Locomotion in Protozoa

A. Amoeboid or Pseudopodial
B. Axonemal or Microfibrillar

Cilia and Flagella
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Amoeboid movement
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Molecular Mechanism of Amoeboid Locomotion
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Role of Actin, Myosin & Ca-ion

Consensus model to explain extension and withdrawal
of pseudopodia and ameboid crawling:

Ca2+ activate actin-severing protein



Amoeboid Locomotion : Mechanism
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Amoeboid Locomotion: a Model presentation
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Molecular explanation of Pseudopodial locomotion

Actin 1 The formation of long actin filaments at the
- leading edge extends the lamellipodium.

2  Rearrangement of the actin cytoskeleton in other regions of
the cell causes the cell to be pulled toward the leading edge.




Actin & Myosin Interaction

(a) Actin and myosin interact to cause movement.
Myosin

When myosin's “head”
_ attaches to actin and moves,
_,,_@ the actin filament slides

“Head”
region

Actin

(b) Actin-myosin interactions produce several types of movement.

Actin-myosin Actin-myosin {-\ctin-myosin
interactions push interactions pinch Interactions move
cytoplasm forward Actin polymerization =~ membrane in two cytoplasm around cell

Cell crawling Cell division in animals Cytoplasmic streaming
in plants



Sol-gel (forward) or Gel-sol (backward)
conversion: Molecular modeling
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AXONEMES : Flagellum & Cilium

Direction of motion

-

(a) Flagella

Direction of motion

(b) Cilia



Axonemes: Flagellum & Cilium
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Forward & Backward Stroke by Cilia

Metachronal rhythm of cilia in
Mytilus. The cilia are flexible and
4 3 bending starts at the base and
move toward the tip.

Forward (power) stroke —

Backward (recovery) stroke —_—




Model presentation of Flagellar vs. Ciliary Motion
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Undulatory Motion & Power-return Stroke
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Ciliary Locomotion
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action
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Effective stroke (a) and recovery stroke (b) of a cillium
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Ultrstructure of Flagellum or Cilium

Electron micrographs
of cross sections:
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Ultrastructure of Cilia and Flagella
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9+2
Arrangement
of
Microtubules
IN
Axoneme

(a) Transmission electron micrograph

of axoneme

75 nm

(b) Diagram of axoneme
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Ultrustructure of exoneme in L.S. & T.S.
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Cross Section of Axoneme

Cross section of lagellum
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Cross Section of Axoneme
A. Real figure B. Model figure
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Detalls of microtubular
arrangement: a Model
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Deviation from (9+2) to (9+0) arrangement and
lack of Dyneins that result to Ciliopathy

CILIUM
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Planar motion (9+2) Rotary motion (9+0)
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Human cilium &
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Abnormal Axonemal Configuration

Mexin Link




Normal vs. Abnormal Sperm
Stumpy tail Syndrome or Kartagener syndrome




Axonemal Dysfunction

Dysfunction of the axonemal structure has been linked
to the emerging class of disorders collectively known
as CILIOPATHIES, which includes Primary ciliary
dyskinesia (PCD)/Kartagener syndrome, Bardet-Biedl
syndrome, hydrocephalus, polycystic kidney disease,

, hephrolithiasis, Meckel-Gruber
syndrome and Joubert syndrome.

PCD is a genetically heterogeneous disorder
affecting motile cilia which are made up of
approximately 250 proteins. Around 90% of individuals
with PCD have ultrastructural defects affecting
protein(s) in the outer and/or inner dynein arms which
give cilia their motility, with roughly 38% of these
defects caused by mutations on two
genes, DNAI1 and DNAHS5, both of which code for
proteins found in the ciliary outer dynein arm.




Primary ciliary dyskinesia (PCD)
Immotile Ciliary Syndrome (ICS)

Ultrastructural and functional defects of cilia result in
the lack of effective ciliary motility, causing abnormal
mucociliary clearance. This leads to recurrent or
persistent respiratory infections, sinusitis, otitis
media, and male infertility. Primary ciliary
dyskinesia (PCD), also known as immotile ciliary syndrome
(ICS), is a rare, ciliopathic, autosomal recessive genetic
disorder that causes a defect in the action of the cilia lining
the respiratory tract (lower and upper, sinuses,Eustachian
tube, middle ear) and fallopian tube, as well as the flagella of
sperm cells. In 50% of the patients, ICS is associated
with situs inversus.




Kartagener Syndrome

e |In 1933, Kartagener described a unigue syndrome
characterized by the triad of situs inversus, chronic
sinusitis, and bronchiectasis, later termed as
Kartagener syndrome. The moveable tails of sperm
(flagella) are often also affected. Abnormality In
sperm motility may result in male infertility.

 Male infertility is a common sign of Kartagener
syndrome present in men. Women with Kartagener
syndrome are often infertile because of ciliary
immotility or immobility in/of the lining of the
Fallopian tubes.







