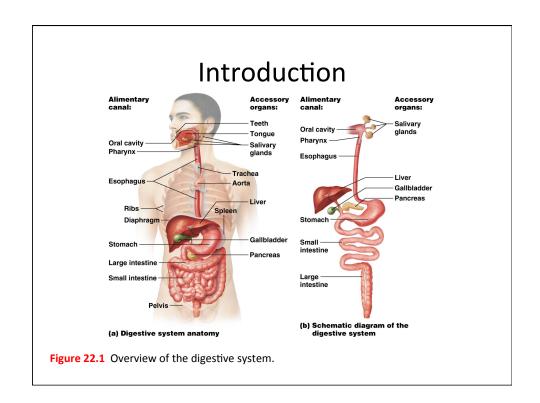


The Digestive System

Digestive System

= Gastrointestinal (GI) tract or plus Accessory organs


MODULE 22.1: OVERVIEW OF THE DIGESTIVE SYSTEM

Introduction

- Digestive system
 - breaks down food into nutrients that can be absorbed by bloodstream and delivered to body cells in useable form
 - = GI tract or alimentary canal and _____

Introduction

- Alimentary canal
 - continuous tube consisting of _____ (mouth), pharynx, esophagus, stomach, small intestine, and _____
- Accessory organs
 - located around alimentary canal and assist in digestion in some way
 - include teeth, tongue, salivary glands, liver,

Basic Digestive Functions and Processes

Functions:

- 1. ______, break it down into its component nutrients to be used by body cells
- 2. _____, and acid-base homeostasis
- 3. Ingest *vitamins* and *minerals*, produce *hormones*, excrete *wastes*

Basic Digestive Functions and Processes

	•	Main	processes	inc	lud	e:
--	---	------	-----------	-----	-----	----

- 1. Ingestion bring food and water into month
- 2. Secretion –mucus, enzymes, acid, and hormones
- 3. _____ via peristalsis
- 4. Digestion mechanical and chemical
- 5. _____ through wall of alimentary canal into blood or lymph
- 6. Defecation eliminate waste products

Regulation of Motility by Nervous and Endocrine Systems

Motility - key process in every region of alimentary canal

- Oral cavity, pharynx, superior esophagus, and last portion of L.I. -

Types: mixing & churning, propulsion Regulation:

- 1. Nervous ANS: SNS inhibits
 - **PSN** stimulates
- 2. **Endocrine** hormones stimulate or inhibit

Histology of Alimentary Canal

- _____ = concentric layers of tissue surround a *space*
- 4 main layers:
 - 1. _____ epithelium
 - 2. Submucosa CT
 - 3. Muscularis externa smooth muscle
 - 4. Serosa (or _____) CT

Histology of the Alimentary Canal

- Mucosa
 - **a. epithelium** _____ or stratified squamous

goblet cells → _____

- b. lamina propria CT
- c. muscularis mucosae SMC

Histology of Alimentary Canal

- dense irregular CT, with blood vessels and submucosal glands
- submucosal plexus (Meissner's plexus) regulate secretions

Histology of Alimentary Canal

- Muscularis externa
 - inner circular SMC
 - outer longitudinal SMC
 - _____(Auerbach's plexus)
 regulate motility

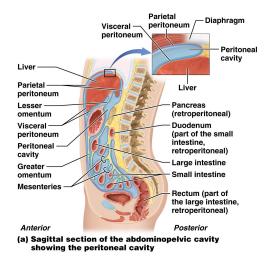
Histology of Alimentary Canal

- Serosa = _____
 - within peritoneal cavity
 - simple squam. epithelium & loose CT

or

- Adventitia
 - outside peritoneal cavity
 - dense irregular CT

Histology of Alimentary Canal Muscularis externa: Serosa Longitudinal layer Myenteric plexus Circular layer Submucosa: Dense irregular connective tissue Submucosal plexus Blood and lymphatic vessels Submucosal gland Muscularis mucosae Lamina propria Epithelium -Lumen Figure 22.2 The basic tissue organization of most of the alimentary canal.


Organization of Abdominopelvic Organs

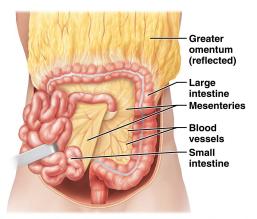
- Peritoneal membranes (Figure 22.3):
 - Outer parietal peritoneum

< peritoneal cavity- serous fluid>

- Inner visceral peritoneum (serosa)
- Mesenteries
 - Folds of visceral peritoneum between loops of intestines
 - _______"fatty apron": hangs from base of stomach
 - **Lesser Omentum**: lesser curvature of stomach to liver

Organization of Abdominopelvic Organs

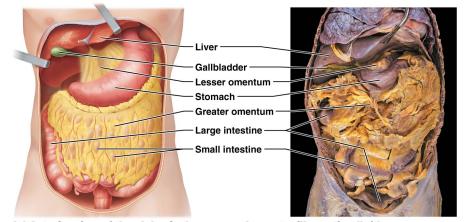
Figure 22.3a The peritoneum, the largest serous membrane in the body.



