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INTRODUCTION, HISTORY, EMBRYOLOGY
Bruch’s membrane is a thin (2–4 µm), acellular, five-layered 
extracellular matrix located between the retina and choroid.1,2 
It extends anteriorly to the ora serrata, interrupted only by the 
optic nerve. Tissue resembling Bruch’s membrane is visible 
anterior to the ora serrata extending forward to the pigmented 
epithelium of the ciliary body. Bruch’s membrane lies between 
the metabolically active retinal pigment epithelium (RPE) and 
a capillary bed (choriocapillaris) and thus serves two major func-
tions as the substratum of the RPE and a vessel wall. It has 
major clinical significance because of its involvement in age-
related macular degeneration (AMD) and other chorioretinal 
diseases.

Early history
Carl Ludwig Wilhelm Bruch first isolated the “lamina vitrea” 
that we now know as Bruch’s membrane, and described it in his 
1844 doctoral thesis,3,4 where he also first described the tapetum 
found in many mammals. By light microscopy, Bruch’s mem-
brane appeared transparent with little internal structure. Later 
studies by Smirnow5 divided this membrane into an outer elastic 
layer (first described by Sattler in 1877) and an inner cuticular 
layer, separated by a dense plexus of very fine elastic fibers.6,7

Development of Bruch’s membrane
The bipartite character of Bruch’s membrane arises from the 
embryology of its tissue. When the optic cup invaginates and 
folds, its inner layer forms the neural retina, and its outer layer 
forms the RPE. The RPE lies in contact with mesenchyme. At this 
apposition, Bruch’s membrane forms by 6–7 weeks’ gestation. 
Thus, its inner layer is composed of ectodermal tissue and its 
outer layer is composed of mesodermal tissue. At the border of 
two layers, the elastic layer forms last, becoming histologically 
visible by 11–12 weeks.8–10

The collagen that fills the extracellular space and the later-
appearing elastin appear to be made by invading fibroblasts and 
the filopodia of endothelial cells lining the adjacent choriocapil-
laris. The two basal laminas are produced by their associated cell 
layers.11 In addition to collagen IV subunits specific to special-
ized basal lamina, RPE expresses genes for structural collagen 
III and angiostatic collagen XVIII in a developmentally regulated 
manner linked to photoreceptor maturation.12

By week 13, fenestrations are apparent in the endothelium 
facing Bruch’s membrane,10 indicating that, at this stage, trans-
port across this tissue may be functional. Choroidal endothelial 
cells originate from paraocular mesenchyme. Development of 

the choroidal vasculature, and Bruch’s as part of it, depends on 
differentiated RPE and its production of inductive signals, 
including basic fibroblast growth factor and vascular endothelial 
growth factor (VEGF).13

STRUCTURE OF BRUCH’S MEMBRANE IN 
THE YOUNG ADULT EYE
Hogan’s five-layer nomenclature for Bruch’s membrane14 is com-
monly used. Gass proposed a three-layer system that did not 
include the cellular basal laminas as part of Bruch’s proper.15 
These layers are shown in Fig. 20.1 and their constituents are 
given in Table 20.1.

RPE basal lamina (RPE-BL)
This ∼0.15-µm-thick layer is a meshwork of fine fibers like other 
basal laminas in the body.16,17 The RPE-BL resembles that of the 
choriocapillaris endothelium but does not contain collagen VI. 
The RPE-BL contains collagen IV α3–5,18 like that of kidney 
glomerulus, another organ with specialized filtration and trans-
port functions. The RPE synthesizes specific laminins that pre
ferentially adhere Bruch’s membrane to the RPE through 
interaction with integrins.19

Inner collagenous layer (ICL)
The ICL is ∼1.4  µm thick and contains 70-nm-diameter fibers 
of collagens I, III, and V in a multilayered criss-cross, parallel 
to the plane of Bruch’s membrane.1 The collagen grid is asso-
ciated with interacting molecules, particularly the negatively 
charged proteoglycans chondroitin sulfate and dermatan 
sulfate.20,21

Elastic layer (EL)
The EL consists of stacked layers of linear elastin fibers, criss-
crossing to form a 0.8-µm-thick sheet with interfibrillary spaces 
of ∼1 µm. This sheet extends from the edge of the optic nerve to 
the ciliary body pars plana.1 In addition to elastin fibers, the EL 
contains collagen VI, fibronectin, and other proteins, and colla-
gen fibers from the ICL and outer collagenous layer (OCL) can 
cross the EL. Some EL elastin fibers are said to cross the tissue 
space between the choriocapillaris and join bundles of choroidal 
elastic tissue.22 The EL confers biomechanical properties, vascu-
lar compliance, and antiangiogenic barrier functions. It is more 
discontinuous in the macula, perhaps explaining why choroidal 
neovascularization (CNV) is more prominent there.23 This 
concept is supported by the extensive laser-induced neovascu-
larization in mice deficient in lysyl oxidase-like 1, an enzyme 
required for elastin polymerization.24
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Fig. 20.1 Macular Bruch’s membrane throughout the lifespan. Retinal pigment epithelium (RPE) is at the top of all panels. RPE basal lamina 
(arrowheads) and elastic layer (EL, yellow arrows, discontinuous in macula) are shown. (A) 17 years: electron-dense amorphous debris and 
lipoproteins are absent. ICL, inner collagenous layer; OCL, outer collagenous layer. Bar = 1 µm. (B) 46 years: electron-dense amorphous debris 
and lipoproteins are present. Coated membrane-bound bodies (green arrow) contain lipoproteins. L, lipofuscin. (C) 65 years: electron-dense 
amorphous debris and lipoproteins are abundant. Membranous debris, also called lipoprotein-derived debris (red arrow), has electron-dense 
exteriors within basal laminar deposit (*).Within OCL, banded material is type VI collagen, often found in basal laminar deposit. 

A B C17 y17 y
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Table 20.1 Structural and molecular components of Bruch’s membrane

Layer (common abbreviation) Component; age change References

Basal laminar deposit (BlamD) + Fibronectin, laminin, IV α4–5, VI, endostatin, EFEMP1 164, 167, 206–209

RPE basal lamina (RPE-BL) IV α1–5, V, laminins 1, 5, 10, and 11, nidogen-1, heparan sulfate, 
chondroitin sulfate

18, 19, 21, 66, 210, 
211

Lipid wall/basal linear deposit 
(BlinD)

+ Lipoproteins 38, 39, 212

Inner collagenous layer (ICL) I, III, V, fibronectin, chondroitin sulfate, dermatan sulfate, lipoproteins ↑, 
apoE, heme, clusterin, vitronectin

34, 35, 38, 39, 50, 66, 
146, 152, 210, 213–215

Elastic layer (EL) Elastin ↑, calcium phosphate ↑ 14, 66–68, 210, 216

Outer collagenous layer 
(OCL)

I, III, V, fibulin-5, fibronectin, chondroitin sulfate, dermatan sulfate, 
lipoproteins ↑, apoE, clusterin

21, 39, 50, 152, 210, 
215, 217

ChC-basal lamina IV α1, 2, V, VI, laminin, heparan sulfate, chondroitin sulfate, endostatin 18, 208, 210, 211, 218

Bruch’s, throughout or layer 
not specified

I ↑, collagen solubility ↓, perlecan, MMP-2 ↑, MMP-9 ↑, TIMP-2; TIMP-3 
↑, pentosidine ↑, CML ↑, GA-AGE ↑, RGR-d, apoB, oxidized apoB-100, 
7-KCh, LHP, HHE ↑, DHP-lys ↑, C3d ↑, C5b-9 ↑, pentraxin-3 ↑, 
thrombospondin-1, zinc

