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Abstract
Flower initiation is a phenological developmental process strictly regulated in all flowering plants. Studies in Arabidopsis thaliana, a model plant

organism in plant biology and genetics,  and major cereal crops have provided fundamental knowledge and understanding of the underlying

molecular mechanisms and regulation in annuals. However, this flowering process and underly molecular mechanisms in perennials are much

more complicated than those in annuals and remain poorly understood and documented. In recent years, the increasing availability of perennial

plant genomes and advances in biotechnology have allowed the identification and characterization of flowering-associated gene orthologs in

perennials. In this review, we compared and summarized the recent progress in regulation of flowering time in perennial trees, with an emphasis

on the perennial-specific regulatory mechanisms. Pleiotropic effects on tree growth habits such as juvenility, seasonal activity–dormancy growth,

and the applications of tree flowering phenology are discussed.
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 Introduction

Flowering time is a complicated, environmentally responsive
trait,  which can impact the fitness and survival  of  all  flowering
plants[1]. The timing of flowering is determined by endogenous
genetic  factors,  as  well  as  various  environmental  signals,  such
as  photoperiod,  temperature,  and  stress[2].  Studies  in
Arabidopsis  thaliana,  a  model  plant,  have  provided  a  basis  for
understanding  plant  flowering  regulation  in  annual  plants,  in
which flowering time is  precisely  controlled by  a  gene regula-
tory  network  comprising more than 300 genes[3].  These genes
are  involved  in  complex  signal  pathways  including  the  auto-
nomous,  age,  circadian  clock,  and  gibberellin  (GA)  pathways
that respond to intracellular and intercellular signals, and verna-
lization, ambient temperature, and photoperiod pathways that
react  to  environmental  cues.  Moreover,  with  some  notable
exceptions,  genes  with  analogous  functions  and  similar  mole-
cular  mechanisms  found  in Arabidopsis have  conserved  func-
tions  in  flowering  regulation  in  annual  crop  species.  Recent
reviews have provided detailed descriptions of flowering genes
and mechanisms in annual plants[4−8]. These provide a basis for
the understanding of  gene networks controlling the flowering
phenology of trees discussed in this review.

Most  annual  or  biennial  plants  are  monocarpic,  flowering
only  once  in  their  life  cycle  before  death[2] (Fig.  1).  Unlike
annual plants, woody perennial species are typically polycarpic
and  undergo  repeated  vegetative  and  reproductive  growth
cycles[9].  Perennial  trees  take  several  years  to  undergo  the
juvenile  to  adult  phase  change  to  acquire  reproductive
capability[10].  Following  first-time  flowering,  trees  flower
annually throughout their lifespan (Fig. 1). Therefore, flowering
is split into two dimensions in perennial trees: the first onset of
flowering after many years of juvenility, and seasonal flowering
after  reproductive maturity (Fig.  1).  The very long lifespan and
polycarpic  growth  habits  require  a  more  complex  regulatory

network  to  synchronize  environmental  cues  and  mediate  the
appropriate  flowering  time[11].  The  availability  of  increasing
genome  assemblies  for  trees  now  allows  the  identification  of
flowering  phenology-associated  gene  orthologs  in  perennial
plants.  Many  flowering  genes  have  been  functionally  charac-
terized in perennial trees, and conserved as well as functionally
divergent  genes  involved  in  flowering  have  been  found.  This
review  summarizes  the  current  understanding  of  flowering
time  regulation  in  perennial  trees.  Moreover,  we  discuss  the
pleiotropic  effects  on  tree  growth  habit  such  as  juvenility,
seasonal  activity–dormancy  growth,  and  the  applications  of
tree flowering phenology.

 The juvenile-to-adult phase transition in
perennials and its correlation with reproductive
competence

The  life  cycle  of  flowering  plants  can  be  considered  a
succession  of  distinct  growth  phases:  vegetative  growth,
followed  by  a  reproductive  development  and  seed  set,  and
eventually  senescence  (Fig.  1).  The  length  of  these  phases
varies among species and is  particularly extended in perennial
plants.  Annuals  progress  quickly  from  vegetative  to  reproduc-
tive  stage  to  complete  their  life  cycle  in  one  growing  season.
While perennial woody plants undergo a prolonged vegetative
phase varying from a few years to several decades until the first
onset  of  flowering[10] (Fig.  1).  The  precise  development  phase
transitions  are  essential  for  the  success  of  plant  adaptability,
survival,  and  reproduction.  Floral  induction  depends  on  the
transition from the juvenile-to-adult vegetative phase (vegeta-
tive  phase  change,  VPC),  called  the  age  pathway  in  flowering
regulation[12,13]. In Arabidopsis, VPC and flowering transition are
regulated by the sequential activity of two microRNAs, miR156
and  miR172,  and  their  respective  target  genes[13,14].  With  the
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aging  of  the  plant,  a  gradual  decline  in  miR156  abundance
occurs in accordance with a steady accumulation of SQUAMOSA
PROMOTER-BINDING  PROTEIN (SBP)-LIKE (SPL)  transcription
factors  (TFs)[13,14].  miR156  reduction  is  also  coupled  with  the
gradual  accumulation  of  miR172,  which  can  repress APETALA2
(AP2)-like TFs[15,16]. SPL and AP2-like gene  expression  is  regu-
lated by diverse flowering signals  and their  products  form the
molecular  output  of  a  pathway  that  regulates  VPC  and
flowering  initiation[17,18].  The  miR156/miR172  module  is
conserved and regulates VPC in several other crop species[19].

