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Chapter VIII
 Ordered Sets, Ordinals and Transfinite Methods

1. Introduction

In this chapter, we will look at certain kinds of ordered sets.  If a set  is ordered in a reasonable way,\
then there is a natural way to define an “order topology” on .  Most interesting (for our purposes)\
will be ordered sets that satisfy a very strong ordering condition:  that every nonempty subset contains
a smallest element.  Such sets are called well-ordered.  The most familiar example of a well-ordered set
is  and it is the well-ordering property that lets us do mathematical induction in  
In this chapter we will see “longer” well ordered sets and these will give us a new proof method called
“transfinite induction.”    But we begin with something simpler.

2. Partially Ordered Sets

Recall that a relation  on a set  is a subset of  ( ).  If , we writeV \ \ ‚\ ÐBß CÑ − Vsee Definition I.5.2
BVCÞ \ \  An “order” on a set  is refers to a relation on  that satisfies some additional conditions.
Order relations are usually denoted by symbols such as , , or .Ÿ  ¡ ß £

Definition 2.1  A relation  on  is called:V \
  

transitive if     and  À a +ß ,ß - − \ Ð+V, ,V-Ñ Ê +V-Þ
reflexive if        À a + − \ +V+
antisymmetric if     and   À a +ß , − \ Ð+V, ,V+ Ñ Ê Ð+ œ ,Ñ
symmetric if       (that is, the set  is “symmetric”À a +ß , − \ +V, Í ,V+ V

      with respect to the diagonal
       ).? œ ÖÐBß BÑ À B − \× © \ ‚\

Example 2.2 

 1) The relation “ ” on a set is transitive, reflexive, symmetric, andœ \
 antisymmetric.  Viewed as a subset of , the relation “ ”  is the diagonal set\ ‚\ œ
 ? œ ÖÐBß BÑ À B − \×Þ

 2) In , the usual order relation  is transitive and antisymmetric, but not‘ 
 reflexive or symmetric.

 3) In , the usual order  is transitive, reflexive and antisymmetric.  It is not‘ Ÿ
 symmetric.
   
 4)  On any set of cardinal numbers  we have a relation .  It is transitive, reflexiveV Ÿ
 and antisymmetric  ( ), but notby the Cantor-Schroeder-Bernstein Theorem I.10.2
 symmetric unless Ð l l œ "ÑÞV



320

Definition 2.3 A relation  on a set  is called a  if  is transitive, reflexive andŸ \ Ÿpartial order
antisymmetric.  The pair  is called a   (or, for short, ).Ð\ß Ÿ Ñ partially ordered set poset

A relation  on a set  is called a   if  is a partial order and, in addition, any twoŸ \ Ÿlinear order
elements in  are comparable:   either  or .  In this case, the pair ) is\ a+ß , − \ + Ÿ , , Ÿ + Ð\ß Ÿ
called a  .  For short, a linearly ordered set is also called a .linearly ordered set chain

We write  to mean that  and For any sort of order relation on , we can invert+  , + Ÿ , + Á ,Þ Ÿ \
the order notation and write  to mean the same thing as ,   + Ð,  +Ñ + Ÿ , Ð+  ,ÑÞ

 In some books, a partial order is defined as a “strict” relation which is transitive and
  irreflexive , a   In that case, we can define  to mean “  or ” toÐa+ − \ Î +ÑÞ + Ÿ , +  , + œ ,
 get a partial order in the sense defined above.  This variation in terminology creates no real
 mathematical problems: the difference is completely analogous to worrying about whether
 “ ”  or “ ” should be called the“usual order” on .Ÿ  ‘

  
Example 2.4

 1) Suppose For any kind of order on  we can get an order on  byE © \Þ Ÿ \ß Ÿ E © \E

restricting the order  to   More formally, ( ).  We always assume that a subsetŸ EÞ Ÿ œ Ÿ ∩ E ‚EE

of an ordered set has this natural  “inherited” ordering unless something else is explicitly stated.  With
that understanding, we usually omit the subscript and also write  for the order  on .Ÿ Ÿ EE

If  is a poset (or chain), and , then  is also a poset (or chain).   For example,Ð\ß Ÿ Ñ E © \ ÐEß Ÿ Ñ
every subset of  is a chain.Ð ß Ÿ Ñ‘

 2) For the set of complex numbers , define  iff    where  isDß A − Ð œ Ñ D £ A lDl Ÿ lAlß Ÿ‚
the usual order in .     is not a poset.  ( )‘ ‚Ð ß £ Ñ Why?
 

 3) Let  be a topological space.  For , defineÐ\ß Ñ 0ß 1 − GÐ\Ñg

   iff   ,  .0 Ÿ 1 aB − \ 0ÐBÑ Ÿ 1ÐBÑ

As a set,
   .Ÿ œ ÖÐ0ß 1Ñ − GÐ\Ñ ‚ GÐ\Ñ À aB − ß 0ÐBÑ Ÿ 1ÐBÑ×‘

Notice that, in contrast to part 2), we are allowing ourselves an ambiguity in the notation here because
we are using “ ” with two different meanings:  we are defining an order “ ” in , but theŸ Ÿ GÐ\Ñ
comparison  “ ” refers to the usual order a different ordered set, .  Of course, we could be0ÐBÑ Ÿ 1ÐBÑ ‘
more careful and write for the new order on , but usually we won't be that fussy when the0 £ 1 GÐ\Ñ
context makes clear which meaning of  “ ” we have in mind.Ÿ

ÐGÐ\Ñß Ÿ Ñ \ œ 0ß 1 0ÐBÑ œ B is a poset but usually not a chain: for example, if  and  are given by ‘
and , then  and .  When   a chain?  1ÐBÑ œ B 0 ŸÎ 1 1 ŸÎ 0 ÐGÐ\Ñß Ÿ Ñ Ð# is The answer is  “ iffnot
l\l Ÿ "Þ Ñ”
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 4) The following two diagrams represent posets, each with 5 elements.  Line segments upward
from  to  indicate that .  In Figure (i), for example, and (so );  in Figure (i),B C B Ÿ C . Ÿ - - Ÿ + . Ÿ +
+ , and  are not comparable.
      Figure (ii) shows a chain:   + Ÿ , Ÿ - Ÿ . Ÿ /Þ

  
 5)  Suppose  is a collection of sets. We can define  on  by  iff .  ThenV VŸ E Ÿ F E © F
Ð ß Ÿ ÑV V is a poset.  In this case, we say that  has been .   In particular, for any setordered by inclusion
\ Ð\Ñ \ Ð Ð\Ñß Ÿ, we can order by inclusion. What conditions on  will guarantee ) is a chain ?c c

 6)  Suppose  is a collection of sets.  We can define  on  by  iff .  ThenV VŸ E Ÿ F E ª F
Ð ß Ÿ ÑV V is a poset.  In this case, we say that  has been .   In particular, forordered by reverse inclusion
any set , we can order by reverse inclusion. What conditions on  will guarantee that\ Ð\Ñ \c
Ð Ð\Ñß Ÿc ) is a chain ?

For a given collection , Examples 5) and 6) are quite similar: one is a “mirror image” of the other.V
The identity map  is an “order-reversing isomorphism” between the posets.3 À ÄV V

For our purposes, the “reverse inclusion” ordering on a collection of sets will turn out to be more
useful.  For a point  in a topological space , we can order the neighborhood system  by B \ aB reverse
inclusion .  The “order structure” of the poset  reflects some topological properties of Ÿ Ð ß Ÿ Ñ \aB

and indicates just how complicated the “neighborhood structure” at  is.  For example,B

 i)  If  is isolated, then  and  for every .  So the posetB ÖB× − R R Ÿ ÖB× R − RB B

  has a largest element.Ð ß Ÿ Ñ Ð ÑaB Is the converse true?

 ii) If  is first countable and  is a countable\ œ ÖR ßR ß ÞÞÞß R ß ÞÞÞ×UB " # 5

 neighborhood base at , then for every  there is a  such thatB R − 5aB

 .  Thus the poset  contains a countable subsetR Ÿ R Ð ß Ÿ Ñ5 Ba
   whose members become  “arbitrarily large” in the poset.ÖR ßR ß ÞÞÞß R ß ÞÞÞ×" # 5

 
  iii) The poset  is usually not a chain.  But it does have interestingÐ ß Ÿ ÑaB
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  order property:  for any  such that  R ßR − ß bR − R Ÿ R R Ÿ R" # B $ B " $ # $a a and
  (let R œ R ∩R$ " #ÑÞ

It will turn out (in Chapter 9) that this poset  is the inspiration for defining the notion ofÐ ß Ÿ ÑaB

“convergent nets,” a kind of convergence that is more powerful than “convergent sequences.”  Unlike
sequences, convergent nets will be able to determine closures (and therefore the topology) in any
topological space.

Definition 2.5  Suppose  is a poset and let   An element  is calledÐ\ß Ÿ Ñ E © \Þ B − \

 i)   the  (or ) element in  if  for all largest last \ C Ÿ B C − \
 ii)   the  (or ) element in  if  for all smallest first \ B Ÿ C C − \
 iii)  a  element in   if  for all maximal \ ÐC   B Ê C œ BÑ C − \
 iv)  a  element in   if  for all .minimal \ ÐC Ÿ B Ê C œ BÑ C − \

It is clear that a largest element in , if it exists, is unique.  (Ð\ß Ÿ Ñ If  and  were  largest, thenD D" # both
D Ÿ D D Ÿ D D œ D" # # " " # and  so .)

In Figure (i): both  are maximal elements and  are minimal elements. This poset has no largest+ß , .ß /
or smallest element. Suppose a poset   has a  maximal element .  Must  also be theÐ\ß Ÿ Ñ D Dunique
largest element in  ?Ð\ß Ÿ Ñ

In Figure (ii):  is the smallest (and also a minimal element);  is the largest (and also a maximal)+ /
element.
 
 v) Suppose  and We say that  is an  for  if  for allE © \ B − \Þ B − \ E + Ÿ Bupper bound
  is called a  (sup) for  if  is the smallest upper bound for  The+ − Eà B E B EÞleast upper bound
 set might have many upper bounds, one upper bound, or no upper bounds in .  If  hasE \ E
 more than one upper bound,  might or might not have a least upper bound in . But  E \ \if has
 a least upper bound , then the least upper bound is unique ( ).B why?

 vi) An element  is called a lower  for  if  for all  is called aB − \ E B Ÿ + + − Eà Bbound
greatest lower bound (inf) for  if  is the largest lower bound for  The set  might haveE B EÞ E

 many lower bounds, one lower bound, or no lower bounds in .  If  has more than one\ E
 lower bounds,  might or might not have a greatest lower bound in , but    a greatestE \ \if has
 lower bound , then the greatest lower bound is unique ( ).B why?

 vii) If  and if  with , then  is called an B  C − \ b D − \ B  D  C BÎ immediate predecessor
 of  and  is called an  of .  In a poset, an immediate predecessor orC C Bimmediate successor
 successor might not be unique;  but if  is a chain, then an immediate predecessor or\
 successor, if it exists, must be unique. ( )Why?
       In Figure (i), the upper bounds on are , and sup ;  the set  hasÖ.ß /× +ß ,ß - - œ Ö.ß /× Ö.ß /×
 no lower bounds.  Both ,  are immediate successors of .  The elements  have no+ , - .ß /
 immediate predecessor (in fact, no “predecessors” at all).  In Figure (ii), the immediate
 predecessor of  is  and  is the immediate successor of - , . -Þ

Example 2.6  If  is an order on , then   So if  and are orders on ,  itŸ \ Ÿ © \ ‚\Þ Ÿ Ÿ \" " " #

makes sense to ask whether , or vice-versa.  If we look at the set  is a partialŸ © Ÿ œ Ö Ÿ À Ÿ" # c
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order on , then is partially ordered by inclusion.  A linear order is a  element in\× Ÿc maximal
Ð ß © Ñc   ( )Why?  Is the converse true?

3. Chains

Definition 3.1  Let  be a chain.  The  on  is the topology for which all sets ofÐ\ß Ÿ Ñ \order topology
the form  or   ( ) are a .  (ÖB − \ À B  +× ÖB − \ À ,  B× +ß , − \ subbase As usual, we write  asB  C
shorthand for “  and ”B Ÿ C B Á CÞ )

It's handy to use standard notation when working with chains:  we need to be careful not to read toobut
much into the notation. For example, if :+ß , − \

 ÖB − \ À +  B  ,× œ Ð+ß ,Ñ
 ÖB − \ À + Ÿ B  ,× œ Ò+ß ,Ñ
 ÖB − \ À B Ÿ +× œ Ð ∞ß +Ó

For the chain in Figure (ii), above, we see how the interval notation can be misleading if not used
thoughtfully:  , , and Ð+ß ,Ñ œ gß Ð.ß∞Ñ œ Ö/×ß Ð ∞ß ,Ñ œ Ö+× Ð+ß -Ñ œ Ö,× Ð+ß /Ñ œ Ò,ß .ÓÞ

Example 3.2

 1) The order topology on the chain in Figure (ii) is the discrete topology.

 2) The order topology on  is the usual (discrete) topology: Ö"× œ Ö5 − À 5  #×
 ; and for , œ Ð ∞ß #Ñ 8  " Ö8× œ Ð8  "ß 8  "ÑÞ

Example 3.3     ‘ and  each have an order inherited from , and their order topologies are the same as
the usual subspace topologies.  But, in general, we have to be careful about the topology on E © \
when is a chain with the order topology.  There are two possible topologies on :\ E

 a)  The order  gives an order topology  on  and we can give the subspaceŸ \ EgŸ
 topology Ð Ñ ÞgŸ E

 
 b) has an ordering (inherited from the order on  and we can use it to give anE Ÿ Ÿ \Ñ EE

 order topology.  More formally, we could write this topology as .gŸE

Unfortunately, these two topologies .  Let .  The ordermight not be the same E œ Ð!ß "Ñ ∪ Ö#× © ‘
topology  on  is the usual topology on , and this topology produces a subspace topology forg ‘ ‘Ÿ

which  is isolated in # EÞ

But in the order topology on , each basic open set containing 2 must have the formE
ÖB − E À B  +× œ Ð+ß #Ó +  " # ÐEß Ñ ÐEß Ñ where .  So  is not isolated in .   In fact, the space  isg gŸ ŸE E

homeomorphic to  ( ).Ð!ß "Ó why?

Is there any necessary inclusion  or  between  and ?   Can you state any© ª Ð Ñlg gŸ Ÿ EE

hypotheses on  or  that will guarantee that  ( ?\ E œ Ñlg gŸ Ÿ EE



324

Example 3.4  We defined the order topology only for chains, but the same definition could be used in
any ordered set .  We usually restrict our attention to chains because otherwise the orderÐ\ß Ÿ Ñ
topology may not be very nice.  For example, let  with the partial order represented by\ œ Ö+ß ,ß -×
the following diagram:

 
\ + X Þ Ð is the only open set containing  ( ), so the order topology is not    why? Can you find a poset for"

which the order topology is not even ?X! Ñ Ð\ß Ÿ Ñ  By contrast, the order topology for any   haschain
good separation properties.  For example, it is easy to show that the order topology on a chain must
be X À#

 Suppose ; we can assume   If  is the immediate predecessor of , we can let+ Á , − \ +  ,Þ + ,
  and .  But if there exists a point  satisfyingY œ ÖB − \ À B  ,× Z œ ÖB − \ À B  +× -
 , then we can define  and   Either way,+  -  , Y œ ÖB − \ À B  -× Z œ ÖB − \ À B  -×Þ
 we have a pair of disjoint open sets  and with  and Y Z B − Y C − Z Þ

In fact, the order topology on a chain is always , but this is much messier and we will not prove itX%

here.  (Most of our interest in this Chapter will be with ordered sets that are much “better” than chains
(well-ordered sets) where it is relatively easy to prove normality.)

From now on, when the context is clear, we will simply write , rather than , for an ordered\ Ð\ß Ÿ Ñ
set.  We will denote the orders in many different sets all with the same symbol “ ”, letting theŸ
context settle which order is being referred to.  If it is necessary to distinguish carefully between
orders, then we will occasionally add subscripts such as , , ... .Ÿ Ÿ" #

Definition 3.5  A function  between ordered sets is called an  if  is0 À \ Ä ] 0order isomorphism
bijection and both  and g ,   .  0  + Ÿ , 0Ð+Ñ Ÿ 0Ð,Ñ Ðorder preservin that is if and only if Since  is one-0
to-one, it follows that  if and only if B  C 0ÐBÑ  0ÐCÑÞÑ If such an  exists, we say that  and  are0 \ ]
order isomorphic and write .\ ¶ ]
   If  is not onto, then  and  is an order isomorphism of    .0 \ ¶ 0Ò\Ó © ] 0 \ ]into

Between ordered sets,  “ ” will always refer to order isomorphism.¶
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Theorem 3.6  Let  and  be chains ).\ß ] ß ^ Ðparts i-iv) are also true for posets

 i)   \ ¶ \
 ii)   iff \ ¶ ] ] ¶ \
 iii)  if  and , then \ ¶ ] ] ¶ ^ \ ¶ ^
 iv)  implies \ ¶ ] l\l œ l] lÞ
 v)  if  and  are  chains, then  iff  \ ] \ ¶ ] l\l œ l] lÞfinite

Proof   The proof is very easy and is left as an exercise.  ñ

Even though the proof is easy, there are some interesting observations to make.

 1) To show that , the identity map  might not be the only order isomorphism possible.\ ¶ \ 3
For example, when the functions  and  are both order isomorphisms\ œ ß 0ÐBÑ œ B 0ÐBÑ œ B‘ $

between  and .   ‘ ‘ How many order isomorphisms exist between  and  ? 

 2) A chain can be order isomorphic to a proper subset of itself.  For example,   is an0Ð8Ñ œ #8
order isomorphism between  and  (the set of even natural numbers).  Both  and  are order „  „
isomorphic to the set of all prime numbers.  Must every two countable infinite chains be order
isomorphic?

 3) An order isomorphism between and  preserves largest, smallest, maximal and minimal\ ]
elements (if they exist).  Therefore  and  are not order isomorphic: for example,  has aÐ!ß "Ñ Ò!ß "Ó Ò!ß "Ó
smallest element and  doesn't.  Similarly,   is not order isomorphic to the set of integers .Ð!ß "Ñ  ™
    An order isomorphism preserves “betweenness,” so  is not order isomorphic to :  in ,™  
there is a third element between any two elements, but this is false in .™

 4)  Let  be the set of complex numbers.  If  is any bijection, then we can use  to‚ ‚ ‘0 À Ä 0
create a chain : simply define iff .  Then Ð ß Ÿ Ñ D Ÿ D 0ÐD Ñ Ÿ 0ÐD Ñ Ð ß Ÿ Ñ ¶ Ð ß Ÿ ÑÞ‚ ‚ ‘" # " #

Of course, this chain  is not be very interesting from the point of view of algebra or analysis:Ð ß Ÿ Ñ‚
we imposed an arbitrary ordering on  that has nothing to do with the algebraic structure of . For‚ ‚
example, there is no reason to think that  and , then D Ÿ D D Ÿ D D  D Ÿ D  D Þ" # $ % " $ # %

In the same way, a bijection  can be used to give  a (new) order  so that the two chains0 À Ä Ÿ  
are order isomorphic.  In this case,  is just a sequence that enumerates :   and the0 ; ß ; ß ÞÞÞß ; ß ÞÞÞ " # 8

new order on  is simply defined as   .  More generally, if  is a ;  ;  ÞÞÞ  ;  ÞÞÞ 0 À \ Ä ]" # 8

bijection and  of  or  is ordered, we can use  to “transfer” the order to the other set in such aone \ ] 0
way that Ð\ß Ÿ Ñ ¶ Ð] ß Ÿ ÑÞ

 5) Order isomorphic chains are clearly homeomorphic in their order topologies.  But the
converse is false. Suppose  and  The order\ œ Ö  À 8 − × ∪ Ö!× ] œ Ö!× ∪ Ö À 8 − ×Þ" "

8 8 

topologies on  and  are the usual topologies, and the reflection  is a homeomorphism\ ] 0ÐBÑ œ  B
(in fact, an isometry) between themÞ
   The largest element in  is and it has an immediate predecessor,  But is the largest] "ß Þ !"

#

element in  and it has no immediate predecessor in Since an order isomorphism preserves largest\ \Þ
elements and immediate predecessors, there is no order isomorphism between  and .\ ]
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The next theorem tells when an ordered set is order isomorphic to the set of rational numbers.

Theorem 3.7 (Cantor)  Suppose that  ( , ) is a nonempty countable chain such thatP Ÿ

  a) ,  with    (“no last element”)a+ − P b, − P +  ,
  b)  with    (“no first element”)a+ − Pß b, − P ,  +
  c) , if  then  such that .a+ß , − P +  , b- − P +  -  ,

Then  is order isomorphic to .ÐPß Ÿ Ñ 

When a chain that satisfies the third condition that between any two elements there must
exist a third element we say that  is .  Then Theorem 3.7 can be restated as:   \ order-dense a
nonempty countable order-dense chain with no first or last element is order isomorphic to .

We might attempt a proof in the following way: enumerate  and œ Ö; ß ; ß ÞÞÞß ; ß ÞÞÞ×" # 8

P œ Ö6 ß 6 ß ÞÞß 6 ß ÞÞÞ× 0Ð; Ñ œ 6 0Ð; Ñ œ 6 − P" # 8 " " 8, and let .  Then inductively define some  chosen so that
0Ð; Ñ Á 0Ð; Ñß ÞÞÞß 0Ð; Ñ 0Ð; Ñ 0Ð; Ñß ÞÞÞß 0Ð; Ñ8 " 8" 8 " 8" and so that  has the same order relations to  as
; ; ß ÞÞÞß ; P8 " 8" has to .  Such a choice is always be possible since  satisfies a), b), c). In this way we end
up with one-to-one order preserving map . However,  would  necessarily be onto. The1 À Ä P 1 not
“back-and-forth” construction used in the following proof is designed to be sure we end up with an
onto order preserving map .1 À Ä P

First we prove a lemma:  it states that an order isomorphism between  subsets of  and  canfinite  P
always be extended to include one more point in its domain (or, one more point in its range).

