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1 Introduction

In this chapter we will describe some examples of wildly embedded 2-spheres in R3. We have
already seen the Fox-Artin sphere, which is the image of an embedding S2 ↪→ R3 that is wild
at exactly one point. We will now consider two other examples of wild embeddings, where the
set of wild points is much larger in both cases. The first example will be the Alexander horned
sphere. After constructing the sphere we will see that the set of wild points forms a Cantor set,
i.e. there are embeddings C ↪→ [0, 1] ↪→ S2 ↪→ R3, such that the image of the last embedding is
the Alexander horned sphere, C is a Cantor set and the image of C under the composition of
the three embeddings is exactly the set of wild points in the Alexander horned sphere.

The second example will be Bing’s hooked rug, which is an embedding of a sphere that is
wild at every point of the sphere.

This chapter is divided into two different parts. In the first part, we will construct the
Alexander horned sphere and prove that the result of the construction is really a sphere. Then
we will prove that there are wild points and give an argument why these wild points form the
above Cantor set.

The second part is arranged in a very similar manner. After constructing Bing’s hooked rug,
we will again prove that it is an embedded sphere and that the embedding is wild at every point.
Here we will use the fact that for a locally flat codimension-one embedding of a manifold M
into a manifold N , the interior IntM of M is k−locally co-connected for all k ≥ 1.

2 The Alexander horned sphere
Before starting the construction of the Alexander horned sphere, we need the following

definition.

Definition 2.1 (Pillbox [DV09]). A pillbox is a copy C of D2 × [0, 1] containing linked solid
tori T1 and T2 as shown in Figure 1 such that T1 ∩ ∂C = τ and T2 ∩ ∂C = β, where we call
D1 × {1} the top disc τ and D2 × {0} the bottom disc β.

A pillbox is shown in Figure 1.

Figure 1. A pillbox. This picture is from [DV09, p. 48].
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2.1 Construction

We begin with a solid ball B0 and attach a handle D2 × [0, 1] along D2 × ({0} ∪ {1}). The
result is a solid torus X0. Now we remove a pillbox from X0, i.e. we remove a cylindrical
3-cell (containing two linked tori) and call the resulting manifold B1. A picture of B1 is shown
in Figure 2 and one can see that it is homeomorphic to a solid ball, so in particular B1 ∼= B0.
To B1 we now add the linked solid tori T1 and T2 which we removed earlier and call the result
X1 (Figure 2).

Figure 2. The step B0 to X1. Note that every space is solid here. Theneigh-
borhoods U1 and U2 are indicated in blue.

In the next step we remove a pillbox from each of the solid tori T1 and T2 to get a manifold
B2 ∼= B1 ∼= B0. Then we replace the pillboxes by the solid tori inside and call the resulting
manifold X2. We continue inductively. So in step n we remove 2n−1 pillboxes from Xn−1 and
call the result Bn. Then we attach 2n linked solid tori and call the resulting manifold Xn.

One can summarize that Xn arises from Xn−1 by removing something, namely the complement
of the linked solid tori in 2n−1 disjoint pillboxes.

Xn−1 Bn Xn
remove 2n−1 pillboxes attach 2n solid tori

remove C\(T1∪T2) 2n−1 times

In contrast to this, we attach 2n horns to obtain Bn from Bn−1, coming from 2n−1 attached
solid tori with pillboxes removed. These attached horns are the reason for the name of the
Alexander horned sphere.

Bn−1 Xn−1 Bn
attach 2n−1 tori remove 2n−1 pillboxes

attach 2n horns

So in the end we constructed a nested sequence B0 ⊆ B1 ⊆ B2 ⊆ . . . of solid balls as well as
a nested sequence X0 ⊇ X1 ⊇ X2 ⊇ . . . of 3-manifolds with boundary. We can now define the
Alexander horned ball to be

B :=
∞⋂

i=0
Xi.
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Figure 3. The Alexander horned sphere. Picture from [DV09, p.50]

Figure 4. Another picture of the Alexander horned sphere. The length of the
tubes needs to decrease to zero so that the limit points are reached. Picture
from [?, p.72]

We define the Alexander horned sphere A := ∂B. Here we just mean the topological boundary
since we do not know yet that B is a manifold. But in the next paragraph we will prove that B
is homeomorphic to D3 and that A is therefore homeomorphic to a sphere.