62, 66, 138, 139, 147, 
218–230

Table shows definitely localized components. Most determinations were made in macula. Studies showing histochemical/immunohistochemical verification of 
biochemistry and ultrastructural validation of structures identified by light microscopy techniques were given greater weight. Localizations were assigned to specific 
layers if immunogold-electron microscopy or high-magnification confocal microscopy images were available. Roman numerals denote collagens. Components are 
ordered within each layer: structural components, lipoproteins, extracellular matrix and its regulation, modified lipids and proteins, complement/immunity, cellular 
response/activity, metals. Known changes with advancing age are bold with an arrow indicating direction of change. New additions with age are shown with a plus 
(+). Plain text means no change or not tested.
CML, carboxymethyl-lysine226; 7-KCh, 7 keto-cholesterol229; GA-AGE, glycolaldehyde-derived advanced glycation end products221; HHE, 4-hydroxyhexenal66,218; 
DHP-lys, dihydropyridine lysine.66
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Outer collagenous layer
The OCL contains many of the same molecular components 
as the ICL, and the collagen fibrils running parallel to the 
choriocapillaris additionally form prominent bundles. This 
layer, unlike the ICL, has periodic outward extensions between 
individual choriocapillary lumens called intercapillary pillars, 
where thickness cannot be determined due to the lack of a 
boundary. Between pillars, OCL thickness can range from 1 
to 5  µm.25

Choriocapillaris basal lamina (ChC-BL)
This 0.07-µm-thick layer is discontinuous with respect to 
Bruch’s membrane due to the interruptions of the intercapil-
lary pillars of the choroid. It is continuous with respect to 
the complex network of spaces defined by the choriocapillary 
lumens because the basal lamina envelops the complete cir-
cumference of the endothelium. A remarkable structural 
feature of the adjacent choriocapillary endothelium is fenestra-
tions that are permeable to macromolecules (Fig. 20.2).26 This 
basal lamina may inhibit endothelial cell migration into 
Bruch’s membrane, as do basal laminas associated with retinal 
capillaries.27

BRUCH’S MEMBRANE IN AN AGED EYE
Aging is the largest risk factor for developing AMD,28 and 
Bruch’s membrane undergoes significant age-related changes. 
Identification of factors predisposing to disease progression is a 
priority. This task has been challenged by difficulty imposed by 
the thinness of the tissue, and the closely integrated functions of 
RPE, Bruch’s, and choriocapillaris. Current opinion holds that 
RPE and Bruch’s membrane age in concert, and normal Bruch’s 
membrane aging transforms insidiously into AMD pathol-
ogy.1,16,17,29 This section covers aging, to inform the following 
section on function.

Lipid accumulation: Bruch’s  
membrane lipoproteins
Early electron microscopists described aged Bruch’s membrane 
as being filled with debris, including amorphous electron-dense 
material, membrane fragments, vesicles, and calcification.1,25 
Debris deposition in ICL and OCL begins in the second decade 
in the macula and is delayed in equatorial regions, a regional lag 
also reported for individual components.30 Identifying this mat
erial has been a fruitful approach to understanding antecedents 
of disease.

Most prominent among the changes in Bruch’s membrane is 
a profound accumulation of lipids. Clinical observations on 
fluid-filled RPE detachments in older adults led to Bird and 
Marshall’s hypothesis that a lipophilic barrier in Bruch’s blocked 
a normal, outwardly directed fluid efflux from the RPE31 (as 
opposed to leakage from CNV). This hypothesis motivated a 
seminal histochemical study by Pauleikhoff et al.32 that demon-
strated oil red O-binding material (esterified cholesterol (EC), 
triglyceride (TG), fatty acid) localized exclusively to Bruch’s 
membrane, unlike other stains. This lipid was absent <30 years, 
variably present at 31–60 years, and abundant at ≥61 years.33,34 
A specific fluorescent marker, filipin, which binds the 3β-hydroxy 
group of sterols to reveal unesterified (free) cholesterol (UC) or 
EC depending on tissue pretreatment,35 indicated that EC is a 
prominent component of the oil red O-binding deposition.35 
Macular EC rose linearly from near zero at age 22 years to reach 
high and variable levels in aged donors. EC was detectable in 
periphery at ∼1/7 macular levels and increased significantly 
with age. Hot-stage polarizing microscopy34 similarly demon-
strated prominent age-related increases in EC in Bruch’s mem-
brane, manifest as liquid crystals (“Maltese crosses”) when 
examined through a polarizing filter. Few birefringent crystals 
signifying the neutral lipid TG were found.

Histochemical, ultrastructural, biochemical, gene expression, 
and cell biological evidence now indicate that the EC-rich  
material accumulating with age in Bruch’s membrane is a 

Fig. 20.2 Surface of the endothelium of the 
choriocapillaris showing fenestrations with a 
bicycle-spoke pattern (yellow arrow) and 
presumed artifactual openings arising from 
tissue preparation (cyan arrow); quick-freeze/
deep-etch, 64-year-old eye, macula. Bar = 
100 nm. (Reproduced with permission from 
Johnson M, Huang J-D, Presley JB, et al. 
Comparison of morphology of human 
macular and peripheral Bruch’s membrane in 
older eyes. Curr Eye Res 2007;32:791–9.)
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Fig. 20.3 Lipid wall, a layer of lipoproteins on the inner surface of Bruch’s membrane. (A) Lipoproteins (spherical vesicles of uniform diameter) 
accumulate 3–4 deep between the retinal pigment epithelium (RPE), basal lamina (black arrowheads), and Bruch’s membrane (BrM), inner 
collagenous layer (white arrowheads). Thin-section transmission electron micrograph following osmium postfixation. L, lipofuscin. Sectioning plane  
is vertical; bar = 1 µm. (B) Quick-freeze/deep-etch shows tightly packed Bruch’s membrane lipoproteins in the lipid wall, and that lipoproteins have 
classic core and surface morphology. Fracture plane is oblique; bar = 200 nm. (Reproduced with permission from Huang J-D, Presley JB, Chimento 
MF, et al. Age-related changes in human macular Bruch’s membrane as seen by quick-freeze/deep-etch. Exp Eye Res 2007;85:202–18.)

BrMBrM

RPERPE

LL

A B

lipoprotein-containing apolipoprotein B, assembled by the 
RPE.36 This process, ongoing throughout life yet first revealed by 
aging, has implications for the formation of AMD-specific 
lesions, intraocular transport, RPE physiology, nutrition of outer 
retina, and maintenance of photoreceptor health. In 1926, Ver-
hoeff and Sisson speculated that lipid deposition might precede 
Bruch’s membrane basophilia and fragmentation, common in 
older eyes due to “lime salts [calcification] in the elastic layer.”37

Ultrastructural studies described in Bruch’s membrane of 
older eyes36 numerous small (<100 nm), round, electron-lucent 
vesicular profiles, implying aqueous interiors. Lipid-preserving 
preparation techniques together with extraction studies show 
that these so-called vesicles are actually solid, lipid-containing 
particles, now considered lipoproteins (Fig. 20.3B). These 
methods include postfixation in osmium paraphenylenediamine 
(OTAP)35 and, most strikingly, quick-freeze/deep-etch (QFDE), 
a freeze fracture method with an etching step to remove frozen 
water.38–40 Particles vary in size from 60 to 100 nm but could be 
as large as 300 nm, occasionally appearing to coalesce (Fig. 20.3).

Lipoprotein particles are first seen among fibrils of the elastic 
layer in early adulthood, extending inward ultimately to fill 
most of the open space of the ICL by the seventh decade of life.40 
Most fatefully, a new layer, the lipid wall,38 then forms with solid 
particles stacked 3–4 deep occupying nearly 100% of a space 
between RPE basal lamina and OCL of many older eyes. The 
lipid wall displaces ICL collagen fibrils that anchor the RPE basal 
lamina (Fig. 20.3). It is considered a precursor to basal linear 
deposits, a specific lesion of AMD (see below).