Lemma:  Suppose  where  are finite. Let  be an order isomorphism from E © ß F © P EßF 1
E F onto .

 a) If , there exists an order isomorphism  that   and for; −  E 2 1 extends
 which dom and ran  Ð2Ñ œ E ∪ Ö;× Ð2Ñ © PÞ

 b) If  , there exists an order isomorphism  that   and for6 − P  F 2 1extends
 which dom  and ranÐ2Ñ © Ð2Ñ œ F ∪ Ö6×Þ

Proof of a)  Suppose and that . Pick an  that has the sameE œ Ö; ß ÞÞÞß ; × 1Ð; Ñ œ 6 6 − P  F" 8 3 3

order relations to  as  does to   (6 ß ÞÞÞß 6 ; ; ß ÞÞÞß ; Þ" 8 " 8 For example:  if  is greater that all of;
; ß ÞÞÞß ; ß 6 6 ß ÞÞÞß 6 3 4" 8 " 8 pick  greater than all of  ;  if   and  are the largest and smallest subscripts
for which , then choose   between  and ;  ;  ; 6 6 6 Þ3 4 3 4 )  This choice is always possible since
P 2 2Ð;Ñ œ 6 2ÐBÑ œ 1ÐBÑ B − E satisfies a), b), and c).   Define  by  and  for .

Proof for b) The proof is almost identical.  ñ

Proof of Theorem 3.7  P P Á g P P is a countable chain.  Since  and  has no last element,  must be
infinite.  Without loss of generality, we may assume that P ∩ œ gÞ

We define an order isomorphism  between  and  in stages. At each stage, we enlarge the function1 P
we have by adding a new point to its domain or range.

Let   Each element of  and  appears exactly once in this list.Q œ ∪ P œ Ö7 ß7 ß ÞÞÞß7 ß ÞÞÞ×Þ P " # 8
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Define , and continue by induction.  Suppose  and that an order isomorphism1 œ g 8  !!

1 À E Ä F E © F © PÞ8" 8" 8" 8" 8" has been defined, where  and 

 If  and , use the Lemma to get an order isomorphism  that extends7 − 7 Â E 18 8 8" 8
  and for which dom  Let ran .1 Ð1 Ñ œ E ∪ Ö7 × œ E Þ F œ Ð1 Ñ © P8" 8 8" 8 8 8 8

  
 If  and  use the Lemma to get an order isomorphism  that extends7 − P 7 Â F ß 18 8 8" 8

 and for which ran  Let dom .1 Ð1 Ñ œ F ∪ Ö7 × œ F Þ E œ Ð1 Ñ ©8" 8 8" 8 8 8 8 
 
 If dom ran , let  and 7 − Ð1 Ñ ∪ Ð1 Ñ 1 œ 1 ß E œ E F œ F Þ8 8" 8" 8 8" 8 8" 8 8"

By induction,  is defined for all , and since  extends  and we can define an order1 8 1 18 8 8"

isomorphism   The construction guarantees that dom and ran   1 œ 1 Þ Ð1Ñ œ Ð1Ñ œ PÞ ñ
8œ!
∞

8 

“Being order isomorphic” is an equivalence relation among ordered sets so any two chains having the
properties in Cantor's theorem are order isomorphic to each other.  Since order isomorphic chains have
homeomorphic order topologies, we have a topological characterization of  in terms of order.

Corollary 3.8  A nonempty countable order-dense chain with no largest or smallest element is
homeomorphic to .

The following corollary gives a characterization of  order-dense countable chains.all

Corollary 3.9  If  is a countable order-dense and  then  is order isomorphic to exactly one\ l\l  "ß \
of the following chains À

 a)    ∩ Ð!ß "Ñ ¶
 b)   ∩ Ò!ß "Ñ
 c)  ∩ Ð!ß "Ó
 d)  ∩ Ò!ß "Ó

Proof By looking at largest and smallest elements, we see that no two of these chains are order
isomorphic.  Therefore no chain is order isomorphic to more than one of them.
 If  has no largest or smallest element then, Cantor's theorem gives  and a second\ \ ¶ 
application of Cantor's Theorem gives that . ¶ ∩ Ð!ß "Ñ
 If  has a smallest element, , but no largest element, then  is nonempty and has no\ + \  Ö+×
smallest element ( ?).   clearly satisfies the other hypotheses of the Cantor's theorem sowhy \  Ö+×
there is an order isomorphism . Then define an order isomorphism2 À \  Ö+× Ä ∩ Ð!ß "Ñ
1 À \ Ä ∩ Ò!ß "Ñ 1Ð+Ñ œ ! 1ÐBÑ œ 2ÐBÑ B Á +Þ  by setting  and   for .

     The proofs of the other cases are similar.  ì

No two of the chains a)-d) mentioned in Corollary 3.9 are order isomorphic, but they are, in fact, all
homeomorphic topological spaces.  We can see that b) and c) are homeomorphic by using the map
0ÐBÑ œ "  B , but the other homeomorphisms are not so obvious. Here is a sketch of a proof,
contributed by Edward N. Wilson, that  is homeomorphic to .Ð!ß "Ñ ∩ Ð!ß "Ó ∩ 
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For short, write 0  and ] .Ð!ß "Ñ ∩ œ Ð ß "Ñ Ð!ß "Ó ∩ œ Ð!ß "  

In , choose a strictly increasing sequence of irrationals  .  Let .Ð!ß "Ñ Ð: Ñ Ä " − : œ !8 !‘
For  let ,  ,8   ! À S œ Ð: ß : Ñ ∩ Y œ Ð : ß : Ñ ∩8 8 8" 8 8 8" 1 1

2 2
and .    Each of and  is clopen in 0  andZ œ Ð"  : ß "  : Ñ ∩ S ßY ß Z Ð ß "Ñ8 8" 8 8 8 8

1 1
2 2  

in ] .Ð!ß " 

We have   and Ð!ß "Ó œ S ∪ Ö"× Ð!ß "Ñ œ Y ∪ Ö × ∪ Z   
8œ! 8œ! 8œ!

∞ ∞ ∞

8 8 8
1
2

Define a map    by9À Ð!ß "Ó Ä Y ∪ Ö × ∪ Z  
8œ! 8œ!

∞ ∞

8 8
1
2

  = an increasing linear map from  onto 9 ± S YS #8 8#8

 
  = a decreasing linear map from  onto 9 ± S ZS #8" 8#8"

  9Ð"Ñ œ 1
2

Then  is a homeomorphism.  Since the sets  are clopen, it is clear that  is9 9Ð S ß Y ß Z8 8 8

continuous at all points except perhaps 1 and that  is continuous at all points except9"

perhaps .  These special cases are easy to check separately.1
2 Ñ

There is, in fact, a more general theorem that states that every infinite countable metric space with no
isolated points is homeomorphic to .  This theorem is due to Sierpinski (1920).

We can also characterize the real numbers as an ordered set.

Theorem 3.10  Suppose  is a nonempty chain which\

 i)   has no largest or smallest element
 ii)  is order-dense
 iii) is separable in the order topology
 iv) is Dedekind complete (that is, every nonempty subset of  which has an upper\
 bound in  has a least upper bound in ).\ \

Then  is order isomorphic to  (and therefore , with its order topology, is homeomorphic to ).\ \‘ ‘

Proof   We will not give all the details of a proof,  However, the ideas are completely straightforward
and the details are easy to fill in.
 Let  be a countable dense set in the order topology on .  Then  satisfies the hypotheses ofH \ H
Cantor's Theorem  so there exists an (onto) order isomorphism .  For each irrationalÐ Ñ 0 À Ä Hwhy? 
: − œ Ö; − À ;  :× 0 1 À Ä \‘   ‘, let  and extend  to an order isomorphism  by defining:

0Ð:Ñ œ 0Ò Ó ìsup .  :

Remark  In a separable space, any family of disjoint open sets must be countable ( ).  Thereforewhy?
we could ask whether condition iii) in Theorem 3.10 can be replaced by
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 iii)      every collection of disjoint open intervals in  is countable.w \

In other words,  thatcan we say

 (**)    a nonempty chain satisfying i), ii),  ) , and iv), must  be order isomorphic to ?iii w \ ‘

The (SH) states that the answer to (**) is “yes.” The status of SH was famouslySouslin Hypothesis
unknown for many years.   Work of Jech, Tennenbaum and Solovay in the 1970's showed that SH is
consistent with and independent of the axioms ZFC for set theory that is, SH is  in ZFC. undecidable
We could add either SH or its negation as an additional axiom in ZFC without introducing an
inconsistency.  If one assumes that SH is false, then there is a nonempty chain satisfying i), ii), iii) ,w

and iv) but not order isomorphic to :  such a chain is called a .‘ Souslin line

SH was of special interest for a while in connection with the question “if  is a T -space, is \ \ ‚ Ò!ß "Ó%

necessarily ? ”  In the 1960's, Mary Ellen Rudin showed that if she had a Souslin line to workX%

with that is, if SH is false then the answer to the question was “no.”    ÐSee the remarks following
Example III.5.7Ñ

There are lots of equivalent ways of formulating SH—for example, in terms of graph theory.  There is
a very nice expository article by Mary Ellen Rudin on the Souslin problem in the American
Mathematical Monthly, 76(1969), 1113-1119.  The article was written before the consistency and
independence results of the 1970's and deals with aspects of SH in a “naive” way.
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Exercises

E1. Prove or disprove:  if  is a relation on  which is both symmetric and antisymmetric, then V \ V
must be the equality relation “ ”.œ

E2.  State and prove a theorem of the form:

 A power set , ordered by inclusion, is a chain iff  . . .cÐ\Ñ

E3. Suppose  is a poset in which every nonempty subset contains a largest and smallestÐ\ß Ÿ Ñ
element.  Prove that  is a finite chain.Ð\ß Ÿ Ñ

E4.  Prove that any countable chain  is order isomorphic to a subset of  ÐPß Ÿ Ñ Ð ß Ÿ ÑÞ
( )Hint:  See the “Caution” in the proof of Cantor's Theorem 3.7.

E5. Let  be an infinite poset.  A subset  of  is called  if no two distinctÐ\ß Ÿ Ñ G \ totally unordered
elements of  are comparable, that is:G

    a+ − G a, − G Ð+ Ÿ ,Ñ Í Ð+ œ ,Ñ

Prove that   has a subset which is an infinite chain   has a totally unordered infiniteeither or\ G \
subset .G

E6. Let  be a poset in which the  chain has length  ( ).  Prove that  can beÐ\ß Ÿ Ñ 8 8 − \longest 
written as the union of  totally unordered subsets ( ) and the  is the smallest natural number8 8see E5
for which this is true.

.
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4. Order Types

In Chapter I, we assumed that we can somehow assign a cardinal number  to each set in such al\l \ß
way that iff there exists a bijection   Similarly, we now assume that we canl\l œ l] l 0 À \ Ä ] Þ
assign to each  an “object” called its  and that this is done in such a way that two chainschain order type
have the same order type iff the chains are order isomorphic.  Just as with cardinal numbers, an exact
description of how this can be done is not important here.  In axiomatic set theory, all the details  can
be made precise.  Of course, then, the order type of a chain turns out itself to be a certain set (since
“everything is a set” in ZFC).  For our purposes, it is enough just to take the naive view that “order-
isomorphic” is an equivalence relation among chains, and that each equivalence class is an order type.

We will usually denote order types by lower case Greek letters such as with a few. / 7 =ß ß ß 
traditional exceptions mentioned in the next example.  If  is the order type of a chain , we say that. Q
Q represents ..

Example 4.1

 1) Two chains with the same order type are order isomorphic.  Since the order isomorphism is
a bijection, chains with the same order type also have the same cardinal number. But the converse is
false:   and  have the same cardinal number but they they have different order types because the sets 
are not order isomorphic.
     However, two  chains have the same cardinality iff they are order isomorphic.finite
Therefore, for finite chains, we will use the same symbol for both the cardinal number and the order 
type.  ÐIn the precise definitions of axiomatic set theory, the cardinal number and the order type of
a finite chain  turn out to be the same set!do Ñ

 2)   is the order type of ! g
    is the order type of " Ö!×
    is the order type of # Ö!ß "×
    .
    .
    .
    is the order type of 0   .8 Ö ß "ß ÞÞÞ ß 8  "×
    .
    .
     .
    is the order type of   ( )= ! The subscript “ ”  hints at bigger things to come.!
   is also the order type of  since this chain is order isomorphic to .= „ ! œ Ö#ß %ß 'ß ÞÞÞ×

 Notice that each order type in this example is represented by “the set
 .”of preceding order types

Definition 4.2   Let  and  be order types represented by chains  and .  We say that if. / . /Q R Ÿ
there exists an order isomorphism  of   .  We write  if  but  that is,0 Q R  Ÿ Á Ðinto . / . / . /
Q ¶Î RÑÞ (Check that the definition is independent of the chains  and  chosen to represent Q R .
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and ./ )

Example 4.3   Let  be the order type of a chain . Since  is order isomorphic to a subset of . Q g Q
we have .  More generally,  .! Ÿ !  "  #  ÞÞÞ . =!

Suppose  has order type .  With a little reflection, we can create a new chain ) byÐ\ß Ÿ Ñ Ð\ß Ÿ. ‡

defining  iff .  We write  for the order type of ).   For example,  is the orderB Ÿ C C Ÿ B Ð\ß Ÿ‡ ‡ ‡ ‡
!. =

type of the chain ... , 2, 1  of negative integers.  Since  and    ( ), we seeÖ   × ŸÎ ŸÎ= = = =! !! !
‡ ‡ why?

that .two order types may not be comparable

The relation  between order types is reflexive and transitive but it is forŸ not antisymmetric
example, let and  be order types of the intervals  and : then  and  but . / . / / . . /Ð!ß "Ñ Ò!ß "Ó Ÿ Ÿ Á Þ
Therefore is  among order types.Ÿ not even a partial ordering

Definition 4.4  For , let  be pairwise disjoint chains and suppose that the index set α − E ÐQ ß Ÿ Ñ Eα α

is also a chain.  We define the  as the chain , , where we defineordered sum  α α αα−E −EQ Ð Q Ÿ Ñ

     if  
and ,    or

  and  
B Ÿ C

Bß C − Q B Ÿ C
 − Eß B − Q C − Q α α

α "α "

We can “picture” the ordered sum as laying the chains  “end-to-end” with larger 's further to theQα α
right.  In particular, for  disjoint chains  and , the ordered sum two ÐQß Ÿ Ñ ÐRß Ÿ Ñ ÐQ Rß Ÿ ÑQ R

is formed by putting  to the right of  “larger than”   and using the old orders inside each of R Ð Ñ Q Q
and .R

Definition 4.5  Suppose is a chain and that for each , we have an order type .  Let theE − Eα .α
. .α α αα's be represented by pairwise disjoint chains . Then  as order type of the chainQ 

−E

Ð Q Ÿ Ñ Q R
α α−E , .  In particular, if  and  are order types represented by disjoint chains  and , then. /

. / ÐQ Rß Ÿ Ñ is the order type of the ordered sum .  (Check that sum of order types is
independent of the disjoint chains used to represent the order types. )

Example 4.6  Addition of order types is clearly associative:  .  It isÐ  Ñ  œ  Ð  Ñ. / 7 . / 7  not
commutative.  For example , since a chain representing the left side has a largest= =! ! " Á " 
element but a chain representing the right side does not.  In general, for ,  while, if8 − 8  œ = =! !

7 Á 8 − Á  8 Á 7 = = =, .  Of course, chains representing these different order types all! ! !

have cardinality .i!

The order type   is represented by the ordered set  , , ,  where “ ; ”= =! ! " # $ Ö!ß "ß #ß $ß ÞÞÞ à + + + ÞÞÞ×
indicates that each  is larger than every .  Less abstracting,   could also be represented by+ 8 3 ! != =
the chain 1 : 2 : .Ö  8 − × ∪ Ö  8 − × ©1 1

8 8  

= = ™ = = = =‡ ‡ ‡
! ! ! !! !  œ  is the order type of the set of integers .   Is  ?  (Why or why not?  Give an

example of a subset of  that represents  = =!
‡
! ÞÑ

Example 4.7  It is easy to prove that every countable chain  is order isomorphic to a subset of :G 
just list the elements of  and inductively define a one-to-one mapping into  that preserves order atG 
each step ( )see the “attempted” argument that precedes that actual proof of Cantor's Theorem 3.7
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Theorem 3.7).  But if  , then thereevery countable order type can be represented by some subset of 
can be   different countable order types.at most -

As a matter of fact, we can prove that there are   different countable order types.  Aexactly -
sketch of the argument follows: the details are easy to fill in  (or see W. Sierpinski, Cardinal
and Ordinal Numbers  and old “Bible” on the subject with much more information than
anybody would want to know.)

™ 0 = =has order type .  For each sequence ,  we can defineœ  + œ Ð+ ß + ß + ÞÞÞÑ − Ö!ß "×!
‡

! " # $


an order type

  1 . . .0 0 0 0+ " # $œ  "  +    +   "  + 

It is not hard to show that the map  is one-to-one.  Here is a sketch of the argument:+ È 0+

We say that two elements of a chain to be in the same  if there are onlycomponent
finitely many elements between them.  (This use of the word “component” has nothing
to do with connectedness.)  It is clear all elements in the same component are smaller
(or larger) than all elements in a different component; this observation lets us order the
components of the chain.

Suppose  is a chain representing  and let the  components of  (listed inG G0+ finite
order of increasing size)  be  where  has order type .J ß J ß ÞÞÞ ß J ß ÞÞÞ J "  +" # 8 8 8

Let  and suppose  is a chain that represents .  Call the + Á , − Ö!ß "× G w
,0 finite

components of  (listed in order of increasing size)   where  hasG J ß J ß ÞÞÞ ß J ß ÞÞÞ Jw w w w w
" # 8 8

order type ."  ,8

An order isomorphism between  and  would necessarily carry  to  for everyG G J Jw w
8 8

8 8 "  + "  , ".  But this is impossible since, for some ,   of  and  is  and theone 8 8

other is .#

Thus, there are at least as many different countable order types as there are sequences
+ − Ö!ß "× -, namely .

  

Definition 4.8  Let ) and  be chains representing the order types  and .  WeÐQß Ÿ ÐRß Ÿ ÑQ R . /
define the product   to be the order type of ), where , ) , ) iff ./ ÐR ‚Qß Ÿ Ð8 7 Ÿ Ð8 7 8  8" " # # " R #

or (  and ).8 œ 8 7 Ÿ 7" # " Q #

           This ordering  on  is called the  (or )  since theŸ R ‚Q lexicographic dictionary order
pairs are ordered “alphabetically.”

Example 4.9

 a) .  To see this, we can represent  by  and 2 by .  Then the chain# † œ Ö!ß "×= = = ! ! !

representing 2 , listed in increasing (lexicographic) order, is † ‚ Ö!ß "× œ ÖÐ"ß !Ñß Ð"ß "Ñß Ð#ß !Ñß= !
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Ð#ß "Ñß Ð$ß !Ñß Ð$ß "Ñß Ð8ß !Ñ Ð8ß "Ñ ÞÞÞ ×... , , , , and this chain is order isomorphic to .  More generally,
8 † œ 8 − Þ= = ! ! for each 

                However, 2 .  The product 2  is represented by  ordered as:= = = ! ! !† Á † Ö!ß "× ‚

    ; ÖÐ!ß "Ñß Ð!ß #Ñß ÞÞÞß Ð!ß 8Ñß ÞÞÞ Ð"ß "Ñß Ð"ß #Ñß ÞÞÞß Ð"ß 8Ñß ÞÞÞ×

This chain is not order isomorphic to    has only one element with no “immediate predecessor,” À
while this set has two such elements.  In fact, 2 = .  Thus, multiplication of order types is= = =! ! !† 
not commutative.

 b) 2 1 1 .  Thus the “right distributive” law= = = = = = =! ! ! ! ! ! !œ † œ Ð"  "Ñ † Á †  † œ 
fails.

 c)  can be represented by the lexicographically ordered chain  . In order of increasing=  !
# ‚

size, this chain is:

ÖÐ"ß "Ñß Ð"ß #Ñß ÞÞÞ à Ð"ß 8Ñß ÞÞÞ à Ð#ß "Ñß Ð#ß #Ñß ÞÞÞß Ð#ß 8Ñß ÞÞÞ à ÞÞÞ à ÞÞÞ à Ð8ß "Ñß Ð8ß #Ñß ÞÞÞ ß à ÞÞÞ ×

The chain looks like countably many copies of  placed end-to-end, so we can also write:

= = = = . . =  =! !
# #

! ! ! 8− 8 8 !œ   ÞÞÞ   ÞÞÞ œ œ  where each .  A subset of  that represents 

is .Ö5  À 5ß 8 œ "ß #ß $ß ÞÞÞ ×"
8

   

Exercise  Prove that

   1) multiplication of order types is associative

   2) the left distributive law holds for order types: .. / ./ .7Ð  >Ñ œ 

Note:  Other books may define “in reverse” as the order type of the lexicographically ordered set./
Q ‚R .  Under that definition, Also, under the “reversed” 2 and .  = = = = = =! ! ! ! ! !† œ # œ  Á
definition, the right distributive law holds but the left distributive law fails.

         Which way the definition is made is not important mathematically.  The arithmetic of order types
under one definition is just a “mirror image” of the arithmetic under the other definition.  You just
need to be aware of which convention a writer is using.
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Exercises

E7. Give  the lexicographic order , and let  represent an open interval in Ò!ß "Ó Ÿ Ð+ß ,Ñ Ò!ß "Ó Þ# #

Describe what a “small” open interval around each of the following  looks like:  points Ð!ß Ñß Ð!ß "Ñß"
#

Ð ß !Ñß Ð"ß !Ñ"
# .

E8.  For each , we can write  uniquely in the form 2 (2  for integers 0.+ − + œ =  "Ñ <ß =   a <

Suppose 2 (2 ) .  Define  if , or ,  or  and .  What+ œ =  " − + + œ + < < = w < w w w w w ww
 Ÿ +  < œ < = 

is the order type of ( , )?  Does a nonempty subset of ( , ) necessarily contain a smallest Ÿ Ÿ
element?

E9.  Show that it is impossible to define an order on the set  of complex numbers in such a wayŸ ‚
that all three of the following are true:

 i)  for  all , exactly one of , or  holdsDß A − B œ Aß B  A D  A‚
 ii) for all if , then ?ßAß D − À D  A D  ?  A  ?‚
 iii) if , then B ß C  ! BC  !

(Hint: Begin by showing that if such an order exists, then .  But notice that this, in itself, is not "  !
a contradiction.)

E10.  Give explicit examples of subsets of  which represent the order types:

        a)   = =! ! " 

       b)  = =!
#

!

      c)  = =!
#

! # †  $

   d) 2= =!
#

! †  $

 e)  = =! !
# #

    f)  = =!
$

!