Peritonitis (p. 850)

Peritonitis = *inflammation* of peritoneum

- Results when blood or contents of an abdominal organ leak into peritoneal cavity; usually due to trauma; often involves a bacterial infection
- •
- Treatment for peritonitis may involve


Organization of Abdominopelvic Organs

(b) Mesenteries with greater omentum reflected and small intestine pulled aside, anterior view

Figure 22.3b The peritoneum, the largest serous membrane in the body.

Organization of Abdominopelvic Organs

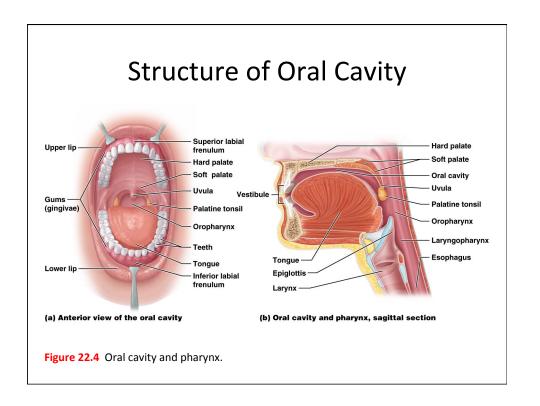
(c) Anterior view of the abdominal organs and omenta, illustration (left), and cadaver photo (right)

Figure 22.3c The peritoneum, the largest serous membrane in the body.

MODULE 22.2 THE ORAL CAVITY, PHARYNX, AND ESOPHAGUS

Introduction

Oral cavity (mouth)


_

- posterior to teeth and bounded by cheeks
- lined with stratified squamous nonkeratinized epith.
- beginning of alimentary canal
- accessory organs: ______
- forms _____ = saliva and chewed food

Structure of Oral Cavity

- Cheeks: _____
- Lips:
 - orbicularis oris muscle and covered with
 - _____
 - labial frenulum
- **Vestibule** space between lips, cheeks and gums
- Gums _____
- Palate:

hard palate (ant. 2/3) = _____ soft palate (post. 1/3) = skeletal muscle uvula – prevents food from entering nasal cavity

Teeth - organs of mechanical digestion (Figures 22.5, 22.6) • Mastication — ______ to increase surface area of food • Teeth located in bony sockets called alveoli maxilla and mandible • Dentition Formula: 3 2 1 4 1 3 — tricuspids (molars) 2 — bicuspids (premolars) 1 - cuspids (canines) 4 - incisors

The Teeth and Mastication

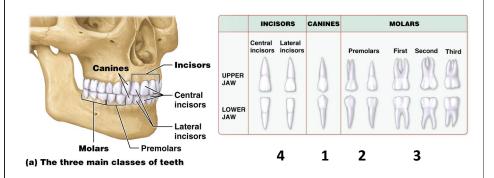
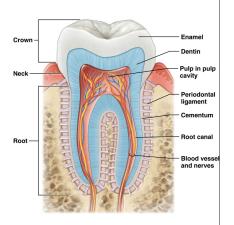



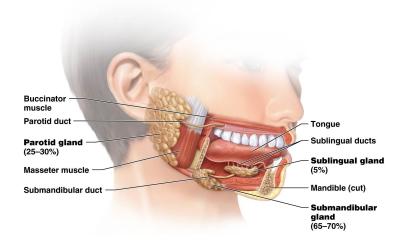
Figure 22.5a Types of teeth and the primary and secondary dentition.

Teeth and Mastication

- Secondary dentition (_____ permanent teeth)
- Tooth structure
- _____ above gum line
 - Enamel hard mineralized substances
 - Dentin
- _____ below gum line
 - Pulp blood vessels, nerves

Tongue

Tongue


- skeletal muscle covered w/ stratified squamous epith.
- lingual frenulum _____
- Papillae:
 - 1.
 - 2. fungiform
 - 3. circumvallate
 - 4. foliate papillae
- All papillae <u>except</u> filiform contain sensory receptors called **taste buds**

Salivary Glands

Salivary glands → **saliva** contains water, enz., mucus, and other solutes (Fig. 22.7)

- **1.** _____ (25-30% of saliva)
 - → parotid duct
 - located over masseter muscle
- **2.** _____ glands (65-70%)
 - → submandibular ducts
 - located along mandible
- **3.** _____(5%)
 - → sublingual ducts
 - situated inferior to tongue

Salivary Glands

Figure 22.7 Anatomy of the salivary glands. The percentages indicate the portion of total salivary production for each type of gland.

Salivary Glands

Saliva

- _
- _____, initiates CHO digestion
- Lysozyme enz. kills bacteria
- IgA antibody that destroys pathogens
- Bicarbonate to neutralize acid
- Parotid glands → water and enzymes
- Submandibular glands → secrete enzymes, mucus
- Sublingual glands \rightarrow secrete mainly mucus, some enz.