Perennial  woody plants experience a long period of vegeta-
tive  growth  before  the  first  flower  onset;  thus,  it  is  of  more
pragmatic value to study phase transitions of perennial woody
plants.  Studies  of  broad-leaved  trees,  such  as Populus  cana-
densis, Acacia confusa, A. colei, Hedera helix, Eucalyptus globulus,
Quercus  acutissima, Folium  mori,  Mangifera  indica, Malus
hupehensis, Persea americana, and Macadamia integrifolia, have
shown that miR156 and miR172 have similar expression trends
with  age[20−23],  suggesting  that  miR156  and  miR172  are
common  to  almost  all major  plant  taxa  and  their  roles  in  the
control  of  VPC  appears  conserved  (Fig.  2).  miR156

overexpression  in  both P.  canadensis and P.  tremula × alba
prolongs the juvenile phase, providing a genetic support for its
role  in  VPC  in  trees[20,24,25].  However,  recent  studies  in  a
gymnosperm Pinus  tabulaeformis showed  that  the  expression
pattern  of  miR156 and its  target  genes  showed no correlation
with  age,  suggesting  diversity  of  VPC  control  in  gymnosperm
trees[26].  In Arabidopsis,  the  miR156/miR172  module  showed
strong  connections  between  VPC  and  reproductive
competence[12,13].  However,  the relationship between VPC and
floral  induction  in  perennial  plants  is  unclear.  Morphological
changes during VPC have been comprehensively characterized
in P.  tremula  ×  alba using  miR156  overexpression  and  knock-
down  transgenic  plants,  and  the  onset  of  adult  traits  already
begins within three months of growth[25].  This phenomenon is
interesting  as  it  corrected  our  traditional  understanding  that
trees have a long juvenile stage. If VPC is completed at the early
stage, trees undergo a long period of the adult vegetative stage
until  floral  induction.  This  raises  a  question  on  how  the
miR156/miR172  module  coordinates  these  two  processes.
Although ectopic expression of SPL gene from Citrus clementina
and Eriobotrya  japonica could  promote  flowering  in

Perennial

Annual

Autumn

Winter

Spring

Summer

Spring

Direct
flowering

Indirect
flowering

VPC RPC

Several months

VPC RPC
Many years

Autumn

a

b

 
Fig. 1    Comparison of flowering phenology between annual and perennial woody plants. The life cycle of flowering plants can be considered
as  a  succession  of  distinct  growth  phases:  vegetative  growth,  followed  by  a  reproductive  phase  and  eventually  seed  set  and  senescence.
Annuals are fast cyclers and only need several  months from the stage of vegetative development to flowering,  and complete their  life cycle
within one growing season (a). While perennial woody plants experience a prolonged vegetative phase with many years until the first onset of
flowering. Following first-time flowering, trees undergo seasonal flowering throughout their lifespan (b). Tree’s seasonal flowering can mainly
be  divided  into  'direct'  and  'indirect'  flowering  types,  based  on  whether  the  development  from  initiation  to  emergence  is  interrupted  or
includes  a  period  of  rest.  The  'indirect'  flowering  is  common  among  temperate/boreal  trees.  It  displays  extended  periods  between  flower
initiation and flower blooming, in which flowers initiate in the summer are dormant through the winter, and the trees do not blossom until the
following  spring.  In  comparison,  'direct'  flowering  is  common  among  subtropical  or  tropical  evergreen  species.  They  finish  their  complete
reproductive cycles during a single growing season without dormancy or a rest period. VPC, vegetative phase change; RPC, reproductive phase
change.
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Arabidopsis[27,28]. Thus far, however, reports confirming that the
miR156/miR172  module  and  related  genes  regulate  floral
initiation in trees are rare.  To what extent miR156 and miR172
and their targets function in the first flowering of trees remains
to be clarified (Fig. 2). Besides the age pathway, AP2-like genes
contribute  to  polycarpy  in Arabis  alpina, which  provides  a
valuable  clue  in  understanding  the  molecular  basis  of  the
polycarpic growth habit of woody trees[29].

 Advances in molecular mechanisms of
reproductive competence in trees

Most  knowledge  about  the  molecular  mechanisms  of  flo-
wering time comes from studies in the annual plant Arabidop-
sis,  in  which  flowering  initiation  is  induced  by  multiple
pathways  that  converge  to  a  few  integrator  genes,  such  as
FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION
OF  CONSTANS  1 (SOC1).  These  genes  act  as  floral  pathway
integrators  to  activate  downstream  floral  meristem  identity
genes, such as LEAFY (LFY)  and APETALA1 (AP1),  and cooperate

