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 The study of chemical systems isThe study of chemical systems is
based on the separation ofbased on the separation of
nuclear and electronic motionnuclear and electronic motion

 The potential energy surfacesThe potential energy surfaces
(PES) are generated by the(PES) are generated by the
solution of the electronic part ofsolution of the electronic part of
the Schrodinger equation. Thisthe Schrodinger equation. This
solution gives an energy for everysolution gives an energy for every
fixed position of the nuclei. Whenfixed position of the nuclei. When
the energy is plotted as a functionthe energy is plotted as a function
of geometries it generates theof geometries it generates the
PES as a(3N-6) dimensionalPES as a(3N-6) dimensional
surface.surface.

 Every electronic state has its ownEvery electronic state has its own
PES.PES.

νν On this potential energy surface,On this potential energy surface,
we can treat the motion of thewe can treat the motion of the
nuclei classically or quantumnuclei classically or quantum
mechanicallymechanically

TSTS

The Born-OppenheimerThe Born-Oppenheimer
approximationapproximation

Nuclear coordinate RNuclear coordinate R
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The  total Hamiltonian operator for a molecular system is theThe  total Hamiltonian operator for a molecular system is the
sum of the sum of the kinetic energykinetic energy operators (T) and  operators (T) and potential energypotential energy
operators (V) of all particles (nuclei and electrons). In atomicoperators (V) of all particles (nuclei and electrons). In atomic
units the Hamiltonian is:units the Hamiltonian is:

Hamiltonian for moleculesHamiltonian for molecules
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(TN + EI
e )χ I = ETχ I€ 

ΨT (r,R) = χ I (R)ΨI
e (r;R)
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Electronic Electronic eqeq.. Nuclear Nuclear eqeq..

Assuming that the motion of electrons and nuclei isAssuming that the motion of electrons and nuclei is
separable, the Schrodinger equation is separated into anseparable, the Schrodinger equation is separated into an
electronic and nuclear part. electronic and nuclear part. RR and  and rr are nuclear and are nuclear and
electronic coordinates respectively. The total electronic coordinates respectively. The total wavefunctionwavefunction
ΨΨTT is a product of electronic  is a product of electronic ΨΨII

ee    and nuclear and nuclear χχII
wavefunctionswavefunctions for an I state. for an I state.
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Nonadiabatic Nonadiabatic processesprocesses are facilitated by the close
proximity of potential energy surfaces. When the potential
energy surfaces approach each other the BO
approximation breaks down. The rate for nonadiabatic
transitions depends on the energy gap.

Avoided crossingAvoided crossing

Nuclear coordinate RNuclear coordinate R
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ΨT (r,R) = χ I (R)ΨI
e (r;R)
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Born-Huang expansionBorn-Huang expansion  
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Derivative couplingDerivative coupling: couples the: couples the
different electronic statesdifferent electronic states

When electronic states approach each other, more than one of them
should be included in the expansion

If the expansion is not truncatedIf the expansion is not truncated  the the wavefunction wavefunction is exact since the setis exact since the set
ΨΨII

ee  is complete. The total Schrodinger equation is complete. The total Schrodinger equation  using the Born-Huang using the Born-Huang
expansion  becomesexpansion  becomes



Derivative couplingDerivative coupling
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fIJ = ΨI ∇ ΨJ =
ΨI ∇H ΨJ

EJ − EI

fIJ = −fJI
fII = 0

ΨI ∇
2 ΨJ =∇ ⋅ fIJ + fIJ ⋅ fIJ

For real For real wavefunctionswavefunctions

The derivative coupling is inversely proportional to theThe derivative coupling is inversely proportional to the
energy difference ofenergy difference of  the two electronic states. Thus thethe two electronic states. Thus the
smaller the difference, the larger the coupling. Ifsmaller the difference, the larger the coupling. If  ΔΔE=0 f isE=0 f is
infinity.infinity.



