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The Born-Oppenheimer
approximation
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Nuclear coordinate R

The study of chemical systems is
based on the separation of
nuclear and electronic motion

The potential energy surfaces
(PES) are generated by the
solution of the electronic part of
the Schrodinger equation. This
solution gives an energy for every
fixed position of the nuclei. When
the energy is plotted as a function
of geometries it generates the
PES as a(3N-6) dimensional
surface.

Every electronic state has its own
PES.

On this potential energy surface,
we can treat the motion of the
nuclei classically or quantum
mechanically



Hamiltonian for molecules

The total Hamiltonian operator for a molecular system is the
sum of the kinetic energy operators (T) and potential energy

operators (V) of all particles (nuclei and electrons). In atomic
units the Hamiltonian is:

H=T+V

H xR =T"+T +V*“ +V" + V¥
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Assuming that the motion of electrons and nuclei is
separable, the Schrodinger equation is separated into an
electronic and nuclear part. R and r are nuclear and
electronic coordinates respectively. The total wavefunction
WT is a product of electronic W¢ and nuclear ¥,
wavefunctions for an | state.

P (r,R) = x, R)¥ (r;R)
H'®' = E"y’

(T" + E)x, = E'x,

Nuclear eq.

HeW = EW°

Electronic eq.



Energy

Nonadiabatic processes are facilitated by the close

proximity of potential energy surfaces. When the potential
energy surfaces approach each other the BO
approximation breaks down. The rate for nonadiabatic
transitions depends on the energy gap.

Avoided crossing

Nuclear coordinate R



When electronic states approach each other, more than one of them
should be included in the expansion

e
¥’ (r,R) = E %, (R (r;R) Born-Huang expansion
I=1

If the expansion is not truncated the wavefunction is exact since the set
We is complete. The total Schrodinger equation using the Born-Huang
expansion becomes

(T" +iK” + E)yx, +

S 1
+Ez_(‘2fu "V, +K'x,)=Ex,
J=1 lu

£ (R) = (¥
k" (R) = <qu

V) L .
i Derivative coupling: couples the
Vz‘l’f >r different electronic states




Derivative coupling

v \VH|w
f, = <1P1 ‘V‘\PJ> - < lIi"J _ I‘ZIJ>
fIJ fJI
£, =0 For real wavefunctions

<1P1 ‘VZ‘IPJ> =V 1, +1,-f;

The derivative coupling is inversely proportional to the
energy difference of the two electronic states. Thus the
smaller the difference, the larger the coupling. If AE=0 f is
infinity.



What is a conical
Intersection

Two adiabatic potential
energy surfaces cross.
The interstate coupling is
large facilitating fast
radiationless transitions
between the surfaces




The Noncrossing Rule

The adiabatic eigenfunctions are expanded in terms of o,

Y, =@, +Cr 0,
Y, =CL@, + Cp@,

The electronic Hamiltonian is built and diagonalized

H, +H,, +JAH® + H’,

He _ (Hll HlZ) . . 2
H, H,] The eigenvalues v
and eigenfunctions R
Hl.j = <(pi H°¢ (pj> are. Y, = —sin%(p1 +c0s%cp2
; sin® =
AH =H, -H, 2 AH® +H,,
o H11 _sz

COS—=
2 ~AH?+H}



In order for the eigenvalues to become degenerate:

H;1(R)=H,, (R)
H,, (R) =0

Since two conditions are needed for the existence of a
conical intersection the dimensionality is Ni"-2, where Nitis
the number of internal coordinates

For diatomic molecules there is only one internal
coordinate and so states of the same symmetry cannot
cross (noncrossing rule). But polyatomic molecules have
more internal coordinates and states of the same symmetry
can cross.

J. von Neumann and E. Wigner, Phys.Z 30,467 (1929)



Conical intersections and
symmetry

e Hll le

H =(H21 HZZ)

Symmetry required conical intersections, Jahn-Teller effect

H,,=0, H,,=H,, by symmetry

seam has dimension N of high symmetry

Example: E state in H;in D3h symmetry
Symmetry allowed conical intersections (between states of different
symmetry)

H,,=0 by symmetry

Seam has dimension N-1

Example: A,-B, degeneracy in C2v symmetry in H,+OH
Accidental same-symmetry conical intersections

Seam has dimension N-2



These rotationally symmetric surfaces are depicted schematically in Fig. 1
and characterized there by the JT stabilization energy

.2
EJ-;‘ = ;‘— 5 'lﬁ"
2w
oceurring at the optimum distortion
po=k/lw. (7)
The so-called pseudorotational angle ¢ is defined as
¢ = arctan (Q,/Q) . (8]
The corresponding eigenvector matrix reads
B= (9]

where the two columns represent the expansion coefficients of the adiabatic
wave functions in the diabatic clectronic basis. Transforming the complete