to  promote  flowering[6,30].  Due  to  a  lack  of  availability  of
molecular  resources,  the  molecular  mechanisms  that  regulate
reproductive  competence  have  not  been  widely  explored  in
perennials.  The  most  common  way  is  to  study  the  functional
conservation  of Arabidopsis genes  regulating  flowering  by
ectopic expression of these genes in transgenic trees (Table 1).
The gene FT and its family member TERMINAL FLOWER 1 (TFL1)
have contributed largely to our understanding of the molecular
mechanisms  that  regulate  reproductive  competence  in
perennials. FT and TFL1 encode a pair of flowering regulators of
the  phosphatidylethanolamine-binding  protein  family[31]. FT
promotes  the  reproductive  transition  and  flowering,  whereas
TFL1 represses flowering[32].  The antagonistic roles of FT/TFL in
mediating  flowering  signals  have  been  documented  in  all
angiosperm  species  examined[5,33].  In  poplar  trees,  leaves  in
adult shoots have higher expression levels of FT than leaves in
juvenile  shoots[34].  Overexpression  of FT orthologs  can  induce
premature flowering in many perennial  species[34−44] (Table 1).
In  contrast,  transgenic M.  domestica, P.  trichocarpa,  and
Actinidia  chinensis plants  with  reduced TFL1 expression
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Fig. 2    Molecular pathways of flowering phenology, and their shared mechanisms in seasonal vegetative growth regulation in Populus,  the
model tree for perennial plant phenology study. Flowering is split into two dimensions: one is the first onset of flowering after many years of
juvenile and adult vegetative growth; another is seasonal flowering after reproductive maturity. Conserved to herbaceous plants, the juvenile
to  adult  vegetative  phase  change  is  mainly  regulated  by  two  microRNAs,  miR156  and  miR172.  The  first  onset  of  flowering  is  controlled  by
FT/TFL1 family genes and their downstream integrators such as AP1 and LFY. As trees will undergo a long period of adult vegetative stage until
floral induction, how miR156/miR172 module regulate age-dependent flowering in trees remains an open question. Unlike in Arabidopsis, GA
usually  inhibits  flowering in  diverse  woody angiosperms.  Whether  GA regulates  flowering through SOC1-like genes,  and do SOC1-like genes
control  reproductive  competence  in  trees  needs  further  investigation.  For  seasonal  flowering,  the  expression  of  flowering  integrator  genes,
such as FT (FT1 and FT2), CENL1, SVL, and LEAFY (LFY), are controlled by seasonal cues like photoperiod and temperature. The specific expression
patterns of these genes ensures the tree undergoes floral initiation at a specific time of the year. Meanwhile, these flowering integrator genes
also play key roles in the seasonal activity-dormancy vegetative growth, including photoperiod-induced growth cessation of shoot apex at the
end  of  summer,  dormancy  induction  in  autumn,  cold-induced  release  of  dormancy  in  winter,  and  warm  temperature-induced  bud  burst  in
spring.  Thus,  trees  have  evolved  an  ability  to  incorporate  the  environmental  signal  to  different  developing  events.  the  diagram  sketch  of
seasonal growth from the inside out represent seasons, the expression pattens of flowering integrator genes, the seasonal flowering events,
the seasonal  vegetative growth events and environment signals such as photoperiod (LD and SD, long day and short  day)  and temperature
(high and low) respectively.

Flowering phenology in trees
 

Wang & Ding Forestry Research 2023, 3:2   Page 3 of 14



Table 1.    Functional orthologs of flowering integrator genes identified in perennial trees.

Species Gene Construction Flowering Other effects References

Apple
(Malus pumila Mill.)

MdFT1 Overexpression A,NInduction [43]
MdTFL1, MdTFL1.1
MdCENa, MdCENb

CRISPR/RNAi A,T,NRepression [45,159−161]

AFL1, AFL2 Overexpression A,NInduction [162,163]
MdDAMa, MdDAMb, MdDAMc
MdSVPa, MdSVPb

RNAi NInduction Regulates bud
dormancy

[135]

MdFLC1
MdFLC3

Overexpression ARepression Juvenility regulation [164]

Avocado
(Persea americana)

PaFT Overexpression AInduction [165]

Blueberry
(Vaccinium corymbosum L.)

VcFT Overexpression T,NInduction [166]

Birch (Betula) BpAP1 Overexpression NInduction [68]
Citrus (Citrus sinensis) CsTFL Overexpression ARepression [167]
Citrus
(Citrus clementina)

CsAP1 Stress-inducible promoter NInduction [168]
CsLFY Stress-inducible promoter NInduction [168]
CsSL1, CsSL2 Overexpression AInduction [52]

Dogwood (Cornus L.) CorcanTFL1, CorfloTFL1 Overexpression ARepression [169]
Eucalyptus
(Eucalyptus spp.)

AtFT Overexpression NInduction [152]
PtFT1 Overexpression NInduction
ELFY CRISPR Affects floral

development
[170]

EgSVP Overexpression ARepression Affects floral
development

[171]

Fig (Ficus carica) FcFT1 Overexpression TInduction [172]
Magnoliaceae MawuAP1 Overexpression AInduction [173]
Grapevine (Vitis spp.) VvTFL1A Overexpression ARepression [174]

VvFT Overexpression AInduction
Japanese apricot
(Prunus mume)

PmFT Overexpression AInduction [175]
PmTFL1 Overexpression ARepression

Jatropha
(Jatropha curcas L.)

JcFT Overexpression /RNAi A,NInduction [36,176]
JcLFY Overexpression A,NInduction Affects floral fruit

and seed
development

[177,178]

JcAP1 Overexpression AInduction [179]
JcTFL1a, JcTFL1b, JcTFL1c Overexpression A,NRepression [180]
JcTFL1 RNAi NInduction

Kiwifruit
(Actinidia spp.)

AcFT1, AcFT2 Overexpression A,NInduction [181,182]
AcCEN1, AcCEN2,
AcCEN3, AcCEN4

Overexpression/CRISPR ARepression [47,181,182]

AcBFT1, AcBFT2, AcBFT3 Overexpression/CRISPR ARepression Affects dormancy
and bud break

[182,183]

SVP1-4 Overexpression A,T,NNormal Affects dormancy [142,184,185]
AcSOC1e, AcSOC1f, AcSOC1i Overexpression AInduction

NNormal
Affects dormancy [54]

AcFLCL Overexpression/CRISPR Regulate bud break [123]
Litchi
(Litchi chinensis Sonn.)