Lipoprotein composition can provide clues to sources of its 
components.41 When isolated (Fig. 20.4A), Bruch’s membrane 
lipoproteins are found to be EC-enriched (EC/total cholesterol 
= 0.56; EC/TG = 4–11; Fig. 20.4B). For comparison, hepatic very-
low-density lipoprotein (VLDL), of similar diameter, is TG-rich. 
An early report of TG-enriched Bruch’s membrane neutral 
lipid42 was not replicated. Abundant EC points to the only 
mechanism by which neutral lipids are released directly from 
cells, an apoB-containing lipoprotein, like hepatic VLDL or 
intestinal chylomicrons. Significantly, RPE expresses the apoB 
gene and protein, along with microsomal triglyceride transfer 
protein (MTP), required for apoB lipidation and secretion. Lack 
of functional MTP is the basis of abetalipoproteinemia, a rare 

inherited disorder that includes a pigmentary retinopathy.43,44 
The combination of apoB and MTP within native RPE marks 
these cells as constitutive lipoprotein secretors.45 Secretion of 
full-length apoB has been demonstrated in rat-derived and 
human-derived RPE cell lines.46,47 Consistent with an RPE 
origin, particles first appear in the elastic layer of Bruch’s mem-
brane and fill in towards the RPE.39

Indirect evidence that Bruch’s membrane lipoproteins are of 
intraocular origin also emerges from the epidemiologic litera-
ture. If the EC deposition in Bruch’s membrane and AMD-
associated lesions were a manifestation of systemic perifibrous 
lipid and atherosclerosis, then a strong positive correlation 
between disease status and plasma lipoprotein levels, like that 
documented for coronary artery disease,48 might be expected but 
has not emerged.49

Identifying the upstream sources of Bruch’s membrane lipo-
protein constituents is essential for understanding the biological 
purpose of this pathway and the prospects for eventual clinical 
exploitation. Studies using isolated lipoproteins from Bruch’s 
membrane50 and Bruch’s membrane choroid EC51 report a high 
mole percentage of linoleate (>40%) and low docosahexaenoate 
(<1%) for all lipid classes.52 This composition strongly points 
away from photoreceptor outer segments (35% docosahexaeno-
ate in membrane phospholipids) as an upstream source, as long 
postulated,53,54 and towards plasma lipoproteins (45–55% linole-
ate in all lipid classes). These data have been interpreted to 
signify that plasma lipoproteins are major contributors upstream 
to an apoB lipoprotein of RPE origin. In contrast, the sources of 
UC in Bruch’s lipoproteins are not yet known and could be  
outer segments, plasma lipoproteins, endogenous synthesis,  
or a combination.

Lipoproteins may thus be assembled from several sources, 
including outer segments, remnant components from the photo-
receptor nutrient supply system, and endogenous synthesis. 
According to this model,52 plasma lipoproteins serve as vehicles 
for delivery of lipophilic nutrients (carotenoids,55 vitamin E, and 
cholesterol56) to photoreceptors by RPE, which has functional 
receptors for low-density lipoprotein (LDL) and high-density 
lipoprotein.57,58 Nutrients are stripped from these lipoproteins by 
the RPE for delivery to the photoreceptors, and the remnants are 
repackaged for secretion into Bruch’s membrane as part of 
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Fig. 20.4 Bruch’s membrane lipoprotein composition. (A) Lipoprotein particles isolated from Bruch’s membrane are large and spherical; negative 
stain.153 (Source: Li C-M, Chung BH, Presley JB, et al. Lipoprotein-like particles and cholesteryl esters in human Bruch’s membrane: initial 
characterization. Invest Ophthalmol Vis Sci 2005;46:2576–86). Bar = 50 nm. (B) Bruch’s membrane lipoprotein composition inferred from direct 
assay,50,153 (Sources: Wang L, Li C-M, Rudolf M, et al. Lipoprotein particles of intra-ocular origin in human Bruch membrane: an unusual lipid 
profile. Invest Ophthalmol Vis Sci 2009;50:870–7) (Li C-M, Chung BH, Presley JB, et al. Lipoprotein-like particles and cholesteryl esters in human 
Bruch’s membrane: initial characterization. Invest Ophthalmol Vis Sci 2005;46:2576–86), druse composition, and retinal pigment epithelium gene 
expression.139,154 (Sources: Malek G, Li C-M, Guidry C, et al. Apolipoprotein B in cholesterol-containing drusen and basal deposits in eyes with 
age-related maculopathy. Am J Pathoi 2003;162:413–25) and (TG, Li C-M, Clark ME, Chimento MF, et al. Apolipoprotein localization in isolated 
drusen and retinal apolipoprotein gene expression. Invest Ophthalmol Vis Sci 2006;47:3119–28) TG, triglyceride; EC, esterified cholesterol; UC, 
unesterified cholesterol; PL, phospholipid; Apo, apolipoproteins. The question mark signifies that not all apolipoproteins are known. 
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apoB-containing lipoproteins, where they begin to accumulate 
during age and become toxically modified to instigate inflam-
mation in AMD.

Other aging changes
Bruch’s membrane thickens throughout adulthood (20–100 
years) two- to threefold under the macula and becoming more 
variable between individuals at older ages.25,59,60 Equatorial 
Bruch’s membrane changes little while Bruch’s membrane near 
the ora serrata increases twofold during this time.25 In the 
macula, the OCL thickens more prominently than the ICL.61 A 
large ultrastructural study of 121 human donor eyes demon-
strated that the macular EL is 3–6 times thinner than peripheral 
EL23 at all ages.

Unbalanced regulation of extracellular matrix molecules and 
their modulator matrix are thought to result in Bruch’s mem-
brane thickening. Increased histochemical reactivity for glyco-
conjugates, glycosaminoglycans (GAGs), collagen, and elastin is 
seen in the macula relative to equator and near the ora serrata.25 
Collagen solubility declines with age.62 Matrix metalloprotein-
ases MMP-2 and MMP-3 increase with age, as does a potent 
tissue inhibitor of metalloproteinases, TIMP-3. TIMP-3 immuno-
reactivity reaches adult levels at 30 years of age near vasculature 
in lung, kidney, and in Bruch’s membrane, signifying the end of 
developmental organogenesis.63 The reduction or absence of 
TIMP-3 is proangiogenic, as this protein not only regulates 
metalloproteinases during the normal turnover of Bruch’s mem-
brane matrix components, but it also binds to VEGF.64,65

The EL thickens with age but decreases relative to overall 
thickening of Bruch’s membrane.23 Thus elastin referenced to 
other Bruch’s constituents, as detected by Raman spectroscopy, 
decreases with age.66 Similar arguments can be made for colla-
gen III and IV. A prominent age change,67 noted early,37 is calci-
fication and ensuing brittleness. This process involves fine 
deposition of electron-dense particulate matter,14 confirmed as 
calcium phosphate68 on individual elastin fibrils.

Long-lived proteins like collagens are modified in vivo by 
nonenzymatic Maillard and free radical reactions to yield 
advanced glycation end products (AGEs) and the formation of 
lipid-derived reactive carbonyl species like 4-hydroxyhexenal 
and linoleate hydroperoxide, collectively called age-related lipo-
peroxidation end products (ALEs). Accumulation of AGEs and 
ALEs, characteristic of diabetes and atherosclerosis, also occurs 
in aging Bruch’s membrane (Table 20.1). Finally, other compo-
nents more prominent in aged eyes include complement compo-
nents C3d, C5b-9, and pentraxin-3, a homolog of the acute-phase 
respondent C-reactive protein. Thus, at the molecular level, 
aging Bruch’s membrane contains evidence of many biological 
activities, including remodeling, oxidative damage, and inflam-
mation, in addition to lipoprotein accumulation.

FUNCTION OF BRUCH’S MEMBRANE
As a vessel wall of the choroid, Bruch’s membrane’s primary 
function is structural, like other vessel walls. Its architecture is 
similar to vascular intima, with a subendothelial extracellular 
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pressure (the osmotic pressure generated by plasma proteins). 
This balance is embodied by Starling’s law that characterizes the 
relationship between fluid flux (q = flow per unit area; positive 
when flow is out of the blood vessel) across a capillary vessel 
wall and the forces driving this flow:

	 q L P= −p( )∆ ∆Πσ � (equation 1)

Lp is hydraulic conductivity, which characterizes the ease with 
which fluids flow cross the vessel wall. If the surface area of the 
blood vessel is A, then 1/(Lp A) is the flow resistance of the vessel 
wall. ΔP is the difference between the fluid pressure within the 
blood vessel (Pcc) and the pressure at the basal surface of the RPE 
(PRPE). ΔΠ is the difference between the oncotic pressure within 
the blood vessel (Πcc) and that at the basal surface of the RPE 
(ΠRPE). σ is the reflection coefficient that characterizes the extent 
to which the vessel wall rejects the plasma protein species gen-
erating ΔΠ. σ ranges from 0 for a freely permeable species to 1 
when a species is completely rejected by the membrane.