Salivary Glands

Functions of Saliva :

Pharynx

Common passageway for 2 systems:

- extends from internal nares
 - \rightarrow
- Pharynx (throat)
 - -nasopharynx
 - -oropharynx
 - -laryngopharynx

Pharynx

Function of pharynx

- bolus passes into esophagus
 - Pharynx is surrounded by three pairs of skeletal muscles: upper, middle, and lower pharyngeal constrictor muscles

Tonsils

Tonsils – defend body from pathogens that have entered nasal or oral cavities

- 1. _____ tonsils
 - posterior oral cavity on either side of tongue
- 2. _____ tonsils
 - located under base of tongue
- 3. _____ tonsils
 - located on posterior wall of nasopharynx

Esophagus

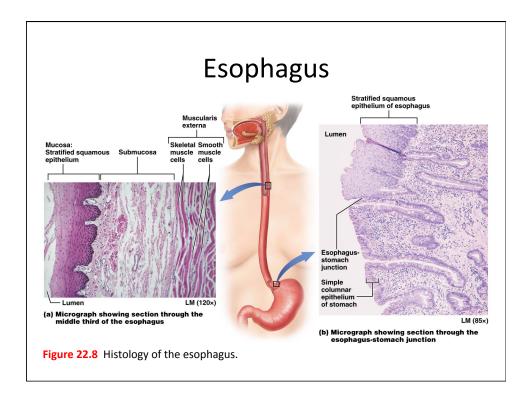
- Esophagus (Figure 22.8)
 - muscular tube about 25 cm (10 in.) long
 - posterior to trachea
 - transports bolus from pharynx to stomach
 - mucosa: lined with
 - muscularis: superior 1/3 skeletal

middle 1/3 skeletal & SMC

inferior 1/3 SMC

Esophagus

Upper esophageal sphincter


- junction of pharynx and esophagus
- modified sphincter

Gastroesophageal sphincter (aka

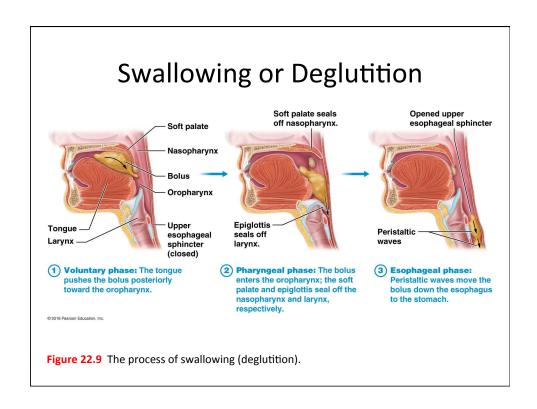
_____ LES or cardiac sphincter)

regulates passage of bolus into stomach;
 also <u>prevents</u> reflux

______ - opening in diaphragm

Esophagus

- Primary functions of esophagus
- During swallowing, skeletal muscle and smooth muscle of muscularis undergo peristalsis
 - Thick esophageal epithelium protects esophagus from abrasion by food, also prevents absorption


Swallowing or Deglutition

Swall	owing	or		

 specialized type of propulsion that pushes bolus of food from oral cavity through pharynx and esophagus to stomach (Figure 22.9):

Swallowing or Deglutition

- **1. Voluntary phase** tongue pushes bolus posteriorly toward oropharynx
- 2. _____ bolus enters oropharynx
 - soft palate and epiglottis seal off nasopharynx and larynx
 - swallowing reflex initiated by medulla
 - all structures (uvula, larynx) move up and epiglottis depresses
- **3.** _____ peristaltic waves move bolus down esophagus to stomach

MODULE 22.3 THE STOMACH

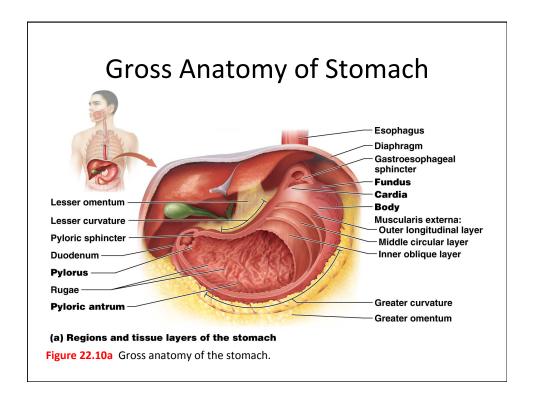
Gross Anatomy of Stomach

Anatomy

greater curvature – convex left side **lesser curvature** - *concave* right side

5 regions:

Cardia – receives bolus when LES relaxes


Fundus – upper left domed-shaped

_____ – largest section

Pyloric antrum – inferior portion

____ – connects with duodenum via pyloric sphincter

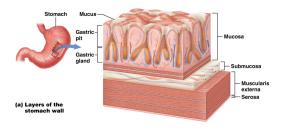
Rugae = _____

Gross Anatomy of Stomach

Figure 22.10b Gross anatomy of the stomach.