Below, there are two pictures of the Alexander horned sphere, see Figure 3 and Figure 4.
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2.2 The Alexander horned sphere is a sphere

To show that the Alexander horned sphere is indeed a sphere, we first remark that B =
⋃∞

i=0Bi,
which holds by construction. Now note that there are homeomorphisms hi : Bi−1 → Bi that
restrict to the identity on a neighbourhood of the bases of the attached horns because we can
contract the horns homeomorphically into neighbourhoods of their base. In particular, for every
index n there is a neighborhood Un of Bn

r Bn−1 ⊆ Bn as indicated in Figure 2 such that hk|Un

is the identity on Un ⊂ Bk
r Bn−1 for any k ≥ n. Define fn : B0 → Bn to be the composition

fn = hn ◦ . . . ◦ h1. The map f1 equals h1 and moves nothing outside the horns and U1. The map
f2 differs from f1 just on U2. We can say that the horns get smaller in each step if we consider
the Alexander horned sphere as subset of R3 with its standard metric. So we can choose the
neighborhoods Uk so that they get smaller and therefore the map fn differs from fn−1 on a very
small neighborhood for larger n. Thus, the maps {fn} converge uniformly to a continuous map
f : B0 → B. We want to show that f is bijective.

Define C := f−1(Br ⋃∞
i=0Bi) ⊆ B0. So C is the preimage of the set of points that form the

limit of the tubes in Figure 4. A point in f(C) is uniquely determined by the sequence of choices
one would make when choosing a path starting at a point in the left half of a torus in Figure 4
and ending at the point in f(C). Whenever we are in an area of the Alexander horned sphere
where two horns are attached we have to decide whether to go along the upper horn or along
the lower horn. Two different horns will never lead to the same limit point since two horns are
never glued to each other. So f(C) forms a Cantor set.

For a point x ∈ B0r C there is an index N such that x ∈ UN , so f |UN
= fN |UN

, hence f is
bijective on B0r C. We will now show injectivity and surjectivity of f |C . Consider Figure 4.
Any two points in C will be separated by horns, that is there exists n such that fn(x) and fn(y)
lie in different horns, so that they cannot have the same image under f . This implies that f |C is
injective. Each point of Br ⋃∞

i=0Bi lies in the image of f since there is a (unique) sequence
that encodes the horns leading to that point and so this point is part of the Cantor set f(C). So
f |C is also surjective.

Now, f is a continuous and bijective map from a compact space to a Hausdorff space and is
therefore a homeomorphism. Since B0 ∼= D3 by definition, the Alexander horned ball is indeed a
ball, which implies that the Alexander horned sphere is a sphere.

2.3 Wildness of the Alexander horned sphere

We will prove with the help of Lemma 2.2 below that the fundamental group of the comlpement
of the Alexander horned sphere is not trivial. It will follow by the Schoenflies theorem then,
that the embedding A ↪→ R3 cannot be locally flat.

Lemma 2.2. ( [DV09, lemma 2.1.9]) Let C be a pillbox and Y be a closed subset of R3

such that Y ∩ C = τ ∪ β, and let J be a 1-sphere in R3r (Y ∪ C) as shown in Figure 5. If
π1(J)→ π1(R3r (Y ∪ C)) is injective, then π1(R3r (Y ∪ C))→ π1(R3r (Y ∪ T1 ∪ T2)) is also
injective.

Proof. The proof follows Bing’s paper [Bin61]. Assume, that π1(J) → π1(R3r (Y ∪ C)) is
injective, so J is not null-homotopic in R3r (Y ∪ C). We now consider a loop K ⊆ R3r (Y ∪ C)
that is null-homotopic in R3r(Y ∪ T1 ∪ T2) and show that it is also null-homotopic in R3r(Y ∪ C).

Since K is null-homotopic in R3r (Y ∪ T1 ∪ T2), there is a map f : D2 → R3r (Y ∪ T1 ∪ T2)
that maps ∂D2 homeomorphically onto K. We will now consider the preimage of ∂C under
f . If it is empty, then f(D2) lies entirely inside R3r (Y ∪ C), so K would be null-homotopic
in R3r (Y ∪ C) and we are done. So we consider the case where f−1(∂C) is non-empty. By
transversality, f−1(∂C) is a finite union of closed submanifolds of dimension 1, so it is a finite
union of embedded S1 ↪→ D2. We will now use the so-called "innermost disc argument" to adjust
f so that the preimage of ∂C under this new f is non-empty.
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Figure 5. Parts of this picture are from [DV09].

