Next Article in Journal
Concepts of Regeneration for Spinal Diseases in 2022
Next Article in Special Issue
Whole Exome Sequencing in Multi-Incident Families Identifies Novel Candidate Genes for Multiple Sclerosis
Previous Article in Journal
The Role of Transcription Factor PPAR-γ in the Pathogenesis of Psoriasis, Skin Cells, and Immune Cells
Previous Article in Special Issue
Agomelatine Changed the Expression and Methylation Status of Inflammatory Genes in Blood and Brain Structures of Male Wistar Rats after Chronic Mild Stress Procedure
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology

1
School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
2
Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
3
Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
4
Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
5
Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
6
Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
7
Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
8
Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Int. J. Mol. Sci. 2022, 23(17), 9707; https://doi.org/10.3390/ijms23179707
Submission received: 5 August 2022 / Revised: 18 August 2022 / Accepted: 22 August 2022 / Published: 26 August 2022
(This article belongs to the Special Issue Genomics of Brain Disorders 4.0)

Abstract

:
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet–Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus–Merzbacher disease), transcriptional deregulation diseases (Mowat–Wilson disease, Pitt–Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.

1. Introduction

Cerebral visual impairments (CVIs) represent types of visual disorders characterized by parallel intracranial lesions. Excluding the traumatic and iatrogenic causes of CVIs, 27% of childhood visual impairments in developed countries are described as CVIs [1,2]. These young patients typically present with visual difficulties that cannot be explained by ophthalmological examinations, and in some somatic mutation cases, their condition cannot be traced to their lineage, which generally makes the characterization of CVIs challenging.
To this point, there is a lack of standard approaches to methodology and clear targets in investigating the CVIs. Driven by distinct mutation predispositions, the manifestation of CVIs can vary, and therefore their diagnoses are often made by the serial differential exclusion of mimicking diseases in tandem with a complete set of neuroimaging tests [3]. In this regard, molecular-based diagnostic techniques stand out as an explicit approach, generating clear mutation profiles and helping investigators to narrow down their differential diagnosis [4].
With genome-wide and phenome-wide association studies (GWAS and PheWAS) being gradually adopted to elucidate the genetic predispositions to CVIs, a pattern of mutation ontology has been drawn to classify the CVIs into five categories: (1) ciliopathies (Joubert syndrome, Bardet–Biedl syndrome, Alstrom syndrome); (2) demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus–Merzbacher disease); (3) transcriptional deregulation (Mowat–Wilson syndrome, Pitt–Hopkins syndrome, Rett syndrome, Cockayne syndrome, X-linked alpha thalassaemia mental retardation); (4) compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease); and (5) channelopathies (neuromyelitis optica spectrum disorder) (Figure 1).
In this review, we summarize the genetic background and molecular functions at the cellular level that result in brain and eye defects in CVIs. For each distinct disease entity, we discuss the frontier research, such as animal studies, that shed light on either the pathogenesis or therapeutic aspects of the pathology. We summarize the genetic data and discuss the molecular mechanisms underlying the genetically-driven pathology in distinct anatomical locations, such as the CNS in the case of CVIs.