Histology of Stomach

- Stomach
 - <u>same</u> four tissue layers as rest of alimentary canal with modifications (**Figure 22.11**):
 - $-\, Muscularis\ externa: \underline{additional}\ inner\ layer\ of$


Chyme – _____

Histology of Stomach

Mucosa - *indentations* to form _____(Fig. 22.11):
Goblet cells →

Gastric glands, found at base of gastric pits

 contain both endocrine cells that secrete hormones and acidic, enzyme-containing fluid called gastric juice

Histology of Stomach

•	4	main	cells	types	(Figure	22.11b):
---	---	------	-------	-------	---------	------------------

1. _____ cells → hormones

 $\textbf{G cells} \ \textbf{secrete hormone gastrin} \ \textbf{stimulates secretions}$

2. _____→ pepsinogen

-precursor to enzyme **pepsin** which begins protein dig.

3. ______ → hydrochloric acid (HCl)

→ intrinsic factor (req. for absorption of vitamin B12)

4. Mucous neck cells → secrete acidic mucus

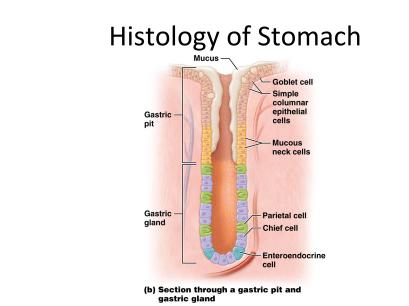


Figure 22.11b Structure and functions of the stomach mucosa and gastric glands.

Functions of Stomach

Gastric secretions:

HCI

- •
- nec. to convert pepsinogen to pepsin

Pepsinogen

- •
- inactive form of pepsin

Pepsin

•

Mucus

from goblet cells & mucus glands

Intrinsic factor

- from parietal cells
- req. for Vit. B₁₂ absorption

Histology of the Stomach

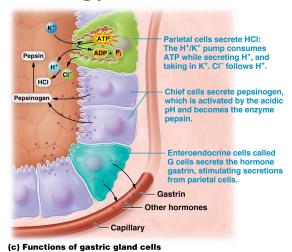
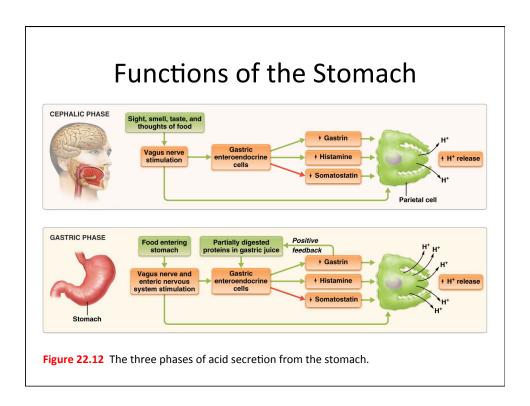
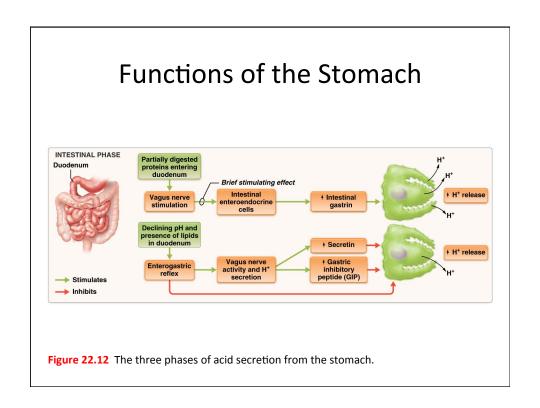




Figure 22.11c Structure and functions of the stomach mucosa and gastric glands.

Functions of Stomach

- Regulation of Gastric Secretions: (Figure 22.12):
 - **1.** _____ (30 40%)
 - triggered by sight, smell, taste, or thought of food
 - PSN (Vagus n.) triggers gastric juice secretion
 - **2.** _____ (50 60%)
 - triggered by food in stomach
 - gastrin released
 - gastric juice secreted
 - 3. _____ (~5%)
 - triggered by food moving into S.I.
 - intestinal gastrin released ightarrow secretion of gastric juice

Gastroesophageal Reflux Disease (GERD)

- Gastroesophageal sphincter normally remains closed except during swallowing; when this mechanism fails, acid from stomach regurgitates into esophagus
- If this occurs on a chronic basis, it is called gastroesophageal reflux disease, or GERD, and may lead to pain, difficulty swallowing, vocal cord damage, respiratory problems, and even esophageal cancer

Gastroesophageal Reflux Disease (GERD) (p. 865)