Among all the embedded S1s in the preimage of ∂C under f , there will be at least one, call it
L1, that bounds an innermost disc. That is, it bounds a disc IntD1 such that f(IntD1) ∩ ∂C is
empty.

Claim. f(D1) can be shrunk to a point on ∂Cr (τ ∪ β).

Assume, that the claim holds. Then we can shrink f(D1) to a point and push this point
slightly away from ∂C into Rr (Y ∪ C). Like this, we got rid of one innermost disc. Since we
just have finitely many closed curves in the preimage of ∂C, we can repeat this process until
there are no curves in f−1(∂C) anymore, and we are done.

Proof of Claim. We have to check two cases, namely the case that IntD1 ⊆ IntC and the case
that D1 ∩ IntC = ∅.

Case 1: D1 ⊆ IntC.
DefineM1 := Cr (T1 ∪ T2). This is a manifold with boundary. Note that T1 and T2 are closed, so
that the manifold boundary of M1 is exactly ∂Cr (τ ∪ β) which is homeomorphic to S1 × (0, 1).

We compute π1(M1). It is equivalent to the fundamental group of the complement of the
finite graph G shown in Figure 6.

Figure 6. A finite graph with π1(R3r G) ∼= π1(M1). Picture from [Bin61].
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We can easily compute the Wirtinger presentation of π1(R3r G) and see that

π1(R3r G) = 〈a, b, c, d, e|a = ec, cb = dc, ab = bc, b = ed〉 ∼= 〈a, b〉 where e = ab−1a−1b 6= 1.

It is the free group on two generators and a loop corresponding to e is not trivial in π1(M1).
This latter loop L is given by one that circles ∂M1 ∼= S1 × (0, 1) once. So it corresponds to
the generator of π1(∂M1) ∼= Z. In particular, any loop circling ∂M1 k times for 0 6= k ∈ Z
is not null-homotopic since it corresponds to the element k · e ∈ π1(M1) which is not trivial.
We conclude that any loop α on the boundary of M1 that is null-homotopic in M1 is already
null-homotopic on the boundary of M1.

Since L1 bounds a disc inside C, it is null-homotopic inside M1 and therefore also on
∂M1 = ∂Cr τ ∪ β which is what we had to show.

Case 2: f(IntD1) ∩ IntC = ∅.
Define M2 := R3r (Y ∪ IntC). It is a 3-dimensional manifold with boundary. Since we remove
Y entirely and keep the boundary of C, its manifold boundary is given by ∂M2 = ∂Cr τ ∪ β ∼=
S1 × (0, 1).

We apply the loop theorem to M2: if there exists a closed curve γ on ∂M2 such that γ ' ∗ in
M2 but γ 6' ∗ on ∂M2, then there exists a simple closed curve with the same property.

The loop f(L1) is a simple closed curve on ∂M” that bounds a disc in M2. If f(L1) could not
be shrunk to a point on ∂M2, then by the loop theorem there is a simple closed curve with the
same property. A simple closed curve is an embedded S1. We will now consider simple closed
curves on ∂M2. Any simple closed curve γ on ∂M2 such that γ 6' ∗ on ∂M2 is homotopic to L
which was the loop corresponding to the generator of π1(M1) = π1(∂Cr (τ ∪ β)) = π1(M2). If
L ' ∗ in M2, then π1(∂M2) would be trivial in π1(M2). This means, π1(J) would be trivial in
π1(R3r (Y ∪ C)) which is not the case by assumption. We conclude that any loop on ∂M2 that
is not null-homotopic in M2 is already null-homotopic on ∂M2 and can finish the proof with the
same argument as in Case 1. �

The proof of the claim finishes the proof of Lemma 2.2. �

Now if we find an essential loop in R3r X0, Lemma 2.2 tells us that the loop will also be
essential in R3r Xn for every n ≥ 0. The complements of the Xn form a nested sequence of
open sets R3rX0 ⊆ R3rX1 ⊆ . . . . Consider any null-homotopic loop in R3r A. The image of
the homotopy that contracts the loop to a point is compact in R3r A and lies therefore already
in R3rXn for some n. Thus, the loop is already null-homotopic in the complement of some Xn.
We conclude that every essential loop in R3rXn for some n is also essential in R3r A. So we
can derive from lemma Lemma 2.2 that π1(R3r A) is not trivial since J is one example of an
essential loop in X0 if we choose Y to be X0r C. By the Schoenflies theorem, the embedding is
therefore not locally flat, hence wild.