2. The Genetic Predisposition to CVIs

Most genetic CVIs are rare diseases with incidence ranging from 1/90,000 to 1/2,700,000 (Table 1). Thus, these types of disorders are less attractive for investment by pharmaceutical companies to study their mechanisms and develop treatment. Therefore, the diagnoses, pathologies, and treatments of these diseases remain largely unknown, which compromises the right of patients to live healthier lives. An association between visual dysfunction and brain diseases was found in many previous studies [5,6]. Fortunately, with the advance of DNA sequencing and information science, there are increasingly more useful approaches to big-data studies in genomics. With a combination of information about genes and diseases, scientists could gain a better understanding of such genetic diseases.
Genetic CVIs are caused by mutations resulting from errors during replication, mitosis, meiosis, or damage without proper repair. These mutations can be classified as missense, frameshifts, or nonsense mutations within coding sequences; other types of DNA alterations may appear as a result of deletions, duplications, or translocations of larger genomic regions. Although the mutation rate is normally about 50–90 de novo mutations per genome per generation in humans [7], few mutations occurring in reproductive cells are passed on to the descendants. Phenotypes with mutations on non-sex chromosomes (autosomes) are not different across genders, while phenotypes with mutations on sex chromosomes (allosomes) lead to sex-linked inheritance. Since genetic CVIs often cluster in families, doctors should be more aware of children and apply treatment earlier.
In order to diagnose genetic CVIs, DNA sequencing is essential. However, the rate of incorrectly identified DNA bases is higher than the frequency of occurrence of genetic mutations [8]. There are three methods to address the error rate problem: barcoding, circle sequencing, and duplex sequencing. In barcoding methods, DNA molecules are amplified by polymerase chain reaction (PCR) after being marked by a barcode, a uniquely identifiable sequence, so the amplified pool can be classified based on this barcode and the mutations then stimulate a higher signal than the PCR errors [9]. In circle sequencing, DNA is denatured into single-stranded forms and circularized; single long reads from rolling circle replication can be computationally split into individual copies of the original circle, and the mutations will then generate a higher signal than replication errors [10]. In duplex sequencing, paired-end reads can be classified into forward (ab-SSCS) or reverse (ba-SSCS) strands after being marked by barcodes on both strands of the DNA that are then reunited into the original duplex consensus sequence (DCS); the mutations can be easily distinguished since the errors will only be present in one strand, which currently makes duplex sequencing the method with the lowest error rate [11]. With improvements in DNA sequencing, the genetic database can be established to make it possible to clarify the gene-disease relationship.
Table 1. Epidemiology of Cerebral Visual Impairments.
Table 1. Epidemiology of Cerebral Visual Impairments.
TypeDisorder 1Subtypes 2AgeFrequencyMale/Female RatioInheritance Mode 3
OnsetDiagnosedDeath
(81.8 Years in General Populations [12])
IncidencePrevalence
CiliopathyJBTSSee in Table S1 10 days~5 months [13]unknown7.2 years [14]1/80,000~1/100,000 [15]1/80,000~1/100,000 [15,16,17]1.22 [18]AR
XLR (JBTS10)
AD (JBTS19)
BBSSee in Table S2 unknown9 years [19]25% in 44 years [20]1/125,000~1/160,000 in Europe population [21,22]
1/65,000 in an Arab population [23]
1/160,000 in European population
1/13,500 in Arabic populations [24]
1.30 [19]AR
AD (BBS1)
Alstrom Syndrome-infancy [25]unknown<50 years [26]1/1,000,000 [27]1/1,000,000 [26]0.50 [28]AR
DemyelinationMS-18 years~40 years [29]20 years~50 years [30]74.7 years [12,30]2.1/100,000 [31]35.9/100,000 [31]0.29~0.91 [32]autosomal, phantom heritability
AxDneonatal <30 days [33]unknown<2 years [33]1/2,700,000 [31]1/2,700,000 [34]0.50 [28]AD
infantile30 days~2 years [33]unknownweaks~years [35]
juvenile2 years~12 years [36]unknown20 years~30 years [37]
adult>12 years [36]unknowndecades [37]
PMD-3 months~9 years [38]unknown6 years~25 years [38]1.45/100,000~1.9/100,000 [39,40]1/300 000~1/500 000 [41]>1.00XLR
Transcriptional DeregulationMWS-27.5 months [42]unknown<60 years [43]1/70,000 [44]1/50,000~1/70,000 [45]1.00 [46,47]AD
PTHS-2 years~19 years [48]unknownunknown [49]unknown1/225,000~1/300,000 [50]1.00AD
RTT1-4 years [51]3.5 years [52]4 years [51]1/22,800 [53]1/10,000~1/15, 000 [53]<1.00 [54]XLD
CSCS type I 0 year~2 years [55]unknown16.1 years [55]1/200,000 [56,57]2.5/1,000,000 [58]1.00 [59]AR
CS type II at birth [60]unknown5.0 years [60]
CS type III>2 years [60]unknown30.3 years [60]
XP/CS0 year~2 years [61]unknown7 months~6.4 years [61]
ATR-X-unknownunknownunknown1/100,000 [62]1/30,000~1/40,000 [63]>1.00XLD
Compromised PreoxisomeZSD-0 year~3.8 years [64]7 days~31 years [65]depending [64]1/12,000 in Canadian populations
1/50,000 in US populations
1/500,000 in Japanese populations [66]
unknown1.00AR
RDARD2–7 years [67]1 year~28 years [68]4 decades~5 decades [69]1/250000 [70]unknown1.00 [71]AR
IRDearly infancy [67]unknown5 years~13 years [69]
ChannelopathyNMOSD-late fourth decade [72]unknown52.3 years [73]0.053/100,000~0.400/100,00 [74]1/100,000 in white populations
3.5/100,000 in East Asian populations
10/100,000 in Black populations [75]
0.11~0.43 [76,77]Multigenic
1 JBTS—Joubert syndrome; BBS—Bardet–Biedl syndrome; MS—multiple sclerosis; AxD—Alexander disease; PMD—Pelizaeus–Merzbacher disease; MWS—Mowat–Wilson disease; PTHS—Pitt–Hopkins disease; RTT—Rett syndrome; CS—Cockayne syndrome; ATR-X—X-linked alpha thalassemia mental retardation; ZSD—Zellweger spectrum disorder; RD—Refsum disease; and NMOSD—neuromyelitis optica spectrum disorder. 2 XP/CS—xeroderma pigmentosum/Cockayne syndrome; ARD—adult Refsum disease; IRD—infantile Refsum disease. 3 AD—autosomal dominant; AR—autosomal recessive; XLD—X-linked dominant; and XLR—X-linked recessive.