LcFT1, LcFT2 Overexpression A,TInduction [186]

London plane
(Platanus acerifolia)

PaFT Overexpression AInduction
TInduction

[187]

Longan
(Dimocarpus longan L.)

DlFT1 Overexpression AInduction [188]
DlFT2 Overexpression ARepression

Loquat
(Eriobotrya japonica)

EjTFL1-1, EjTFL1-2 Overexpression ARepression [189]
EjSOC1-1, EjSOC1-2 Overexpression Acenter [51]
EjLFY-1 Overexpression SInduction [190]

Mango
(Mangiferaindica L.)

MiFT1 Overexpression AInduction [191]
MiFT2; MiTFL1-1, MiTFL1-2,
MiTFL1-3, MiTFL1-4

Overexpression ARepression [191,192]

Norway spruce
(Picea abies)

PaFTL1, PaFTL2 Overexpression ARepression [193]
PaFTL2 Overexpression Control growth

arrest
[119]

Olive (Olea europaea L.) OeFT1, OeFT2 Overexpression AInduction [194]
Peach
(Prunus persica L.)

PpTFL1 Overexpression ARepression [195]
PpAP1 Overexpression AInduction [196]
PpFT Overexpression AInduction [197]

(to be continued)
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accelerated  flowering  and  shortened  the  length  of  vegetative
growth  before  first  flowering[45−47] (Table  1).  Such  an  antago-
nistic  function of FT and TFL1 observed in  trees  suggests  their
functional  conservation  in  reproductive  competence  in
perennial species.

SOC1 is  another  floral  pathway  integrator  that  integrates
multiple  flowering signals,  including age-dependent  signals  in
which SPL9 and miR156 are involved[48]. Thus, it is reasonable to
speculate  that SOC1-like genes  would  have  roles  in  the
cooperation of VPC and reproductive transition in trees. Recent
studies in the perennial conifer P. tabulaeformis have identified
33 age-dependent TFs,  among which 11 belong to the MADS-
box  family  including SOC1-like genes[49].  Combined  with
transcriptome  association  analysis  and  genetic  confirmation,
the SOC1-like gene MADS11 was  confirmed  as  a  regulatory
mediator of VPC in pine[49]. Thus far, SOC1-like genes have been
widely  studied  in  many  angiosperm  perennial  trees.  Many
SOC1-like genes  from  different  tree  species  have  been  con-
firmed to complement the late flowering of the soc1 mutant in
Arabidopsis,  suggesting  their  conserved  roles  in  flowering
induction[50−54].  However,  their  roles  in  reproductive  compe-
tence  in  native  plants  are  less  known.  Ectopic  expression  of
AcSOC1 in Actinidia  chinensis failed  to  induce  precocious
flowering[54]. Instead, SOC1-like genes were associated with bud
dormancy  maintenace  and  dormancy  released  in  many
trees[54−56], suggesting their functional diversification in woody
plants.  Whether  and  how SOC1-like genes  regulate  flowering
induction in trees requires further investigation (Fig. 2).

Besides FT and TFL1,  overexpression  of  downstream  floral
meristem  identity  genes  can  overcome  several  years  of  the
juvenile  period  in  multiple  woody  species.  For  example, LFY
plays  an  important  role  in  both  flowering  initiation  and  floral
meristem differentiation[57,58]. LFY homologs have been studied
in many perennial trees, and their gene overexpression causes
early  flowering  in  hybrid  aspen,  citrus,  litchi,  and  so  on[59−64].

AP1 is  both  a  floral  meristem  identity  and  a  floral  organ
morphology  gene,  and  possibly  regulates  flowering[65−67].  In
perennial  trees,  though  not  all,  overexpression  of AP1 homo-
logs  can  also  induce  flowering[61,68].  Therefore,  orthologs  of
these  floral  initiation  genes  have  conserved  functions  in
regulating  the  first  flowering  after  a  long  period  of  juvenility
(Fig. 2).

The  phytohormone  GA  plays  a  major  role  in  flowering
regulation  in Arabidopsis.  It  promotes  flowering  by  inducing
SOC1 and LFY expression  under  short-day  conditions[69,70].
Increased LFY activity causes reduced GA levels by directly up-
regulating the GA catabolic  enzyme EUI-LIKE  P450  A1 (ELA1)  as
well  as GA2  oxidases,  which  in  turn  enables  accumulation  of
DELLA proteins that complex with the SBP transcription factor
SPL9 to activate AP1[71]. Thus, the GA plays dual opposite roles
on  flower  formation  onset  in Arabidopsis.  It  promotes
termination of vegetative development while inhibiting flower
formation[71].  The  role  of  GA  in  the  floral  initiation  of  woody
perennials seems more complicated. It often inhibits flowering
in  diverse  woody  trees[72,73].  As  perennial  trees  have  two
dimensions  of  flowering  initiation:  the  first  onset  of  flowering
after many years of juvenility, and the seasonal flowering once
reproductive maturity is reached. Most reports that showed GA
inhibits  floral  induction  refer  to  the  seasonal  flowering  onset.
This  is  also  supported  by  the  results  of  GA  treatment  of
different physiological age of trees. Application of GA inhibitor
only induce flowering in mature shoots in Eucalyptus nitens and
Populus  deltoides, but  it  appears  to  be  inefficient  on  juvenile
shoots[74,75].  In  this  case,  the  negative  role  of  GA  on  seasonal
flowering switch  in  woody angiosperms may be  similar  to  the
negative  function  of  GA  on  flower  formation  in Arabidopsis.
However,  unlike  its  positive roles  on vegetative termination in
Arabidopsis, GA likely also inhibits the first onset of flowering in
many  woody  angiosperms.  Application  of  exogenous  GAs  in
several  perennial  species  can  even  cause  a  reverse  from

Table 1.    (continued)
 

Species Gene Construction Flowering Other effects References

Pear
(Pyrus communis L.)

