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Abstract
Fungal endophytes offer structurally diverse and unique secondary metabolites with interesting biological activities. Several reports have shown

the  potential  of  fungal  endophytes  as  sources  of α-glucosidase  inhibitors  to  alleviate  diabetes.  In  this  study,  the  fungal  endophyte

Annulohypoxylon stygium (Xylariales, Ascomycota) was identified for the first time from the leaves of the endemic tropical plant, Pandanus simplex
Merr. Crude extract was obtained by fermenting the fungal endophyte in Potato Dextrose Broth for 30 days at room temperature. The A. stygium
crude extract exhibited good inhibition to the α-glucosidase enzyme with an IC50 of 31.88 ± 2.86 µg/mL. Purification of the crude extract afforded

8-methoxynaphthol with an IC50 value of 676.3 ± 1.03 µg/mL. The isolation of 8-methoxynaphthol from A. stygium is reported herein for the first

time. This study highlights the ability of A. stygium to produce metabolites that may be useful as antidiabetic drugs.
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 INTRODUCTION

Diabetes  mellitus  (DM),  a  metabolic  disorder  characterized
by  an  increase  of  blood  glucose  level  or  hyperglycemia,  has
been  one  of  the  principal  causes  of  death  worldwide  with
about 6.7 million mortalities in 2021[1].  This is compounded by
the  fact  that  81%  of  DM  cases  were  recorded  in  low-  and
middle-income  countries.  These  alarming  figures  warrant
scientists to research alternative drugs against the disease. The
use  of α-glucosidase  inhibitors  as  antidiabetic  drugs  has  been
shown to competitively inhibit the enzyme, thereby controlling
blood  glucose  levels.  The  commercial α-glucosidase  inhibitor,
acarbose,  had  been  found  to  inhibit  intestinal  glucosidases[2].
However, common side effects such as flatulence and diarrhea
were  reported.  Hence,  there  has  been  a  growing  number  of
studies  to  look  for  other  safer  and  effective α-glucosidase
inhibitors from natural sources.

The  genus Pandanus is  a  group  of  tropical  medicinal  plants
that have been used to treat diabetes in Asia and Africa. Several
species  of Pandanus were already reported to possess  antidia-
betic  potential,  e.g.,  the  ethyl  acetate  leaf  extract  of Pandanus
canaranus[3],  the  caffeoyl-quinic  rich  fruit  of P.  tectorius[4],  the
leaf  extract  of P.  amaryllifolius[5,6],  the aqueous root  extracts  of
P. odorus[7],  and the aqueous and ethanol prop root extracts of
P.  fascicularis[8].  These  studies  highlighted  the  potential  of
Pandanus for antidiabetic therapy.

In  addition  to  plants,  fungal  endophytes,  i.e.,  mutualistic
organisms that  live  within healthy plant  tissues,  can be mined
to  produce  chemically  diverse  secondary  metabolites  with
potential  pharmaceutical  applications[9] including  about  200

fungal  secondary  metabolites  that  had  been  screened  and
reported  for  their α-glucosidase  inhibitory  activity[10].  For
instance,  the  fungus Talaromyces  amestolkiae produced  14
isocoumarins,  four  of  which  had  five-fold  more  potency  than
acarbose[11].  Furthermore,  rubrolide S,  a  butenolide polyketide
from  the  endophyte Aspergillus  terreus, exerted  a  potent  anti-
competitive mode of inhibition against α-glucosidase[12].

Fungal  endophytes  from  the  tropical  plant Pandanus have
been  previously  reported  and  studied  for  their  bioactivities.
Endophytic  fungi  from P.  amaryllifolius were  collected  and
isolated  in  the  Philippines[13].  New  compounds  with  high
biological  activities  (antibacterial,  antioxidant,  and  anticancer)
were  identified,  including  colletotriolide  from Colletotrichum
sp.[14],  diaportheones  A  and  B  from Diaporthe sp.[15],  and
guignardiol  from Guignardia sp.[16].  The  host  plant  has  also
shown  promising  antimicrobial  activities[17].  These  studies  led
us  to  screen  fungal  endophytes  from  another  species,
Pandanus simplex, for its α-glucosidase inhibitory activity. From
our screening,  the fungal  endophyte Annulohypoxylon stygium
showed  promising α-glucosidase  inhibition  activity.  The
bioactive  metabolite  was  also  isolated and identified from the
crude extract of A. stygium.