- Causes
 - Acid
 - H. pylori
 - _
- Treatment

Functions of the Stomach

Enterogastric reflex

- as chyme enters duodenum, declining pH (more acidic) and presence of lipids trigger enterogastric reflex
- → <u>decreases</u> vagal activity and reduces acid secretion → _____

Functions of the Stomach

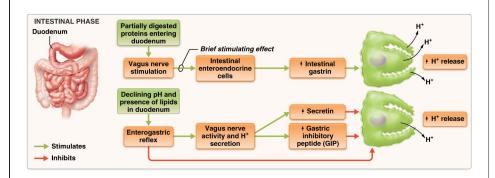
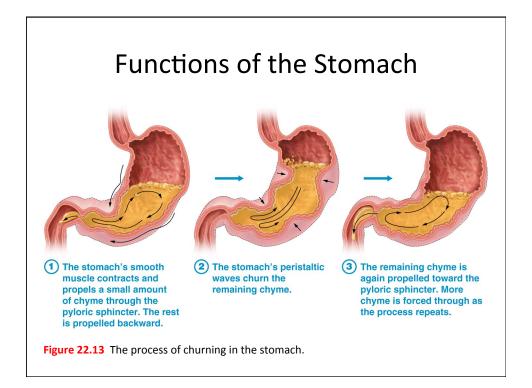



Figure 22.12 The three phases of acid secretion from the stomach.

Functions of the Stomach

- Emptying function
- Liquids move rapidly
- Solids must be converted to a *nearly liquid* state before entering S.I.
- _____ → delays gastric emptying
- Duodenum needs to process incoming chyme
 (

Vomiting (p. 865)

- Vomiting (emesis)
- Complex motor response
- Due to:
- Drugs (anti emetics

MODULE 22.4: THE SMALL INTESTINE

Introduction

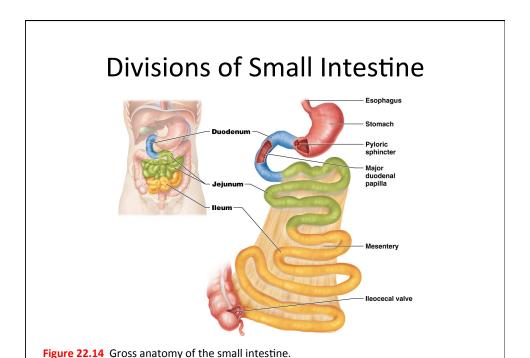
Small intestine (*small bowel*)

- 6 meters long (~20 feet)
- secretion, digestion, absorption, and propulsion 3 regions:

1. Duodenum

- ~25 cm, retroperitoneal, "C" shaped
- Major duodenal papilla –
- Duodenal (Brunner's) glands →

Divisions of Small Intestine


2. Jejunum

- middle segment
- ~ 2.5 meters (7.5 feet) in length

3. Ileum

- final segment, is also intraperitoneal
- ~ 3.6 meters (10.8 feet) in length

_

Increased surface area for absorption ~400 to 600x:

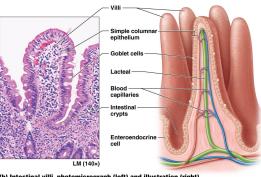
1. Circular folds or _______ (Figure 22.15a)

- mucosa and submucosa of S.I.

- _______ to give enterocytes (S.I. cells)

more time to absorb nutrients

Muscularis externa

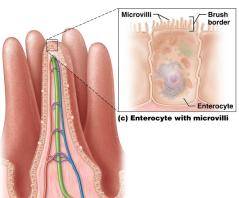

Muscularis externa

(a) Section of the jejunum showing circular folds

Structure and Functions of Small Intestine

2. Villi

 layer of enterocytes surrounding blood capillaries and lymphatic vessel



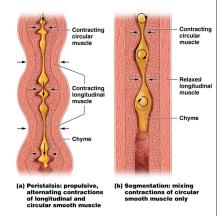
(b) Intestinal villi, photomicrograph (left) and illustration (right

Structure and Functions of Small Intestine

3. Microvilli _____

- Modification of plasma membrane of enterocytes (Figure 22.15c)

Motility of Small Intestine


Types of movement:

Peristalsis

-

Segmentation

Motility of the Small Intestine

Table 22.1 Hormones and Paracrines Involved in Secretion and Motility of the Digestive Organs			
Hormone	Stimulus for Production	Effects	
Stomach Hormones			
Gastrin	Partially digested proteins; stimulation from the vagus nerve	Increases acid secretion by parietal cells	
Histamine	Stimulation from the vagus nerve	Increases acid secretion by parietal cells	
Serotonin	Distention of the stomach	Stimulates gastric motility	
Somatostatin	Decreasing stomach pH	Decreases acid secretion by parietal cells	
Intestinal Hormones			
Cholecystokinin (CCK)	Partially digested proteins and lipids in chyme entering the duodenum	Causes gallbladder to contract and release bile; stimulates secretion of pancreatic enzymes from a cinar cells; relaxes hepatopancreatic sphincte	
Gastric inhibitory peptide	Chyme entering the small intestine	Inhibits acid secretion from parietal cells	
intestinal gastrin	Chyme entering the small intestine	Stimulates acid secretion from parietal cells	
Motilin	Released regularly during fasting	Stimulates the migrating motor complex of the small intestine	
Secretin	Partially digested proteins in the duodenum	Inhibits gastric motility and acid secretion; stimulates bicarbonate re- lease from pancreatic duct cells; increases bile production by the liver	
Vasoactive intestinal peptide	Partially digested proteins in the duodenum	Inhibits acid secretion by parietal cells; stimulates pancreatic secretion; increases intestinal blood flow	

Table 22.1 Hormones and Paracrines Involved in Secretion and Motility of the Digestive Organs.

Appendicitis (p. 870)

MODULE 22.5: THE LARGE INTESTINE

Introduction

Large intestine (large bowel)

- ~1.5 meters (5 feet) long
- receives material from S. I. not digested or absorbed

_

_

- bacteria mfr. vitamins

Gross Anatomy of Large Intestine

- **L. I. =** Cecum, Colon (ascending, transverse, descending, sigmoid), rectum, anus
- Cecum
 - vermiform appendix contains lymphatic nodules
- _____ colon right side
- _____ colon
- _____ colon left side
- Sigmoid colon

Gross Anatomy of Large Intestine

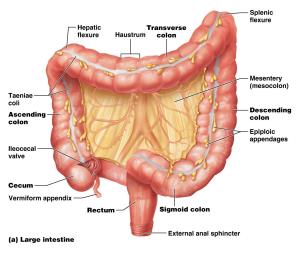


Figure 22.17a Gross anatomy of the large intestine

Gross Anatomy of Large Intestine

Rectum

Rectal valves - horizontal folds to hold feces in

Anal canal

Internal anal sphincter – _____

External anal sphincter – levator ani muscle

Histology of Large Intestine

Histological features: -Mucosa _____and its cells lack microvilli -Many ____ → protective and lubricating mucus -Taeniae coli = _____(Fig. 22.17a) -Haustra = pockets or saccules -Epiploic appendages = _____

Bacteria in Large Intestine

Normal flora (gut flora)

	acterial species that have
symbiotic () relationship

- Produce Vit. K (_____)
- Metabolize undigested materials
- Deter growth of pathogens
- Stimulate immune system

Motility of Large Intestine and Defecation

Two main types of motility:
 Segmentation (churning)
 Mass movement (mass peristalsis)

3-4 times per day

Defecation reflex –

- _____ of internal & anal sphincters, contraction of SMC

Histology of Large Intestine

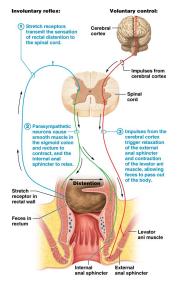
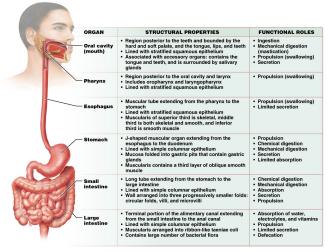


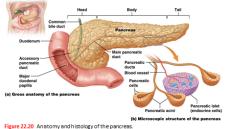
Figure 22.18 Defecation.

Motility of Large Intestine and Defecation

- Diarrhea
 - ______, not have enough time to absorb water → produces watery feces
- Constipation
 - motility ______, too much water absorption and fecal material becomes *hard*

Motility of Large Intestine and Defecation




Figure 22.19 Summary of the structure and function of the organs of the alimentary canal.

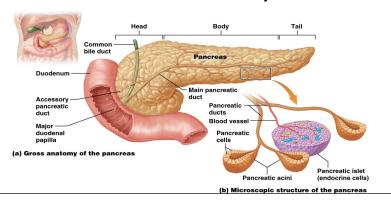
MODULE 22.6: THE PANCREAS, LIVER, AND GALLBLADDER

Introduction

- Pancreas, liver, and gallbladder
- accessory organs
- ______ secrete a product into a duct to outside of body

The Pancreas

Pancreas

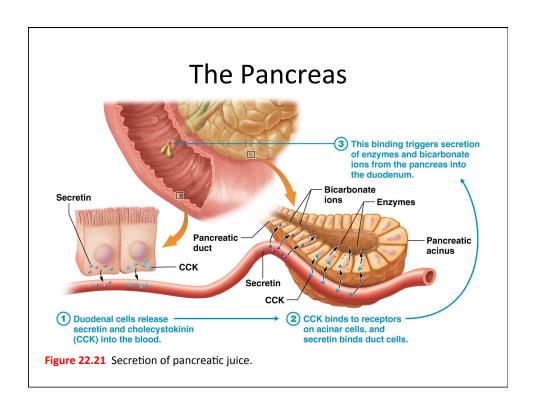

Pancreas – both endocrine and exocrine functions (Figure 22.20)