PcTFL1-1, PcTFL1-2 RNAi NInduction [151]
PcFT2 Overexpression TInduction

NNormal
Regulate vegetative
growth

[198]

PcTFL1.1 CRISPR NInduction [159]
Pomegranate
(Punica granatum L.)

PgTFL1, PgCENa Overexpression ARepression [199]

Poplar
(Populus spp.)

FT1, FT2 Overexpression/CRISPR NInduction FT1 regulates bud
break; FT2 regulates
growth cessation

[34,44,
103,117]

LAP1 Overexpression/RNAi AInduction Regulates growth
cessation

[200]

PopCEN1, PopCEN2 Overexpression/RNAi NRepression Regulates bud break [46]
SVL Overexpression/RNAi NRepression Regulate growth

cessation, dormancy
and bud break

[139,140,
143,144]

Rubber trees
(Hevea brasiliensis)

HbMFT1 Overexpression ARepression [201]

Sweet Cherry
(Prunus avium L.)

PavFT Overexpression AInduction [202]
PavSVP Overexpression ARepression [203]
PavSOC1 Overexpression AInduction [55]
PaAP1 Overexpression AInduction [204]

Tea-oil tree
(Camellia oleifera Abel.)

CoFT1 Overexpression AInduction [205]

Trifoliate orange
(Poncirus trifoliate)

CiFT Overexpression A,NInduction [35,38,206]

N, A, T and S represent function assessed in native plant, Arabidopsis, tobacco and strawberry respectively.
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reproductive  to  vegetative  development[76].  Previous  studies
have shown that juvenile shoot apices contained higher levels
of  endogenous  GAs  than  adult  shoot  apices[76].  In  grapevine,
the  GA  inhibition  of  tree  flowering  is  confirmed  by  an  early
flowering  grapevine  mutant  that  is  defective  in  a  grapevine
homolog  of  the Arabidopsis gene GA  INSENSITIVE (GAI),  a  key
gene involved in GA signal transduction[77]. However, similar to
Arabidopsis, GA appears as a flowering activator in conifers, and
it  is  widely  applied  to  stimulate  flowering  for  breeding
purposes[78]. Overall, the molecular mechanism of GA signals in
the  reproductive  competence  of  trees  is  still  an  unsolved
mystery (Fig. 2).

 Diversity of seasonal flowering phenology and
their environmental drivers in trees

After perennials become capable of reproduction, they perio-
dically  flower  with  seasonal  changes.  Trees  have  evolved  to
time  their  flowering  in  appropriate  seasons  to  adapt  to  geo-
graphically  different  environments.  Thus,  there  is  a  rich  diver-
sity  of  flowering  phenology  from  temperate  to  tropical
climates[79].  In  temperate  regions,  trees  synchronize  their
flowering time to coincide with appropriate seasons by respon-
ding to  seasonal  environmental  cues,  particularly  temperature
and  photoperiod,  and  flowering  usually  peaks  from  spring  to
early  summer[80].  In  tropical  and  subtropical  forests  where
seasonal  environmental  cues are less  available,  there is  a  wide
variation  in  flowering  time  patterns  and  its  climatic  drivers.
Flowering  can  be  seasonal  or  aseasonal  with  variation  across
years.  For  example,  in  tropical  deciduous  forests  in  India,  five
flowering types occur and the variation in flowering is  relative
to leaf flushing[81]. In seasonally dry tropical forests, flowering is
driven by water  availability,  and flowering peaks usually  occur
at  the  end  of  the  dry  season  or  the  beginning  of  the  wet
season[82,83].  Sometimes,  the  effect  of  climate  on  flowering
phenology  in  subtropical  forests  is  difficult  to  predict  because
of  wide  variations  in  rainfall  seasonality.  For  instance,  in
Australia, flowering phenology varies among species, with both
seasonally  dynamic  and  spatially  variable,  driven  by
temperature,  rainfall,  and  soil/substrate  moisture[84].  Although
there is no dry season in the Atlantic rainforest in Brazil, there is
still  clear  seasonality  in  leafing  and  reproductive  events  that
might  be  affected  by  slight  changes  in  photoperiod  and/or
temperature[85]. Mass flowering occurs in some aseasonal Asian
and  South  American  tropical  forests[86,87].  The  differences  in
flowering  phenological  patterns  observed  among  temperate
forests,  tropical  dry  forests,  and  tropical  rainforests  highlight
differences  in  plant  response  to  environmental  cues.  These
environmental  cues  not  only  include  the  relatively  stable
seasonal  environmental  signals,  such  as  temperature  and
photoperiod,  but  also  biotic  and  abiotic  stresses,  such  as
drought,  heat,  and  salinity.  Such  varied  flowering  phenology
and  their  environmental  drivers  in  trees  support  the  idea  that
the altering flowering time is an evolutionary strategy for plant
to  maximize  the  chances  of  reproduction  under  diverse  stress
conditions[2].  We  should  keep  in  mind  that  the  above  obser-
vations of flowering phenology focus on flowering time rather
than  the  time  of  floral  initiation.  Although  flowering  time  is
closely  related  to  flower  initiation,  the  environmental  drivers
can differ.