 RESULTS

Twelve  morphospecies  of  fungal  endophytes  were  isolated
from the mature leaves of Pandanus simplex (coded as PMEF01
to PMEF12). All morphospecies remained as mycelia sterila and
did  not  produce  any  spores  even  after  prolonged  incubation.
Preliminary  screening  of  their  crude  culture  extracts  for α-
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glucosidase inhibitory activity showed varied activities with IC50

values  ranging from 31.88 to 260 µg/mL,  which was exhibited
by 10 morphospecies,  and with two morphospecies exhibiting
> 1,000 µg/mL (data not shown). Owing to its promising result,
i.e.,  with  highest α-glucosidase  inhibitory  expressed  as  the
lowest  IC50 value  (31.88  ±  2.86 µg/mL),  the  fungal  endophyte
PMEF05 was chosen for further study.

Colonial  morphology  of  PMEF05  appeared  as  a  white,  fila-
mentous  colony  with  a  distinct  light  brown  pigmentation  on
the  culture  media  (Fig.  1).  PMEF05  did  not  sporulate  even  if
grown  on  different  culture  media.  Therefore,  PMEF05  was
subjected to molecular sequencing of ITS genes.  Based on the
comparison of  the  resulting sequence through BLAST,  a  100%
similarity  between  PMEF  05  and  the Annulohypoxylon  stygium
isolate  XH3  (Accession  No:  FJ848852)  was  observed.  The
identity is supported by our phylogenetic analysis (Fig. 1).

The  crude  extract  of A.  stygium PMEF05  was  fractionated
affording  seven  fractions  and  tested  for  its α-glucosidase  inhi-
bitory  activity.  Of  these  seven  fractions,  only  fraction  1  dis-
played  excellent  bioactivity  (IC50 79.86  ±  0.82 µg/mL);  hence,
was further purified to obtain a pure compound. This isolate is
a light brown powder which showed a blue spot upon spraying
with  FeCl3-K3Fe(CN)6,  thereby  indicating  the  presence  of  a
phenolic moiety.  It  also exhibited an IC50 value of 676.3 ± 1.03
µg/mL with the α-glucosidase inhibition assay.

Based on the ESI-MS spectrum of the isolated compound, the
molecular  ion  peak  at m/z 175.86  [M+H]+ (calculated  for

C11H11O2, 175.1959) is in agreement with the molecular formula
C11H10O2 corresponding to seven degrees of unsaturation. The
IR spectrum showed absorption peaks indicating the presence
of  –OH  (3,363  cm−1),  Csp3-H  (2,926  cm−1),  and  C=C  (1,614  and
1,407  cm−1).  Combined  analysis  of 1H  and 13C  NMR  spectra  of
the  isolated  compound  led  to  its  identification  as  8-
methoxynaphthol (Fig. 2). 1H and 13C NMR data were compared
to  literature  values  of  8-methoxynaphthol  isolated  from  the
fungi Daldinia loculata[18] (Xylariaceae, Ascomycota, Table 1).

 DISCUSSION

Several  fungal  endophytes  have  been  previously  reported
from the tropical  plant Pandanus. Fungal species belonging to
the  genera Colletotrichum,  Chaetomium,  Diaporthe,  Glomerella,
Guignardia,  Lasiodiplodia,  Lulworthia,  Phoma,  Phyllosticta,
Trichoderma, and Truncatella were isolated from the leaves of P.
amaryllifolius collected  in  the  Philippines[13]. In  another  island
ecosystem,  the  endemic P.  rigidifolius found  in  Mauritius
harbored  novel  species, Lepteutypa  tropicalis[19], Ortanispora
punctata[20],  and  some  saprobic  fungi  ̶ Anthosthomella and
Linocarpon[21].  Other  species  belonging  to Astrocytis,  Anthos-
thomella, and Pellucida were  isolated  from  the  endemic P.
eydouxia, also from Mauritius[22].  Two other new species, Asco-
taiwana  mauritania and Niesslia  pandanicola,  were  recorded
from the endemic P.  palustris[21].  In Thailand, P.  odorifer hosted
another novel species Hermatomyces krabiensis, H. pandanicola,

 
Fig. 1    ML tree and colony of Annulohypoxylon stygium (PMEF05), a fungal endophyte of the tropical plant, Pandanus simplex.