E11.  Let  be the order type of .( 
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 a) Give an example of a set  such that neither  nor  has order type .F © F F  (

 b) Prove that if  is a set of type  and ,  then either  or  contains a subsetE F © E F EF(
of type .(

 c) Prove or disprove:    .( ( ( "  œ

Hint:  Cantor's characterization of  as an ordered set may be helpful.

E12.  A chain  is called an -set if the following condition holds in Ð\ß Ÿ Ñ \ À("

  (*)   Whenever  and  are countable subsets of  such that  for every choice ofE F \ +  ,
  and , then  such that  for all  and all + − E , − F b- − \ +  -  , + − E , − F

More informally, we could paraphrase condition (*) as:   for countable subsets ,  of E F \ß
“ ”   such that “ ”E  F Ê b- − \ E  -  F

 a) Show that  is not an -set.‘ ("

 b) Prove that every -set is uncountable.("
        Hint: there is a one line argument; note that  is countable.g
 

 c) By b), an -set  satisfies , and so  (" "Ð\ß Ÿ Ñ ± \ ±   i l\l   - if we assume the continuum
         .  Prove that   assuming CH.hypothesis,  CH withoutl\l   -
       Hint: show how to define a one-to-one function ;  begin by defining  on .0 À Ä \ 0‘ 

More generally, a chain  is called an -set if, whenever  and  are subsets of , both ofÐ\ß Ÿ Ñ E F \(α
cardinality  , then there is a  such that “ ”.  So, for example, an -set is i B − \ E  B  Fα (!
simply an order dense chain.
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5. Well-Ordered Sets and Ordinal Numbers

We now look at a much stronger kind of order on a set.Ÿ

Definition 5.1  A poset (  is called  if every nonempty subset of  contains a\ß Ÿ Ñ \well-ordered
smallest element.

The definition implies that a well-ordered set  is automatically a chain:  if , then set \ + Á , − \ Ö+ß ,×
has a smallest element, so either  or  .+ Ÿ , , Ÿ +

 ™ ™ and all its subsets are well-ordered. The set of integers, , is not well-ordered since, for example, 
itself contains no smallest element.   is not well-ordered since, for example, the nonempty interval‘
Ð ß "Ñ0  contains no smallest element.

Since a well-ordered set  is a chain, it has an order type.  These special order types are very nicely\
behaved and have a special name.

Definition 5.2  An  (or simply ) is the order type of a well-ordered set.ordinal number ordinal

Since we know how to add and multiply order types, we already know how to add and multiply
ordinals and get new ordinals.  We also have a Definition 4.2 for and  that applies to ordinals. Ÿ

Theorem 5.3  If  and  are ordinals, so are  and .α " α " α " †
 
Proof Let  and  be represented by disjoint well-ordered sets  and .  Then  is representedα " α "E F 
by the ordered sum .  We must show this set is well-ordered.  Since  is a chain, we onlyEF EF
need to check that a nonempty subset  of  must contain a smallest element.G E F

F G © F G G ∩ E Á g E is well-ordered so, if , then has a smallest element.  Otherwise  and, since  is
well-ordered, there is a smallest element .  In that case  is the smallest element of .- − G ∩ E - G

Similarly, we need to show that the lexicographically ordered product  is well-ordered.  If  is aF ‚E G
nonempty subset of , let  be the smallest first coordinate of a point in more precisely, letF ‚E , G À!

, Ö, − F À + − Eß Ð,ß +Ñ − G×Þ +! ! be the smallest element in for some   Then let  be the smallest
element in .  Then  is the smallest element in .  (Ö+ − E À Ð, ß +Ñ − G× Ð, ß + Ñ G! ! ! Intuitively,  isÐ, ß + Ñ! !

the point at the “lower left corner” of  The fact that  and  are well-ordered guarantees thatGÞ F E
such a point exists.)    ñ

Some examples of ordinals (increasing in size) are

 0, 1, 2, ... ,  , , , ... , , ... , , , ... ,  , ... ,= = = = = = =! ! ! ! ! ! ! "  #  8 † # † #  " † #  8

 3, ... , , ..., , , ... ,  , , ...,  , ÞÞÞ † † 8  "    "  † # ÞÞÞ= = = = = = = = = =! ! ! ! !! ! ! ! !
# # # # #
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All these ordinals can be represented by countable well-ordered sets (in fact, by subsets of ) so we
refer to them as “countable ordinals.”  We will see later (assuming AC), there are well-ordered sets of
arbitrarily large cardinality so that this list of ordinals barely scratches the surface.

Exercise 5.4  Find a subset of  that represents the ordinal . = =!
#

! † $  #

Here are a few very simple properties of well-ordered sets.  Missing details should be checked as
exercises.

 1) In a well-ordered set , each element  except the largest (if there is one) has an\ +
“immediate successor”— namely, the smallest element of the nonempty set .ÖB − \ À B  +×
However, an element in a well-ordered set might not have an immediate predecessor:  for example in
Ö"  À 8 − × ∪ Ö#  À 8 − × ∪ Ö#×ß " #" "

8 8  neither  nor  has an immediate predecessor.  This set
represents the ordinal = =! !  "Þ

 2)  A subset of a well-ordered set, with the inherited order, is well-ordered.

 3) Order isomorphisms preserve well-ordering: if a poset is well-ordered, so is any order
isomorphic poset.  An order isomorphism preserves the smallest element in any nonempty subset.

The following theorems indicate how order isomorphisms between well-ordered sets are much less
“flexible” than isomorphisms between chains in general. .

Theorem 5.5  Suppose  is well-ordered.  If  is a one-to-one order-preserving map of Q 0 À Q Ä Q ß Q
into , then  for all .Q 0Ð7Ñ   7 7 − Q

The theorem says that  cannot move an element “to the left.”  Notice that Theorem 5.5 is false for0
chains in general: for example, consider  and .  On the other hand, if you try toQ œ 0ÐBÑ œ B‘ 1

2
construct a counterexample using , you will probably see how the proof of the theorem shouldQ œ 
go.
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Proof Suppose not. Then .  Let  be the smallest element in .E œ Ö7 − Q À 0Ð7Ñ  7× Á g 7 E!

We get a contradiction by asking  “what is ” ?  0Ð0Ð7 ÑÑ!

Since , .   Since  preserves order and is one-to-one,   which7 − E 0Ð7 Ñ  7 0 0Ð0Ð7 ÑÑ  0Ð7 Ñ! ! ! ! !

means that .   But that is impossible because  is the  element of   0Ð7 Ñ − E 7 EÞ ì! ! smallest

Corollary 5.6  If  is well-ordered, then the  order isomorphism  from  onto  is the identityQ 0 Q Qonly
map .0Ð7Ñ œ 7

(  Note that the theorem is false for chains in general: if , then is an onto orderQ œ 0ÐBÑ œ B‘ $

isomorphism. orollaries 5.6 and 5.7 indicate that well-ordered sets have a very “rigid” structure. C )

Proof Let   be an order isomorphism.  By Theorem 5.5,  for all .   If  is0 À Q Ä Q 0Ð7Ñ   7 7 0
not the identity, then .  Let  be the least element of .E œ Ö7 À 0Ð7Ñ  7× Á g 7 E!
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Then  cannot be in ran   ( ).  7 Ð0Ñ ì! why?

Corollary 5.7  Suppose  and  are well-ordered.  If  and  are orderQ R 0 À Q Ä R 1 À Q Ä R
isomorphisms from onto , then .  (Q R 0 œ 1 So M and N can be order isomorphic “in only one way.”Ñ

Proof  If , then  and  are two different order isomorphisms from  onto , and that0 Á 1 0 0 1 0 Q Q" "

is impossible by the preceding corollary.  ì

Exercise 5.8   Find two different order isomorphisms between  and the set of positive reals .‘ ‘

We have already seen that order types, in general, are not very nicely behaved.  Therefore, during this
the following discussion about well-ordered sets and ordinal numbers, there is a certain amount of
fussiness in the notation to make sure we do not jump to any false conclusions.  Much of this
fussiness will drop by the wayside as things become clearer.

In a nonempty well-ordered set , we will often refer to the smallest element as .  (Q ! In fact, without
loss of generality, we can literally assume   the smallest element ! Qis .)  If we need to carefully
distinguish between the first elements in two well-ordered sets  we may write them as  andQßR !Q
!R .  ( )This might be necessary if, say,  and the smallest elements of  and  are different.R © Q R Q
But usually this degree of care is not necessary.

Definition 5.9  Suppose , where  is well-ordered.  7 − Q Q The initial segment of determinedQ
by 7 œ ÖB − Q À B  7× Ò! ß7Ñ.  We can write this set using the “interval notation” .Q Q

If a discussion involves only a single well-ordered set , we may simply write or evenQ Ò!ß7ÑQ
just Ò!ß7ÑÞ
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Notice that:

 i) For every , , so   an initial segment of itself, and we will see in7 − Q Q Á Ò!ß7Ñ Q is not
Theorem 5.10 that much more is true:    an initial segment ofQ cannot even be order isomorphic to
itself.

 ii) Order isomorphisms preserve initial segments: if  is an order isomorphism of0 À Q Ä R
Q R 0ÒÒ!ß7ÑÓ œ Ò!ß 0Ð7ÑÑ onto , then 

 iii) Given any two initial segments in a well-ordered set , one of them is an initial segmentQ
of the other. More precisely, if ,  then  “the initial segment in  determined by7  8 − Q Q
7 œ ÖB − Q À B  7× œ ÖB − Ò!ß 8Ñ À B  7× œ Ò!ß 8Ñ 7” “the initial segment in  determined by .”

Theorem 5.10  Suppose  is well-ordered and .   is not order isomorphic to an initialQ R © Q Q
segment of . In particular ( ,   is not order isomorphic to an initial segment of itself.R Ñ Qwhen R œ Q

Proof Suppose .  If  is one-to-one and order preserving, then Theorem8 − R © Q 0 À Q Ä R © Q
5.5 gives us that for each   Therefore for each  ran  0Ð8Ñ   8 8 − RÞ ß 8ß Ð0Ñ Á Ò! ß 8ÑÞ ìR

Corollary 5.11  No two initial segments of  are order isomorphic (so each initial segment of , asQ Q
well as  itself, represents a  ordinal).Q different

Proof  One of the two segments is an initial segment of the other, so by Theorem 5.10 the segments
cannot be order isomorphic. ì

Definition 5.12  Suppose  and  are ordinals represented by the well-ordered sets  and .  We say. / Q R
that  if  is order isomorphic to an initial segment of that is  for some .. / Q R  Q ¶ Ò!ß 8Ñ 8 − R
If  is order isomorphic to  we write .  We write  if  or .   (Q R œ Ÿ  œ. / . / . / . / Check that the
definition is independent of the choice of  well-ordered sets  and  representing Q R +8.. /.)

Note:  We already have a different definition (4.2) for when we think of   and  as. / . /Ÿ
arbitrary order types. It will turn out for ordinals that the two definitions are equivalent, 
that is:

 for  sets  and : well-ordered Q R

   is order isomorphic to a proper subset of  but not to  itselfQ R R
     Ô Ð‡Ñ
               is order isomorphic to an initial segment of .Q R

The equivalence *  is  true for chains in general: for example, each of  and  isÐ Ñ Ò!ß "Ó Ð!ß "Ñnot
order isomorphic to a  of the other, but neither is order isomorphic to an subset initial segment
of the other (why?)

Until Corollary 5.19, where we prove the equivalence we will be using the new definition * , Ð Ñ
5.12 of for ordinals  .. /Ÿ
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The relation among ordinals is clearly reflexive and transitive.  The next theorem implies that  isŸ Ÿ
antisymmetric and therefore  . Ÿany set of ordinals is partially ordered by

Theorem 5.13  If   and  are ordinals, then  of the relations  , and  can. / . / . / . /at most one  ß œ 
be true.

Proof   Let  and  represent  and .  If , then .  In this case,  and  areQ R œ Q ¶ R  . / . / . / / .
impossible since a well-ordered set cannot be order isomorphic to an initial segment of itself  (Theorem
5.10).

If , then  is isomorphic to an initial segment of .  If  were also true, then  would, in. / / . Q R  R
turn, be isomorphic to an initial segment of .  By composing these isomorphisms, we would have Q Q
order isomorphic to an initial segment of itself which is impossible.   ì

Notation  For an ordinal , let ord  is an ordinal and .  If , then ord. . α α α . . .Ð Ñ œ Ö À  × œ ! Ð Ñ œ g
and if , then ord  so ord( ) .  Like any set of ordinals, we know that ord  is. . . . ! ! − Ð Ñß Á g Ð Ñ
partially ordered by .Ÿ

It turns out that much more is true: every set of ordinals is actually  by , but to see thatwell-ordered Ÿ
takes a few more theorems. However, ord( ) is a very  set of ordinals and, for starters, Theorem. special
5.14 tells us that ord  is well-ordered by .  Theorem 5.14 also gives us a very nice “standard” wayÐ Ñ Ÿ.
to pick a well-order that represents an ordinal ..

Theorem 5.14  If  is an ordinal represented by the well-ordered set , then ord .  Therefore. .Q Ð Ñ ¶ Q
ord  is a  set of ordinals and ord   .Ð Ñ Ð Ñ. . .well-ordered represents

Proof  For each ordinal ord , we have , so  can be represented by some initial segmentα . α . α− Ð Ñ 
Ò!ß7 Ñ QÞ 0 À Ð Ñ Ä Q 0Ð Ñ œ 7 0α α of Define ord by .  This function  is one-to-one since different. α
ordinals cannot be represented by the same initial segment of , and  clearly preserves order.Q 0

If , then the initial segment  in  represents some ordinal .  But  is represented7 − Q Ò!ß7Ñ Q α . α
by .  Since different initial segments of  are not isomorphic, we get  so  isÒ!ß7 Ñ Q 7 œ 7 œ 0Ð Ñ 0α α α
onto.   Therefore ord .  Ð Ñ ¶ Q ì.

We will often write ord  in “interval” notation: Ð Ñ.

  For an ordinal ,   is an ordinal and ord. . α α α . .Ò!ß Ñ œ Ö À  × œ Ð Ñ

By 5.14,   is well-ordered and represents the ordinal ; therefore Ò!ß Ñ. . any ordinal  can be represented.
by the set of preceding ordinals.

For example,

0 is represented by the set of preceding ordinals, namely ord(Ò!ß !Ñ œ !Ñ œ g
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1 is represented by ordÒ!ß "Ñ œ Ð"Ñ œ Ö!×

2 is represented by ord(Ò!ß #Ñ œ #Ñ œ Ö!ß "×

   ã
  
= = =! ! ! is represented by  ordÒ!ß Ñ œ Ð Ñ œ Ö!ß "ß #ß ÞÞÞß 8ß ÞÞÞ×

= = =! ! ! " Ò!ß  "Ñ œ Ö!ß "ß #ß ÞÞÞß 8ß ÞÞÞ à × is represented by  
    ( )here, “ ” indicates that  comes “after” all the natural numbers à 8=!

     ã

α is represented by the set of previously defined ordinals

     etc.
              ã

 Some comments about axiomatics

The informal definition of ordinals is good enough for our purposes,  However,  the preceding list
roughly illustrates how one can  ordinals in axiomatic set theory ZFC.  For example, in ZFC thedefine
ordinal   by   (rather than saying that the set  the ordinal ).# # œ Ö!ß "× Ö!ß "×is defined represents #

Definition

 0     œ g
 1 œ Ö!× œ Ög×
 2 œ Ö!ß "× œ Ögß Ög××
  ã
 =! œ Ö!ß "ß #ß ÞÞÞß 8ß ÞÞÞ ×
 = =! ! " œ Ö!ß "ß #ß ÞÞÞß 8ß ÞÞÞà ×
  ã
            etc.

and in general, an ordinal the set of previously defined ordinals.  Of course, thisα œ
presentation is still a little vague:  in particular, some sort of “induction” in ZFC is needed
to justify the “etc.” where an ordinal is defined in terms of ordinals already defined. 

 

Once we have defined ordinals (as sets) in ZFC, we need to say how they are compared,  that is, how to
define .  We do this for ordinals  and  by writing   iff .  This seems toŸ  −α " α " α "
accomplish what we want.  For example:

  because "  $ " − $

  because !  "  #  $  ÞÞÞ    " ! − " − # − $ − ÞÞÞ − −  " − ÞÞÞ= = = =! ! ! !

 because = = = =! ! ! !  "( −  "(
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  etc.

If  is  set well-ordered by , we can then define its ordinal number  “the ordinal number\ Ÿ Ð œany
associated with ”  as follows:  from the axioms ZFC one can prove the  of a function (set)\ Ñ existence
with domain  that is defined “recursively” by :\

     ran (a C − \ 0ÐCÑ œ 0lÖD − \ À D  C×Ñ

Then  “the ordinal number of ” is defined to be the set ran .\ Ð0Ñ

 For example, for the well-ordered set , what is the function  and what is the\ œ Ö"ß $ß &× 0
      ordinal number of ?\

  ran ran0Ð"Ñ œ Ð 0lÖD − \ À D  "×Ñ œ Ð0lg Ñ œ g
 
  ran ran0Ð$Ñ œ Ð 0lÖD − \ À D  $×Ñ œ Ð0lÖ"×Ñ œ Ög×

  ran ran0Ð&Ñ œ Ð 0lÖD − \ À D  &×Ñ œ Ð0lÖ"ß $×Ñ œ Ögß Ög××

       The ordinal number of  is ran\ Ð0Ñ œ Ö!ß Ög×ß Ögß Ög××× œ Ö!ß "ß #× œ $

In axiomatic set theory, cardinals are viewed as certain special ordinals:  an ordinal  is called aα
cardinal if for all ordinals  there is no bijection between  and that is a cardinal is an “initial" α " α 
ordinal” meaning that it's “the first ordinal with a given size.”   From that point of view  =!

is a cardinal because there is a bijection between  and  for any   Earlier, we gave this= =! !8 8  Þ
cardinal the name .  But  is not a cardinal because there is a bijection between  and i  "  "Þ! ! ! != = =

In Theorem I.13.2, we proved that  one of the relations (as defined for cardinalat most  ß œ ß 
numbers) can hold between two cardinals. ÐContext will make clear whether “ ” refers to theŸ
ordering of cardinals or ordinals.Ñ  We also  in Chapter I that (assuming AC)   one of thestated at least
relations must hold between any two cardinals that is, for any two sets one must be ß œ ß  
equivalent to a subset of the other. We are almost ready to prove that statement in fact, this statement
about cardinal numbers follows easily (assuming AC) from the corresponding result about ordinal
numbers which we now prove.

Theorem 5.15 (Ordinal Trichotomy Theorem)  If  and  are ordinals, then  of the. / at least one
relations , ,  must hold (and so, by Theorem 5.13,  of these relations. / . / . / œ  exactly one
holds).

Proof We already know that    of ordinals are well-ordered: for examplecertain special sets
Ò!ß Ñ œ Ö À  ×. α α α . is an ordinal and   (Theorem 5.14).

The theorem is certainly true if  or ,  so we assume both  and .. / . /œ ! œ !  !  !

Let  is an ordinal for which   }.  Because we do not yetH œ Ò!ß Ñ ∩ Ò!ß Ñ œ Ö À  . / α α α . α /and
know that  and  are comparable, the situation might look something like the following:. /
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H H © Ò!ß Ñ H Á g Ð ! − H H is well-ordered because , and  since ).  Therefore  represents some.
ordinal .  We claim that  and .$ $ . $ / ! Ÿ Ÿ

1) To show that , we assume  and prove .$ . $ . $ .Ÿ Á 

Ò!ß Ñ H © Ò!ß Ñ H Á H Á Ò!ß Ñ. . . $ . . represents . Since  and  represents , we conclude ,
so .   Let  be the smallest element in .   is an initialÒ!ß Ñ  H Á g Ò!ß Ñ  H Ò!ß Ñ. # . #
segment of .Ò!ß Ñ.

We claim .  ,  then  represents ; but  represents andH œ Ò!ß Ñ H H# # $If that is true
therefore $ # .œ  Þ

 If ,  then  and  element inÒ!ß Ñ © H À − Ò!ß Ñ − Ò!ß Ñ  œ# α # α . α # smallest
          , so .Ò!ß Ñ  H − H. α

 If , then  and  are comparable since both are in theH © Ò!ß Ñ À − H# α α #
          well-ordered set .Ò!ß Ñ.

        We examine the possibilities:

  i) :  impossible, since  and # α α #œ − H Â H

  ii) impossible, since that would mean# α À
   and , forcing # α . # α / # . /    − Ò!ß Ñ ∩ Ò!ß Ñ
  which is false.œ H 

        Therefore ,  so α # α # − Ò!ß ÑÞ

2) A similar argument (interchanging “ ” and “ ” throughout) shows that if ,. / $ /Á
then .$ # /œ 
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Since and ,  there are only four possibilities:$ . $ /Ÿ Ÿ

 a)  and , in which case which is impossible.$ . $ / $ . / $  − Ò!ß Ñ ∩ Ò!ß Ñ œ H œ Ò!ß Ñ 

Therefore one of the remaining three cases must be true:

 b)  and , in which case $ . $ / . /œ œ œ
 c)   and , in which case $ . $ / . / œ 
 d)   and , in which case       $ . $ / . /œ   ñ

Corollary 5.16  Any set of ordinals is linearly ordered with respect to the ordinal ordering .Ÿ
(W )e shall see in Theorem 5.20 that even more is true: every set of ordinals is well-ordered.

We simply state the following theorem. A proof of the equivalences can be found, for example, in Set
Theory and Metric Spaces Topology (Kaplansky) or (Dugundji).

Theorem 5.17  The following statements are equivalent.  (Moreover, each is consistent with and
independent of the axioms ZF for set theory:)

 1) ( )  If   is a family of pairwise disjoint nonempty sets, there isAxiom of Choice ÖE À − E×α α
a set  such that, for all ,  | .F © E E ∩ F ± œ " α αα

(This is clearly equivalent to the statement that  .  If  is in the product, let ran( ); onE Á g 0 F œ 0α

the other hand, if such a set  exists, define  by the unique element of . An elementF 0 0Ð Ñ œ E ∩ Fα α

0 − E 0Ð Ñ E Þα α is a function that “chooses” one element  from each α )

 2) ( ) Every set can be well-ordered, i.e., for every set  there is a subsetZermelo's Theorem \
Ÿ \ ‚\ Ð\ß Ÿ Ñ of  such that  is well-ordered.