 Molecular basis of seasonal flowering phenology
in trees

Flowering has been studied most extensively in Arabidopsis,
in which temperature and photoperiod are two major environ-
mental  signals  that  regulate  flowering  initiation.  However,
knowledge of seasonal flowering initiation in perennial trees is
scarce.  On  one  hand,  annual  and  perennial  plants  have  diffe-
rent  growth  habits:  most  annual  or  biennial  plants  are  mono-
carpic,  whereas  perennial  species  are  typically  polycarpic.
These  different  growth  habits  are  reflected  by  flowering
patterns[88].  All  meristems  of  annual  plants  transform  to  floral
meristems, and the life cycle is completed within one year (Fig.
1).  Perennial  trees  have  asynchronous  differentiation  behavior
of meristems, with some committing to reproductive develop-
ment,  whereas  others  retain  vegetative  growth[9,89].  Seasonal
tree flowering can be mainly divided into 'direct'  and 'indirect'
flowering  types,  based  on  whether  the  development  from
initiation  to  emergence  is  interrupted  or  includes  a  period  of
rest[88].  'Indirect'  flowering is  common among temperate  trees
(poplar,  cherries,  pears,  plums,  apples,  etc.)[90,91].  It  displays
extended  periods  between  flower  initiation  and  blooming,  in
which  flowering  is  initiated  in  summer,  trees  are  dormant  by
winter, and trees do not blossom until the following spring (Fig.
1).  In  comparison,  'direct'  flowering  species  (mango,  jujuba,
etc.)  complete  their  reproductive  cycles  in  a  single  growing
season without dormancy or  a  rest  period[92,93] (Fig.  1).  On the
other  hand,  seasonal  flowering  phenology  is  not  mutually
independent from other phenological events, such as seasonal
growth cessation, dormancy, leaf flushing, and fruiting. Such a
long  flowering  time  accompanied  by  a  complex  natural  envi-
ronment and various phenological events, as well as asynchro-
nous  development  of  the  axillary  meristem,  makes  it  more
challenging  to  determine  the  time  of  flowering  initiation  and
their environmental drivers.

Although orthologs of floral pathway integrator genes, such
as FT, LFY,  and AP1,  have  been  isolated  from  many  trees,  and
their  functions  on  reproductive  competence  are  conserved
among  species  (discussed  in  an  earlier  section  of  this  review),
much less is known about the molecular regulation of seasonal
flowering. Applying advances in transcriptomics is  an effective
strategy  to  reveal  the  underlying  mechanism  of  dynamic
environmental  responses  in  plants.  Recently,  a  molecular
phenology  approach  that  monitors  seasonal  gene  expression
patterns  in  nature  has  been  increasingly  applied  in  a  range  of
plants  to  explore  plant  responses  to  fluctuating  natural
environments[79,94].  These  field-based  seasonal  transcriptomes
provide  ideal  maps  for  associating  genes  with  flowering
phenology[95−101].  This  approach  was  also  used  to  successfully
identify  environmental  signals  driving  flowering  in  different
tree  species.  For  example,  seasonal  transcriptome  studies  in
Fagus crenata showed that the expression levels of FT, LFY, and
AP1 orthologs  display  clear  between-year  fluctuations[100].
These between-year fluctuations in gene expression coincided
with  the  nitrogen  change  of  current-year  shoots.  Plants
fertilized  with  nitrogen  can  induce  the  expression  of  these
three genes in F. crenata and flowered in two consecutive years.
This result suggests that nitrogen is a key regulator of flowering
initiation in this species[100]. Similarly, we recently characterized
the  annual  transcriptome  dynamics  of  the  subtropical
hardwood  tree E.  dunnii in  natural  field  environments.  Our
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transcriptome  analysis,  combined  with  geographical  distribu-
tion,  environmental  cues,  and  heterologous  transformation
analyses, suggests that low temperature is one of the environ-
mental triggers for its seasonal flowering[102]. Things are usually
more  complex  because  of  gene  duplication  and  sub-
functionalization.  For  example,  in Populus,  two FT-like genes
have  been  identified: PtFT1 and PtFT2.  They  have  distinct
seasonal  expression  patterns: PtFT2 peaks  in  late  spring  until
early  summer,  and its  expression is  regulated by  photoperiod,
whereas PtFT1 is  only  induced  by  cold  and  peaks  in  late
winter[103].  Both PtFT1 and PtFT2 can  induce  early  flowering,
suggesting  their  protein  conservation  in  promoting  flower
initiation  in Populus[34,44].  The  expression  pattern  of PtFT2 is
more similar  to Arabidopsis  FT,  both of  which are regulated by
photoperiod[44].  However, PtFT1 is  supposed  to  be  a  potential
seasonal  floral  activator  based  on  its  seasonal  expression
pattern  (Fig.2)[32,103];  however,  more  genetic  and  molecular
evidence  is  needed  to  prove  which  one  determines  seasonal
flowering initiation.  In  the future,  such a  molecular  phenology
strategy,  combined  with  approaches  in  molecular  biology,
ecology,  and  mathematical  modeling,  will  be  useful  to  dissect
the  environmental  factors  regulating  flowering  traits  in
different climate zones.