Table 1.    Comparison of 1H and 13C NMR data with literature data.

Position
8-methoxynapthol, δH

measured at 400 MHz, CDCl3
8-methoxy-naphthol, δH

measured at 300 MHz, CDCl3
[18]

8-methoxynapthol, δc
measured at 100 MHz, CDCl3

8-methoxy-naphthol, δC
measured at 75 MHz, CDCl3

[18]

1 − − 154.7 154.6
2 7.33 (1H, m) 7.32 (1H, m) 118.9 118.0
3 7.36 (1H, m) 7.36 (1H, m) 125.6 125.8
4 7.42 (1H, d, J = 8.28 Hz) 7.44 (1H, m) 121.9 121.9

4a − − 136.9 136.9
5 7.29 (1H, dd, J = 7.80, 1.54 Hz) 7.29 (1H, m) 127.8 127.8
6 6.78 (1H, t, J = 7.80 Hz) 6.78 (1H, m) 110.5 110.6
7 6.88 (1H, dd, J = 7.80, 1.54 Hz) 6.93 (1H, m) 103.9 104.0
8 − − 156.3 156.3

8a − − 115.2 115.2
-CH3 4.06 (3H, s) 4.04 (3H, s) 56.2 56.2
-OH 9.35 (1H, s) 9.37 (1H, s) − −

s: singlet; d: doublet; dd: doublet of a doublet; m: multiplet
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and H.  saikhuensis[23] including  a  novel  genus, Anthostomel-
loides[24].  In  this  study,  we  isolated,  identified,  and  reported
Annulohypoxylon  stygium for  the first  time as  an endophyte of
Pandanus  simplex. This  fungal  species  has  been  reported  as
endophytes  of  several  host  plants  including  the  orchid
Anoectochilus  roxburghii[25],  the  red alga Bostrychia  radicans[26],
the red alga Asparagopsis taxiformis[27] and an unidentified host
plant  from  China[28].  There  are  several  factors  including  the
morphological  differences of  the host plants,  the environmen-
tal  conditions,  and  other  ecological  variations  that  influence
the  assemblages  of  fungal  endophytes  in  plants[29,30],  and
hence, could explain the varied host plants associated with our
fungal endophyte.

Interestingly, fungal endophytes isolated from Pandanus also
exhibited  varied  biological  activities.  For  example,  significant
antimicrobial  and  antioxidant  activities  were  reported  from
several endophytes associated with P. amaryllifolius[13]. Further-
more,  novel  secondary metabolites were identified from these
fungal endophytes,  e.g.,  a new macrolide (colletotriolide) from
Colletotrichum sp.[14],  diaportheones  A  and  B  from Diaporthe
sp.[15],  and  guignardiol  from Guignardia sp.[16] from  the  same
host  plant.  Fungal  endophytes  also  possess  high  antidiabetic
potential[31].  For  instance,  six  new  diketopiperazine  alkaloids
with  significant  inhibition  of  the α-glucosidase  enzyme  were
isolated  from  the  endophytic  fungus Aspergillus sp.[32].  The α-
glucosidase  enzyme  plays  an  important  role  in  carbohydrate
digestion and absorption by catalyzing the conversion of poly-
saccharides  into  monosaccharides.  Inhibitors  of  this  enzyme
could  be  used  as  initial  treatment  for  patients  with  type  2
diabetes  mellitus[33].  This  is  the  primary  motivation  for  this
study. The crude and fractionated culture extracts of A. stygium
displayed  promising α-glucosidase  inhibition  activity,  indica-
ting the potential of this endophyte as a source of antidiabetic
compounds.