 3) ( )  Suppose  is a nonempty poset.  If every chain in  has an upperZorn's Lemma Ð\ß Ÿ Ñ \
bound in , then  contains a maximal element.\ \

We will look at some powerful uses of Zorn's Lemma later.  For now, we are mainly interested in
Zermelo's Theorem.

It is tradition to call 2) Zermelo's  and 3) Zorn's .  They appear as “proven” results inTheorem Lemma
the early literature, but the “proofs” used some form of the Axiom of Choice (AC).  Generally, we have
been casual about mentioning when AC is being used.  However in the following theorems, for
emphasis,  indicates that the Axiom of Choice is used in one of these equivalent forms.ÒEGÓ

Corollary 5.18 [AC, Cardinal Trichotomy]   If  and  are cardinal numbers,  (and thus,7 8 at least one
by Theorem I.13.2 , exactly one) of the relations  holds.  (7  8ß 7 œ 8ß 7  8 Therefore any set of
cardinals is a chain.)

Proof   According to Zermelo's Theorem, we may assume that  and  are  setsQ R well-ordered
representing the cardinals and , so that  and  also represent ordinals  and .7 8 Q R . /
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By Theorem 5.15,  either ,   or ;  therefore either  and  are order isomorphic (in. / . . /œ  8ß  Q R
which case ) or one is order isomorphic to an initial segment of the other (so  or ).7 œ 8 7  8 8  7
ì

In fact, the Cardinal Trichotomy Corollary, is  to the Axiom of Choice.  (See Gillman, equivalent Two
Classical Surprises Concerning the Axiom of Choice and the Continuum Hypothesis, Am. Math.
Monthly 109(6), 2002, pp. 544-553 for this and other interesting results that do not depend on
techniques of axiomatic set theory.)  Over 200 equivalents to the Axiom of Choice are given in
Equivalents of the Axioms of Choice ÐRubin & Rubin, North-Holland Publishing, 1963).

The following corollary tells us that, , the two definitions of “ ” (Definition 4.2 andamong ordinals Ÿ
Definition 5.12) are equivalent.

Corollary 5.19  Suppose  and  are well-ordered sets representing  and .  If  is orderQ R Q. /
isomorphic to a subset of  ( ),  then  is order isomorphic toR Qso  in the sense of Definition 4.2. /Ÿ
R R or to an initial segment of  ( ).so in the sense of Definition 5.12. /Ÿ

Proof  Without loss of generality, we may assume If  is not order isomorphic to , thenQ © RÞ Q R
. / . /Á Q R  Þ.  If  is also not isomorphic to an initial segment of , then  is also false Therefore the
Trichotomy Theorem 5.15 gives . Then  is order isomorphic to an initial segment of a subset. / R
Q  ìof itself which violates Theorem 5.10.   

Theorem 5.20  Every set  of ordinals is well-ordered.  In particular, every nonempty set of ordinals[
contains a smallest element.

Proof  Theorem 5.15 implies that  is linearly ordered by .  We need to show that if  is a[ Ÿ E
nonempty subset of , then  contains a smallest element.  Pick .  If  is itself the smallest in[ E − Eα α
E Ö − E À  × , we are done.  If not, then  is nonempty and well-ordered because it is a subset of" " α
Ò!ß Ñ  [ ìα " "so it contains a smallest element , and  is the smallest element in .   ! !

Corollary 5.21 AC]Ò   Every set  of cardinal numbers is well-ordered.  In particular, every nonemptyG
set of cardinal numbers contains a smallest element.

Proof   We know that the order (among cardinals) is a linear order.  Let  be a nonempty subset ofŸ H
G 7 − H Q 7 Q and, for each cardinal , let  represent .  By Zermelo's Theorem, each set  can be well-
ordered, after which it represents some ordinal .  By Theorem 5.20, the set of all such 's contains a. .
smallest element  represented by Then  is clearly the smallest cardinal in .   .! ! ! !Q Þ 7 œ lQ l H ì

Example 5.22

 1) The set  is a cardinal and  has a smallest element.  It is called theG œ Ö7 À 7 i  7 Ÿ -×!

immediate successor of  and is denoted by or .  The statement  is the Continuumi i i - œ i! " "!


Hypothesis which, we recall, is independent of the axioms ZFC.  If CH is assumed as an additional
axiom in set theory, then .G œ Öi × œ Ö-×"
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 2) More generally, for any cardinal  we can consider the smallest element  in the set7 7

Ö5 À 5 7  5 Ÿ # × 7 7 is a cardinal and .  We call the  of .  In particular, we7  immediate successor
write  ,  , and so on.i œ i i œ i" #

 
# $

The Generalized Continuum Hypothesis is the statement

  GCH   “for every infinite cardinal ,  .”À 7 7 œ # 7

GCH and GCH are equally consistent with the axioms ZFC.  ( .µ Curiously, ZF GCH  implies AC
This is discussed in the Gillman article cited after Corollary 5.18.)

 3) In Example VI.4.6, we (provisionally) defined the  of a topological space  byweight Ð\ß Ñg
   
  min  is a base for .AÐ\Ñ œ i  Öl l À ×! U U g

We now see that the definition makes sense because there must exist a base of smallest cardinality.

Theorem 5.23   If  is a set of ordinals, then there exists an ordinal greater than any ordinal in .[ [
( )Therefore there is no “set of all ordinals.”

Proof  Let , and represent each ordinal  in  by a well-ordered set[ œ Ö  " À − [×  " [‡ ‡. . .
Q Q. . "1.  We may assume the 's are pairwise disjoint.  (If not, replace each  withQ."

Q ‚ Ö  "×." . , ordered in the obvious way.)  Form the ordered sum: that is, let W œ ÖQ À ."

. − [ × W, and order  by

    if  
, and  in 

 and 
B Ÿ C

Bß C − Q B Ÿ C Q

B − Q ß C − Q  . .

. /

" "

" " . /

  
Clearly,  well-orders , so  represents an ordinal .  Since each , we haveŸ W ÐWß Ÿ Ñ Q © W5 ."

. 5 . . 5 . 5 " Ÿ   " Ÿ − [ by Theorem 5.19.  Since  for each ,   is larger than any ordinal in
[ ì.   

Corollary 5.24  Every set  of ordinals has a least upper bound, denoted sup that is, there is a[ [ 
smallest ordinal every ordinal in .  [

Proof   Without loss of generality we may assume that if , then (α . α − [ − [ why? and where
is this assumption used in what follows?).  If contains a largest element, then it is the least upper[
bound. Otherwise, pick an ordinal  larger than every ordinal in .  Then  (it5 5[ Ò!ß  "Ñ [ Á g
contains ) and the smallest element in  is sup .  5 5Ò!ß  "Ñ [ [ ì

Example 5.25

 1) sup ,  and  sup{ , Ö!ß "ß #ß ÞÞÞß × œ !ß "ß #ß ÞÞÞ × œ= = =! ! !

 2) We say that an ordinal “has cardinal ” if it is represented by a well-ordered set with7
cardinality .  In particular, countable ordinals are those represented by countable well-ordered sets.7
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  3) sup  is a countable ordinal  is called . Since there is no largest countable ordinalÖ À ×α α ="

( ), we see that  is the  uncountable ordinal.  A set representing  must have cardinalwhy? = =" "smallest
i Ò!ß Ñ i  i" " " " " " ( ).  Since  represents , so there are exactly  ordinals  , that is, exactly why? = = =
countable ordinals. Each countable ordinal can be represented by a subset of   , so Ð Ñsee Example 4.7
there are exactly  nonisomorphic well-ordered subsets of .i" 

Since  is the smallest uncountable ordinal, each  is a countable ordinal that is represented by= α =" "
Ò!ß Ñα α =.  Therefore  has only countably many predecessors and is the first ordinal with uncountably"

many ( ) predecessors.i"

The spaces  and , with the order topology, have some interesting propertiesÒ!ß Ñ Ò!ß  "Ñ œ Ò!ß Ó= = =" " "

that we will look at later.  These properties hinge on the fact that  is the  uncountable=" smallest
ordinal.

The ordinals  , ... , , ... , , ... , , ... , , ... are all mere countable ordinals.  For ordinals= = = = =! ! ! !
# 8

! 8 † #
α " α,  it is possible to define “ordinal exponentiation” .  (" The definition is sketched in the appendix at

the end of this chapter.) Then it turns out that , , ... , , ... , are still countable ordinals.= = =! ! !
Ð Ñ= = =! ! !

!

 "
=

If you accept that, then you should also believe that sup , , , , ...  (  “  to the% = = = = =! ! !! ! !œ Ö × œ= = =! ! !
! !

!
= =

=

= =! ! power  times” ) is still countable.  Roughly, each element in the set has only countably many
predecessors and the set has only countable many elements, so the least upper bound of the set still has
only countably many predecessors—namely, all the predecessors of its predecessors.

But once you get up to , you can then form , , ..., take the least upper bound again, and still% % %! ! !
Ð Ñ% %! !

!%

have only a countable ordinal .  And so on.  So , the first ordinal with uncountably many% =" "

predecessors is way beyond all these:  “the longer you look at , the farther away it gets” (=" Robert
McDowell). 

We now look at some similar results for cardinals.

Lemma 5.26   If } and  are sets of cardinals and  for each ,Ö5 À − E Ö7 À − E× 5   7 − Eα α α αα α α
then . ( 5   7α α An infinite sum of cardinals is defined in the obvious way:  if the ' s areOα

pairwise disjoint sets with cardinality , then 5 5 œ l O lÞ Ñα α α 
Proof   Exercise

Theorem 5.27  If a set of cardinals  contains no largest element, then G œ Ö5 À − E× 5  5α α αα 
!

for each .α! − E

Proof For any particular , let 
 for 

α
α α!

!
− E Þ

7 œ 5
7 œ ! Á α α

α

! !

Then the lemma gives  . 5   7 œ 5α α α!

If  for some ,  would be the largest element in  which, by hypothesis, does not5 œ 5 5 Gα α α! !
α!

exist.  Therefore  for every .  5  5 − E ìα α! α!
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The conclusion  be true even if  has a largest element: for example, suppose .may G G œ Ö"ß #×
Can you give an example involving an infinite set  of cardinals?G

Corollary 5.28  If  is a set of cardinals, then there is a cardinal  larger than every member of G 7 G
(and therefore there is no “set of all cardinals”).

Proof  If  has a largest element , then let .  Otherwise, use the preceding theorem and letG 5 7 œ #5

7 œ Ö5 À 5 − G×Þ ì    

Corollary 5.29  Every set  of cardinal numbers has a least upper bound, that is, there is a smallestG
cardinal every cardinal in .  G

Proof  Without loss of generality, we may assume that if , then all cardinals smaller than  are: − G :
also in  ( ).  If  has a largest element , then  is theG G 5 5why? and where is this used in what follows?
least upper bound.  Otherwise, pick a cardinal  greater than all the cardinals in  and let7 G
W œ Ö: À : : Ÿ 7× W  G Á g 7 is a cardinal and .  Then  (it contains ) and the smallest cardinal in this
set is the least upper bound for .  G ì

6. Indexing the Infinite Cardinals

By Corollary 5.21, the set of  cardinals less than a given cardinal  is well-ordered, so this set isinfinite 5
order isomorphic to an initial segment of ordinals.  Therefore this set of cardinals can be “faithfully
indexed” by that segment of ordinals that is, indexed in such a way that  iff .  When 5  5 α " α "
the infinite cardinals are listed in order of increasing size and indexed by ordinals, they are denoted by
i's with ordinal subscripts.  In this notation, the first few infinite cardinals are

 ,  ( ), , ... , , ... , , , ... , , ... , , ... , i i œ i i Ð œ i Ñ i i i i i i! " # 8 "  ß! "
 

= = = = %=! ! ! ! !!
#

 ...  , ... .i ß i% =! ""ß

Thus, sup  and = sup .   is the first cardinal with uncountablyi œ Öi À 8  × i Öi À  × i= = α =! " "8 ! "= α =
many ( ) cardinal predecessors.i"

In this notation, GCH states that for every ordinal , .α # œ ii
"

α
α

By definition, | |.  So where is  is this list of cardinals?  The continuum hypothesis states- œ -‘
“ ”  However, it is a fact that for each ordinal , there exists an ordinal  such that the- œ i Þ " α " α
assumption “ ” is consistent with ZFC.  i œ - Ð Ñ" Perhaps  is more mysterious than you thought.‘
These results imply that not even the simplest exponentiation involving an infinite cardinal can be#i!

“calculated” in ZFC:  is ?  ?  ?# œ i œ i œ ii
" "( "

!
!=

On the other hand, one  consistently assume  “ ” for an arbitrary choice of : even incannot - œ iα α
ZFC, certain 's are provably excluded.  In fact,  if  is the least upper bound of a strictly increasingi iα α

sequence of smaller cardinals, we will   (and therefore ).  prove i  i i Á -α α α
i! It is also true, but we

will not prove it, that these are the  excluded 's it is consistent to assume 2 only i  œα
i! iα

for any cardinal  for which (Solovay, 1965)i i iα αα
i! œ Þ
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At the heart of what we need is a classical theorem about cardinal arithmetic.

Theorem 6.1 (Konig¨ Ñ  Suppose that for each ,  and  are cardinals with .  Thenα − E 7 8 7  8α α α α 
α αα α7  8 .

Proof Proving “ ” is straightforward; proving “ ” takes a little more work.Ÿ 

Let sets  and  represent  and .  We may assume the 's are pairwise disjoint and, sinceQ R 7 8 Rα α α α α

7  8 Q R 8 − R Qα α α α α α α, that each  is a  subset of .  For each , pick and fix an element proper α
and define  by:0 À Q Ä R α α

 for ,  , where 
if 
if 

B − Q 0ÐBÑ œ D − R DÐ Ñ œ
B œ
8 Áα α
α

!
 α

α α
α α

!

!

The 's are disjoint so  is well defined, and clearly  is one-to-one, so we conclude thatQ 0 0α 
α αα α7 Ÿ 8 .

We now show that  is impossible.  We do this by showing that if  is   7 œ 8 2 À Q Ä Rα α α α

one-to-one, then  cannot be onto.2

Let ran .  Let .   Since  is one-to-one,T œ Ð2Ñ œ 2Ò Q Ó œ 2ÒQ Ó 2ÒQ Ó œ T 2 α α α α

lT l œ 7 7 T α α α α so, for each , there are at most  different coordinates of points in thatα αth

is,   | .  Then we can pick a point  with  for everyÖD À D − T ×l Ÿ 7  8 A − R A Á Dα α α α α α α α

D − T A Tα α α, i.e.,  is not the -th coordinate of any point in .α

Define  by .  Then  for all , so ran .   A − R AÐ Ñ œ A A Â T A Â T œ Ð2Ñ ì α α αα α

Example 6.2  Suppose we have a strictly increasing  of cardinalssequence

      .! Á 7  7  ÞÞÞ  7  ÞÞÞ! " 5

For each , let , so  .  By Konig's Theorem,  ¨5 8 œ 7 7  8 7  8 œ 75 5" 5 5 5 5 55œ! 5œ! 5œ"
∞ ∞ ∞  

Ÿ 7
5œ!
∞

5  .

In particular:  if , then .  Since  ( ), we have7 œ i i  i i Ÿ i5 5 5 5 55œ! 5œ! 5œ!
∞ ∞ ∞  =! why?

      .i  i Ÿ i= =! !
!

5œ!
∞

5
i

Since , we conclude that  .- œ - - Á ii!
!=

Note: A similar argument shows that if a cardinal k is the least upper bound of a sequence of strictly
increasing cardinals, then , so .5  5 5 Á -i!

Exercise 6.3  For a cardinal , there are how many ordinals with cardinality  ?5 Ÿ 5
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7. Spaces of Ordinals

Let  be a set of ordinals with the order topology.  Since  is well-ordered,  is order isomorphic to\ \ \
some initial segment of ordinals   Therefore  and  are homeomorphic in their orderÒ!ß ÑÞ \ Ò!ß Ñα α
topologies.  Therefore to think about “spaces of ordinals” we only need look at initial segments of
ordinals .  We will look briefly at some general facts about these spaces.  In Section 8, we willÒ!ß Ñα
consider the spaces  and  in more detail.  These particular spaces have someÒ!ß Ñ Ò!ß  "Ñ œ Ò!ß Ó= = =" " "

interesting properties that arise from the fact that  is the first uncountable ordinal.="

According to Definition 3.1, a subbase for the order topology on consists of all sets\ œ Ò!ß Ñα

 ,    ÖB − Ò!ß Ñ À B  × œ Ò!ß Ñ α # # # α
and
 ,   0ÖB − Ò!ß Ñ À B  × œ Ð ß Ñ  α " " α "

The set of finite intersections of such sets is a base, so ( ) a basic open set has one of thecheck this!
following forms:

   where                 corresponds to the empty intersectionÒ!ß Ñß Ÿ Ð œ Ñ# # α # α
  ,  where  and Ð ß Ñ   ! Ÿ" # " # α

If then ; so suppose What does an efficient neighborhood base at a pointα α αœ !ß \ œ Ò!ß Ñ œ g  !Þ
7 α− Ò!ß Ñ look like?  .

If  is open in .  Therefore  is an isolated point in and7 α αœ ! À Ö!× œ Ò!ß "Ñ Ò!ß Ñ ! Ò!ß Ñ
ÖÖ!×× ! is an open neighborhood base at .

If , then any  open set containing must contain a set of the form :!   Ð ß Ó7 α 7 5 7basic

 if ,  then 7 # 7 7 #− Ò!ß Ñ − Ð!ß Ó © Ò!ß Ñ
 if ,  then 7 " # 7 " 7 " #− Ð ß Ñ − Ð ß Ó © Ð ß Ñ

Each set is open; and each set  is also closed because its complementÐ ß Ó œ Ð ß  "Ñ Ð ß Ó5 7 5 7 5 7
Ò!ß  "Ñ ∪ Ð ß Ñ ÖÐ ß Ó À ! Ÿ  ×5 7 α 5 7 5 7is open.   Therefore   is a neighborhood base of clopen
sets at .7

 Putting together these open neighborhood bases, we get that

   U 5 7 5 7 αœ ÖÖ!×× ∪ ÖÐ ß Ó À ! Ÿ   ×

 is a clopen base for the topology.

We noted in Example 3.4 that any chain with the order topology is Hausdorff   Therefore every ordinalÞ
space  is Hausdorff   Since there is a neighborhood base of closed (in fact, clopen)Ò!ß Ñ Þα
neighborhoods at each point [ ,  we know even more: Theorem VII.2.7 tells us that  is a7 α α− !ß Ñ Ò!ß Ñ
X$-space.  But still more is true.

Theorem 7.1   For any ordinal ,   is .α αÒ!ß Ñ X%
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As remarked earlier, every  with the order topology is but the proof is much simpler forchain X %

well-ordered sets.

Proof We know that  is , so need to prove that  is normal.  Suppose  and  areÒ!ß Ñ X Ò!ß Ñ E Fα α"

disjoint closed sets in Ò!ß ÑÞα

 If let a basic open set of form  disjoint from   (or,  if )7 5 7 7− Eß Y œ Ð ß Ó F Y œ Ö!× œ !7 7

 If , let a basic open set of form  disjoint from  (or,  if )7 5 7 7− F Z œ Ð ß Ó E Z œ Ö!× œ !7 7

We claim that if and , then :7 7" #− E − F Y ∩ Z œ g7 7" #

 The statement is clearly true if  or  so suppose both are .  Then  7 7 5 7" # " "œ !  ! Y œ Ð ß Ó7"

 and    We can assume without loss of generality that .Z œ Ð ß ÓÞ 7# 5 7 7 7# # " #

 If , then we have  which would mean thatÐ ß Ó ∩ Ð ß Ó Á g − Ð ß Ó Z ∩ E Á gÞ5 7 5 7 7 5 7" " # # " # # 7#

If  and , then  and  are disjoint open sets with  andY œ Y Z œ Z Y Z Y ª E Z ª FÞ ñ 
7 77 7−E −F

( )Why doesn't the same proof work for chains with the order topology?

Definition 7.2  An ordinal  is called a  ordinal if  and  has no immediate predecessor;  " " " "limit  !
is called a  ordinal if  or  has an immediate predecessor (that is,  for somenonlimit " " " #œ ! œ  "
ordinal ).#

Example 7.3
 
 1)  If  is a limit ordinal in  then for all , .  Therefore  is not" α 5 " 5 " " "Ò!ß Ñß  Ð ß Ó Á Ö ×
isolated in the order topology.  If  is a nonlimit ordinal, then  or, for some ," " #Ö × œ Ö!×
Ö × œ Ð ß Ó Ö × Ò!ß Ñ" # " " " α.  Either way,  is open so  is isolated.  Therefore the isolated points in  are the
exactly the points that are not limit ordinals.

 2)   is discrete:  it is homeomorphic to .Ò!ß Ñ= !

 3)  is homeomorphic to Ò!ß  "Ñ Ö"  À 8 − × ∪ Ö"×Þ= !
"
8

 4)  For what 's is connected?α αÒ!ß Ñ

Theorem 7.4   Suppose .  The ordinal space  is compact iff  for some ordinalα α α " ! Ò!ß Ñ Ò!ß Ñ œ Ò!ß Ó
" α " that is, iff contains a largest element . Ò!ß Ñ

Proof   Suppose  has no largest element. Then   is an open cover of .Ò!ß Ñ œ ÖÒ!ß Ñ À  × Ò!ß Ñα h # # α α
The sets in  are nested so, if there were a finite subcover, there would be a single set  coveringh #Ò!ß Ñ
Ò!ß Ñ − Ò!ß Ñ  Ò!ß ÑÞα # α #.  That is impossible since 

Conversely, suppose   If , then  is compact, so we  assume .Ò!ß Ñ œ Ò!ß ÓÞ œ ! Ò!ß Ó œ Ö!×  !α " " " "

Let  be an open cover of .  We can assume  consists of  open sets, that is, sets of the formh " hÒ!ß Ó basic
Ö!× Ð ß Ó Ö!× − Þ or .   In that case, necessarily,  5 7 h
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Let .  For some we have a set   If then  is a" " 5 " 5 " h 5 5 "" " " " " " " "œ  !  ß Ð ß Ó − Þ œ !ß ÖÖ!×ß Ð ß Ó×
finite subcover.

If  , then for some ( If , then  is a finite5 " 5 5 " h 5 5 " 5 "
"
 ! ß − ß Ó − Þ œ ! ÖÖ!×ß Ð ß Óß Ð ß Ó×# " # # # # # " "

subcover.