 Seasonal activity – dormancy growth and
flowering share mechanisms

Trees  native  to  temperate  and  boreal  regions  have  evolved
an  important  adaptive  trait  in  which  they  undergo  a  seasonal
activity–dormancy  growth  cycle  for  survival  and  growth[104].
This  activity–dormancy  cycle  includes  cessation  of  apical
growth,  bud  set,  and  dormancy  induction  in  the  fall;
maintenance and release of dormancy in winter; and bud burst
in  spring  (Fig.  2).  Different  developmental  phases  in  the  cycle
have  different  responses  to  multiple  environmental  factors,
adaptations that enable synchronization of these phases to the
local  climatic  conditions.  Temperature  and  photoperiod  are
two primary environmental cues, with the contribution of these
cues  varying  among  species.  In  the  last  two  decades,  the
molecular  mechanism  of  seasonal  activity–dormancy  growth
has  been  intensively  studied  in  trees,  especially  in  the  model
species Populus[44,105−111].  In Populus,  the  timing  of  growth
cessation in the fall  is  primarily governed by photoperiod.  The
reason for this molecular mechanism breakthrough discovery is
that PtFT2,  besides  promoting  floral  initiation,  plays  a  key  role
in  suppressing  short-day  induced  growth  cessation  in  the
fall[44].  Since  then,  more  genetic  and  molecular  approaches
have  revealed  a  remarkable  conservation  of  the  photoperiod
pathways  in  regulating  growth  cessation  in Populus and
controlling flowering time in Arabidopsis, originating from light
perception  by  phytochromes  (phyA  and  phyB),  together  with
internal  circadian  clock  genes  such  as LATE  ELONGATED
HYPOCOTYL, GIGANTEA,  and CONSTANS,  allowing  plants  to
measure  day  length.  Long  photoperiods  induce PtFT2
expression in the leaves. PtFT2 can move from the leaves to the
shoot apex through the phloem where it interacts with TF FDL1
to induce the expression of LIKE APETALA1 and AINTEGUMENTA-
LIKE1,  which  in  turn  activates  the  cell  cycle  genes  and  thus
growth[108,112−116].  After  growth  cessation,  the  continuation  of
short  days  induces  bud  dormancy.  The  dormant  buds  need  a
certain period of cold temperature to release dormancy for bud

burst  in  spring.  Recent  studies  have  shown  that  another
paralog of FT, PtFT1, plays a key role in cold-induced dormancy
release.  Plants  with  knockout PtFT1 showed  inhibited
dormancy release and delayed bud burst[117] (Fig. 2).

Similar to the FT/TFL1 function in flowering regulation, RNAi
downregulation of the poplar TFL1 homolog CENTRORADIALIS1
(CEN1) or CEN2 not only accelerated the first onset of flowering
and  increased  the  proportion  of  short  shoots  but  also
promoted  dormancy  release  and  advanced  bud  burst[46].  The
antagonistically  functioning  paralogs FT and TFL1 likely  arose
after duplication in the angiosperm lineage, and the flowering-
promoting  function  of FT evolved  after  the  divergence  of
angiosperms  from  gymnosperms  300  million  years  ago[118].
Notably,  an FT/TFL-based  mechanism  for  seasonal  growth  has
also  been  observed  in  conifers  such  as  spruce[119,120].  Two
FT/TFL1-like genes  (PaFTL1 and PaFTL2)  were  identified  in  the
conifer  Norway  spruce.  Gene  expression  and  population
genetic  studies  have suggested that PaFTL1 and PaFTL2 act  in
concert  to  control  perennial  growth in  Norway spruce. PaFTL1
expresses  in  the  meristem  and  prevents  meristematic  cell
proliferation  during  active  extension  growth  in  summer,
whereas PaFTL2 attenuates extension growth in the fall[119,121].
Therefore, besides flowering time, FT/TFL1 genes have evolved
roles  in  controlling  seasonal  growth  before  angiosperms  and
gymnosperms diverged.

Many  of  the Arabidopsis MIKC  MADS-box  TFs  are  key
regulators  of  reproductive  development,  including  flowering
time  control,  flower  development,  and  inflorescence  architec-
ture. In Arabidopsis, the winter cold temperature response has a
dominant  effect  on  flowering  time.  Plants  undergo  vernaliza-
tion  to  overcome  prolonged  cold,  which  suppresses  flower
initiation  until  cold  acclimation  is  fulfilled  by  winter  tempera-
ture  under  the  control  of  a  MADS-box  protein,  FLOWERING
LOCUS  C  (FLC)[30,122].  Genes  with  sequence  homology  to FLC
have  been  identified  in  many  trees[123−127].  However, FLC
appeared specific  to the Brassicaceae lineage as no sequences
were similar enough to be regarded as individual orthologs to
the FLC gene  in Arabidopsis.  Whether  and  how  genes  in  the
autonomous and vernalization pathways have evolved roles in
flowering regulation in many other species is still less known. It
has been reported that the citrus FLC-like genes CcMADS19 acts
to  regulate  flowering  by  repressing  the  citrus FT[128].  Winter
temperature response also exists in perennial trees from boreal
and  temperate  climates,  where  plants  undergo  dormancy  to
overcome the harsh winter. Recent studies showed that AcFLCL,
a kiwifruit FLC-like gene, is induced by cold and correlated with
epigenitc changes to control  budbreak in kiwifruit[123].  Besides
FLC,  another  close  homolog  MADS-box  TF,  termed dormancy-
associated MADS-box (DAM) plays a key role in this process. The
DAM genes  were  discovered  early  in  the  nondormant
evergrowing mutant of peach, which is incapable of going into
dormancy[129]. DAM genes  are  orthologous  to  the  floral
repressor SHORT VEGETATIVE PHASE (SVP)  of Arabidopsis, which
is another MADS-box gene that plays a key role as a flowering
repressor  responding  to  ambient  temperature[130]. DAM-  and
SVP-like genes  have  been  characterized  in  many  perennial
species[131−141], and the functions of these proteins in dormancy
have  been  verified  in  transgenic  plants  of  apple[131,132,137,138],
poplar[139−140],  and  kiwifruit[142].  For  example,  a Populus  SVP
ortholog termed SHORT VEGETATIVE PHASE-LIKE (SVL)  has been
reported  to  play  extensive  roles  in  seasonal  growth.  It  is  not
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only  involved  in  photoperiod-regulated  growth  cessation  and
bud  set,  but  also  plays  crucial  roles  in  seasonal  dormancy
initiation  and  release[139,140,143].  Besides  dormancy  regulation,
recent  studies  have  shown  that SVL overexpression  poplars
delay  the  onset  of  flowering  by  several  years  in  field-grown
conditions[144].  However, MdSVP overexpression  in  apple
delayed bud burst in spring, but flower development and time
to  first  flowering  were  normal[132].  In Arabidopsis, FT also
promotes flowering by another MADS-box gene, SOC1, the first
gene  to  be  activated  in  the  shoot  apex[145].  Similar  to SVP-like
genes, SOC1-like genes have also been associated with seasonal
dormancy  in  perennial  trees[54−56]. SOC1 controls  seasonal
vegetative  and  reproductive  growth  in  strawberry[146].  In
poplar,  one SOC1 homolog PTM5 is  implicated  in  seasonality
and  spring  wood  formation,  and  another SOC1 related  gene
promotes  bud  break[56,147].  In  apricot  (Prunus  armeniaca),  a
SOC1-like gene has been associated with chilling requirements
during bud dormancy[148].  Functional studies of kiwifruit SOC1-
like genes  indicate  that  they  affect  the  duration  of  dormancy
but may not play a role in the transition to flowering[54].