We can estimate the magnitude of ΔP – σΔΠ using measured 
value of q and Lp. The fluid pumping rate by human RPE has 
been measured as q = 11 µL/h/cm2, similar to that in other 
animals (Table 20.2). The hydraulic conductivity of macular 
Bruch’s membrane/choroid of healthy young humans ranges 
from 20 to 100 × 10−10 m/s/Pa.84 Then, using q = 11 µL/h/cm2 
and Lp = 50 × 10−10 m/s/Pa, we can calculate that the magnitude 
of (ΔP − σΔΠ) necessary to drive this flow through Bruch’s mem-
brane is roughly 0.05 mmHg. (This does not include the flow 
resistance of choriocapillaris endothelium, which is not mea-
sured when Lp of a Bruch’s membrane/choroidal preparation is 
determined. For this highly fenestrated endothelium, Lp can be 
estimated as roughly 25 × 10−10 m/s/Pa,85 which does not affect 
our conclusions below.)

σ can be roughly estimated by assuming that the fluid in the 
suprachoroidal space is in equilibrium with blood in the choroid. 
Using measurements of fluid pressure and of the plasma protein 
concentration (to estimate oncotic pressure) inside and outside 
the choriocapillaris,86–88 equation (1) can be used to find σ ≈ 0.5.

Allowing that Πcc = 27 mmHg,86 Pcc = IOP + 8 mmHg,87 and 
assuming that ΠRPE = 0 mmHg (fluid pumped by the RPE is 
assumed protein-free) and PRPE = IOP (assuming no pressure is 
generated by the RPE above that necessary for crossing Bruch’s), 
we find that ΔP – σΔΠ is approximately –5.5 mmHg pulling fluid 
into the choroid. Thus, in normal young adults, oncotic pressure 

Table 20.2 Retinal pigment epithelium (RPE) fluid pumping rates

Species
Fluid transport rate across RPE 
(µL/h/cm2) References

Frog 4.8–7.6 231, 232

Rabbit 12 ± 4 233, 234

Canine 6.4 235

Primate* 14 ± 3 236, 237

Human 11 238

RPE pumping rates were measured by readsorption of subretinal fluid or by 
direct measurement in culture.
*Cantrill and Pederson236 measured a much higher transport rate than that 
reported here, but used fluorescein as a tracer which likely does not track fluid 
flow due to its high diffusion coefficient.

matrix and elastic layer corresponding to the internal elastic 
lamina. The abluminal surface of Bruch’s differs from other 
vessel walls in that it abuts a basal lamina, that of the RPE. The 
luminal surface faces a fenestrated vascular endothelium and 
basal lamina, making Bruch’s membrane structurally analogous 
to the renal glomerulus and providing a basis for commonality 
between retinal and kidney disease.69–71 The importance of fluid 
and macromolecular transport across the renal glomerulus is 
well known.72 Transport is a second important function of 
Bruch’s membrane.

Structural role of Bruch’s membrane
Bruch’s membrane encircles more than half the eye and stretches 
with the corneoscleral envelope as intraocular pressure (IOP) 
increases. It therefore withstands this stretch and returns to its 
original shape when IOP decreases. This tissue also stretches to 
accommodate changes in choroidal blood volume. Finally, the 
choroid (and Bruch’s membrane with it) may act as a spring that 
pulls the lens during accommodation.73,74 For these reasons, then, 
Bruch’s membrane requires elasticity. Marshall and Hussain’s 
group estimated the modulus of elasticity in Bruch’s membrane 
choroid preparations to be 7–19 MPa.75 These values are similar 
to those of sclera (although sclera is much thicker and thus can 
support more load), consistent with the notion that Bruch’s 
membrane contributes to load bearing. After early adulthood, 
the modulus of elasticity of human Bruch’s membrane–choroid 
complex increases (P < 0.001) at a rate of ∼1% per year. Bruch’s 
membrane stiffness in AMD eyes does not differ from age-
matched normals.76

Transport role of Bruch’s membrane
The choroid services the metabolic needs of the outer retina, 
facilitated in part by fenestrated endothelium. Oxygen, electro-
lytes, nutrients, and cytokines destined for the RPE and photo-
receptors pass from the choriocapillaris and through Bruch’s 
membrane, and waste products travel back in the opposite direc-
tion for elimination. Vitamins, signaling molecules, and other 
factors needed for photoreceptor function are carried to the RPE 
by lipoprotein particles passing through Bruch’s membrane, as 
do the RPE-produced lipoproteins that are eliminated in the 
opposite direction. The RPE pumps water from the subretinal 
space to counter the swelling of the interphotoreceptor matrix 
GAGs. This fluid also flows across Bruch’s membrane to reach 
the circulation. Thus, many transport processes involve Bruch’s 
membrane, as reviewed here.

Hydraulic conductivity of Bruch’s membrane
GAGs are concentrated in the interphotoreceptor matrix77,78 and 
corneal stroma.79 In both locations, these highly charged macro-
molecules maintain geometric fidelity essential for vision  
(periodic collagen spacing for corneal transparency, orderly 
photoreceptor spacing for visual sampling78,80,81). GAGs generate 
significant swelling pressure (up to 50 mmHg in cornea).82,83 
Without a mechanism to maintain tissue deturgescence, GAGs 
would imbibe fluid, swell, destroy tissue geometry, and interfere 
with visual function. Corneal endothelium forestalls swelling by 
continuously pumping fluid out. This function is accomplished 
for retina by the RPE, and its failure can lead to retinal detach-
ment. A driving force adequate to overcome the collective flow 
resistance of RPE, Bruch’s membrane, and choriocapillaris endo-
thelium is provided by a gradient in fluid pressure and oncotic 
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They reported that Lp of macular Bruch’s membrane exhibited 
a dramatic, exponential decline throughout life (Fig. 20.5), drop-
ping from 130 × 10−10 m/s/Pa in young children to 0.52 × 
10−10 m/s/Pa in old age. Lp of macular Bruch’s membrane 
dropped more rapidly with age than did that of the periphery, 
consistent with an accelerated process occurring in the 
macula.1,84,94,95 Note that the lowest value measured for Lp of 
Bruch’s membrane in normal eyes is similar to the calculated 
minimum value of Lp that allows complete fluid resorption 
(0.4 × 10−10 m/s/Pa; see above). Marshall and Hussain’s group 
reached similar conclusions regarding this process.94

Determining Lp of Bruch’s membrane in isolated macular 
samples of AMD eyes is difficult due to scar formation and 
other changes.94 However, Marshall and Hussein’s group 
showed that, in the periphery, Lp of Bruch’s membrane is 
decreased in AMD eyes as compared to age-matched normal 
eyes (Fig. 20.5).94 Assuming that similar processes occur in 
macular Bruch’s membrane due to the profound lipid accumu-
lation in this region, then in diseased eyes, the RPE must gen-
erate higher pressures at its basal surface to drive fluid into 
the choriocapillaris, with further pathological consequences.31 
Above an unknown threshold level, higher pressure will cause 
the RPE-BL to separate from the ICL, leading to RPE detach-
ment and fluid accumulation, as seen in 12–20% of AMD 
patients.94

What causes the dramatic age-related decrease in Lp of Bruch’s 
membrane? It is natural to suspect the age-related lipid accu-
mulation. In fact, McCarty et  al.96 showed that lipid particles 
trapped in an extracellular matrix can generate very significant 

within the choroid is more than sufficient to adsorb all the fluid 
pumped by the RPE. We can also use equation (1) to calculate 
that the lowest value of Lp that still adsorbs fluid pumped by the 
RPE without generating an elevated pressure at the RPE basal 
surface is Lp > 0.4 × 10−10 m/s/Pa.

Experiments using laser ablation of Bruch’s membrane/
choroid explants allowed Starita et al.89 to conclude that the ICL 
was responsible for most of the flow resistance in Bruch’s mem-
brane. Attempts to localize further the flow resistance using 
morphometric methods are complicated by first, stereological 
issues90 and second, the loss of ultrastructural fidelity from con-
nective tissue conventionally processed for electron micros-
copy.38 Failure to appreciate the former difficulty can lead to 
unphysiologically low estimates for tissue porosity and thereby 
hydraulic conductivity.1

Age-related changes in hydraulic conductivity  
and disease
Fisher was the first to measure Lp of human Bruch’s membrane,91 
finding that Lp decreased significantly with age. However, his 
values for Lp of Bruch’s membrane and other tissues are much 
lower than those found by later investigators.85,92,93 Marshall and 
Hussain’s group carefully revisited these measurements using 
Bruch’s membrane/choroid with RPE removed, a preparation 
that was simpler to create. They showed using laser ablation that 
the flow resistance of these preparations was entirely due to 
Bruch’s membrane.89 They also found that flow rate increased 
linearly with driving pressure, indicating that Lp of Bruch’s 
membrane is relatively insensitive to pressure up to 25 mmHg.