- Hormones (pancreatic islets: beta & alpha cells)
 - insulin (_____)
 - -glucagon (_____)
- Pancreatic juice (exocrine) *enzymes* secreted by

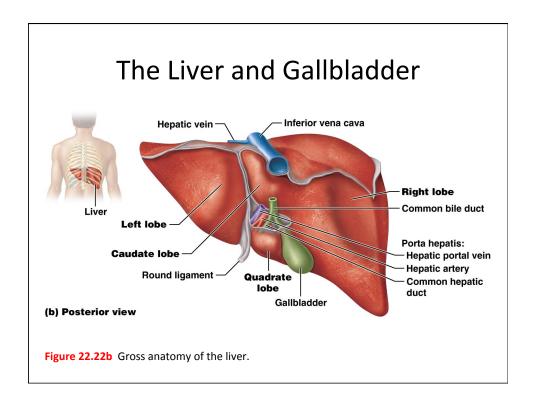
Pancreas

- Pancreas
 - left upper quadrant of abdomen
 - 3 regions:
 - Pancreatic duct & accessary duct

The Pancreas

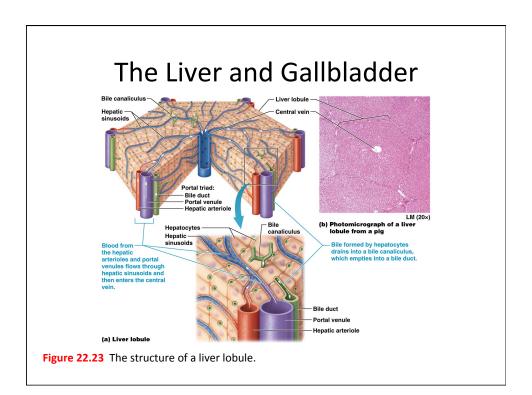

- - Bicarbonate ions
 - Pancreatic amylase
 - Pancreatic lipase
 - Trypsin, chymotrypsin, carboxypeptidase
 - Nucleases

Pancreas


Hormonal stimulation of Pancreas

- Cholecystokinin (CCK) (duodenum)
- Secretin (duodenum)

_



Liver and Gallbladder Liver - covered by thin CT capsule - 4 lobes: right, left, ______, ____ - falciform ligament separates right and left lobes - round ligament: remnant of umbilical vein Right lobe (a) Anterior view

The Liver and Gallbladder

- Liver lobule
- basic unit of liver
- composed cords of hepatocytes arranged around a central vein → hepatic v. → IVC
- hepatic sinusoids drain

Liver and Gallbladder

- Functions of liver
 - Hepatocytes →
 - Nutrient metabolism
 - Detoxification detoxifies substances produced by body, and substances that we eat or drink
 - directly excretes bilirubin in bile, antibiotics and other substances liver processes

Liver and Gallbladder

- Gallbladder
- small sac on posterior liver

_

- CCK triggers contraction of SMC causing release bile into
- Cystic duct joins with common hepatic duct →
- → hepatopancreatic ampulla through hepatopancreatic (h-p) sphincter

Liver and Gallbladder Right hepatic duct Left hepatic Common hepatic Cystic duct Gallbladder Common bile Liver Hepatopancreatic Main pancreatic Duodenum Hepatopancreatic sphincter Major duodena papilla Figure 22.24 Structure of the gallbladder and its ducts.

Liver and Gallbladder

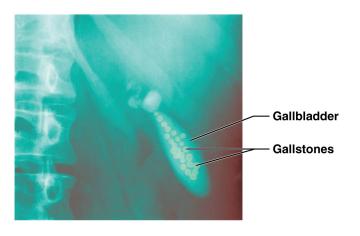
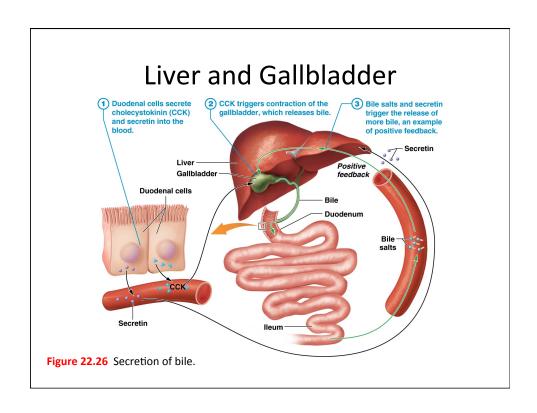
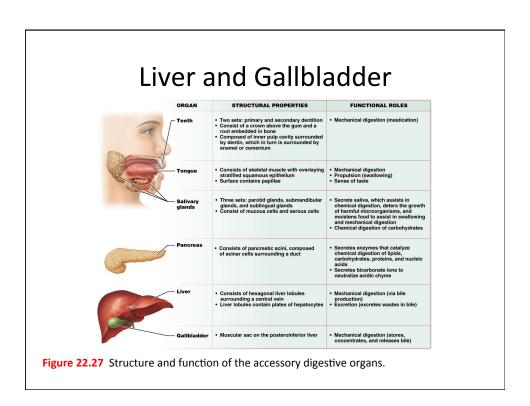




Figure 22.25 Radiograph of a gallbladder showing gallstones.