In brief, many of the genes involved in seasonal flowering are
genes  controlling  seasonal  activity–dormancy  growth  in  trees.
Thus,  seasonal  activity–dormancy  vegetative  growth  and
flowering may share a  common mechanism in trees,  although
how  these  genes  control  tree  flowering  remains  to  be
determined (Fig. 2).

 Future perspectives

Two  decades  ago,  five  central  questions  were  raised  about
floral  initiation  in  perennial  trees[91].  To  date,  these  questions
have  only  been  partially  answered.  However,  some  important
underlying molecular mechanisms need to be further explored
and understood. For example,  1)  how flowering genes tempo-
rally  and  spatially  regulate  the  first  reproductive  competency
and  seasonal  initiation  of  flowering  2)  How  trees  coordinate
seasonal  vegetative  and  reproduction  growth,  and  to  what
extent do they share genetic pathways? 3) How trees adapt to
local  environments  to  precisely  control  flowering  time  in  a
season.  The  study  on  the  molecular  mechanisms  of  flowering
phenology  has  been  restricted  due  to  a  lack  of  genetic
materials  (e.g.,  a  genome-wide  mutant  library),  which  take  a
long  time  to  generate.  Recent  advances  and  applications  of
CRISPR/Cas9  technology  have  enabled  the  generation  of
knockout  mutants  of  flowering-related  genes[149].  Analysis  of
loss-of-function  transgenics  coupled  with  temporal–spatial
expression  analysis  can  provide  important  information  to
elucidate  the  functional  roles  of  these  genes  during  tree
flowering.  From  the  perspective  of  breeding,  the  prolonged
juvenility  of  trees  has  greatly  limited  tree  domestication.  Thus
far,  many  floral  regulators  can  be  used  to  regulate  the  switch
from  vegetative  to  reproductive  growth  in  many  tree  species,
such  as FT, TFL1, LFY,  and  some  MADS-box  genes  (Table  1).
Gene  manipulation  has  been  used  as  a  tool  for  accelerated
breeding[40,47,150−153].  In  addition  to  regulating  flowering  time,
flowering  time  genes  also  have  pleiotropic  effects  on  plant
growth  and  development,  including  seasonal  growth,  pollen
fertility, and wood development. Understanding the molecular
mechanisms of how flowering genes finely control  these traits
can help optimize the breeding strategies and processes.

With  the  progress  of  global  warming,  understanding  how
such  a  climate  change  impacts  on  the  life  cycle  of  organisms

are critical for evaluating ecosystem vulnerability as the pheno-
logical  shifts  occur  in  the  key  life  cycle  of  organisms[154,155].
Recently,  the  knowledge  of  the  molecular  basis  of  flowering
genes in temperature response in Arabidopsis.  halleri has been
incorporated  into  a  predictive  model,  which  can  be  used  to
forecast  flowering  phenology  under  climate  change[156].  With
the  increased  knowledge  of  genetic  architecture  of  flowering
phenology in crops[8], this approach can be used to predict the
adaptation  of  crops  to  the  changing  environment.  The  flo-
wering  phenology  of  perennial  trees  has  become  a  major
contributor  to  climate  change  metrics  applied  to  understand
the  impact  of  global  climate  changes  on  plant
ecosystems[154,155,157].  However,  what  we  understand  of  the
genetic  base  of  flowering  phenology  is  biased  toward
temperate regions[90,158].  Improved mechanistic understanding
of environmental drivers of plant flowering phenology in other
ecosystems  is  urgently  needed[79].  Integration  of  molecular
knowledge  of  flowering  phenology,  climate  data,  and  ecolo-
gical perspectives can help us to assess the vulnerability of the
ecosystem and predict risks of climate change.
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