Fig. 20.5 Hydraulic conductivity (Lp) of 
Bruch’s membrane as a function of age. 
Dotted lines are exponential fits to data from 
macular and peripheral regions, respectively. 
Note that all of the data from eyes with 
age-related macular degeneration (AMD) 
(taken only in peripheral region) have lower 
values of Lp than the best fit to data taken 
from peripheral Bruch’s membrane of 
nondiseased eyes. (Reproduced with 
permission from Hussain AA, Starita C, 
Marshall J. Transport characteristics of 
ageing human Bruch’s membrane: 
implications for age-related macular 
degeneration (AMD). In: Ioseliani OR, editor. 
Focus on macular degeneration research. 
Hauppauge, New York: Nova Biomedical 
Books; 2004.)
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membrane.97 The agreement between the trends and the fits to 
the data is striking. This is strong evidence that the increasing 
lipid content and progressively hydrophobic character of Bruch’s 
membrane are responsible for impairing fluid transfer with age, 
as postulated.31 The strong correlation between flow resistivity 
of Bruch’s membrane and lipid content was likewise found by 
Marshall and Hussain’s group.1,84,95 Laser ablation studies local-
izing flow resistance to the ICL89 further support this conclusion, 
because lipids accumulate prominently in the ICL with aging.39 
Further, more laser pulses were required to abolish flow resis-
tance in the oldest eyes, consistent with presence of a lipid wall, 
requiring prior removal.

Thus, it appears that decreased Lp and increased resistivity of 
Bruch’s membrane with aging are closely related to the age-
related accumulation of lipids, primarily EC. Lipids accumulate 
more rapidly in the macular Bruch’s membrane than in the 
periphery.35,98 Thus, Lp of the macula decreases more rapidly 
with age than it does in the periphery.

flow resistance, more than would be expected based simply on 
their size and number. However, Marshall and Hussain’s group 
observed that most of the marked change in Lp occurred before 
age 40 (Fig. 20.6A) while the increase in Bruch’s membrane 
lipid content occurred largely after this age. They thus con-
cluded that other age-related changes must be responsible for 
changes in Lp.1,84

A different conclusion can be reached from examining age-
effects on flow resistivity the inverse of Lp. Resistivity increases 
from a low of roughly R = 108 Pa/m/s for young individuals to 
R = 1010 Pa/m/s for aged persons. Thus, when hydraulic con-
ductivity Lp drops from roughly 100 × 10−10 m/s/Pa to 25 × 
10−10 m/s/Pa between birth and 40 years of age, 75% of its total 
possible decrease, resistivity R increases from 1 × 108 Pa/m/s to 
4 × 108 Pa/m/s, only 4% of the ultimate increase. Simply put, 
hydraulic conductivity drops more rapidly with age at young 
ages because its value is high to start with. Fig. 20.6B plots resis-
tivity and histochemically detected EC against age for Bruch’s 

Fig. 20.6 (A) Hydraulic conductivity of 
human macular Bruch’s membrane/choroidal 
preparations as a function of age, as 
compared to lipid accumulation in human 
macular Bruch’s membrane; lines as 
exponential fits to the data. (B) Hydraulic 
resistivity of human macular Bruch’s 
membrane/choroidal preparations as a 
function of age,1 as compared to esterified 
cholesterol accumulation in human macular 
Bruch’s membrane35; lines are exponential 
fits to the data (the fits nearly overlie one 
another). (Modified with permission from 
Marshall J, Hussain AA, Starita C, et al, 
editors. The retinal pigment epithelium: 
function and disease. New York: Oxford 
University Press; 1998. pp. 669–92.)
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opposite direction of transport and thus complicating the results. 
Nonetheless, useful comparative results can be generated.

The transport rate across human Bruch’s membrane declines 
linearly with age for all molecules measured. Amino acids 
exhibited permeabilities of 0.6 × 10−4  cm/s (phenylalanine) to 
1.2 × 10−4  cm/s (glycine) for young Bruch’s membrane and 
exhibited a modest decline (twofold or less) with aging.101 
Serum proteins decrease more markedly, dropping from  
3.5 × 10−6  cm/s in the first decade to 0.2 × 10−6  cm/s in the 
ninth decade, a >10-fold decrease.102 In particular, proteins 
larger than 100  kDa have significantly decreased flux through 
Bruch’s membrane of older individuals. Macular Bruch’s  
membrane showed a steeper decrease with age than did the 
periphery.105 Permeability was reduced in eyes with AMD 
relative to age-matched normal eyes.105

Decreased permeability of Bruch’s membrane to transport is 
likely due to a decrease in diffusion coefficients, especially for 
the larger species affected by interaction with extracellular 
matrix and lipoproteins. As indicated in equation (3), increased 
path length due to age-related thickening of Bruch’s membrane59 
could also have a significant effect.

An original proposal of a molecular weight exclusion limit to 
Bruch’s membrane macromolecule transport of 66–200 kDa101,102 
has been questioned by more recent work suggesting that, if 
such a limits exists, it is much higher.105 Because of the impor-
tance of lipoproteins in transporting lipophilic nutrients to the 
RPE for ultimate use by the photoreceptors, and also because 
lipoproteins accumulate with age in Bruch’s membrane, Cankova 
et al.104 specifically examined the reflection coefficient of bovine 
Bruch’s membrane to plasma LDL. They measured a reflection 
coefficient of 0.58 (compared to a reflection coefficient of arterial 
endothelium to LDL of 0.998 and arterial intima to LDL of 
0.827106). Thus, while LDL did not pass freely through Bruch’s 
membrane, it could nonetheless pass. Hussain et al.105 also con-
cluded that particles as large as LDL could cross Bruch’s mem-
brane. Accordingly, RPE cells have been shown to internalize 
plasma LDL from the choroid.56,107,108

These considerations are relevant not only to understanding 
mass transfer between the choriocapillaris and the RPE, but also 
for transscleral drug delivery strategies, including antiangio-
genic agents for treating AMD and steroids for treating diabetic 
retinopathy.109,110 Lipophilic solutes are significantly hindered in 
their transport by Bruch’s membrane/choroid,103 while hydro-
philic moieties are blocked by the RPE.111

Summary and implications
Bruch’s membrane’s physiological roles are structural and facili-
tating transport. Transport across Bruch’s membrane is increas-
ingly hindered with age, due at least partly to the marked 
age-related accumulation of EC-rich lipoproteins in this tissue, 
impeding pumping of fluid from RPE.94 A ≥90% decrease in 
transport of some species from the choroid102,105 may include 
lipophilic essentials delivered by lipoproteins. This decline in 
transport capability is thought to have functional consequences 
for photoreceptors.112 A well-characterized change occurring 
through the lifespan of individuals with healthy maculas is 
slowed dark adaptation,113 attributed to impaired translocation 
of retinoids across the RPE–Bruch’s interface. This slowing, 
worse in AMD patients,114,115 can be partly ameliorated by short-
term administration of high-dose vitamin A,116 presumably over-
coming the translocation deficit via mass action.

Permeability of Bruch’s membrane to  
solute transport
Along with bulk fluid flow, there is significant transport of indi-
vidual molecular species across Bruch’s membrane, including 
dissolved gases, nutrients, cytokines, and waste products driven 
by passive diffusion. Flow crossing Bruch’s membrane is too 
slow to influence this process. This can be seen through calcula-
tion of the Peclet number, the relative magnitude of convection 
of a species due to bulk flow to that of diffusion99:

	
VL
D0

� (equation 2)

where V is the velocity of the flow, L is the transport path length, 
and D0 the free diffusion coefficient of the species being trans-
ported. (The free diffusion coefficient in saline is used rather 
than its value in tissue, since the species carried by flow is con-
strained to the same extent by the tissue as is its diffusion). Using 
the RPE pumping rate (Table 20.2) for V, Bruch’s membrane 
thickness (average of 3 µm59) for L, and a range of diffusion coef-
ficients of species crossing Bruch’s membrane (2 × 10−7 cm2/s for 
LDL to 2 × 10−5 cm2/s for oxygen99,100), we find that the Peclet 
number ranges in value from 5 × 10−5 to 5 × 10−3. Thus, convection 
is negligible in transporting species across Bruch’s membrane 
under physiological conditions.