We proceed inductively. Having chosen , if  we can choose  (  so thatÐ ß Ó  ! ß Ó −5 " 5 5 " h5 5 5 5" 5"

5 5 "5 5" 5"− Ð ß ÓÞ

We continue until  occurs and this  happen in a finite number of steps because otherwise,58 œ !  must
we would generate an infinite descending sequence of ordinals ...  .  This is5 5 5 5" # $ 8     ÞÞÞ
impossible because then the well-ordered set , , ..., , ...  would have no smallest element.Ö ×5 5 5" # 8

When we reach , we have a finite subcover from  ( .     5 h 5 " 5 "8 8 " "œ ! À ÖÖ!×ß ß Óß ÞÞÞß Ð ß Ó× ñ8

Example 7.5  Ò!ß Ñ Ò!ß  "Ñ œ Ò!ß Ó Ò!ß Ó= = = =! ! ! !is not compact, but  is compact.  In fact,  is
homeomorphic to  Ö"× ∪ Ö"  À 8 − ×Þ"

8 

8. The Spaces  and Ò!ß Ñ Ò!ß Ó= =" "

Theorem 8.1   For each suppose .  Then sup that is, the8  ß  œ Ö À 8  ×  = α = α α = =! 8 " 8 ! "

sup of a countable set of countable ordinals is countable.

Proof Ò!ß Ñ Ò!ß Ñα α =8 8 "8 is countable so  is countable.  Since  has uncountably many
=!

predecessors,  there is an ordinal .  Then  for each , so# = α # α− Ò!ß Ñ  Ò!ß Ñ  8" 8 88


=!

α α = # =œ Ö À 8  × Ÿ  Þ ñsup 8 ! "

Corollary 8.2  Ò!ß Ó Ò!ß Ñ= =" " and  are not separable.

Proof  If  is a countable subset of , then sup   ThenH Ò!ß Ó œ ÐH  Ö ×Ñ  Þ= α = =" " "

clH © Ò!ß Ó ∪ Ö × Á Ò!ß ÓÞα = =" "

A dense set in  is also dense in , so  is not separable.     Ò!ß Ñ Ò!ß Ó Ò!ß Ñ ñ= = =" " "

Corollary 8.3   In no sequence from  can converge to .Ò!ß Óß Ò!ß Ñ= = =" " "

Proof Suppose  is a sequence in . Let sup   The 's are all inÐ Ñ Ò!ß Ñ œ Ö À 8 − ×  Þα = α α  = α8 " 8 " 8

the closed set , so .    Ò!ß Ó Ð Ñ ÄÎ ñα α =8 "
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Example 8.4   In Example III.9.8, we saw a rather complicated space  in which sequences are notP
sufficient to describe the topology. Corollary 8.3 gives an example that may be easier to “see” À
= = α = =" " 8 " "− Ò!ß Ñ Ð Ñ Ò!ß Þcl , but no sequence  in , ) can converge to 

This implies that  is not first countable. Of course,  is a countable neighborhoodÒ!ß Ó ÖÐ ß Ó À  ×= 5 7 5 7"

base at each point so the “problem” point is .  The neighborhood poset  (ordered by7 = = a " " ="

reverse inclusion) is very nicely ordered (in fact, well-ordered) but the chain of neighborhoods is just
“too long” and we cannot “thin it out” enough to get a countable neighborhood base at .="

In contrast, the basic neighborhoods of  in the space  were very badly “entangled”  TheÐ!ß !Ñ P Þ
neighborhood system  had a very complicated order structure too complicated for us to find aaÐ!ß!Ñ 

countable subset of  that “goes arbitrarily far out” in the poset.  (aÐ!ß!Ñ See discussion in Example
2.4.6).

In Theorem IV.8.11 we proved that certain implications hold between various “compactness-like”
properties in a topological space .\

 (*)  is countably compact  is pseudocompact.
 is compact

         or
 is sequentially compact




\

\
Ê \ Ê \

We asserted that, in general, no other implications are valid. The following corollary shows that
“sequentially compact” “compact”   (and therefore “countably compact” “compact” andÊÎ ÊÎ
“pseudocompact” “compact” ).ÊÎ

Corollary 8.5 Ò!ß Ñ="  is sequentially compact.

Proof  Suppose  is a sequence in .  We need to show that has a convergentÐ Ñ Ò!ß Ñ Ð Ñα = α8 " 8

subsequence in   Without loss of generality, we may assume that all the 's are distinct ( )Ò!ß ÑÞ= α" 8 why?
The sequence  has either an increasing subsequence   or aÐ Ñ   ÞÞÞ   ÞÞÞα α α α8 8 8 8" # 5

decreasing subsequence α α α8 8 8" # 5
  ÞÞÞ   ÞÞÞ

The argument is completely parallel to the one in Lemma IV.2.10 showing that a sequence in
‘ α α α has a monotone subsequence.  Call  a peak point of the sequence if  for all8 8 5 
5   8Þ

If the sequence has only finitely many peak points, then after some  there are no peakα8"

points and we can choose an increasing subsequence α α α8 8 8" # 5
  ÞÞÞ   ÞÞÞ

If  has infinitely many peak points, then we can choose a subsequence of peak pointsÐ Ñα8

α α α α α α8 8 8 8 8 8" " #5 5
ß ÞÞÞ ß ÞÞÞ     ÞÞÞ     ÞÞÞ Þ and for these,     Since the 's are distinct,  we

have  .α α α8 8 8" # 5
  ÞÞÞ   ÞÞÞ

However, a strictly decreasing sequence of ordinals  is impossible.α α α8 8 8" # 5
  ÞÞÞ   ÞÞÞ

Therefore  has a subsequence of the form  . SettingÐ Ñ   ÞÞÞ   ÞÞÞα α α α8 8 8 8" # 5

α α = α α =œ Ö À 5 œ "ß #ß ÞÞÞ×  Ð Ñ Ä − Ò!ß ÑÞ ñsup , we see that then 8 " 8 "5
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An example of a pseudocompact space that is not countably compact is given in Exercise E32.
In Chapter X, we will discuss a space  that is compact (therefore countably compact and"
pseudocompact ) but not sequentially compact (see Example X.6.5).  That will complete the set
of examples showing that “no other implications exist” other than those stated in (*).

Corollary 8.6  In , the intersection of a countable collection of neighborhoods of  is again aÒ!ß Ó= =" "

neighborhood of that is, the intersection must contain a “tail” .  Therefore  is not a= α = =" " " Ð ß Ó Ö ×
K Ò!ß ÓÞ$-set (and therefore not a zero set)  in ="

Proof    Let  be a collection of neighborhoods of . For each , there is a  forÖR À 5 œ "ß #ß ÞÞÞ× 55 " 5= α
which int  Let sup  Then= α = α α  =" 5 " 5 5 5 "− Ð ß Ó © R © R Þ œ Ö À 5 − ×  Þ  

5œ" 5œ" 5œ"
∞ ∞ ∞

5 5 " 5 "R ª R ª Ð ß Ó R Á Ö ×Þ ñint .  In particular,   α = =

Since  is compact, we know that each  is bounded.  In fact, something more isÒ!ß Ó 0 − GÐÒ!ß ÓÑ= =" "

true.  ( )Why does the corollary state something “more” ?

Corollary 8.7  If , then  is constant on the “tail”  for some .0 − GÐÒ!ß ÓÑ 0 Ò ß Ó = α = α =" " "

Proof Suppose . By Corollary 8.6,  contains a tail0Ð Ñ œ < 0 ÒÖ<×Ó œ 0 ÒÐ<  ß <  ÑÓ="
" "

8œ"
∞ " "

8 8


Ð ß ÓÞ 0 lÒ ß Ó œ <Þ ñα = α =" "  Therefore    

Proving Corollary 8.7 was relatively easy because we can see immediately what the constant value
would have to be for the theorem to be true:    A more remarkable thing is that the same< œ 0Ð ÑÞ="

result holds for   But to prove that fact, we have no “initial guess” about what constant value Ò!ß ÑÞ 0="

might have on a tail, so we have to work harder.

Theorem 8.8  If , then  is constant on the “tail”  for some .0 − GÐÒ!ß ÑÑ 0 Ð ß Ñ = α = α =" " "

Proof Let “the  tail”  By Corollary 8.5,   is countably compact so theX œ Ò ß Ñ œ Þ Ò!ß Ñα α = α =" "
th

closed set  is also countably compact.  It is easy to see that a continuous image of a countablyXα
compact space is countably compact, so is a countably compact subset of .  Since countable0ÒX Óα ‘
compactness and compactness are equivalent for subsets of  (Theorem IV.8.17), each  is a‘ 0ÒX Óα
nonempty compact set: 0ÒX Ó © 0ÒX Ó © Þα ! ‘

The 's are nested  if Therefore 's have the finite intersectionX À 0ÒX Ó © 0ÒX Ó © 0ÒX Ó  Þ 0ÒX Óα α " α! " α
property, and by compactness   ( ). In fact, we claim the intersection

α = α "
0ÒX Ó Á g see Theorem IV.8.4

contains a single number  À 0 ÒX Ó œ Ö<×Þ
α = α "

If , then  assumes each of the values  for arbitrarily large values of .<ß = − 0ÒX Ó 0 <ß =
α = α "

α

Therefore we can pick an increasing sequence  suchα " α " α "" " # # 8 8    ÞÞÞ    ÞÞÞ
that  and  Let sup    Then  and0Ð Ñ œ < 0Ð Ñ œ =Þ œ Ö ß À 8 − ×  Þ Ð Ñ Äα " # α "  = α #8 8 8 8 " 8

Ð Ñ Ä Ð0Ð ÑÑ œ Ð<Ñ Ä Ð0Ð ÑÑ œ Ð=Ñ Ä" # α # " #8 8 8.  By continuity  and . and we conclude
# œ < œ =Þ
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We claim that  on some tail of First notice that if , then  for which0 ´ < Ò!ß ÑÞ  b = " = # "" " 8

0ÒX Ó © Ð<  ß <  ÑÞ#8
" "
8 8

If not, then   would be aÖ 0ÒX Ó À   × ∪ Ö 0ÒÒ!ß ÑÓ  Ð<  ß <  Ñ À 8 − ×# " # = = " "
" "
8 8

family of closed subsets of  with the finite intersection property, so this family would0ÒX Ó!
have a nonempty intersection.  That is impossible since and

" # = #  "
0ÒX Ó œ Ö<×

< Â 0ÒÒ!ß ÑÓ  Ð<  ß <  Ñ
8œ"
∞

"
" "
8 8= .

Pick so that   Pick  so that  and continue# # #" # "
" "
# #0 ÒX Ó © Ð<  "ß <  "ÑÞ  0ÒX Ó © Ð<  ß <  Ñ# #" #

inductively to pick so that # #8" 8
" "

8" 8" 0ÒX Ó © Ð<  ß <  ÑÞ#8"

Let sup  Then 7 #  =œ Ö À 8 − ×  Þ 0ÒX Ó © 0Ò X Ó © 0ÒX Ó © Ð<  ß <  Ñ œ Ö<×ß8 " 8œ"
∞ " "

8 87 # #  
8 8

so   0lX œ <Þ ñ7

( )Since  is bounded on the compact set , we see in a different way that  is pseudocompact.0 Ò!ß Ó Ò!ß Ñ7 ="

Corollary 8.9  Every continuous function  can be extended in a unique way to a0 À Ò!ß Ñ Ä= ‘"

continuous function J À Ò!ß Ó Ä=" Ò!ß Ó=" .

Proof  For some  on a tail  Let  and define < − ß 0 œ < Ò ß ÑÞ J lÒ!ß Ñ œ 0 JÐ Ñ œ <Þ‘ α = = =" " "

Any continuous extension  of  must agree with  since and  agree on the dense set K 0 J J K Ò!ß ÑÞñ="

Note is a compact  space which contains  as a dense subspace.  We call  :   Ò!ß Ó Ò!ß Ó= =" "X Ò!ß Ñ# "=
a  of The property stated in Corollary 8.9 is a  special property  for acompactification Ò!ß Ñ=" .  @/<C
compactification to have in fact, it characterizes  as the so-called -À Ò!ß Ó=" Stone Cech compactification
of We will discuss compactifications in Chapter 10.Ò!ß ÑÞ="

          , notice that  is compactification of  which, just as above, isBy way of contrast Ò  "ß !Ó Ò  "ß !Ñ
obtained by adding a single point to the original space.  However, the continuous function
0 À Ò  "ß !Ñ Ä 0ÐBÑ œ Ð Ñ !‘ defined by sin   be continuously extended to the point ."

B cannot

We saw in Example VII.5.10 that a subspace of a normal space need not be normal:  the Sorgenfrey
plane  is not normal however it can be embedded in the -space  for some .  Any space \ X Ò!ß "Ó 7 \%

7

that is  but not  works just as well.  However, these examples are not very explicit it is hard toX X $ %"
#

“picture why” the normality of  isn't inherited by the subspace .  The “picturing” may be easierÒ!ß "Ó \7

in the following example.

Example 8.10   Let ] ],  sometimes called the “Tychonoff plank.”  is compact X œ Ò!ß ‚ Ò!ß X X‡ ‡
" ! #= =

and therefore .  Discarding the “upper right corner point,” we are left with the (open) subspaceX%

X œ X  ÖÐ ß × X‡
" != = )    We claim that  is not normal. Let  

  “the right edge of ” andE œ ÖÐ ß 8Ñ − X À 8  × œ X= =" !

  “the top edge of ”F œ ÖÐ ß Ñ − X À  × œ Xα = α =! "

E F X Xand  are disjoint sets and closed in  (although not, of course, in ).‡
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Suppose  is an open set in  containing the “right edge” .  For each point , we canY X E Ð ß 8Ñ − E © Y="

choose a basic open set .  Let sup   ThenÐ ß Ó ‚ Ö8× © Y œ Ö À 8 œ !ß "ß #ÞÞÞ×  Þα = α α =8 " 8 "

Ð ß Ó ‚ Ö8× © Y 8  E Ð ß Ó ‚ Ò!ß Ñ Yα = α = =" " ! for all that is,  is contained in a “vertical strip”  inside .
 
Suppose is an open set in  containing the “top edge” .  Since , there is a basicZ X F Ð  "ß Ñ − Fα =!

open set .   But then , so .Ö  "× ‚ Ð8ß Ó © Z Ð  "ß 8  "Ñ − Y ∩ Z Y ∩ Z Á gα = α!

Exercise 8.11  Show that every continuous function  can be continuously extended to a0 À X Ä ‘
function  J À X Ä Þ‡ ‘
Hint:   has constant value  on some tail, and for each  0lÒ!ß Ñ ‚ Ö × < 8  ß 0l Ò!ß Ó ‚ Ö8×= = = =" ! ! "

has a constant value  on a tail.  Define   Prove that  and then show< J ÐÐ ß ÑÑ œ <Þ Ð< Ñ Ä <8 " ! 8= =
that the extension  is continuous at J Ð ß ÑÞ= =" !

As in the remark following Corollary 8.9,   is a compactification of and the functional extensionX X‡

property in the exercise characterizes  as the so-called Stone-Cech compactification of  .  Since X X X‡ ‡

is compact,  must be bounded so, in retrospect,  must have been bounded in the first place.J  0
Therefore  is pseudocompact.  But  is not countably compact because the “right edge”  is anX X  E
infinite set that has no limit point in .   is an example of X X a pseudocompact space that is not
countably compactÞ
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Exercises

E13.  Suppose   and that  is well-ordered (in the usual order on ).  Prove that  is countable.G © G G‘ ‘

E14.  Let  denote the order type of the set of  integers, with its usual ordering.=!
‡ nonpositive

 a) Prove that a chain  is well-ordered iff  contains no subset of order type .Ð\ß Ÿ Ñ \ =!
‡

 b) Prove that if  is a chain in which every countable subset is well-ordered, then  isÐ\ß Ÿ Ñ \
well-ordered.
 c) Prove that every infinite chain either has a subset of order type  or one of order type .= =!

‡
!

 

E15.  Prove the following facts about ordinal numbers α " #ß ß À

 a) if , then  " α " α !  
 b) if , then there exists a unique  such that α " # α " # œ   
 We might try using b) to define subtraction of ordinals:    if α # " œ α " #œ  .
 However this is perhaps not such a good idea.  Consider , .  Problems arise( )= α "! œ œ "
 because ordinal addition is not commutative.
 c)  iff  "  œ  α α α = ! .

E16.  Let , where  be  a chain.   is called  ifF © E ÐEß Ÿ Ñ F inductive
 
  for all , .> − E Ö+ − E À +  >× © F Ê > − F

Prove that if  is the only inductive subset of , then  is well-ordered.E E E

E17.  Let  be a first countable space. Suppose that for each , is a closed subset of  and\  J \α =" α

that  whenever .  Prove that  is closed in J © Jα α" # α α = α =" # " "Ÿ  ÖJ À  × \Þ α

E18. Let  be well-ordered.  Order lexicographically and give the set the orderE P œ E‚ Ò!ß "Ñ
topology.
     a) What does a “nice” neighborhood base look like at each point in ? Discuss some otherP
properties of this space.
       b) If ,  then (  is called is the “long line.”  Show that  is path connectedE œ Ò!ß Ñ P  Ö !ß !Ñ× P="

and locally homeomorphic to  but it cannot be embedded in .    (See , J. Munkres, 2‘ ‘ Topology nd

edition, p. 159 for an outline of a proof.)
        c)  Each point in  homeomorphic to   is normal but not metrizable.P Þ P‘

E19.  a) Let  and  be disjoint closed sets in .  Prove that at least one of  and  is compactE F Ò!ß Ó E F="

and bounded away from .  (=" A set  is    if   for some .G G © Ò!ß Ó bounded away from = α α =" " Ñ
  b) Characterize the closed sets in  ) that are zero sets.Ò!ß= "

  c) Prove that   and  are not metrizable.Ò!ß Ñ Ò!ß Ó= =" "
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E20.  a) Suppose  and  are sequences in ) such that, for all , .ÐB Ñ ÐC Ñ \ œ Ò!ß 8 B Ÿ C Ÿ B8 8 " 8 8 8"=
Show that both sequences converge and have the same limit.
  b) Show that if  is such that  for every , then there is an  such that 0 À \ Ä \ 0ÐBÑ   B B B ÐBß BÑ
is a limit point of the graph of  in .0 \ ‚\
 c) Prove that ] is not normal.\ ‚ Ò!ß="

(Hint: Let  be the diagonal of  and B = X .  Show that if U and V are open with? =\ ‚\ ‚ Ö ×"
? =© Y F © Z Y ∩ Z Á g ÐBß Ñ and , then .  To do this: if any point  is in U, we're done.  So suppose"

this is false and define  to be the least ordinal  such that .  Use part b). 0ÐBÑ  B ÐBß 0ÐBÑÑ Â Y )

E21.  A space  is called -compact if  can be written as a countable union of compact sets.\ \5

    a) Prove  is not -compact.Ò!ß Ñ= 5"

    b) Using part a) (or otherwise), prove   is not Lindelof.¨Ò!ß Ñ= "

    c) State and prove a theorem of the form:  an ordinal space [  is -compact iff ...!ß Ñα 5
( )You might begin by thinking about the spaces , , and .Ò!ß Ñ Ò!ß Ñ Ò!ß Ñ= = =" # =!

E22.  A space  is called  if every continuous  has a countable range.\ 0À\ Äfunctionally countable ‘
 
    a) Show that  is functionally countable.\ œ Ò!ß Ñ="

   b) Let  where  is uncountable and .  Give  the topology for which all the] œ H ∪ Ö:× H : Â H ]
points of  are isolated and for which the basic neighborhoods of  are those cocountable setsH :
containing .   Show  is functionally countable.: ]
    c) Prove that  is not functionally countable.\ ‚ ]
( )Hint: Let  be one-to-one. Consider the set  is isolated in 1À\ Ä H L œ ÖÐ ß 1Ð Ñ À \× © \ ‚ ]α α α

E23.  A space  is called -  if  is homeomorphic to a closed subspace of the product \ \ ]] compact 7

for some cardinal .  For example,  is -compact iff  compact and .  An -compact space is7 \ Ò!ß "Ó \ X# ‘
called .realcompact

 a) Prove that if  is both realcompact and pseudocompact, then  is compact.\ \
( )Note: the converse is clear
 b) Suppose that  is Tychonoff and that however  is embedded in , its projection in\ \ Ò!ß "Ó7

every direction is compact.  (More precisely, suppose that for  possible embeddings ,all h À \ Ä Ò!ß "Ó7

we have that  is compact for all projections .  This statement is certainly true, for example,1 1α αÒ2Ò\ÓÓ
if  is compact.)   Prove or disprove that  must be compact.\ \

E24. An infinite cardinal  is called  if  for some sequence of cardinals .5 5 œ 5 5  5sequential 
8œ"
∞

8 8

    a) Prove that if  is sequential, then .5 5  5i!

    b) Assume GCH.  Prove that if  is infinite and , then .5 5  5 5 œ #i i 5! !

    c) Assume GCH.  Prove that an infinite cardinal  is sequential iff .5 5  5i!
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9.  Transfinite Induction and Transfinite Recursion
    “...to understand recursion, you have to understand recursion....”

Suppose we have a sequence of propositions  that depend on   We would like to showT 8 œ !ß "ß #ß ÞÞÞ8

that all the 's are true. (T8 The initial value  is not important. We might want to prove the8 œ !
propositions  for, say, .T "$ Ÿ 8 8 != )  For example, we might have in mind the propositions

    T À !  "  #  ÞÞÞ  8 œ8
8Ð8"Ñ

#

As you should already know, the proof can be done by induction.  Induction in elementary courses
takes one of two forms (stated here using  as the initial proposition):T!

 1) ( )   If  is true and if (  is true  is true , then  is true forPrinciple of Induction T T Ê T Ñ T! 5" 5 8

 all 8  Þ=!

 2) ( )   If  is true and  if  is true for all  isPrinciple of Complete Induction T ÐT 4  5 Ê T! 4 5

 true , then  is true for all Ñ T 8  Þ8 !=

Formally, 2) looks weaker than 1), because it has a stronger hypothesis.  But in fact the versions 1) and
2) are  statements about   ( )  Sometimes form 2) is more convenient to use. Forequivalent Ò!ß ÑÞ=! Why?
example, try using both versions of induction to prove that every natural number greater than  has a"
factorization into primes.

The Principle of Induction works because  is well-ordered:Ò!ß Ñ=!