Remark 2.3. We have already seen an embedding of a Cantor set into the sphere and know that
the Alexander horned sphere is locally flat outside the image of the embedded Cantor set. But
we did not see why this Cantor set is exactly the set of wild points. One way to think about this
is to consider neighborhoods Ux of any point x in the embedded Cantor set on the Alexander
horned sphere. Such a point lies in the intersection of an infinite sequence of solid tori (Tk)1≤k∈Z
lying inside pillboxes Pk ⊇ Tk and Ux contains a part of this sequence, say (Tk)k≥l for some
l ≥ 1. We find for any n a neighborhood Vx of x that looks exactly the same as Ux such that
Vx just contains (Tk)k≥n+l. But if π1(R3r Ux) is not trivial then π1(R3r Vx) cannot be trivial
as well. Since we can choose Ux to be A itself, we can find for every neighborhood V of x a
neighborhood Vx ⊆ V such that π1(R3r Vx) is not trivial. Therefore there is not neighborhood
W of x such that Wr A is homeomorphic to R3rR2 which implies that x is not embedded in a
locally flat way. More details on this can be found in [Hat02].
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3 Bing’s hooked rug
As already mentioned above, the set of wild points of the Alexander horned sphere A is a

Cantor set in the sense that there is an embedding of a Cantor set C ↪→ A such that the image of
C is exactly the set of wild points of A. We now construct an example of an embedded 2-sphere
in R3 such that the embedding is wild at every point of the sphere. This sphere was originally
constructed by R.H. Bing in [Bin61] in order to give an counterexample to the conjecture that an
embedding S2 ↪→ R3 is locally flat if each arc in the image of the sphere is locally flat. However,
we will not prove that each arc in Bing’s hooked rug is tame since we would have to develop
some tools that would go beyond the scope of this chapter. But we will see that Bing’s hooked
rug is somehow a ’very’ wild sphere, in the sense that it is wild at every point.

For the construction of Bing’s hooked rug we need the definition of an eyebolt.

Definition 3.1 (Eyebolt [DV09]). An eyebolt is the union of a tube with a solid torus. A plug
for the eyebolt is a copy of D2 × (0, 1) embedded into the solid torus part of the eyebolt.

Figure 7. A plug and an eyebolt.

Now we can start the construction.

3.1 Construction

We start with the standard solid ball F0 in R3.

Step 1. In the first step of the construction, we cover F0 with discs E1, . . . , En where n > 0 is
an integer of our choice. The discs should satisfy the following two properties:

(1) IntEi ∩ IntEj = ∅ for any i 6= j,
(2) the discs are arranged in a circular pattern, i.e. Ei ∩Ei+1 is an arc in the boundary of

each for i ≤ n− 1. The same holds for En ∩ E1.
We attach an eyebolt gi on each of the discs Ei and "hook" gi to the base of gi+1 (and gn to the
base of g1), as indicated in Figure 8. We shrink the resulting 3-manifold slightly such that it lies
inside F0 and call it H1. Now, we remove a plug from each of the eyebolts to get a manifold F1
that is homeomorphic to a solid ball, so F1 ∼= F0.

Step 2. Now, we cover F1 with closed discs E′1, . . . , E′n that have the same boundaries as the
image of E1, . . . , En under a homeomorphism F0 ∼= F1. Afterwards, we cover each E′i with discs
Ei

1, . . . , E
i
k for a number k ≥ 2 that we can freely choose, that satisfy properties 1 and 2. Now,

we attach an eyebolt gi
j to each Ei

j and hook gi
j to the base of gi

j+1 for j ≤ n− 1, and gi
n to the

base of gi
1. After shrinking the result slightly, we again obtain a 3-manifold with boundary which

we call H2 ⊆ H1. We remove a plug from each eyebolt on H2 and call the resulting manifold
F2 ∼= F1 ∼= F0. Parts of H2 are shown in Figure 9.