What is a conicalWhat is a conical
intersectionintersection

Two adiabatic potential
energy  surfaces cross.
The interstate coupling is
large facilitating  fast
radiationless transitions
between the surfaces



The The Noncrossing Noncrossing RuleRule
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ψ1 = c11ϕ1 + c21ϕ2
ψ2 = c12ϕ1 + c22ϕ2
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Hij = ϕ i H
e ϕ j

ΔH = H11 −H22
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The adiabatic The adiabatic eigenfunctions eigenfunctions are expanded in terms of are expanded in terms of ϕϕii

The The eigenvalueseigenvalues
and and eigenfunctionseigenfunctions
are:are: € 

E1,2 =
H11 + H22 ± ΔH 2 + H12

2

2

The electronic Hamiltonian is built andThe electronic Hamiltonian is built and diagonalized diagonalized



H11(R)=H22 (R)
H12 (R) =0

  Since two conditions are needed for the existence of a
conical intersection the dimensionality is Nint-2, where Nint is
the number of internal coordinates

For diatomic molecules there is only one internal
coordinate and so states of the same symmetry cannot
cross (noncrossing rule). But polyatomic molecules have
more internal coordinates and states of the same symmetry
can cross.

J. von Neumann and E. Wigner, Phys.Z 30,467 (1929)

In order for the In order for the eigenvalues eigenvalues to become degenerate:to become degenerate:



Conical intersections andConical intersections and
symmetrysymmetry

 Symmetry required conical intersections,Symmetry required conical intersections,  JahnJahn-Teller-Teller  effecteffect
•• HH1212=0, H=0, H1111=H=H2222  by symmetryby symmetry
•• seam has dimension N of high symmetryseam has dimension N of high symmetry
•• Example: E state in HExample: E state in H33  in D3h symmetryin D3h symmetry

 Symmetry allowed conical intersections (between states of differentSymmetry allowed conical intersections (between states of different
symmetry)symmetry)

•• HH1212=0 by symmetry=0 by symmetry
•• Seam has dimension N-1Seam has dimension N-1
•• Example: AExample: A11-B-B22 degeneracy in C2v symmetry in H degeneracy in C2v symmetry in H22+OH+OH

 Accidental same-symmetry conical intersectionsAccidental same-symmetry conical intersections
•• Seam has dimension N-2Seam has dimension N-2
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Example: X3 systemExample: X3 system

Seam coordinateSeam coordinate

branching coordinatesbranching coordinates



Nint-2 coordinates form the
seam: points of conical
intersections are connected
continuously

h

g

E
Two internal
coordinates lift the
degeneracy linearly:
g-h or branching
plane

Figure 1b
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The Branching PlaneThe Branching Plane
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H(R) = H(R0) +∇H(R0) ⋅ δR
ΔH(R) = 0 +∇ΔH(R0) ⋅ δR
H12(R) = 0 +∇H12(R0) ⋅ δR
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∇ΔH(R0) ⋅ δR = 0
∇H12(R0) ⋅ δR = 0

g =∇ΔH
h =∇H12

The Hamiltonian matrix elements are expanded in a TaylorThe Hamiltonian matrix elements are expanded in a Taylor
series expansion around the conical intersectionseries expansion around the conical intersection

Then the conditions for degeneracy areThen the conditions for degeneracy are
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He = (sx x + sy y)I+
gx hy
hy −gx
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E1,2 = sx x + sy y ± (gx)2 + (hy)2



Conical intersections are described in terms of the
characteristic parameters g,h,s

asymmetry tilt

Topography of a conicalTopography of a conical
intersectionintersection

E± = E0 + sxx + syy ± g2x2 + h2y2
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ψ1(α + 2π ) = −ψ1(α)
ψ2(α + 2π ) = −ψ2(α)

If the angle If the angle αα changes from  changes from αα  to   to αα +2 +2ππ::

The electronicThe electronic wavefunction  wavefunction is doubled valued, so a phaseis doubled valued, so a phase
has to be added so that the total has to be added so that the total wavefunction wavefunction is singleis single
valuedvalued

The geometric phase effect can be used for the identificationThe geometric phase effect can be used for the identification
of conical intersections. If the line integral of the derivativeof conical intersections. If the line integral of the derivative
coupling around a loop is equal to coupling around a loop is equal to ππ
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ΨT = eiA(R )ψ(R;r)χ(R)