Annulohypoxylon stygium has been previously reported for its
bioactive  secondary  metabolites.  For  example,  16  compounds
were  isolated  from A.  stygium of  which  the  compounds
sterigmatocystin  and  palmarumycin  CP2  exhibited  selective
cytotoxicty  against  cancer  cells[25].  Compounds  such  as
pyrogallol, (3R,4R)-3,4,5-trihydroxy-1-tetralone and tyrosol were
also  isolated  from  the  same  fungus  from  a  red  alga[27].
Furthermore, A.  stygium isolated  from  an  unidentified  host
plant  produced  a  new  compound  annulostygilactone,  along
with nine known compounds[28].  In our study,  we isolated and
identified  8-methoxynaphthol  from A.  stygium living  within
Pandanus simplex.

The compound 8-methoxynaphthol  is  a  polyketide and was
recently  reported  from  several  endophytic  fungi  such  as
Alternaria sp.  from  the  host Dasymachalon  rostratum[34],  from
the  mushroom Agaricus  gennadii[35],  and  from  the Diatrype
palmicola[36].  Similarly,  it  was  isolated  from  other  fungal
taxa[18,37−44].  Moreover,  8-methoxynaphthol  and  another  poly-

ketide, 5-hydroxy-2-methylchromone, were regarded as chemo-
taxonomic  markers  of  the  genus Daldinia and  other  related
fungal  taxa[45].  The  reports  above  suggest  that  8-methoxy-
naphthol is a natural product of fungal origin.

With respect to its  reported biological  activities,  8-methoxy-
naphthol has no detectable antimicrobial activity[46] and a weak
inhibition  against Staphylococcus  aureus, MRSA,  and Microspo-
rum  gypseum[47].  However,  the  same  compound  displayed
antagonistic  activity against  a  plant  pathogenic  fungus[36],  a
good  nematicidal  activity[37],  and  an  excellent  radical  scaven-
ging activity[39].  Herein,  the α-glucosidase  inhibitory  activity  of
8-methoxynaphthol were presented with an IC50 of 676.3 ± 1.03
µg/mL,  albeit  the  IC50 exhibited  by  the  crude  culture  extracts
was better (31.88 ± 2.86 µg/mL) than the pure compound. This
differing  degree  of  bioactivities  is  often  observed  with  many
natural  fungal  products.  For  example,  the  bioactivities  exhi-
bited by the crude extracts and its fractions or pure compounds
which  were  isolated  from  cultures  of  endolichenic  fungi  and
marine-derived  fungi  differed[48−50].  Perhaps  the  pool  of
different metabolites in the crude culture extracts acted syner-
gistically leading to a better inhibitory activity.

 CONCLUSIONS

Annulohypoxylon stygium is reported herein for the first time
as  a  fungal  endophyte  of  the  Philippine  endemic  plant
Pandanus  simplex. The  crude  culture  extract  of A.  stygium
displayed  better  inhibition  of  the α-glucosidase  enzyme  than
the  fractionated  and  purified  compounds.  Further  purification
led to the isolation of the polyketide 8-methoxynaphthol, here
also  reported  for  the  first  time  from A.  stygium.  This  study
shows  the  potential  of  endophytic  fungi  associated  with  tro-
pical  endemic plants to produce metabolites with antidiabetic
potentials.

 MATERIALS AND METHODS

 The host plant, Pandanus simplex
Pandanus  simplex Merr.  (Pandanaceae) is  an  endemic  plant

species in the Philippines that grows between 4 and 6 meters.
The  leaves  are  dark  green  and  spirally  crowded  at  the  end  of
the branches, linear, elongated, with small, sharp spines on the
margins.  The  trunk  is  cylindrical,  with  few  branches  on  the
upper  part,  and has  prop roots  near  the  base[51].  In  this  study,
healthy  leaves  of P.  simplex were  collected  at  Luisiana
(14°10'08.1" N, 121°30'28.0" E) in Laguna Province, Luzon Island,
Philippines.  The  mature  leaf  samples  were  washed  with  tap
water  to  remove  adhering  debris,  air-dried,  and  then
transferred to Ziploc bags and immediately transported to the
laboratory for further processing. The identity of the host plant
was  verified  by  Danilo  Tandang,  National  Museum  of  the
Philippines (Authentication Control Number 1043).

