac{1}{h^{2 / 3}}
$$

As $h \rightarrow 0$, the denominator becomes small, so the fraction grows without bound. Hence g is not differentiable at $x=0$.

Example 4: To be discussed in Class

$$
g(x)=\left\{\begin{array}{cc}
x+1 & x \leq 1 \\
3 x-1 & x>1
\end{array}\right.
$$