We continue inductively. Here is an instruction for step k, that shows how we obtain Hk and
Fk from Fk−1.
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Figure 8. The first stage H1 of the construction of Bing’s hooked rug. This
picture is from [DV09].

Figure 9. Parts of the manifold H2. The picture is from [DV09].

Step k. Fk−1 is covered with discs E1, . . . , En where on each disc there is an eyebolt with a
plug removed and which is not covered by the Ei. Here we take the same notation for the cover
as in earlier steps since another naming would be complicated and the name of the discs will not
be very important later. Cover Fk−1 with discs E′1, . . . , E′n, that have the same boundaries as
E1, . . . , En and cover each of these discs with n discs that satisfy properties 1 and 2. Attach
an eyebolt to each disc and hook it to the base of the eyebolt on the next disc. Shrink the
result and call it Hk. Now remove a plug from each eyebolt and call the resulting space Fk. It is
homeomorphic to Fi for any i ≤ k.

We constructed a nested sequence of 3-manifolds with boundary H1 ⊇ H2 ⊇ . . . and we define

H :=
∞⋂

i=1
Hi.

Bing’s hooked rug is now defined as ∂H.
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As for the Alexander horned sphere, our aim is now to prove that Bing’s hooked rug is indeed
homeomorphic to a sphere as well as that it is wildly embedded into R3. This will be proven in
the following two sections.

3.2 Bing’s hooked rug is an embedded sphere

As already mentioned, there are homeomorphisms hi : Fi−1 → Fi that can be controlled in
their size by the number and size of the covering discs. This is the reason why we can choose
the discs and the sequence (fn)n∈N such that it converges uniformly, where fn := hn ◦ . . . ◦ h1.
Thus the limit map f : F0 → H will be continuous. Again, we just have to show bijectivity of f
to conclude that f is a homeomorphism.

For the proof of bijectivity of f we can choose the shrinking applied in each step to be the
radial shrinking which is a homeomorphism. Therefore we will drop this step from now on. In
step k of the construction we subdivide the covering of Fk−1 such that the union of all boundaries
of the old discs form a subset of the union of the boundaries of all discs in the subdivision. From
Fk−1 to Fk we do not change anything on the boundary of the discs Ei so we can choose hk such
that it fixes the boundaries of the discs on Fk−1.

Two disjoint discs of the covering of Fn will be disjoint under f since we do not change their
boundary and the discs have disjoint interiors by construction. For two different points x, y ∈ F0
there will be an index k such that fk(x) and fk(y) lie on different discs of the covering of Fk. So
f(x) and f(y) will be distinct points and we can conclude that f is injective.

We have proved that f is a continuous and bijective map from a compact space to a Hausdorff
space. By the compact Hausdorff lemma f : F0 → H is a homeomorphism which shows that H
is homeomorphic to a solid ball. Thus B = ∂H is homeomorphic to a sphere.

3.3 Wildness of Bing’s hooked rug

We will prove that the embedding B ↪→ R3 is wild at every point by showing that it is not
1-LCC at every point of the embedding.

Recall that a co-dimension one embedding A ↪→ X that is locally flat at a point a ∈ A is
k-LCC for k ≥ 1 at that point. The definition of k-LCC can be found in ??.

We will prove a similar lemma to Lemma 2.2 and can conclude from it that the embedding is
not 1-LCC at every point by finding an index i and an essential loop in R3rHi circling the base
of an eyebolt in Hi and proving that it is essential in R3rHk for any k ≥ i. By construction,
the eyebolts will be spread densely over B in the end, so we can find such a loop in every
neighborhood of a point.

Lemma 3.2. Let C be a 3-cell in R3 and let B1, B2 and B3 be three disjoint discs on ∂C. Let T
be a solid torus in C such that T ∩∂C = B1 and let S be a 3-cell in C such that S∩∂C = B1∪B2.
Assume T and S are linked as indicated in Figure 10. Let Y be a closed subset of R3 such that
Y ∩ C = B1 ∪B2 ∪B3.

If π1(∂Cr (B1 ∪B2 ∪B3)) → π1(R3r (Y ∪ IntC)) is injective, then π1(R2r (Y ∪ C)) →
π1(R3r (Y ∪ S ∪ T )) is injective.