 The fungal endophyte, Annulohypoxylon stygium
For the isolation of fungal endophytes, leaf samples were cut

into  explants  using  a  sterile  puncher.  Following  surface-
sterilization  protocols[52],  the  explants  were  washed  succe-
ssively with 95% ethanol for 30 s, sterile distilled water for 30 s,
commercial  bleach:sterile  distilled  water  (1:3)  for  5  min,  95%
ethanol  for  30  s,  and  finally  with  sterile  distilled  water  (four
times,  30  s  each).  Surface-sterilized  leaf  explants  were  placed

1 8a

OH OCH3

8

4
4a

5 
Fig.  2    Structure  of  8-methoxynaphthol  produced  by  the
Annulohypoxylon stygium (PMEF05) from Pandanus simplex.
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onto  petri  plates  pre-filled  with  ½  strength  malt  extract  agar
(MEA)  supplemented  with  100 µg/mL  Streptomycin  and  400
µg/mL  Benzylpenicillin  to  inhibit  bacterial  growth  (30  leaf
explants,  5  explants  per  plate).  Fungi  growing  out  of  the  leaf
explants  after  7  days  were  sub-cultured  on  freshly  prepared
full-strength  MEA  plates  until  pure  cultures  were  obtained.
From  the  preliminary  bioactivity  screening,  one  fungal  endo-
phyte  (designated  as  PMEF05)  showed  excellent  activity  and
thus  was  sent  to  Macrogen,  Korea  for  molecular  analysis.
Genomic DNA from PMEF05 was extracted, amplified using the
primer  pairs  ITS1  (TCCGTAGGTGAACCTGCGG)  and  ITS4
(TCCTCCGCTTATTGATATGC),  and  then  subjected  to  DNA
sequencing.  The  resulting  sequence  was  initially  edited  and
aligned  using  BioEdit  Sequence  Assembly  Software  for  high
sequence  quality.  After  that,  the  aligned  sequence  of  PMEF05
was  uploaded  to  the  GenBank  database  (Accession  number:
KY792891).  Furthermore,  the  aligned  sequence  was  uploaded
in  the  nucleotide  Basic  Local  Alignment  Search  Tool  (BLAST,
blast.ncbi.nlm.nih.gov)  program.  Species  identification  was
determined  from  the  lowest  expected  value  (E-value)  and  the
highest  similarity  percentage  of  the  BLAST  search  output.
Published  related  sequences,  along  with  the  sequence  of
PMEF05,  were  aligned  and  edited  using  MEGA  ver.  5.05
(Molecular  Evolutionary  Genetic  Analysis)  via  the  accessory
application  ClustalW  multiple  alignment.  A  phylogenetic  tree
was  constructed  based  on  maximum  likelihood  (ML)  analysis.
The fungal endophyte Annulohypoxylon stygium is deposited at
the UST Collection of  Microbial  Strains  with accession number
USTCMS4002.

 Production and extraction of fungal culture extracts
An axenic culture of A. stygium was initially grown on Potato

Dextrose  Agar  for  7  days.  After  incubation,  one  agar  block  (1
cm2)  was  inoculated  on  Erlenmeyer  flask  with  600  mL  Potato
dextrose broth (PDB, pH 7). After 4 weeks of incubation, 600 mL
ethyl acetate was added to the culture broth, with the mycelial
mass  macerated  and  soaked  overnight[53].  The  organic  layers
were  combined,  dried  over  anhydrous  Na2SO4,  and  concen-
trated in  vacuo at  <  40  °C  to  obtain  the  crude  culture  extract.
The  crude  culture  extract  was  stored  at  4  °C  until  further
processing.