 If  is , then it would contain a  element .  This isÖ8 − Ð!ß Ó À T × Á g 5  !=! 8 false smallest
 impossible:  since  is true,  must be true.T T5" 5

You might expect a principle analogous to 1) could be used in every well-ordered sets , not justÒ!ß Ñα
in   But an ordinal  might not have an immediate predecessor, so version 1) might not makeÒ!ß ÑÞ= "!

sense.  So we work instead with 2): we can generalize “ordinary induction” if we state it in the form of
complete induction.

Theorem 9.1  (Principle of Transfinite Induction)  Let  be an ordinal and  Ifα αX © Ò!ß ÑÞ

 1)   and! − T
 2)   [   ] ,a − Ò!ß Ñ Ò!ß Ñ © Ê −" α " "T T

then . T œ Ò!ß Ñα

Proof  If , then there is a smallest  By definition of , .  But thenX Á Ò!ß Ñ − Ò!ß Ñ  X Þ Ò!ß Ñα " α " " © X
2) implies , contrary to the choice of  ." "− X

Using Theorem 9.1 is completely analogous to using complete induction in For each ,Ò!ß ÑÞ = # α!

we have a proposition  and we want to show that all the 's are all true.  (T T# # For example, we might
have a set somehow defined for each  , and  might be the proposition “  isO © \  O# # ## α T
compact.”)   Let  is true   If we show that  is true, and if assuming thatX œ Ö  À T × © Ò!ß ÑÞ T ß# α α# !

assume  is true for all , we can then prove that  must be true, then Theorem 9.1 implies thatT  T# "# "
T #. is true for all .  We will look at several examples in Section 10.# α
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Note: In the statement of Theorem 9.1, part 1) is included only for emphasis.  In fact, 1) is
automatically true if  we know 2) is true: for if we let  in 2)  then  is true, so" œ ! ß Ò!ß !Ñ œ g © X
! − X  Tthat is,  is true.  But in actually  Theorem 9.1 (as described in the preceding! using
paragraph) and trying to prove that 2)  true, the first value  requires us to show  is true withis " œ ! T!

“no induction assumptions” since there are  's with  .  Doing that is justno T  œ !# # "
verifying that 1) is true.

We can also  objects in a similiar way by transfinite .  Elementary definitions bydefine recursion
recursion should be familiar for example, we might say À

  let 13 and,0Ð!Ñ œ
  for each , let    (**)8  ! 0Ð8Ñ œ #0Ð8  "Ñ

We than say that “  is defined for all .”   We draw that conclusion by arguing in the0 8 œ !ß "ß #ß ÞÞÞ
following informal way:  if not, then there is a smallest  for which  is not defined: this isk − Ð!ß Ñ 0=!

impossible because then   defined, and therefore (by ) so is .0Ð5  "Ñ is ** 0Ð5Ñ

This argument depends only on the fact that  is well-ordered, so it generalizes to the followingÒ!ß Ñ=!

principle.

Informal Principle 9.2 (Transfinite Recursion)   For each , suppose a rule is given that defines" α
an object  in terms of objects  already defined (that is, in terms of 's with ).  Then  isT T T  T" # # "# "
defined for all .  " α ÐThe principle implies that P  is defined “absolutely”  that is, without any! 
previous 's to work with since there are no 's with .T   !×# #T

This “informal” statement is a reasonably accurate paraphrase of a precise theorem in axiomatic set
theory, and the informal proof is virtually identical to the one given above for simple recursion on
Ò!ß ÑÞ=!  As stated in 9.2, this principle is strong and clear enough for everyday use, and we will
consider it “proven” and useable.

Principle 9.2 is “informal” because it does seem a little vague in spots “some object”, “a rule is
given”, “if  is defined ... , then  is defined ...”  Without spending a lot of time on the set theoreticT T# "

issues, we digress to show how the statement can be made a little more precise.

In axiomatic set theory, the “objects”  will, of course, be sets (since everything is a set).  WeT"
can think of “  ” to mean from some specified set .  In the context ofdefining choosingT T" " X
some problem,  is the “universal set” in which the objects will all live.  For example, weX T"
might have  and want to define continuous functions for each X " αœ GÐ\Ñ T − GÐ\Ñ  Þ"

The sets  already chosen (“defined”) in  for  can be described efficiently by aT # X # "

function  for , < X # " < # X" " #
"− À  Ð Ñ œ T − ÞÒ!ß Ñ

To define the set  in terms of the preceding 's means that we need to define  using .T T T" " "# <

We need a function (“rule”)  so that  gives the new set .  In other words, weV V Ð Ñ T −" " " "< X

want V À Ä Þ" X XÒ!ß"Ñ
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The conclusion that we have “completed” the process and that  is defined for all T " " α

means that there is a function where, for each  the  selected at theJ −  ß JÐ Ñ œ TX " α "Ò!ß Ñα
"

earlier stage by that is,  .V  JÐ V ÐJ l Ò!ß ÑÑ" ""Ñ œ "

This leads us to the following formulation.  The “full” formulation of the standard theorem
about transfinite recursion in axiomatic set theory needs to be a little stronger still, so we call
this version which we state without proof the “weak” version.  It is more than adequate for 
our purposes here.

 

Theorem 9.3 (Transfinite Recursion, Weak Form)  Suppose  is an ordinal. Let  be a set andα X
suppose that, for each , we have a function .  Then there exists a unique function" α X X À ÄV"

"Ò!ß Ñ

J −  JÐ Ñ œ V ÐJ l Ò!ß ÑÑX " α " "Ò!ß Ñα
" such that, for each , .

Proof   See, for example, Topology (J. Dugundji)

The following example illustrates what the Recursion Theorem 9.3 in a concrete example.  When all is
said and done, it looks just the way an informal, simple definition by recursion (Principle 9.2) should
look.

Example 9.4  We want to define numbers  for every .  Informally we might say:I 8 œ !ß "ß ÞÞÞ8

  Let 1 and for , let .E! 8 !
#

8"
#œ 8  ! I œ I  ÞÞÞ  I

The informal Principle 9.2 lets us conclude that  is defined for all .I8 !8  =

In terms of the more formal Theorem 9.3, we can describe what is “really” happening as follows:

 Let  and .   For each , define  as follows:Ò!ß Ñ œ Ò!ß Ñ œ 8  V À Äα = X  =  ! ! 8
Ò!ß8Ñ

  For  and  define  8 œ ! À œ œ Ög× V ÐgÑ œ " Ò!ß!Ñ g
!

  For if ,  define 8  ! À − V Ð Ñ œ Ð!Ñ  ÞÞÞ  Ð8  "Ñ<  < < <Ò!ß8Ñ # #
8

  ( ).Note that the R 's are defined explicitly for each n,  recursively.8 not

 The theorem states that there is a unique function  such thatJ − Ò!ß Ñ=!

  ( 1JÐ!Ñ œ V J lÒ!ß !Ñ Ñ œ V ÐgÑ œ! !

  ( 1  1JÐ"Ñ œ V J lÒ!ß "Ñ Ñ œ JÐ!Ñ œ œ"
# #

  ( 2JÐ#Ñ œ V lÒ!ß #Ñ Ñ œ JÐ!Ñ  JÐ"Ñ œ#
# #F

    etc. ...ÞÞÞ
         
 which is just what we wanted:  dom , so  is defined for allJ œ Ò!ß Ñ I œ JÐ8Ñ=! 8

 8  Þ=!
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10.  Using Transfinite Induction and Recursion

This section presents a number of examples using recursion and induction in an essential way.  Taken
together, they are a miscellaneous collection, but each example has some interest in itself.

Borel Sets in Metric Spaces

The classical theory of Borel sets is developed in metric spaces (  The collection of Borel sets in\ß .ÑÞ
a metric space is important in analysis and also in set theory.  Roughly, Borel sets are the sets that can
be generated from open sets by the operations of countable union and countable intersection “applied
countably many times.”  Therefore a Borel set is only a “small” number of operations “beyond” the
open sets, and Borel sets are fairly well behaved.  We will use transfinite recursion (the informal
version) to define the Borel sets and prove a few simple theorems.  When objects are defined by
recursion, proofs about them often involve induction.

We begin with a simple lemma about ordinals.

Lemma 10.1   Every ordinal  can be written uniquely in the form  where  is either 0 or aα α " "œ  8
limit ordinal, and .8  =!

Proof    If  is finite, then  where .α α =œ !  8 8  !

 Suppose  is infinite.  If  is a limit ordinal, we can write    If  is not a limitα α α α αœ  !Þ
ordinal, then  has an immediate predecessor which, for short,  we denote here as “ .”  If  isα α α "  "
not a limit ordinal, then it has an immediate predecessor .  Continuing in this way, we get to aα #
limit ordinal after a finite number of steps, for otherwise 8   "   #  ÞÞÞ   8  ÞÞÞα α α
would be an infinite decreasing sequence of ordinals.  If  is a limit ordinal, then " α α "œ  8 œ  8Þ

 To prove uniqueness, suppose  where each of  is  or a limit ordinalα " " " "œ  8 œ  8 ß !w w w

and  are finite.  If  or  say . Then  is finite, so  and .  So8ß 8 œ ! À œ !  8 œ ! 8 œ 8w w w w" " " " "
suppose  and are both limit ordinals.  We have an order isomorphism  from  onto" " "w 0 Ò!ß  8Ñ
Ò!ß  8 Ñ Ò!ß  8Ñ 8  "" " "w w .  Since  contains  ordinals after its largest limit ordinal , the same must be
true in the range , and therefore . Let Then  is anÒ!ß  8 Ñ 8 œ 8 1 œ 0lÒ!ß ÑÞ 1 À Ò!ß Ñ Ä Ò!ß Ñ" " " "w w w w

order isomorphism, so " "œ Þ ñw

Definition 10.2  Suppose , where  is a limit ordinal or  and  is finite.  We say that  isα " " αœ  8 !ß 8
even odd if  is even, and that is  if  is odd.8 8α

For example, every limit ordinal  is even.α αœ  !

Definition 10.3  Suppose  is a metric space.  Let   the collection of open sets.  For eachÐ\ß .Ñ œ ßZ g! .

!    Þα = Z " α", and suppose that  has been defined for all   Then let"

 
 is a countable intersection of sets from  if is odd)
 is a countable union of sets from     ( Z Z " α α

Z Z " α
α "

α "

œ ÖK À K Ö À  × Ð
œ ÖK À K Ö À  × if  is even)α

U Z α =œ Ö À  × Ð\ß .ÑÞ α "  is the family of  in Borel sets
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The sets in  are the  sets; the sets in  are countable unions of  sets and are traditionally calledZ Z" #K K$ $

K K$5 $5$ sets; the sets in  are called -sets, etc.Z$

   
Theorem 10.4   Suppose  is a metric space.Ð\ß .Ñ

 1) If , then ,  soα " = Z Z  ©" α "

  Z Z Z Z Z α " =! " # "© © © ÞÞÞ © © ÞÞÞ © © ÞÞÞ Ð   Ñα "

 2)   is closed under countable unions if  is even,  and  is closed under countableZ α Zα α

 intersections if  is odd.α

 3)  is closed under countable unions, intersections and complements. Also, if and  areU F F" #

 in , so is U F F Þ" #

Proof   1) Suppose .   is defined as the collection of all countable unions (if  is even)α " = Z "  " "

or intersections (if is odd) of sets in the preceding families .  In particular, any one set Z α "α Ð  Ñ
from  is in .Z Zα "

 2) Suppose  is even and  . Each is a countable union of setsα ZK ß K ß ÞÞÞß K ß ÞÞÞ − K" # 8 8α

from .  Therefore is also a countable union of sets from , so  Ö À  × K Ö À  ×Z " α Z " α" "8œ"
∞

8
8œ"
∞

8K − ÞZ αα    The proof is similar if  is odd.

 3)  Suppose , ,..., .   For each ,  for some .F F F ß ÞÞÞ − 8 F − " # 8 8 8 "U Z α =α8

If sup , then  for every .  By part 2), one of theα α = Z Z Zœ Ö À 8 œ "ß #ß ÞÞÞ ×  © © 88 " "α α α8

collections  or  is closed under countable intersections and the other under countable unions.Z Zα α"

Therefore   and   are both in  
8œ" 8œ"
∞ ∞

8 8 "F F © ÞZ Uα

 To show that  is closed under complements, we first prove, using transfinite induction, thatU
if then K − ß \ K − ÞZ Zα α"

α Zœ ! À K − K \ KIf , then  is open so  is closed.  But a closed set in a metric space is!

 a  set, so  K \ K − Þ$ Z
"

Suppose the conclusion holds for all .  We must show it holds also for ." α = Z  " α

 
 Let   If  is odd, then  where   K − Þ K œ K ß K − Ð  ÑÞZ α Z " αα "

8œ"
∞

8 8 88

  By the induction hypothesis,  for all .  Since is\ K © © 8  "8 " "Z Z α" α8

even, we have that   ( 
8œ" 8œ"
∞ ∞

8 8 "Ð\ K Ñ œ \  K œ \ K − ÞZα The
 case when  is even is similarα ).

If , then  for some , so So if , thenF − F −  \ F − © Þ F −# # " # " "U Z α = Z U Uα α

F ∩ Ð\ F Ñ œ F F − Þ ñ" # " # U

Part 3) of the preceding theorem shows why the definition of the Borel sets only uses ordinals .α = "

Once we get to , the process “closes off” that is, continuing with additionalU Z α =œ Ö À  ×  α "

countable unions and intersections produces no new sets.
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Definition 10.3 presents the construction of the Borel sets “from the bottom up.”  It has the advantage
of exhibiting how the sets in  are constructed step by step.  However, it is also possible to define U U
“from the top down.” This approach is neater, but it gives less insight into which sets are Borel.

Definition 10.5  A family  of subsets of  is called a  if  and  is closed underÆ Æ Æ\ \ −5-algebra
complements,  countable intersections, and countable unions.

Suppose  is a collection of subsets of .  Then  is (the largest) -algebra containing .  It isT c 5 T\ Ð\Ñ
also clear that the intersection of a collection of -algebras is a -algebra.  Therefore the smallest5 5
5 T 5 T-algebra containing  exists:  it is the intersection of all -algebras containing .

The following theorem could be taken as the definition of the family of Borel setsÞ

Theorem 10.6  The family  of Borel sets in  is the smallest -algebra containing all the openU 5Ð\ß .Ñ
sets of .\

Proof  The rough idea is that our previous construction puts into  all the sets that need to be there toU
form a -algebra, but no others.5

We have already proven that   a -algebra containing the open sets.  We must show  is theU 5 Uis
smallest that is, if  is a -algebra containing the open sets, then .  We show this by ©U 5 U Uw w

transfinite induction.

 We are given that Z U!
w© Þ

 Suppose that  for all   We must show Z U " α = Z U" α©   Þ © Þw w
"

Assume  is odd.  If  then where  for some α Z Z " αK − K œ K K −  Þα "
8œ"
∞

8 8 88

By hypothesis each  and is closed under countable intersections soZ U U"8 − w w

K − © ÞU Z Uw w.  Therefore   ( .)α The case when  is even is entirely similarα

 Since for all , we get that Z U α = U Z Uα αα =©  œ © Þ ñw w
" 


"

The next theorem gives us an upper bound for the number of Borel sets in a separable metric space.

Theorem 10.7   If  is separable metric space, then .Ð\ß .Ñ l l Ÿ -U

Proof   We prove first that for each α = Z ß l l Ÿ -Þ" α

α Vœ ! À Þ A separable metric space has a countable base  for the open sets  Since every open set is the
union of a subfamily of ,  we have V g Z c Vl l œ l l Ÿ l Ð Ñl Ÿ # œ -Þ. !

i!

Assume that   for all .  Since  has only countably many predecessors,l l Ÿ -  Z " α = α" "

l l Ÿ -Þ
" α " α Z ZSince each set in is a countable intersection or union of a  of sets fromsequence 
" α " α" α "


 

iZ Z Z, we have l l Ÿ l l Ÿ - œ -Þ!

Therefore |U Zl œ l l Ÿ i † - œ -Þ ñ
α = α ""
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( )Can you see a generalization to arbitrary metric spaces?

Corollary 10.8  There are non-Borel sets in .‘

For those who know a bit of measure theory:  every Borel set in  is Lebesgue measurable.  Since  a‘
subset of a set of measure  is measurable, all  subsets of the Cantor set  are measurable.! # G-

Therefore there are Lebesgue measurable subsets of  that are not Borel sets.G

Example 10.9
 
 1)  If is discrete, then every subset is open, so every subset is Borel: Ð\ß .Ñ œ X œ Ð\ÑÞU c.

 2)  If , then every subset is a , but is not discrete.  Therefore\ œ Ö!× ∪ Ö À 8 − × K \"
8  $

   Z Z Z Zα U! " #© œ œ ÞÞÞ œ œ ÞÞÞ œ Þ
Á

 3)  The following facts are true but harder to prove:

        a) For each , there exists a metric space for whichα = Ð\ß .Ñ"

  Z Z Z Z Z U! " "© © ÞÞÞ © œ œ ÞÞÞ œ œ ÞÞÞ œ
Á Á Á

α α "

 In other words, the Borel construction continually adds fresh sets until the  stage but notαth

 thereafter.

      b) In , for all that is, new Borel sets appear at every stage‘ Z Z α " =α "Á   Ñ "

 in the construction.

A New Characterization of Normality

Definition 10.10  A family  of subsets of a space  is called  if ,  is in onlyY \ aB − \ Bpoint-finite
finitely many sets from .Y

Definition 10.11 An open cover  of   is called  if there exists an openh αœ ÖY À − E× \α shrinkable
cover  of  such that, for each , cl .    is called a  of .i α α i hœ ÖZ À − E× \ Z © Yα α α shrinkage

Theorem 10.12  \ \ is normal iff every point-finite open cover of  is shrinkable.  (In particular, every
finite open cover of a normal space is shrinkable: see Exercise VII.E18.)

Proof  Suppose every point-finite open cover of  is shrinkable and let  and  be disjoint closed sets\ E F
in .  The open cover  has a shrinkage  and the sets cl\ œ Ö\ Eß\ F× œ ÖZ ß Z × Y œ \ h i " #

Z Z œ \  Z E F \" # and cl  are disjoint open sets containing and .  Therefore  is normal.
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Conversely, suppose  is normal and let  be a point-finite open cover of .\ œ ÖY À − E× \h αα

Without loss of generality, we may assume that the index set  is a segment of ordinals   ( )E Ò!ß Ñ# why?
so that h α #œ ÖY À  ×Þα

Let   Since , we can use normality to choose an open set  such thatJ œ \  Y Þ J © Y Z! ! ! !!

α α

J © Z © Z © Y ÖZ × ∪ ÖY À  !× \! ! ! ! !cl  and  covers .α α

Suppose  and that for all  we have defined an open sets  such that cl  and!    Z Z © Yα # " α " " "

such that  covers .  Letting ,ÖZ À  × ∪ ÖY À   × \ J œ \  Ð Z ∪ Y Ñ © Y" " α " " α" α " α" α " α  
 

we can use normality to choose an open set  with clZ J © Z © Z © Yα α α α αÞ

Clearly,  covers .ÖZ À   "× ∪ ÖY À    "× \" "" α " α

By transfinite recursion, the 's are defined for all , and we claim that is aZ  œ ÖZ À  ×α αα # i α #
cover of .\

Notice that there  something here that needs to be checked: we know that we have a coveris
ÖZ À  × ∪ ÖY À   ×" "" α " α  at each step in the process, but do we still have a cover when
we're finished?   To see explicitly that there  an issue, consider the following example.is

Let  be the set of reals with the “left-ray” topology (a normal space) and consider the open\
cover .  If we go through the procedure described above, we geth =œ ÖÐ ∞ß8Ñ À 8  ×!
J œ \  Ð ∞ß8Ñ œ g Z œ g! !8!

  so we might have chosen : that would give
J © Z © Z © Y ÖZ × ∪ ÖY À 8  !×! ! ! ! ! 8cl  and  would still be a cover.  Continuing, we can
see that at every stage we could choose  and that  is stillZ œ g ÖZ ß Z ß ÞÞÞZ × ∪ ÖY À 5  8×8 ! " 8 5

a cover.  But when we're done, the collection  is not a cover!  Of course,i =œ ÖZ À 8  ×8 !

the cover  is .h not point-finite

Suppose Then  is in only finitely many sets of say .  Let be the  ofB − \Þ B  Y ß ÞÞÞß Yh αα α" 8 largest
these indices so that .  If is in one of the 's with , we're done.  OtherwiseB Â Y B Z 

" α " " " α

B − \  Ð Z ∪ Y Ñ œ J © Z B Þ ñ 
" α " α" " α α  .   Either way  is in a set in , so  is a cover    i i

Question: what happens if “point-finite” is changed to “point-countable” in the hypothesis?  Could
the “max” in the argument be replaced by a “sup” ?

Definition 10.13  A cover of  is called   if every point  has a neighborhood that\ B − \locally finite
intersects at most finitely many of the sets in the cover.

Corollary 10.14  Suppose  is a locally finite open cover of a normal space .  Thenh αœ ÖY À − E× \α

there exist continuous functions  such that0 À\ Ä Ò!ß "Óα

 i)  for every 0 ± \  Y œ ! − Eα α α
 ii)  for every .Ö0 ÐBÑ À − E× œ " B − \α α
The collection of functions  is called a .Ö0 ×α partition of unity subordinate to h

Proof  It is easy to see that a locally finite open cover of  is point-finite. By Theorem 10.12,   has a\ h
shrinkage .  For each , we can use Urysohn's Lemma (VII.5.2) to pick a continuousi α αœ ÖZ À − E×α

function  such that cl  and 1 À \ Ä Ò!ß "Ó 1 l Z œ " 1 l\  Y œ !Þα α α α α
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Each point  is in only finitely many 's,  so  for all but finitely many 's and thereforeB Y 0 ÐBÑ œ !α α α

1ÐBÑ œ 1 ÐBÑ − B R Y .   Each point  has a neighborhood  which intersects only finitely many 's
α

α α
−E

B‘

so  is essentially a finite sum of continuous functions and  is continuous (see Exercise III.E21).1lR 1B

Since each  is in some set cl , so .  Therefore is never  so each B Z 1 ÐBÑ œ " 1ÐBÑ ! 0 ÐBÑ œα α α! !

1 ÐBÑ
1ÐBÑ
α  is

continuous.   The 's clearly satisfy both i) and ii).    0 ñα

A Characterization of Countable Compact Metric Spaces

In 1920, the journal was founded by Zygmund Janiszewski, StefanFundamenta Mathematicae 
Mazurkiewicz and Waclaw Sierpinski.  It was a conscious attempt to raise the profile of Polish
mathematics thorough a journal devoted primarily to the exciting new field of topology.  To reach the
international community, it was agreed that published articles would be in one of the most popular
scientific languages of the day: French, German or English.  continuesFundamenta Mathematicae
today as a leading mathematical journal with a scope broadened somewhat to cover set theory,
mathematical logic and foundations of mathematics, topology and its interactions with algebra, and
dynamical systems.