Proof. The proof of this lemma is similar to the proof of Lemma 2.2. Assume, π1(∂Cr
(B1 ∪B2 ∪B3)) → π1(R3r (Y ∪ IntC)) is injective. Now choose a loop J ⊆ R3r (Y ∪ S ∪ T )
that is null-homotopic, i.e. that bounds a disc. We have a map f : D2 → R3r (Y ∪ S ∪ T ) such
that f(∂D2) ∼= J . We consider again f−1(∂C) and use transversality to see that it is a finite
union of simple closed curves. We choose an innermost disc bounded by L1 and will prove now
that L1 is nullhomotopic on ∂Cr (B1 ∪B2 ∪B3). Again, we have to consider the two cases
where the disc bounded by L1 lies inside or outside C.

Case 1: Define M1 to be Cr (T ∪ S). It is a 3-dimensional manifold with boundary ∂M1 =
∂Cr (B1 ∪B2 ∪B3). We compute π1(M1) which is a fre group of two generators. Note that
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Figure 10. The situation of Lemma 3.2. Picture from [DV09, p.88]

the boundary of any of the three discs Bi is not null-homotopic in ∂M1 and that the three
boundaries of the discs even generate the fundamental group of ∂M1. Now assume there is
a closed curve γ on ∂M1 such that γ is null-homotopic in M1 but not on ∂M1. By the loop
theorem, there is a simple closed curve with the same property. This could, up to homotopy,
only be ∂Bi for some i = 1, 2, 3. But ∂Bi is not null-homotopic in M1. So there is no such closed
curve γ ⊆ ∂M1. Thus, any loop on ∂M1 that is null-homotopic in M1 is null-homotopic on ∂M1.
In particular, L1 is null-homotopic on ∂M1. Thus in this case, L1 is null-homotopic on ∂M1 as
we wanted to show.

Case 2: Define M2 := R3r (Y ∪ IntC). It is a 3-manifold with boundary ∂M2 = ∂Cr
(B1 ∪B2 ∪B3). By using the loop theorem, we see that every loop on ∂M2 that is null-
homotopic in M2 is also null-homotopic on ∂M2 since π1(∂M2) is generated by the boundaries
of the three discs that are not null-homotopic in M2. Thus L1 is null-homotopic on ∂M2.

As in Lemma 2.2 we can now conclude the statement of this lemma. �

To apply the lemma, we will consider the step Hi−1 → Hi in the construction of Bing’s hooked
rug again in more detail. In Figure 11 the step is divided into several substeps that we explain
next.

We start in Hi−1 on the top left. After removing the complement of two linked solid tori inside
a pillbox, we constructed H ′i. Now, to get to H ′′i , we need two substeps. First, we attach a handle
to each of the discs in the subdivision (H̃i). Then, we move one base of each handle including
the first two handles on H ′i onto the disc with the next higher index (H̃ ′i). So everything is
moved in a circular pattern around the surface. To obtain H ′′i , we move the base of a handle,
that is now on the disc with higher index, onto the other handle that has a base on the same
disc and thicken up the moved base of the handle. Like this, we get such tubes on each disc,
that have a bulb at the end where the next tube goes through. Since everything is solid, these
intersections do not disturb the manifold property of H ′′i . From H ′′i to Hi we cut a hole into the
bulbs where the tubes can go through an see that we have constructed hooked eyebolts.

Now we can see what happens to an essential loop in the complement of Hi after passing to
Hi+1. The loop K shown in Figure 11 is essential in R3rH ′′i since it circles an attached handle.
Lemma 3.2 implies that K will also be essential in R3rHi. Now we can see that by Lemma 2.2,
K is essential in the complement of H ′i+1. From H ′i+1 to H ′′i+1 we just add some handles that
can not trivialize essential loops. So K is essential in R3rH ′′i+1. We continue again inductively.
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Figure 11. The construction step Hi−1 → Hi in more detail. Parts of the
picture are from [DV09]. Note that what is shown here is always just a part of
Hi or Hi−1.

As mentioned above, for any neighbourhood U ⊆ B of a point x ∈ B we will always find N ,
such that one of the discs Ei covering FN in stage N lies entirely in U . Therefore, for any
neighbourhood U we will find an essential loop in Ur B. This means that B is not 1-LCC at
any point as we wanted to show.
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