 Isolation and structure elucidation of 8-
methoxynapthol

The crude culture extract of A. stygium was fractionated with
a  silica  gel  open  column  chromatography  (70−230  mesh,
Merck; height: 180 mm; internal diameter: 20 mm) using dichlo-
romethane  (DCM):acetone  (0  to  50%)  followed  by  acetone:
methanol  (50%  to  0)  at  10%  increment  gradient  elution.
Collected fractions were monitored using thin layer chromato-
graphy  (TLC)  in  DCM:acetone  (8:2)  to  obtain  seven  pooled
fractions  which  were  tested  for  their α-glucosidase  activity
thereafter. The first fraction, AsE-1 (45 mg), showed the highest
inhibition  and  thus  was  further  purified  in  silica  gel  open
column  chromatography  (230−400  mesh,  Merck;  78  mm
height; 5 mm internal diameter) using hexane:DCM (50%), neat
DCM and DCM:acetone (70%) solvents. Collected fractions were
monitored  using  TLC  in  Hexane/DCM  (1:1)  to  obtain  a  pure
isolate,  a  light  brown  powder  (30  mg;  later  identified  as  8-
methoxynapthol).

Several spectroscopic measurements were used to elucidate
the  structure  of  the  isolated  compound.  Infrared  radiation

spectroscopy  was  carried  out  using  IR  Prestige  21  (Shimadzu,
Japan)  in  KBr  pellet  sample  preparation.  Liquid  chromatogra-
phy-mass  spectrometry  (LCMS)  was  set  up  as  follows:  the
isolated  compound  was  initially  dissolved  in  methanol  to  a
concentration  of  1  mg/mL  and  injected  in  10 µL  volume  to
2695 HPLC Separation Module which is  connected to a  Micro-
mass ZQ (Waters, USA). The column attached to the HPLC was a
ZORBAX  Eclipse  XDB-C18  column  (2.1  ×  150  mm,  3.5 µm;
Agilent,  USA)  while  the  mobile  phase  consisted  of  a  gradient
elution of solvent A (water with 0.02% formic acid) and solvent
B (methanol with 0.02% formic acid starting with 95% A for 2.5
min then increasing to 100% B until 50 min and finally 100% B
for  20  min.  Electrospray  Mass  Spectrometry  (ESI-MS)  was
carried out in positive ESI ionization mode with a cone voltage
of  20V.  The mass  range was  set  from m/z 50−1,000 for  ESI-MS
range. For the nuclear magnetic resonance (NMR) experiments,
the  isolate  was  first  dissolved  in  chloroform-d3 (CDCl3)  and
were  recorded  using  Jeol  ECS400  (JEOL,  USA)  at  400MHz  and
100MHz field strengths for 1H and 13C nuclei,  respectively.  The
obtained  spectroscopic  data  were  compared  with  published
literature data.

 In vitro α-glucosidase inhibition assay
The α-glucosidase inhibitory activity as a screening assay for

antidiabetic  activity  of  metabolites  was  carried  out  for  the
crude culture extracts and later with the fractionated and pure
compounds. This was determined spectrophotometrically on a
96-well  plate  using α-glucosidase  assay[54].  The  assay  mixture
(160 µL) consisted of a mixture of 8 µL of test sample in DMSO,
112 µl  phosphate  buffer  (pH  6.8),  and  20 µL  enzyme  solution
(0.2  Units/mL α-glucosidase  in  phosphate  buffer)  and  incu-
bated  at  37  °C  for  15  min.  We  also  used  10%  DMSO  as  a
negative control and acarbose as a positive control. Then, 20 µL
substrate  solution  (2.5  mM  paranitrophenylglucopyranoside
prepared  in  the  same  buffer)  was  added.  The  reaction  was
incubated at 37 °C for 15 min and stopped by adding 80 µL of
0.2 M Na2CO3 solution. Finally, the absorbance was measured at
405 nm. The inhibitory activity (%) was calculated as follows:

% inhibition =
(
1−

(
test sample − sample blank
control test − control blank

))
×100

where  test  sample  =  Absorbance  of  test  sample  +  buffer  +
enzyme + substrate; Sample blank = Absorbance of test sample +
buffer;  Control  test  =  absorbance  of  enzyme  +  buffer;  Control
blank = absorbance of buffer.

All  reactions  were  carried  out  in  three  replications.  The  test
concentrations  used  were  1,500,  100  and  10 µg/mL.  Results
were  expressed  as  the  average  ±  standard  deviation  of  IC50

which were calculated by plotting a dose-response curve.
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