An article by Sierpinski and Mazurkiewicz appeared in the very first volume of this journal
characterizing compact, countable metric spaces in a rather vivid way.  We will prove only part of this
result: our primary purpose here is just to illustrate the use of transfinite recursion and induction and
the omitted details are messy.

Suppose  is a nonempty compact, countable metric space.Ð\ß .Ñ

Definition 10.15  For , define  is a limit point of .   is called the E © \ E œ ÖB − \ À B E× Ew w derived
set of . If  is closed, it is easy to see that  and that  is also closed.E E E © E Ew w

We will use the derived set operation  repeatedly in a definition by transfinite recursion.Ð Ñw

 Let  and, for each , defineE œ \ ! "α =

  
if 
if  is a limit ordinal

 E œ E œ  "

E œ ÖE À  ×
α "

α "

w
α "

" α α

E  E ª E ª ÞÞÞ ª E ª ÞÞÞα αis closed for all  and   .  This sequence is called α =" ! " the derived
sequence of .\

For some , we have because otherwise, for each ,  we could choose a pointα = α E œ E " "α α

B − E E ÖB À  × \ iα α α α" " " ! and  would be a subset of  with cardinal .  Let  be theα = α
smallest  for which .  It follows that  for all .α " αE œ E E œ E α α " α! ! !" !

Since  is compact metric, the closed set  is complete, and because , every point in\ E E œ Eα α α! ! !"

E E œ gα α! ! is a limit point.  Therefore , since a nonempty complete metric space with no isolated
points contains at least  points (Theorem IV.3.6).-
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We know  is impossible (because that would mean .  If  were a limitα α! ! !œ ! E œ E œ \ œ gÑα!

ordinal, then  (because  is a family of nonempty compactE œ ÖE À  × Á g ÖE À  ×α " "!
 " α " α! !

sets with the finite intersection property).  Therefore  must have an immediate predecessor .α "! !

The definition of  implies that .  In fact,  must be finite (if it were an infinite set in theα! E Á g E" "! !

compact space , would have a limit point and then )    Let \ E E œ E Á g Þ 8 œ lE l  Þ" α ""! ! !!

w
!=

In this way, we arrive at a pair , whereÐ ß 8Ñ"!

  is the last nonempty derived set of  ,  andE \ Ð  Ñ"! " =! "

 contains  pointsE 8 Ð!  8  ÑÞ"! =!

Since homeomorphisms preserve limit points and intersections, it is clear that the construction in any
space homeomorphic to  will produce the same pair .\ Ð ß 8Ñ"!

Theorem 10.16 (Sierpinski-Mazurkiewicz)  Let  and .  Two nonempty compact," = =! " ! 8 
countable metric spaces  and  are homeomorphic iff they are associated with the same pair .\ ] Ð ß 8Ñ"!

(Therefore  is a “topological invariant” that characterizes nonempty compact countableÐ ß 8Ñ"!

metric spaces.)  For any such pair , there exists a nonempty compact countable metric spaceÐ ß 8Ñ"!

associated with this pair.

Corollary 10.17  There are exactly  nonhomeomorphic compact countable metric spaces.i"

Proof  The number of different compact countable metric spaces is the same as the number of pairs
Ð ß 8Ñ i † i œ i Þ ñ"! " ! ", namely      

Example 10.18  In the following figure, each column contains a compact countable subspace of ‘"

with the  invariant pair listed.  Each figure is built up using sets order-isomorphic to
Ö!× ∪ Ö À 8 − ×Þ"

8 
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Alexandroff's Problem

A compact metric space  is second countable and therefore satisfies   (Theorem II.5.21).Ð\ß .Ñ l\l Ÿ -
In 1923,  Alexandroff and Urysohn conjectured that a stronger result is true:

 A first countable compact Hausdorff space  satisfies \ l\l Ÿ -Þ

This conjecture was not settled until 1969,  in a rather famously complicated proof by Arhangel'skii.

Here is a proof of an even stronger result “compact” is replaced by “  that comes from a Lindelof”¨ 
few years after Arhangel'skii's work.

Theorem 10.16 Pol, Šapirovski     Ð Ñ If  is first countable, Hausdorff and Lindelof, then ¨\ l\l Ÿ -Þ

Proof   For each , choose a countable open neighborhood base  at  and, for each , let: − \ : E © \i:

i iE :œ Ö À : − E× œ E the collection of all the basic neighborhoods of all the points in .

For each countable family of sets  for which , pick a point i i i i© \  Á g ; − \  ÞE  i

Define cl ( all such 's chosen for TÐEÑ œ E ∪ Ö ; E×ÑÞi

Notice that if , then .lEl œ - lT ÐEÑl œ -
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Since , we have There are at most  countable families , solEl œ - l - œ - ©iEl œ -.  i
E

! i i
lE ∪ Ö ; E×l œ - \all such 's chosen for .  Since  is first countable, sequences suffice toi

describe the topology, and since  is Hausdorff, sequential limits are unique.  Therefore\
lTÐEÑl E ∪ Ö ; is no larger than the number of sequences in all such 's chosen fori

E×  - œ -Þnamely i!

Now , once and for all, a set  with   ( )   Byfix E © \ lEl œ -Þ If no such  exists, we are done!E
recursion, we now “build up” some new sets from .  The idea is that the new 's always haveE E Eα α

cardinality  and that the new sets eventually include all the points of .Ÿ - \

 Let .E œ E!

 For each ordinal , defineα = "

  

    .
if 

{ : } if  is a limit ordinal
E œ

TÐE Ñ œ  "
E α
"

"
  α "

" α α

For each , α = lE l œ - À" α

 lE l œ -Þ!

 Suppose  for all lE l œ -  Þ" " α

If , then , so |  .α "œ  " E œ TÐE Ñ lE œ -α " α

If is a limit ordinal, then {  α " αlE l œ l E À  ×l œ - † i œ -Þα " !

Let   Then F œ ÖE À  ×Þ - Ÿ lFl œ l ÖE À  ×l Ÿ - † i œ -Þ α αα = α =" " "

We claim that  and, if so, we are done.F œ \

F \ B − F ÐB Ñ F is closed in :  if cl , then (using first countability) there is a sequence  in  with8

ÐB Ñ Ä BÞ B − E œ Ö ×  B E8 8 8 " 8   If  and we let sup , then every  is in . Thereforeα α8 α α =
B − E œ E © FÞcl α α"

Since  is a closed subspace of the Lindelof space ,  is Lindelof.¨ ¨F \ F

If then we can pick a point .  For each , choose an openF Á \ß ; − \ F : − F
neighborhood  such that .  The 's form an open cover of , so a countableZ − ; Â Z Z F: : : :i
collection of these sets, say  , for some countable  covers .  Thusi œ ÖZ À : − G G © F× F:

F © ; Â i i and .  :But this is impossible

Since  is countable, we have that for some  and  is a countableG G © E α α = i"

subfamily of for which   By definition of  , a pointi iE "α
\  Á gÞ T ÐE Ñ œ E Ñ α α

; − \  E © Fi αi i was put into the set .  This contradicts the fact that  covers"

F ñ.   

The Mazurkiewicz 2-set

The circle  is a subset of the plane which intersects every straight line in  two points.  We useW" at most
recursion to construct something more bizarre.
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Theorem 10.17  (Mazurkiewicz)  There exists a set  such that  for every straightE © lE ∩ Pl œ #‘#

line .P

Proof  Let  be the first ordinal of cardinal .  Since the well-ordered segment  represents ,  there$ $ $- Ò!ß Ñ
are  ordinals -  Þα $

In fact, there are  - limit ordinals   There are certainly infinitely many (say ) limit ordinals Þ 7 $ $
( and, by Lemma 10.1,  ordinal  can be written uniquely in the formwhy?) every α $

α " "œ  8 ! 8 7 † i œ 7, where  is a limit ordinal (or ) and  is finite. Therefore there are  ordinals!

 - 7 œ -Þ$ $.  But  has  predecessors.  Therefore 

Since  has exactly  points and exactly  straight lines, we can index both  and the set of straight‘ ‘# #- -
lines using the ordinals less than :    and $ ‘ 0 $ 0 $# œ Ö: À  × ÖP À  ×Þ0 0

We will define points  for each , and the set  will be the set we want.+  œ Ö+ À  ×α αα $ α $E

Let be the first point of  (as indexed above) not on .+ P! !
#‘

Suppose that we have defined points for all  .  We need to define   Let+   + Þ0 α0 α $

       E Eα 0œ Ö+ À  ×0 α Note l l  -α

  is a straight line containing 2 points of } X œ ÖP À P  α αE Note lX l  -α

 least ordinal so that "α " αœ P Â Xα

 (that is,  is the first line listed that is not in P X Ñ" αα

  is a point of intersection of with a line in  W œ Ö: À : P X ×α " αα Note lW l  -α

Since lE Eα α " α α α∪ W l  - P ∪ W +,  there are points on not in :  let  be the α first
: P ∪ W0 " α α listed that is on but not in .α E

By recursion, we have now defined  for all .  Let +  œ Ö+ À  ×Þα αα $ α $E

We claim that for each straight line , .P l ∩ Pl Ÿ #E

If , then we could pick 3 points , where, say  l ∩ Pl  # + ß + ß + − P ∩ ß   ÞE E" # α " # α
Then , so that .  Since (by definition) and , we have+ ß + − P − X + − P + − P" # α α α " αE

α

+ − P ∩ P + − W  + Þα " α α αα .  Therefore which contradicts the definition of 

To complete the proof, we will show that for each straight line  , .P l ∩ Pl   #E

We begin with a series of observations:

 a)  If then .   Clearly .  But is the  line notα α $ " "" #Ÿ  ß Ÿ Ò X © X Pα α α α "" # " # "α
first

 in and is the first line not in , so X P X Ÿ Óα " α α α" # " #α2
" " Þ

 b) If then    Otherwise, by a),  .  Thenα α α $ " " " " "" #   ß  Þ Ò œ œ3  α α α α α" " # $3

 are on .  Then contains 3 points of + ß + ß + P œ P œ P Pα α α " " " "" # $ " # $ $α α α α
E which is

 impossible.    In particular, if ,  are distinct limit ordinals, there is a third ordinal Ó α α α" $ #

 between them so " "α α" $and  must be distinct.
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 c) For any , there is  such that Since there are  limit ordinals ,# $ α $ " # $   Þ Ò - α

 there are  distinct values for .  They cannot all be , since  has fewer than - Ÿ -" # #α

 predecessors.Ó

Finally, if some , pick an  so that .  Since is the  line weP œ P  P Â X ß# α " αα " # α first
get that Therefore  contains 2 points of P œ P − X Þ P   E © EÞ ñ# α α

          

More generally, it can be shown more that if for each line  we are given a cardinal number withP 7P

# Ÿ 7 Ÿ - E © P lE ∩ Pl œ 7 ÞP P
#, then there exists a set  such that for each , ‘

11.  Zorn's Lemma

Zorn's Lemma (ZL) states that if every chain in a nonempty poset  has an upper bound in ,Ð\ß Ÿ Ñ \
then  contains a maximal element. We remarked in Theorem 5.17 that the Axiom of Choice (AC)\
and Zermelo's Theorem are equivalent to Zorn's Lemma.

As a first example using Zorn's Lemma, we prove part of Theorem 5.17, in two different ways.

Theorem 11.1   ZL ACÊ

Proof 1    Let  be a collection of pairwise disjoint nonempty sets.   Consider the poset setÖE À − E×α α
c cœ ÖW © lW ∩ E l Ÿ "×

α α−EE À for all , α α , ordered by inclusion.  is a  poset becausenonempty
g − c.

Suppose  is a chain in  and let .  We claim that ÖW À − M× F œ ÖW À − M× F − Þ" "" c c
"

Suppose for some   Consider two points   Then andlF ∩ E l   # Þ B Á C − F ∩ E B − Wα α! ! "
α! "

C − W − M W W © W W © W
"# " # " for some , .  Since the 's are a chain, either  or ." "" # " " " " "2

Therefore one of these sets, say  contains both   Therefore A .  But this isW ß Bß CÞ lW ∩ l  "" " α" " !

impossible since .   Therefore  contains at most one point from each so W − F E F − Þ" α" c c

Since  is an upper bound for the chain in ,   Zorn's Lemma says that there is a maximal elementF c
Q − Þc

Since  for every .  If  for some ,  then we could choose anQ − ß lQ ∩ E l Ÿ " Q ∩ E œ gc α αα α! !

+ − E Q œ Q ∪ Ö+× ª QÞ lQ ∩ E l Ÿ "
Á

α α!
form the set Then would still be true for every , so wew α

would have , which is impossible because  is maximal. Therefore  for everyQ − Q lQ ∩ E l œ "w c α

α.   ñ

Notice that the function  given by 0 À E Ä E 0 œ ÖÐ ß CÑ − E ‚ C − Q ∩ E × α αα 
α α−EE À

is in the product  {A , so we see that  {A . α αÀ − E× À − E× Á gα α

Proof 2  Let  be a collection of nonempty sets.  LetÖE À − E×α α
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 and  for each c " "œ Ö1 À F Ä E À F © E 0Ð Ñ − E − F× α "

If , then the function  are sets of ordered pairs.  So we can order  by inclusion:1 ß 1 − 1 ß 1" # " #c c
1 Ÿ 1 1 © 1 Þ" # " # iff (This relation is just “functional extension”:  iff  dom dom1 Ÿ 1 Ð1 Ñ © Ð1 Ñ" # " #

and dom1 l Ð1 Ñ œ 1 Þ Ð ß Ÿ Ñ g −# " " )     is a nonempty poset because .c c

Suppose  is a chain in .  Define .  Since the 's form a chain, theirÖ1 À 3 − M× 1 œ Ö1 À 3 − M× 13 3 3c 
union is a function  where dom   Moreover, if , then dom1 À F Ä E ß F œ Ð1 ÑÞ − F − Ð1 Ñ α 3−M 3 3" "
for some , so .  Therefore , and  is an upper bound on the chain.  By Zorn's3 1Ð Ñ œ 1 Ð Ñ − E 1 − 1" " c3 "

Lemma,  has a maximal element, .c 0

By maximality, the domain of  is  if not, we could extend the definition of  by adding to its0 E  0
domain a point  from dom and defining  to be a point in the nonempty set α αE Ð0Ñ 0Ð Ñ E Þα
Therefore so .0 − ÖE À − E×ß ÖE À − E× Á g ñ α αα α

In principle, it should be possible to rework any proof using transfinite induction into a proof that uses
Zorn's Lemma and vice-versa.  However, sometimes one is much more natural to use than the other.

We now present several miscellaneous examples that further illustrate how Zorn's Lemma is used.

The Countable Chain Condition and -discrete sets in % Ð\ß .Ñ

Definition 11.2  Suppose  is a metric space and .  A set  is called -discrete ifÐ\ß .Ñ  ! E © \% %
.ÐBß CÑ   B Á C − EÞ% for every pair 

Theorem 11.3  For every ,  has a maximal -discrete set.% % ! Ð\ß .Ñ

 For example, is a maximal -discrete set in .™ ‘"

Proof   Let .  The theorem is clearly true if , so we assume %  ! \ œ g \ Á gÞ
Let is -discrete  and partially order  by inclusion .c % cœ ÖE © \ À E × ©
If , then  so .+ − \ Ö+× − ß Á gc c

Suppose  is a chain in .  We claim  is -discrete.ÖG À − E× Ð ß Ÿ Ñ Gα ααα c %
−E

If , then  and  for some , Since the 's form a chain, soBß C − G G C − G Þ G
α α α α α−E " #" # α α

G © G G © G Þ G © G Bß C − Gα α α α α α α" # # " " # # or  Without loss of generality, .  Then , and this set
is -discrete.  Therefore % %.ÐBß CÑ   Þ

Therefore .  Clearly,   is an upper bound for the chain . By Zorn's 
α αα α α−E −EG − G ÖG À − E×c α

Lemma  has a maximal element.   Ð ß Ÿ Ñ ñc

Notice that when we use Zorn's Lemma,  , foran upper bound that we produce for a chain in Ð Ÿ Ñ c
example,  in the preceding paragraph  in .  For

α α−EG  might not itself be a maximal element c
example, suppose  is a poset that contains exactly four sets  ordered by inclusion.  Ac EßFßGßH
particular  is indicated in the following diagram:c
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One chain in  is . Then  is an upper bound for the chain in .  However,c cÖEßG× ÖEßG× œ G
G © H G so  is  a maximal element in .not c

It  always true that an upper bound for a  in  (such as , above) is maximal chain isc ÖEßGßH×
a maximal element in  (why?). The statement that “in any poset, every chain is contained inc
a maximal chain” is called the Hausdorff Maximal Principle and it is yet another equivalent
to the Axiom of Choice.

Definition 11.4  A space  satisfies the  (CCC) if every family of disjoint\ countable chain condition
open sets in  is countable.\

We already know that every separable space satisfies CCC.  The following theorem shows that CCC is
equivalent to separability among metric spaces.

Theorem 11.5  Suppose  is a metric space satisfying CCC.  Then  is separable.Ð\ß .Ñ Ð\ß .Ñ

Proof  For each , we can use Theorem 11.3 to get a maximal -discrete subset .  For8 − H "
8 8

B Á C − H ß F ÐBÑ ∩ F ÐCÑ œ g ÖF ÐBÑ À B − H ×8 8" " "
#8 #8 #8

, so, by CCC, the family  must be countable.

Therefore  is countable, and we claim that the countable set  is dense.H H œ H8 88œ"
∞

Suppose  and, for , choose  so that   Since  is a D − \ H  ! 8  Þ H% %"
8 8 maximal

" "
8 88 8-discrete set,  is not -discrete, so there is a point H ∪ ÖD× B − H © H

with    .ÐBß DÑ   Þ ñ"
8 %

Sets of cardinals are well-ordered

We proved this result earlier (Corollary 5.21) using ordinals. The following proof, due to Metelli and
Salce, avoids any mention of ordinals but it makes heavy use of Zorn's Lemma and the Axiom of
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Choice.  The statement that any set of cardinals is well-ordered is clearly equivalent to the following
theorem.

Theorem 11.6  If is a nonempty collection of sets, then   such that 
_

Ö\ À − E× b − E l\ l Ÿ l\ lα α αα α _

for every  in other words, for each  there exists a one-to-one map α α 9− E  − E À \ Ä \ Þαα α α
_ _

Proof   Assume all the 's are nonempty (otherwise the theorem is obviously true).  Then by [AC],\α 
α α α α−E\ Á gÞ œ ÖF © \ À − E lF ×  Let for all ,  is one-to-one , ordered by inclusion.c α 1

Ð ß © Ñ g −c c is a  poset since .nonempty

If  is any chain in ,  we claim that .  Otherwise there would be pointsÖF À 3 − M× F œ F −3 3c c
B Á C − F ÐBÑ œ ÐCÑ F and an  for which .  Since the 's form a chain, we would have bothα 1 1α α 3

Bß C − F 3 lF3 3 for some , and this would imply that  is not one-to-one.1α

F ÖF À 3 − M× is an upper bound for the chain  in , so by Zorn's Lemma  contains a maximal3 c c
element, QÞ

We claim that for some ,   is .
_
α 1− E lQ À Q Ä \  

_ _
α α onto

Otherwise we would have  for   .  Using [AC] again, we could choose\  ÒQÓ Á gα α1 αevery
a point    Since ,   would beC œ ÐC Ñ − Ð\  ÒQÓÑ Á gÞ C Â ÒQÓ lÐQ ∪ ÖC×Ñα α α α α αα


−E 1 1 1

one-to-one for all  so that   Since ,  is strictly larger than α cQ ∪ ÖC× − Þ C Â Q Q ∪ ÖC× Q
and that is impossible because  is maximal.Q

 
Therefore  is a bijection and the map  is  for1 9 1 1  

_ _ _ _ _
α α αα α α α αlQ À Q Ä \ œ ‰ Ð lQÑ À \ Ä \ "  ""

every .    α − E ñ

Maximal ideals in a commutative ring with unit 1   Suppose  is a commutative ring with a unitO
element.  (If “commutative ring with unit” is unfamiliar, then just let  throughout the wholeO œ GÐ\Ñ
discussion. In that case, the “unit” is the constant function ." ).

Definition 11.7  Suppose , where  is a commutative ring with unit.   A subset  of  is calledM © O O M O
an  in  ifideal O

 1) M Á O
 2) +ß , − M Ê +  , − M
 3)  and + − M 5 − O Ê 5+ − M

In other words, an ideal in  is a proper subset of  which is closed under addition and “superclosed”O O
under multiplication.

An ideal  in is called a  if: whenever  is an ideal and then M O N M © N ß M œ N Þmaximal ideal
A maximal ideal is a maximal element in the poset of all ideals of , ordered by inclusion.O

For example, two ideals in ( ) are:O œ G ‘

 M œ Ö1 À 1 œ 03 0ß 3 − GÐ 3 3ÐBÑ œ B× where ) and  is the identity function   ‘
 For example,   (using 1ÐBÑ œ B/ − M 0ÐBÑ œ / ÑÞB B
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 M œ Ö0 À 0Ð!Ñ œ !×
          In fact,  is a maximal ideal in   (TQ GÐ Ñ‘ his take a small amount of work to verify; see
          Exercise E33.)

Maximal ideals, , are important in ring theory for example, if  is a maximal ideal in , thenQ  Q O
the quotient ring  is actually a field.OÎQ

Using Zorn's Lemma, we can prove

Theorem 11.8   Let  be a commutative ring with unit.  Every ideal  in  is contained in a maximalO M O
ideal    (QÞ Q  might not be unique.)

Proof  Let  is an ideal and   is a nonempty poset since .   We wantc c cœ ÖN À N M © N Ð ß © Ñ −×. I
to show that  contains a maximal element.c

Suppose  is a chain in .  Let .  Since  we only need to checkÖ À − E× − E× M © N ßJ J Jα α c αœ Ö À α

that  is an ideal to show that N N − Þc

If , then and  for some   Since the 's form a chain, either+ß , − − ß − EÞJ J   J J+ , −# " α# "
J  J J  . J.# " " # # "© N © N © Nor : say Then  are both in the ideal ,  so  +ß , N +  , − N ©" "

Moreover, if , . Therefore  is closed under addition and superclosed underk J J J− O 5+ − " ©
multiplication.