Diffusion follows Fick’s law whereby the diffusive flux per 
unit area (j) is proportional to the diffusion coefficient (D) of that 
species in the medium through which it passes and to the con-
centration difference across the medium (ΔC), and inversely pro-
portional to the diffusion length:

	 j D C L= ∆ / � (equation 3)

The permeability of a tissue to a given species is defined as P = 
j/ΔC. We see then that P = D/L. For example, the permeability of 
Bruch’s membrane to oxygen is ∼ 0.067 cm/s. Note that since 
diffusion moves down a concentration gradient, one species 
might be diffusing across Bruch’s membrane toward the RPE 
(e.g., oxygen) while another species (e.g., carbon dioxide) dif-
fuses simultaneously in the other direction.

With high diffusion coefficient and little interaction with 
extracellular matrix, small molecules (e.g., oxygen) diffuse 
quickly across Bruch’s membrane. However, macromolecules 
have much smaller free solution diffusion coefficients due to 
their size. Coefficients are further reduced by interactions with 
extracellular matrix or lipoproteins that accumulate with age, 
so macromolecule transport across Bruch’s membrane is 
impeded.

The transport of amino acids,101 serum proteins,102 drugs,103 
and LDL104 across Bruch’s membrane has been examined. There 
are technical challenges to these experiments. First, as indicated 
in equation (3), diffusional flux depends on the length of the 
tissue. Since the diffusion coefficient of the transported species 
is likely different in Bruch’s membrane than in the choroid in a 
combined preparation, but the path lengths of both tissue com-
ponents are usually not determined, it is difficult to use the 
measured values to determine absolute values of permeability. 
Instead the more easily measured flux rate (j: see equation 3) is 
usually presented. Second, since larger macromolecules used in 
diffusion studies are hindered in their passage into the tissue, an 
oncotic pressure could develop, generating a fluid flow in the 
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Fig. 20.7 Bruch’s membrane and 
characteristic age-related macular 
degeneration lesions. (A) Bruch’s membrane 
has five layers in a normal eye: 1, basal 
lamina of the retinal pigment epithelium 
(RPE); 2, inner collagenous layer; 3, elastic 
layer; 4, outer collagenous layer; and 5, 
basal lamina of the choriocapillary 
endothelium (fenestrated cells).  
L, lipofuscin. (B) Older eyes have basal 
laminar deposit (BlamD) and basal linear 
deposit (BlinD) and its precursor, the lipid 
wall. Drusen, BlinD, and the lipid wall occupy 
the same tissue compartment. Basal mounds 
are soft druse material within BlamD. 
(Adapted with permission from Curcio CA, 
Johnson M, Huang J-D, et al. Apolipoprotein 
B-containing lipoproteins in retinal aging and 
age-related maculopathy. J Lipid Res 
2010;51:451–67.)
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PATHOLOGY OF BRUCH’S MEMBRANE

AMD lesions
In aging and AMD, characteristic extracellular lesions accumu-
late in tissue compartments anterior to the ICL. Known as drusen 
and basal deposits,29,117 these lipid-containing aggregations ulti-
mately impact RPE and photoreceptor health by impairing trans-
port, causing inflammation, and predisposing to CNV (Fig. 20.7). 
Basal linear deposit (BlinD) forms consequent to lipoprotein 
accumulation in Bruch’s membrane and formation of the lipid 
wall, likely involving oxidation of individual lipid classes and 
local inflammation. Drusen could form by similar mechanisms, 
plus lipoprotein aggregation and other undefined processes that 
cause the distinctive dome shape of these lesions. Basal laminar 
deposit (BlamD) forms in parallel with lipid deposition in 
Bruch’s and may indicate RPE stressed by it. We begin by dis-
cussing drusen, due to their importance in AMD.

Drusen
In a fundus view, drusen are yellow-white deposits 30–300 µm 
in diameter posterior to the RPE. By optical coherence tomogra-
phy, they appear as variably hyporeflective spaces in the same 
location.118 Histologically, drusen are focal, domed lesions 
between the RPE basal lamina and the ICL, i.e., in the same 

sub-RPE tissue compartment as the lipid wall and BlinD. Found 
in most older adults,67,119 drusen are more numerous in periph-
eral retina than in macula.120–122 Drusen are typically classified as 
“hard” and “soft” by the appearance of their borders. Soft drusen 
confer high risk of advanced disease123–126 and, importantly, are 
found only in the macula.122 Other rare druse types exist and are 
less well characterized.127

In separate 1854 publications, Donders (a Dutch ophthalmolo-
gist) and Wedl (an Austrian pathologist) described “colloid 
bodies” (Colloidkugeln) or “hyaline deposits” on the inner surface 
of the choroid in older or diseased human eyes3,128,129 (translated 
by Busk). Both authors interpreted the droplets that filled these 
deposits as “fat globules.” The term “drusen” originated with 
Müller in 1856, from the German word for the geological term 
geode (not to be confused with Drüse, meaning gland).130 The 
name drusen was adopted by English writers early in the 20th 
century,131 yet “colloid body” was used by Holloway and Ver-
hoeff into the 1920s.132 The basis of the fatty content emerged 
slowly. Lauber133,134 noted that deposits between the lamina 
vitrea and the RPE were sudanophilic in 1924. Wolter and Falls135 
stated that “hyaline bodies [drusen] … stain reddish with … oil 
red O” in 1962.

Extant theories for druse formation, extending back to their 
discovery,130 fit into two general categories: transformation of the 
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Fig. 20.8 Esterified cholesterol (EC) forms lakes in macular soft drusen. (A) EC lakes in a macular soft druse revealed by filipin fluorescence 
(arrow). Bar = 25 µm. (Adapted with permission from Malek G, Li C-M, Guidry C, et al. Apolipoprotein B in cholesterol-containing drusen and basal 
deposits in eyes with age-related maculopathy. Am J Pathol 2003;162:413–25.) (B) Macular soft druse from an eye with age-related macular 
degeneration has lakes of homogeneous electron-dense lipid (arrow) among partially preserved lipoprotein-like material. Basal laminar deposit 
(asterisk) overlying the druse has similar material, called membranous- or lipoprotein-derived debris (to the right of the asterisk). Bar = 1 µm. 

A B

overlying RPE and deposition of materials on to Bruch’s mem-
brane. The latter is now accepted.129,135 The RPE has been impli-
cated as a source of many druse components, via budding of 
membrane-bound packets of cytoplasm or secretion. The contri-
bution of plasma-derived components, in contrast, has not been 
well characterized. The existence of druse subregions addition-
ally suggests remodeling in the extracellular compartment, such 
as cellular invasion and enzymatic activity23,136–138 and uplifting 
of the lipid wall.35,139

Most prominent among druse constituents are lipids, an 
observation made by their earliest discoverers. All drusen 
contain EC and UC, in addition to phosphatidylcholine, other 
phospholipids, and ceramides.34,35,137,139–142 Extractable lipids 
account for ≥40% of hard druse volume143 and likely more for 
macular soft drusen.139 This includes large EC-rich lakes in soft 
drusen (Fig. 20.8), reminiscent of atherosclerotic plaques.144 Only 
half of macular drusen take up hydrophilic fluorescein in angi-
ography,145 possibly reflecting differing proportions of polar and 
neutral lipids in individual lesions.141 Discrete nonlipid compo-
nents in some drusen include amyloid assemblies and granules 
of lipofuscin or melanin, indicating cellular origin (Table 20.3, 
online). Other constituents present in all drusen include vitro-
nectin, TIMP-3, complement factor H, complement components 
C3 and C8, crystallins, and zinc.23,136,138,146–150

Apolipoprotein immunoreactivity appears in drusen with 
high frequency (100%, apoE; >80% apoB; 60%, A–I).139,151–154 
Plasma-abundant apoC-III is present in fewer drusen than 
plasma-sparse apoC-I, indicating a specific retention mechanism 
for plasma-derived apolipoproteins or an intraocular source. 
Importantly, hard drusen contain many solid, Folch-extractable 
electron-dense particles of the same diameter as the lipoproteins 
that accumulate with age in Bruch’s membrane. These observa-
tions together with the appearance of membranous debris in soft 
drusen (below) make an RPE-secreted apoB-containing lipopro-
tein particle an efficient mechanism to place multiple lipids and 
apolipoproteins within lesion compartments.