The Liver and Gallbladder

- CCK causes _____ of G.B.
 - Relaxation of h-p sphincter
- Secretin stimulates bile production

MODULE 22.7 NUTRIENT DIGESTION AND ABSORPTION

Digestion and Absorption of Carbohydrates Salivary amylase (salivary glands)

_

- inactivated in stomach due to low pH

Pancreatic amylase (exocrine pancreas)

- picks up CHO digestion in duodenum (Fig. 22.29)

Lactase, maltase, sucrase (brush border enz. S.I.)

-

Lactose → G + galactose

Maltose \rightarrow G + G

Sucrose → G + fructose

Lactose Intolerance, (p. 884)

Lactose intolerance -lack of enzyme **lactase** and as a result <u>cannot</u> *digest* milk sugar lactose (in adults)

Digestion and Absorption of Proteins Proteins → _____ Pepsin (stomach) - Chief cells of gastric glands - Pepsinogen → pepsin (req. pH 2) _____ (activated by brush border enz.) - from trypsinogen (pancreas) _____ (pancreas) Carboxypeptidase (pancreas)

Digestion and Absorption of Lipids

Triglycerides → _______ of lipids

Bile salts cause ______ of lipids

Gastric lipase (stomach)

Pancreatic lipase (pancreas)

______ (protein-coated lipid pkg.) absorbed into lacteal → lymphatic circulation → thoracic duct → Lt. Subclavian vein (blood circulation)

Digestion and Absorption of Lipids

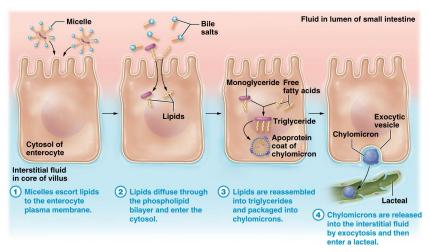


Figure 22.33 Lipid absorption in the small intestine.

Digestion and Absorption of Lipids

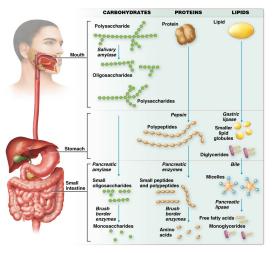


Figure 22.32 Summary of the digestion of carbohydrates, proteins, and lipids.

Digestion and Absorption of Nucleic Acids

Nucleic acids (DNA, RNA) → nucleotides

_____ (pancreas)

Digestion and Absorption of Nucleic Acids

Enzyme(s)	Source	Reaction Catalyzed
Carbohydrates		
Salivary amylase	Salivary glands	Polysaccharides into smaller polysaccharides and oligosaccharides
Pancreatic amylase	Pancreatic juice	Polysaccharides into oligosaccharides
Maltase, sucrase, lactase	Intestinal brush border	Oligosaccharides into monosaccharides
Proteins		
Pepsin	Chief cells of gastric glands (secreted as precursor pepsinogen)	Proteins into polypeptides and oligopeptides
Trypsin	Pancreatic juice	Oligopeptides into small peptides; activates itself and other pancreatic enzymes
Chymotrypsin	Pancreatic juice	Oligopeptides into small peptides
Carboxypeptidase	Pancreatic juice	Oligopeptides into small peptides
Dipeptidase and tripeptidase	Intestinal brush border	Dipeptides and tripeptides into amino acids
Lipids		
Gastric lipase	Gastric glands	Triglycerides into free fatty acids and diglycerides
Pancreatic lipase	Pancreatic juice	Triglycerides into free fatty acids and monoglycerides
Nucleic Acids		
Nucleases	Pancreatic juice	Nucleic acids into nitrogenous bases and simple sugar

Table 22. 2 Digestive Enzymes.

Absorption of Water, Electrolytes, and Vitamins

- > 9 L. H₂O _____
 - − ~2 L. of water are ingested
 - ~ 7 L. secreted into alimentary canal

Of the 9 liters, about _____ are absorbed into enterocytes of *S.I.*

 Most of remaining water is absorbed into enterocytes of *L.I.*, leaving only about 0.1 liter of water to be excreted in feces

The Big Picture of Digestion

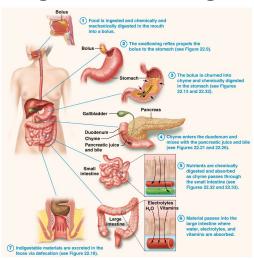


Figure 22.34 The Big Picture of Digestion.