Fig. 1. Perspective drawing of the E @ e JT intersection arising for linear coupling
(Mexican hat). The rotationally symmetric double cone is located in the figure centre.
Also indicated in the figure are the Cartesian displacement coordinates @z and @y o
the JT active mode, the pseudorotational angle ¢ and the energy gain Ejp occurring
for the optimum distortion Po.
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Two internal
coordinates lift the
degeneracy linearly:
g-h or branching
plane

Nint.2 coordinates form the
seam: points of conical
intersections are connected
continuously
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The Branching Plane

The Hamiltonian matrix elements are expanded in a Taylor
series expansion around the conical intersection

HR)=HR,)+VHR,) R
AHR) =0+ VAHR,) SR
H,R)=0+VH,(R,) R

Then the conditions for degeneracy are

VAH(R,) 6R =0
VH,(R,)-5R =0

gx  hy
h=VH H =(sx+sy)l+
12 Y hy —gx

E,=sx+sy=+ \/(gx)2 + (hy)’



Topography of a conical
Intersection

e asymmetry filt

-

E.=E +sx+sy=+ ‘/gzx2 +h’y’

Conical intersections are described in terms of the
characteristic parameters g,h,s



Geometric phase effect (Berry
phase)

If the angle a changes from a to o +2x:
= (cosg) + (sing)
Y, = > 2 > ¥,

Y, = —(sing)(p1 + (cosg)(p2
2 2

Y (o +2m) =y, (o)
Y, (a+2m) =y, (a)

The electronic wavefunction is doubled valued, so a phase
has to be added so that the total wavefunction is single

valued W = TR x(R)

The geometric phase effect can be used for the identification
of conical intersections. If the line integral of the derivative
coupling around a loop is equal to @



Adiabatic and Diabatic
represenation

= Adiabatic representation uses the eigenfunctions
of the electronic hamiltonian. The derivative
coupling then is present in the total Schrodinger
equation

s Diabatic representation is a transformation from
the adiabatic which makes the derivative
coupling vanish. Off diagonal matrix elements
appear. Better for dynamics since matrix
elements are scalar but the derivative coupling
IS a vector.

s Strickly diabatic bases don’t exist. Only
quasidiabatic where f is very small.



Practically g and h are taken from ab initio
wavefunctions expanded in a CSF basis

NCSF

v = E ol
m=1

[H'R)-E,R)|c'R) =0

Tuning, coupling vectors

dHR) ,
R ¢ (R,)

JH(R) (R )
R ’

o

h, R)=c'(R))

g, R)=c'(R)

g"(R)=g'(R) - g/(R)



Locating the minimum energy point
on the seam of conical intersections

m Projected gradient technique:
s M. J. Baerpack, M. Robe and H.B. Schilegel
Chem. Phys. Lett. 223, 269, (1994)
m Lagrange multiplier technique:

= M. R. Manaa and D. R. Yarkony, J. Chem.
Phys., 99, 5251, (1993)



Locate conical intersections using
lagrange multipliers:

AEij+gji-6R=O

h”-6R=0

Additional geometrical constrains, K», can be imposed. These conditions can be imposed
by finding an extremum of the Lagrangian.

L(R,E,M)=E + §AE+ §H,; + YLK



Branching vectors for OH+OH
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Routing effect

OH(A)+OH(X)

Quenching to

OH(X)+OH(X)
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Reaction to H,O+O



Three-state conical intersections

Three state conical intersections can exist between three states of the same symmetry
in a system with N degress of freedom in a subspace of dimension Nin-5

(Hll H12 Hl3\

H = H12 sz H23
\H; H,, H,)

Hy1(R)=H,, (R)= Hj;
Hi, (R) = H;5(R) =H,; (R) =0

Dimensionality: N5, where Nt is the number of internal
coordinates
J. von Neumann and E. Wigner, Phys.Z 30,467 (1929)



Conditions for a conical intersection

v, ¥, v, Tv,
H,, H, 0 H1T2 \
sz sz _H1T2 0

H,, sz
H,, H,,

including the spin-orbit interaction

s In general 5 conditions need to be
satisfied.
» Hy=Hy,
_ Re(H12)=O
_ Im(H12)=O
= Re(H,,)=0, satisfied in C; symmetry
s Im(H47,)=0, satisfied in C; symmetry
= The dimension of the seam is N"t-5
or NInt-3

C.A.Mead J.Chem.Phys., 70, 2276, (1979)