The principal lipid-containing component of soft drusen and 
BlinD was called “membranous debris” by the Sarks.123,155,156 

These lesions are richer in histochemically detectable UC than 
surrounding cellular membranes.141,142 By transmission electron 
microscopy following osmium tetroxide postfixation, membra-
nous debris appears as variably sized, contiguous coils of 
uncoated membranes consisting of uni- or multilamellar electron-
dense lines, denser than cellular membranes, surrounding an 
electron-lucent center (Fig. 20.1). Since conventional ultrastruc-
tural preparation methods can remove lipids, the building blocks 
of membranous debris are more plausibly the UC-rich exteriors 
of lipoproteins (native and fused) whose neutral lipid interiors 
are not well preserved in postmortem tissue.39,153,157 Rather than 
vesicles, then, membranous debris is likely aggregated or fused 
particles that could collectively account for the abundant EC in 
sub-RPE deposits. EC abundance and ultrastructural evidence 
for solid, nonvesicular particles suggest that the major lipid-
containing component of AMD-specific lesions can be called 
“lipoprotein-derived debris” rather than membranous debris.

Basal linear deposit
BlinD is a thin (0.4–2 µm) layer located in the same sub-RPE 
compartment as soft drusen. BlinD is not visible clinically except 
as associated with other pathology. By OTAP and QFDE, BlinD 
is rich in solid lipoprotein particles and lipid pools (Fig. 20.9A, 
C). BlinD and soft drusen are considered alternate forms (layer 
and lump) of the same entity158 and may interchange over time. 
Soft drusen are oily, difficult to isolate individually, and are 
biomechanically more fragile than hard drusen,122 properties 
applicable to BlinD by inference. Both lesions could thus be 
permissive to invading capillaries of type I CNV.159,160 ApoE and 
apoB are present in BlinD and its precursor, the lipid wall.139,151,152 
Transitional morphologies between lipid wall and BlinD have 
been reported.161

Basal laminar deposit
BlamD forms small pockets between the RPE and the RPE-BL 
in many older normal eyes or a continuous layer as thick as 
15  µm in AMD eyes142,156,162 (Fig. 20.7). Some authors consider 
a continuous layer of BlamD a histological definition of AMD.163 
Ultrastructurally, BlamD resembles basement membrane 
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Table 20.3 (online) Localized components of drusen

Component Phase Direct assay Abundance References

Lipoproteins (EC, UC, phospholipid) P ✓ All drusen; >40% of hard druse volume; 
EC pools in soft drusen

122, 239, 240

Apolipoproteins (apoB, A-I, C-I, E) P apoE ✓ 60–100% of hard drusen; higher rates 
in periphery than macula

152, 154, 240

Melanin/lipofuscin granules P 6% of hard and soft drusen 122

Cells (dendritic, others) P 3–6% of hard drusen only 122, 241

Amyloid vesicles (0.25-10 µm) P 2% of hard drusen, 40% of compound 
drusen, frequent in eyes with many 
drusen, some AMD eyes

122, 136, 239, 242

Calcification P ✓ 43% of macular hard drusen, 1.6% of 
soft drusen, 2% of peripheral hard 
drusen

122

Clusterin, TIMP3, vitronectin, 
apolipoprotein E, complement factor H, 
complement components 8, 9

D ✓ Reliably detected; abundance inferred 143, 191

Components of classic, lectin, alternative, 
terminal complement pathways; C3 
fragments indicating activation

D Some ✓ Many pathway components evidence 
key role of complement

243

RGR-d D All drusen 244

αA- and αB-crystallin D ✓ NA; higher in BrM, more in AMD drusen 150, 191

Ubiquitin D Most drusen in most eyes 245

Exosome markers CD63, CD81, and 
LAMP2

P NA 246

Bestrophin, membrane-bound P NA 247

Carbohydrates D All drusen 191

Zinc D ✓ Many drusen 138

EC, esterified cholesterol; UC, unesterified cholesterol; P, particulate; D, dispersed; NA, not available; AMD, age-related macular degeneration; BrM, Bruch’s membrane.
Localization methods: immunohistochemistry, histochemistry, immunogold transmission electron microscopy. Direct assays: proteomics, Western blot, microprobe 
synchrotron X-ray fluorescence for zinc. Varying estimates of particulate druse components are due to differences in location of samples and druse types examined.
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macula.174 This coherent morphology suggests a specific forma-
tive process, possibly involving microglia resident in that 
compartment.175,176

Summary
Levels of significance ascribed to molecules sequestered  
in drusen (Table 20.3, online), and by inference, BlinD, 
include toxicity to the overlying RPE, stigmata of formative pro-
cesses (extrusion of cellular materials, secretion, extracellular 
enzymatic processing, cellular activity), and markers of a dif-
fusely distributed disease process affecting RPE and Bruch’s 
membrane. Additional significance can be ascribed to these 
lesions as physical objects that increase path length between 
choriocapillaries and retina and provide a biomechanically 
unstable cleavage plane between RPE BL and ICL.

Response-to-retention hypothesis of AMD
The parallels between the pathology of arterial intima of large 
arteries and that of Bruch’s membrane are striking. Both diseases 
feature cholesterol-rich lesions in subendothelial compartments 
within the systemic circulation, involving many of the same 
molecules and biological processes at multiple steps, as long 
anticipated.177,178 According to the response-to-retention theory 
of atherosclerosis, plasma lipoproteins cross the vascular endo-
thelium of large arteries, and bind to extracellular matrix. By 
itself, this process is not pathological. However, lipoprotein 
components become modified via oxidative and nonoxidative 
processes, and launch numerous downstream deleterious  
events, including inflammation, macrophage recruitment, and 

material (Fig. 20.9B), containing laminin, fibronectin, type IV 
and type VI collagen.164–167 The latter is a distinctive banded 
material with 120  nm periodicity, called wide- or long-spacing 
collagen, which also appears in other ocular locations like 
epiretinal membranes. Thick BlamD, associated with advanced 
AMD risk,156 contains histochemically detectable lipid, including 
UC and EC141,142 and is a classically described site for membra-
nous debris (Fig. 20.1C). By lipid-preserving methods, solid 
particles are seen in BlamD (Fig. 20.9A, B). Especially enriched 
in basal mounds156 (Fig. 20.7), lipoprotein-derived debris in 
BlamD may be considered as retained in transit from the RPE 
to BlinD and/or drusen.139,141,142 Morphologically heterogeneous 
BlamD also contains vitronectin, MMP-7, TIMP-3, C3, and C5b-
9,162 EC, and UC.142 Evoked in numerous mouse models of aging, 
stress, and genetic manipulation, BlamD is a reliable marker of 
RPE stress.168

Subretinal drusenoid debris
Hypotheses of druse formation must eventually also account for 
subretinal drusenoid debris (SDD). Located adjacent to RPE in 
the subretinal space, SDD was first described in AMD eyes by 
the Sarks.155 Ultrastructurally similar to soft drusen, these depos-
its are enriched in UC, apoE, vitronectin, and complement factor 
H, and, like drusen, they lack markers for photoreceptors, Müller 
cells, and RPE apical processes.142,169 Clinically this material is 
called reticular drusen in a fundus view170 and subretinal 
drusenoid debris in a cross-sectional view.171 Conferring lower 
risk for advanced AMD than conventional drusen,172 SDD appear 
in up to 60% of geographic atrophy eyes,172,173 appearing as focal 
deposits near the fovea and part of large sheets elsewhere in the 