Geometric phase effect (BerryGeometric phase effect (Berry
phase)phase)



Adiabatic and Adiabatic and DiabaticDiabatic
represenationrepresenation

 Adiabatic representation uses the Adiabatic representation uses the eigenfunctionseigenfunctions
of the electronic of the electronic hamiltonianhamiltonian. The derivative. The derivative
coupling then is present in the total Schrodingercoupling then is present in the total Schrodinger
equationequation

 Diabatic Diabatic representation is a transformation fromrepresentation is a transformation from
the adiabatic which makes the derivativethe adiabatic which makes the derivative
coupling vanish. Off diagonal matrix elementscoupling vanish. Off diagonal matrix elements
appear. Better for dynamics since matrixappear. Better for dynamics since matrix
elements are scalar but the derivative couplingelements are scalar but the derivative coupling
is a vector.is a vector.

 Strickly diabatic Strickly diabatic bases donbases don’’t exist. Onlyt exist. Only
quasidiabatic quasidiabatic wherewhere  f is very small.f is very small.



gIJ(R)= gI(R) - gJ(R)

hα
IJ (R) = c I (R x )

† ∂H(R)
∂Rα

c J (R x )

gα
I (R) = c I (R x )

† ∂H(R)
∂Rα

c I (R x )

Tuning, coupling vectorsTuning, coupling vectors
€ 

ΨI
e = cm

Iψm
m=1

NCSF

∑

Practically g and h are taken from  Practically g and h are taken from  ab initioab initio
wavefunctions wavefunctions expanded in a CSF basisexpanded in a CSF basis

He (R) − EI (R)[ ]c I (R) = 0



Locating the minimum energy point
on the seam of conical intersections

 Projected gradient technique:Projected gradient technique:
 M. J. M. J. BaerpackBaerpack, M. Robe and H.B. Schlegel, M. Robe and H.B. Schlegel

ChemChem. Phys. . Phys. LettLett..  223223, 269, (1994), 269, (1994)
 Lagrange multiplier technique:Lagrange multiplier technique:

 M. R. M. R. Manaa Manaa and D. R. and D. R. YarkonyYarkony, , J. J. ChemChem..
PhysPhys., ., 9999, 5251, (1993), 5251, (1993)



Locate conical intersections  using
lagrange multipliers:

ΔEij + g
ji
⋅ δR = 0

h ji ⋅ δR = 0

Additional geometrical constrains, Ki, ,  can be imposed. These conditions can be imposed 
by finding an extremum of the Lagrangian.  

L (R, ξ ,λ )= Ek + ξ1ΔEij+ ξ2Hij  + ∑λiKi
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Reaction to  H2O+O  

Quenching to
OH(X)+OH(X)

Routing effect:Routing effect:

OH(A)+OH(X)



Three-state conical intersections
Three state conical intersections can exist between three states of the same symmetry Three state conical intersections can exist between three states of the same symmetry 
in a system within a system with N Nintint degress  degress of freedom in a subspace of dimension of freedom in a subspace of dimension NNintint-5 -5 

H11(R)=H22 (R)= H33
H12 (R) = H13 (R) = H23 (R) =0

Dimensionality:Dimensionality:  Nint-5, where Nint is the number of internal
coordinates

J. von Neumann and E. Wigner, Phys.Z 30,467 (1929)
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Conditions for a conical intersectionConditions for a conical intersection
including the spin-orbit interactionincluding the spin-orbit interaction

H11 H12 0 H1T2
H12
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 In general 5 conditions need to beIn general 5 conditions need to be
satisfied.satisfied.
 HH1111=H=H2222

 Re(HRe(H1212)=0)=0
 Im(HIm(H1212)=0)=0
 Re(HRe(H1T1T22)=0, satisfied in C)=0, satisfied in Cs s symmetrysymmetry
 Im(HIm(H1T1T22)=0,  satisfied in C)=0,  satisfied in Cs s symmetrysymmetry

 The dimension of the seam is NThe dimension of the seam is Nintint-5-5
or Nor Nintint-3-3

C.A.Mead J.Chem.Phys., 70, 2276, (1979)

Ψ1  Ψ2       TΨ1    TΨ2