Finally, :  If , then 1  so 1  for some .  Then, for all , J J k kÁ O N œ O − N − − Oα α œ
k J K J† − N œ1 .  So  , which is impossible since  is an ideal.α α α

By Zorn's Lemma, we conclude that  contains a maximal elementc QÞ ñ

Basis for a Vector Space   It is assumed here that you know the definition of a vector space  over aZ
field .  (O O  is the set of “scalars” which can multiply the vectors in .  If “field” is unfamiliar, theni
you may just assume , , or  in the result.O œ ‘  ‚ ) Beginning linear algebra courses usually only
deal with finite-dimensional vector spaces: the number of elements in a basis for  is called theZ
dimension of .   But some vector spaces are infinite dimensional.  Even then, a basis exists, as weZ
now show.

Definition 11.9  Suppose  is a vector space over a field   A collection of vectors  is calledZ OÞ F © Z
a  for  if each nonzero  can be written in a  way as a  linear combination ofbasis unique finiteZ @ − Z
elements of  using nonzero coefficients from .  More formally,  is a basis if for each ,F O F @ − Z
@ Á !ß − − F @ œthere exist unique nonzero , ...,  and unique , ...,  such that .α α α" 8 " 8 3 33œ"

8O b b b
Z F is called  if a finite basis  exists.finite dimensional

Definition 11.10  A set of vectors  is called  if, whenever , ...,G © Z − Olinearly independent α α" 8

and  and , then  0  (in other words, the only linear c , ..., c c" 8 − G œ ! œ ÞÞÞ œ œ
3œ"
8

3 3 " 8α α α
combination of elements of   adding to  is the trivial combination).G !
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Theorem  11.11  Every vector space } over a field  has a basis.  (Z Á Ö! O The trivial vector space Ö!×
cannot have a basis under our definition:  the only nonempty subset  is not linearly independentÖ!× .)

Proof  We will use Zorn's Lemma to show that there is a linearly independent subset of  andmaximal i
that it must be a basis.
 
Let  is linearly independent , ordered by .   For any , we havec œ ÖG © Z À G × © ! Á @ − Z
Ö@× − ß Ð ß © Ñc cso  is a nonempty poset.

Let  be a chain in .  We claim  is linearly independent, so that .ÖG À − M× G œ G G −α αα c c
 If , ...,  and  and  ,  then each  is in some .α α α" 8 3 3 33œ"

8− O − G - œ ! - G- -" 8,...,  α3

 The 's form a chain with respect to , so one of the 's call it containsG © G  G α α α3
‡

 all the others.  Then  is a linear combination of elements from , and  ! œ - G G
3œ"
8

3 3α α α‡ ‡  

 is linearly independent.  So all the 's must be .α3 !
 
Therefore,  and  is an upper bound for the chain .  By Zorn's Lemma,  hasG − G ÖG À − M ×c α cα

a maximal element FÞ

We claim that  is a basis for .F Z

 First we show that if , then   be written as a finite linear combination of@ − Z @ can
 elements of .U

 If ,  then 1 .  If , then  so, by@ − F @ œ † @ @ Â F F § F ∪ Ö@×
Á

 maximality,   is not linearly independent.  That means there is aF ∪ Ö@×
 nontrivial linear combination of elements of   F ∪ Ö@× Ðnecessarily involving
 @ ! ÀÑ with sum 

    and   , ..., ,  with and + .b , b − O Á ! , @ œ !" 8, ..., , α α " " α "" 8 3 33œ"
8

 Since , we can solve the equation and write   ." Á ! @ œ ,
3œ"
8 

3
α
"

3

 We complete the proof by showing that such a representation for  is .@ unique

Suppose that we have  with ,  and . 
3œ" 3œ"
8 7

3 3 33 3 3
w w w wα α α α, œ @ œ , − O − F, ,3 3, 

By allowing additional 's with  coefficients as necessary, we may assume that the, !
same elements of  are used on both sides of the equation, so thatF  

3œ" 3œ" 3œ"
5 5 5

3 3 3 33 3" # " #, œ @ œ , Þ  , F
ww ww

  Then  ( )  and  is linearly3
ww
œ !

independent, so for , ." #3 3œ 3 œ "ß ÞÞÞ 5

Example 11.12   In Example II.5.14 we showed that the   functions only continuous 0 À Ä‘ ‘
satisfying the functional equation

     for all             0ÐB  CÑ œ 0ÐBÑ  0ÐCÑ Bß C − Ð‡Ñ‘

are the linear functions  for some .    Now we can see that there are other functions,0ÐBÑ œ -B - − ‘
necessarily discontinuous, that satisfy (*).



380

Consider  as a vector space over the field , and let  be a basis.  Choose any .  Then for‘  ‘F © , − F"

each ,  there is a unique expression  for some  andB − B œ ; ,  ; , , ß ÞÞÞß , − F‘ B " 3 3 # 8
3œ#

8
; ß ; ß ÞÞÞß ; − , ; œ !B # 8 " B.  (We can insist that  be part of this sum by allowing  when necessary.).
Define  by .   Clearly 0 À Ä © 0ÐBÑ œ ; 0ÐB  CÑ œ 0ÐBÑ  0ÐCÑÞ‘  ‘ B

Although the definition of  looks complicated, perhaps it could happen, for a cleverly chosen0
- − ß 0ÐBÑ œ -B B 0ÐBÑ œ -B 0‘ that for all ?   No: we show that  is not possible (and therefore  is not
continuous).

 1) If  for some constant , we would have:0ÐBÑ œ -B -

  ,  and0Ð # Ñ œ - † # −  
  .   But , or else  for every , whereas0Ð"Ñ œ - † " œ - − - Á ! 0ÐBÑ œ ! B
     So we can divide by  getting0Ð,Ñ œ " † , œ "Þ -

  , which is false.- # Î- œ # −  

 2) Here is a different argument to the same conclusion:  For every  where , we, − , Á ,U "

 have so .  Therefore the equation  has infinitely many, œ ! † ,  " † ,ß 0Ð,Ñ œ ! 0ÐBÑ œ !"

 solutions so  is not linear.0ÐBÑ

As we remarked earlier in Example II.5.14, it can be shown that discontinuous solutions  for (*) must0
be “not Lebesgue measurable” (a nasty condition that implies that  must be “extremely0
discontinuous.”)

A “silly” example from measure theory (optional)  It is certainly possible for an  unionuncountable
of sets of measure 0 to have measure 0.  For example, let  for eachM œ ÖB − ∩ Ò!ß "Ó À B  :×: 
irrational   There are uncountably many 's and each one has measure .  In this case,: − Ò!ß "ÓÞ M !: M © M !: :, so  also has measure .

Might it be true that  union of sets of measure 0 (say, in ) must have measure 0?  (It is easyevery Ò!ß "Ó
to answer this question: how?)  What follows is an “unnecessarily complicated” answer using Zorn's
Lemma.

If every such union had measure zero, we could apply Zorn's Lemma to the poset consisting of
all measure-  subsets of  and get a maximal subset  with measure  in . Since ! Ò!ß "Ó Q ! Ò!ß "Ó Ò!ß "Ó
does not have measure ,  there is a point .  Then  also has measure ,! : − Ò!ß "Ó Q Q ∪ Ö:× !
contradicting the maximality of .Q
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Exercises

E24.  Let  be a metric space.  In Definition 10.3, we defined collections  ( ) and theÐ\ß .Ñ Z α =α "

collection of Borel sets = { : }.U Z α = α  "

     a)  Let  be the family of closed sets in .  For , define familiesY α =! "\ 

  
:  , if is even

 , if is odd
Y

Y " α α

Y " α αα
"

"
œ

Ö −  ×

Ö J À J −  × 8œ"
∞

8 8 8

8œ"
∞

8 8 8

J J
8

8

Y Y" #is the collection of countable unions of closed sets (called -sets) and  is the family of countableJ5
intersections of sets (called -sets).J J5 5$

          Prove that  and  for all  .Y Z Z Y α " =α " α "© ©   "

It follows that : .  We can build the Borel sets “from the bottom up” beginningU Y α =œ { }α "

with either the open sets or the closed sets.  Would this be true if we defined Borel sets the same way in
an arbitrary topological space?)

    b) Suppose  and  are separable metric spaces.  A function  is called \ ] 0À\ Ä ] Borel-
measurable B-measurable  (or , for short) if  is a Borel set in  whenever  is a Borel set in .0 ÒFÓ \ F ]"

Prove that  is B-measurable iff  is Borel in  whenever  is open in .0 0 ÒSÓ \ S ]"

     c) Prove that there are  B-measurable maps  from  to .Ÿ - 0 \ ]

E25.   a) Is a locally finite cover of a space  necessarily point finite?  Is a point finite cover\
necessarily locally finite ( )?  Give an example of a space  and an opensee Definitions 10.10, 10.13 \
cover  that satisfies one of these properties but not the other.h

           b) Suppose   (  are closed sets in the normal space  with .  ProveJ 3 œ "ß ÞÞÞß 8Ñ \ J œ g3 33œ"
8

that there exist open sets  such that  and = .
_

Z Ð3 œ "ß ÞÞÞß 8Ñ J © Z Z g3 3 3 33œ"
8

 
Hint: Use the characterization of normality in Theorem 10.12.

E26.  Prove that the continuum hypothesis ( ) is true iff  can be written as  where  has- œ i E ∪ F E"
#‘

countable intersection with every horizontal line and  has countable intersection with every verticalF
line.
Hints: :   See Exercise I.E44.  If CH is true,  can be indexed by the ordinals   .   <Ê ‘ ="

   :   If CH is false, then .  Suppose  meets every horizontal line only countably oftenÉ -  i E"

and that .  Show that  meets some vertical line uncountably often by letting  be theE ∪ F œ F U‘#

union of any  horizontal lines and examining . i ÒU ∩ EÓ" \1 )
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E27.  A cover of the space  is called  if it has no proper subcover.h \ irreducible

 a) Give an example of an open cover of a noncompact space which has no irreducible
subcover.
 
 b)  Prove that  is compact iff every open cover has an irreducible subcover.\

Hint: Let  be any open cover and let  be a subcover with the smallest possible cardinality .  Let h T #7
be the least ordinal with cardinality .  Index  using the ordinals less than , so that7 T #
T α # " # α "œ ÖY À  × ÖZ À  × Z œ ÖY À  ×Þα " " α. Then consider , where 
 

E28.  Two set theory students, Ray  and Debra, are arguing.

Ray:  “There must be a maximal countable set of real numbers.  Look: partially
order the countable infinite subsets of  by inclusion.  Now every chain of such sets‘
has an upper bound (remember, a countable union of countable sets is countable), so
Zorn's Lemma gives us a maximal element.”

Debra:   “I don't know anything about Zorn's Lemma but it seems to me that you can
always add another real to any countable set of real numbers and still have a countable
set.  So how can there be a largest one?”

Ray: “I didn't say largest!  I said maximal!”

Resolve their dispute.

E29. Suppose  is a poset.  Prove that  can be “enlarged” to a relation  such thatÐT ß Ÿ Ñ Ÿ Ÿ ‡

ÐT ß Ÿ Ñ‡  is a chain.    ( “ enlarges means that “Ÿ Ÿ Ÿ © Ÿ © T ‚ T Ñ‡ ‡ ” ”
Hint: Suppose  is a linear ordering on .  Can  be enlarged?Ÿ T Ÿ

E30.   Let  be a cardinal.  A space  has  if, whenever  is a family of open sets with7 \ caliber 7 h
± ± œ 7 © ± ± œ 7 ÖZ À Z − × Á gh i h i i,  there is a family  such that  and .

 a) Prove that every separable space has caliber  .i"

 b) Prove that any product of separable spaces has caliber  .i"

Hint: Recall that a product of  separable spaces is separable (Theorem VI.3.5).-

 c) Prove that if  has caliber , then  satisfies the countable chain condition (\ i \" see Definition
11.4).

 d) Let  be a set of cardinal  with the cocountable topology.  Is  separable?  Does \ i \ \"

satisfy the countable chain condition?  Does  have caliber ?  (\ i" For notational convenience, you can
assume, without loss of generality, that \ œ Ò!ß Ñ=" . )
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E31.  a) Prove that there exists an infinite maximal family  of infinite subsets of  with theX 
property that the intersection of any two sets from  is finite.X

         b)  Let  be a set of distinct points such that .  Let ,H œ Ö À I − × H ∩ œ g ^ œ ∪H= X  I

with the following topology:

   i) points of  are isolated
   ii) a basic neighborhood of  is any set containing  and all but at most finitely= =I I

    many points of .I

Prove  is Tychonoff.^

  c) Prove that  is not countably compact.^ Hint: Consider the set H

  d) Prove that  is pseudocompact.^ Hint: This proof uses the maximality of XÞ

E32. According to Theorem V.5.10, the closed interval  cannot be written nontrivially as aÒ!ß "Ó
countable union of pairwise disjoint nonempty closed sets.  Of course, Ò!ß "Ó can certainly be written as
the union of  such sets:  for example, .- Ò!ß "Ó œ ÖB×

B−Ò!ß"Ó

       Prove that  can be written as the union of uncountably many pairwise disjoint closed setsÒ!ß "Ó
each of which is countably infinite.

Hint:  Use Zorn's Lemma to choose a maximal family  of subsets of  each homeomorphic toY Ò!ß "Ó 
Ö À 8 − × ∪ Ö!× P/>E œ Ò!ß "Ó  E"
8  Y.  .   is relatively discrete and therefore countable.  For each

B − E G − G G ∪ ÖB×Þ, choose a different and replace  by B B BY )

E33.  Suppose  is Tychonoff.  For ,  let .  Clearly,  is an ideal\ : − \ Q œ Ö0 − GÐ\ÑÀ 0Ð:Ñ œ !× Q: :

in .GÐ\Ñ

 a) Prove that  is a maximal ideal in .Q GÐ\Ñ:

 b) Prove that is  is compact iff every maximal ideal in  is of the form  for\ GÐ\Ñ Q:

some .: − \

E34.  Prove that there exists a subset  of that has only countably many distinct “translates”E ‘
E œ Ö+  < À + − E×  E œ Ö+  < À + − E× < −< <that is only countably many of the sets ,  are‘
distinct).

Hint:  Consider  as a vector space over the field , and pick a basis .  Pick a point  and‘  F , − F
consider all reals whose expression as a finite linear combination of elements of  does notF
involve ,Þ
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Appendix
Exponentiation of Ordinals: A Sketch

The appendix gives a brief sketch about exponentiation of ordinals.  Some of the details are omitted.
The main point is to explain why ordinals like  are still e ordinals.  (=!

=! countabl See Example 5.25, part
3)

If  and  are ordinals, let. α

  0 for all but finitely many }.. . 0 0 αα αœ Ö0 − Ò!ß Ñ À 0Ð Ñ œ Ò!ß Ñ

We can think of a point  in  as a “transfinite sequence” in , where  has well-ordered domain0 Ò!ß Ñ 0. .α

Ò!ß Ñα  rather than .   Using “sequence-like” notation, we can write:

   0 ,  and  for all but finitely many . 0 α . 0α
0 0 0œ ÖÐ Ñ À Ÿ  ! Ÿ +  ß œ ! ×a a

We put an ordering on  by:.α

   Given b  in ,  let  be the  index for which   We writeÐ Ñ Á Ð Ñ Á Þa a b0 0 / /
α. / largest

   if .Ð+ Ñ  Ð, Ñ 0 0 / /a b

Example For 2,  consists of 4 pairs ordered as follows:  0,0 1,0 0,1 1,1α . .œ œ Ð Ñ  Ð Ñ  Ð Ñ  Ð ÑÞα

  
We also use  to denote the order type associated with , . It turns out that ,  is . . .α α αÐ Ÿ Ñ Ð Ÿ Ñ well-
ordered, so this order type is actually an ordinal number.

Example   is represented by the set of all sequences in 0, 1, 2, ...  which are eventually 0   (=!
=! Ö × Þ The

sequences in the set turn out to be those which are “eventually ” because each element of has=!
=!  ! =!

has only finitely many predecessors.  In general, the condition that members of  be  for all but.α !
finitely many  is much stronger than merely saying “eventually .”0 α ! )

The order relation on  between two sequences is determined by comparing the  term at which=!
=! largest

the sequences differ.  For example,

  5,0,0,1,2,0,0,0,0,... 107,12,1,3,5,0,0,0,0,... 103,7,0,0,6,0,0,0,0...,Ð Ñ  Ð Ñ  Ð Ñ

The initial segment of  representing  consists of:= =! !
=!

  ... ...Ð!ß !ß !ß ÞÞÞß ÞÞÞÑ  Ð"ß !ß !ß ÞÞÞß ÞÞÞÑ  Ð#ß !ß !ß ÞÞÞß ÞÞÞÑ   Ð8ß !ß !ß ÞÞÞß ÞÞÞÑ 

= = = = =! ! ! !
# $

!
= =! ! is clearly a countable ordinal.  A little thought shows that    œ    ÞÞÞ

Once  is defined, it is easy to see that the ordinals  , , , ...    are all countable ordinals.. = = =α = = =
! ! !
! ! !

! !
!

= =
=

 

Ð ÑÞHere,  is understood, as usual, to mean α α" "# #( )

We can then define   sup {  , , , ... }.   Roughly,  is “  raised to the  power  % = = = % = = =! ! ! ! !! ! !œ = = =! ! !
! !

!
= =

=
 

times”.  As noted earlier, the sup of a countable set of countable ordinals is still countable:   is a%!
countable ordinal, that is,   !% =! "
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Exercise Prove that .  Prove that for ordinals  and ,   is also an ordinal, i.e., ,  is a. . . α . ." œ Ð Ÿ Ñα α

well-ordered set (not trivial!).  For ordinals , ,   and  .. α " . . .ß  ! œ †α " α "

For further information, see Sierpinski, Cardinal and Ordinal Numbers, pp. 309 ff.
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Chapter VIII Review

Explain why each statement is true, or provide a counterexample.

1. Let .  For each , let .  In the quotient space , exactly one point is\ œ Ò!ß Ñ − \ µ  " \Î µ= α α α"

isolated.

2.  can be written as a sum of countably many smaller cardinals.i=!
!i

3. Let A continuous function  is constant on a tail of .8 − Þ 0 À Ò!ß Ñ Ä Ò!ß Ñ = ‘ =" "
8

4. Every order-dense chain with more than 1 point contains a subset order isomorphic to .

5. If , where  is an open set in , then there must be aB − S S \ œ Ò!ß Ó ‚ Ò!ß Ó  ÖÐ  "ß Ñ×= = = =" ! ! !

continuous function  such that coz .0À\ Ä B − Ð0Ñ © S‘

6. Let  be a non-Borel subset of the unit circle and let  be the characteristic function ofG W 0 À W Ä" " ‘
GÞ 0 0 Then  is not Borel measurable but  is Borel measurable in each variable separately (that is, for
each , the functions  and  defined by  and  are Borel+ − Ò  "ß "Ó ÐBÑ œ 0ÐBß +Ñ Ð+ß CÑ œ 0Ð+ß CÑ9 < 9 <
measurable.

7. Let  be a dense subset of  .  Then  is not well-ordered (in the usual order on ).G G‘ ‘

8. Let  for all but finitely many }, with the lexicographic (“dictionary")H œ Ö0 − À 0Ð8Ñ œ ! 8

ordering .  Then  is order isomorphic to .Ÿ ÐHß Ÿ Ñ 

9.  Suppose  and  are linear orders on a set .  If  ,  then  .Ÿ Ÿ \ Ÿ © Ÿ Ÿ œ Ÿ" # " # " #

10. Consider the ordinals 1,  and .  Considering all possible sums of these ordinals (in the six= =! ! † #
different possible orders) produces exactly 3 distinct values.

11. If  and  are nonzero ordinals and , then .α " " = α" =+  œ œ! !

12. The order topology on  is the same as the subspace topology from .Ð"ß $Ñ ∪ Ð$ß &Ñ ‘

13. If  is a finite topological space, then there exists a partial ordering  on  for which  isÐ\ß Ñ Ÿ \g g
the order topology.

14. If  is open and  is closed in  and , then there mustS J X œ Ò!ß Ó ‚ Ò!ß Ó  ÖÐ ß Ñ× J © S= = = =" ! " !

exist an open set  such that cl .Z J © Z © Z © S

15. There are exactly  limit ordinals  .i α α=

16. If  denotes the order type of the irrationals, then .α α α# œ

17. If , then the ordinal space  is not metrizable because  is not normal.α = α \ œ Ò!ß Ó \"
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18. Suppose  is a nonempty collection containing all subsets of  with a certain property (*).c \
Suppose  is a chain of subsets of  and that .  By Zorn's Lemma,  is aÖT À − E× T − Tα α αc c 
maximal subset of  (with respect to ) having property (*).\ ©

19. For any infinite cardinal , there are exactly ordinals with cardinality .5 5 5

20. Suppose  is an infinite order type.  If ,  then there is an order type  (possibly )α α α 0"  œ  " !
such that  .α = 0 =œ  ! !

‡

21. If a linear order on , then the “reversed relation” defined by  iff is also aŸ \ Ÿ B Ÿ C C Ÿ B‡ ‡

linear order on .\

22. For any infinite cardinal ,   (without GCH).5 # œ 55 5

23. If  is a linear ordering on a finite set  and , then | |  =  .Ÿ lWl œ 8 ŸS 8Ð8" Ñ
2

24. If  and  are disjoint closed sets in , then at least one of them is countable.E F Ò!ß Ñ="

25. A locally finite open cover (by nonempty sets) of a compact space must be finite.

26.  is homeomorphic to a subspace of the Cantor set.Ò!ß Ó="

27. Let  have the lexicographic order .   ( , ) is not well-ordered, because the set i i! !Ÿ Ÿ
E œ ÖB − À b5 a8  5 BÐ8Ñ œ ×i!    2  contains no smallest element.

28.  Every subset of  is a Borel set in . ‘

29. With the order topology, the set 0  is homeomorphic to .Ö × ∪ ÖB − À lBl  "×‘ ‘

30. If  is a point-finite open cover of the Sorgenfrey plane , then there musth αœ Ö À − E× W ‚ WUα

be an open cover  of  such that, for each ,  cl .i α αœ Ö À − E× W ‚ W − Ð Ñ ©V V Uα α αE

31. There is a countably infinite compact connected metric space.

32.  If is a linear ordering on , then there can be linear ordering for whichŸ \ Ÿ
w

Ÿ © Ÿ © \ ‚\
Á

w