Fig. 20.9 Lipoprotein-derived debris and lipid 
pools in age-related macular degeneration 
lesions are solid rather than vesicular 
material. (A) Above retinal pigment epithelium 
(RPE) basal lamina (arrowheads) is basal 
laminar deposit with individual particles 
indicated (arrow). Below RPE basal lamina is 
numerous solid particles in basal linear 
deposit. Transmission electron microscopy, 
osmium paraphenylenediamine fixation.  
Bar = 500 nm. (Reproduced with permission 
from Curcio CA, Presley JB, Millican CL, et al. 
Basal deposits and drusen in eyes with 
age-related maculopathy: evidence for solid 
lipid particles. Exp Eye Res 2005;80:761–75.) 
(B) Basal laminar deposit appears as a solid 
column of basal lamina-like material, with 
solid particles embedded within (arrow).  
Bar = 500 nm. (Courtesy of J-D Huang.) 
(C) Basal linear deposit has lipoproteins of 
heterogeneous sizes and shapes as well as 
pooled lipid, consistent with a model of 
surface degradation and particle fusion.  
Bar = 200 nm. (Reproduced from Curcio CA, 
Johnson M, Rudolf M, et al. The oil spill in 
ageing Bruch’s membrane. Br J Ophthalmol 
2011;95:1638–45.) 
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Angioid streaks are associated with abetalipoproteinemia,192–195 
an extremely rare disorder with low plasma apoB-containing 
lipoproteins, acanthocytosis of erythrocytes, neuropathy, and 
pigmentary retinopathy. It is historically attributed to lack of 
lipophilic vitamins delivered by plasma LDL.44 The RPE is 
now known to express the abetalipoproteinemia gene (MTP),46 
which cotranslationally lipidates apoB (see above). How MTP 
deficiency leads to angioid streaks is unknown. The finding, 
however, highlights that lack of apoB lipoproteins has negative 
consequences for Bruch’s membrane health, just as an excess of 
retained apoB lipoproteins has negative consequences via lesion 
formation and impaired transport (see above). Good chorioreti-
nal function thus requires an optimal balance between these 
extremes.

Thick basal laminar deposits  
(TIMP-3, CTRP5, EFEMP1 genes)
Three autosomal dominant inherited disorders with adult  
onset – Sorsby fundus dystrophy, late-onset retinal degeneration 
(LORD) and malattia leventinese-Doyne honeycomb retinal dys-
trophy (ML-DH) – share phenotypic similarities with AMD and 
provide mechanistic support for many aspects of Bruch’s mem-
brane physiology and pathophysiology, discussed above. All 
three conditions result from mutations in genes encoding extra-
cellular matrix proteins or their regulators (Sorsby, TIMP3196; 
LORD - CTRP5197; and ML-DH, EFEMP1198). All three can prog-
ress to CNV to varying degrees (Sorsby > LORD > ML-DH). All 
three have visual dysfunction, especially rods, attributed to a 
nutritional night blindness that is responsive to short-term 
administration of high-dose vitamin A in Sorsby and LORD.199–201 
Sorsby and LORD are notable for thick BlamD and areas of RPE 
atrophy202 and may involve macula and periphery, while ML-DH 
is notable for radially distributed drusen and peripapillary 
deposits. In Sorsby eyes mutant TIMP-3 localizes to BlamD. In 
ML-DH, EFEMP1 localizes to BlamD and not to the pathogno-
monic drusen themselves, suggesting an important role of 
BlamD in druse formation.

BlamD in Sorsby and LORD, like that in AMD, is notably rich 
in oil red O-binding lipid.203–205 The significance of these findings 
was unclear until a model of a Bruch’s membrane lipoprotein 
was articulated. In LORD eyes,205 deposits contain EC, UC, and 
apoB, and lipid-preserving ultrastructural methods revealed 
solid electron-dense particles tracking in intersecting networks 
across the BlamD. In hindsight, these may represent native lipo-
proteins in transit from RPE to the choriocapillaris rather than 
depositions/aggregations of plasma LDL, as originally specu-
lated. Lipid particle disposition within these thick deposits has 
been replicated in a mouse model expressing the R345W EFEMP1 
mutation.168

CONCLUSION
Bruch’s membrane serves essential functions as substrate to 
the RPE and vessel wall of the outer retina. Its layers and 
constituent proteins collectively represent a barrier that keeps 
choroidal vessels at bay, provides a route for water, solutes, 
and macromolecules that transfer between RPE and choroid, 
while supporting the structural integrity of both. It is unusual 
among human tissues in accumulating a high content of EC-rich 
neutral lipid over the lifespan. A natural history and biochemi-
cal model now suggest this lipid is due to apoB lipoprotein 

neovascularization, leading to disease.179,180 Parallel with apoB 
lipoprotein-instigated disease in arterial intima, an intraocular 
response to retention involving the RPE and Bruch’s membrane 
in aging and AMD would begin with age-related accumulation 
of lipoproteins of local origin. Oxidation, perhaps driven by 
reactive oxygen species from adjacent RPE mitochondria, would 
then initiate a pathological process resembling that in the vas-
cular system with inflammation-driven downstream events 
including complement activation and structurally unstable 
lesions.36

Neovascular AMD
CNV, the major sight-threatening complication of AMD, involves 
angiogenesis along vertical and horizontal vectors: vertically 
across Bruch’s membrane, and laterally external to the RPE (type 
1 CNV181), laterally within the subretinal space (type 2 CNV), or 
further anteriorly into the retina (type 3 CNV).181–183 Of 40+ con-
ditions involving CNV, AMD is the most prevalent, followed by 
ocular histoplasmosis,181 and including angioid streaks (see 
below). CNV is a multifactorial nonspecific wound-healing 
response to various specific stimuli, involving VEGF stimulation 
of choriocapillaris endothelium, compromise to Bruch’s mem-
brane, and participation of macrophages.181 Impaired transport 
across Bruch’s membrane in AMD increasingly isolates the RPE 
from its metabolic source in the choriocapillaries and enhances 
the challenge in waste product disposal. VEGF released by RPE 
as a stress signal initiates an angiogenic response by the endo-
thelium. However, Bruch’s membrane compromise is essential 
for CNV to proceed, as evidenced by intrachoroidal neovascu-
larization without CNV in a mouse overexpressing VEGF in the 
setting of an intact Bruch’s membrane.184

Bruch’s membrane in a state of compromise can be breached 
easily by new vessels in AMD. It is notable that the EL is 
thinner and more interrupted in eyes with neovascular AMD.23 
The length of gaps in the EL is greater in eyes with early AMD 
and any CNV.23 In paired donor eyes with and without CNV 
secondary to AMD, progressed eyes are distinguished by cal-
cification and breaks in Bruch’s membrane.185 In contrast, cal-
cification in a small number of geographic atrophy eyes is 
unremarkable.186

BlinD furthers this process by presenting a horizontal cleavage 
plane for vessel formation to exploit. The lipid-rich composition, 
relative lack of structural elements like collagen fibrils, lesion 
biomechanical instability,122 and proinflammatory, proangio-
genic compounds like 7-ketocholesterol and linoleate hydroper-
oxide160,181,187 likely promote vessel growth in this plane.160

Angioid streaks (ABCC6, MTP genes)
Angioid streaks are ruptures in Bruch’s membrane associated 
with multiple disorders, caused by excess calcification of the 
elastic layer188 and often accompanied by CNV. They are 
prominent ocular manifestation of pseudoxanthoma elasticum 
(PXE), a systemic connective tissue disorder. PXE patients 
harbor mutations of a hepatically expressed lipid transporter 
ABCC6.189 Clinical presentation includes, in addition to streaks 
and CNV, peau d’orange (flat, yellow, drusen-like lesions), 
optic nerve head drusen, outer retinal tubulations, subretinal 
fluid, and pigmentary changes.190 PXE clinical manifestations 
are believed to be related to ectopic mineralization of nonhe-
patic tissues, suggesting a defect in the transport of antimin-
eralization agents.191
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secretion by RPE, which may be part of an outer retinal nutri-
tion system. This deposition can account for the impaired 
outward movement of fluid from RPE, increasing risk for RPE 
detachments, more common in older persons, and impaired 
macromolecular transport also leading to RPE stress. Oxidation 
of these lipid deposits in Bruch’s membrane likely initiates 
an inflammatory process that leads to lesion formation and 
CNV in AMD.
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