3. Revisiting CVIs by the GWAS-PheWAS Approach

Genome-wide association studies (GWAS) are defined as observational studies of a genome-wide set of genetic variants in different individuals evaluating variant-disease associations (VDAs), the association between extensive common single nucleotide polymorphisms (SNPs), and disease phenotypes. The first published GWAS successfully found an association of functional SNPs with the susceptibility to myocardial infarction [78]. In addition to finding possible molecular mechanisms of pathology in genetic diseases [79], GWAS may also help in finding differences or similarities between such diseases. For example, neuromyelitis optica spectrum disorders (NMOSD) used to be regarded as a subtype of multiple sclerosis (MS) because of the similar clinical features. However, GWAS studies revealed that the susceptible genetic variants of NMOSD are more similar to systemic lupus erythematosus (SLE) instead of MS [80]. Therefore, GWAS can largely improve the understanding of genetic variants and associated pathological manifestations.
Phenome-wide association studies (PheWAS) are a study design aimed to find the phenotypes that may be associated with a given genetic variant [81]. Since SNPs may influence the expression of more than one gene due to linkage disequilibrium, the issue of gene pleiotropy becomes important, including authentic/horizontal/mosaic/independent pleiotropy and spurious/vertical/relational/reactive pleiotropy. The former indicates multiple independent effects of a mutation that causes multiple phenotypes, while the latter implies multiple effects depending on one another in a cascade that eventually leads to causally related phenotypes [82]. With PheWAS, we may understand the pathologies of rare diseases by investigating other phenotypes caused by the same SNP.
With the thorough understanding of VDAs, doctors may recommend patients with early susceptibility-indicative symptoms to undergo genetic testing, including restriction fragment length polymorphism (RFLP), DNA microarray, whole genome sequencing (WGS), and whole exome sequencing (WES). In such a way, patients may be precisely diagnosed with a particular CVI and receive appropriate treatment before the full manifestation of a disease. RFLP, the first DNA profiling technique inexpensive enough to gain widespread application, detects genetic diseases based on the fragment length of DNA after being cleaved by restriction enzymes and separated by agarose gel electrophoresis. DNA microarray, a conventional method for genetic testing, distinguishes gene mutations by labeling with different fluorescent molecules of the case and control cDNAs [83]. WGS and WES are next-generation sequencing (NGS) techniques with DS technology, which made genetic testing commercial and accessible [84]. For the purpose of reducing the requirement for excessive data analysis and higher cost in WGS and WES, targeted enrichment methods appear to only focus on specific genomic intervals [85]. With the evolution of approaches, the improvement rate of the cost and the quality in genetic testing surpasses Moore’s law [86], the law predicting the growth of technology [87]. Genetic testing thus becomes a practicable method to diagnose rare genetic diseases such as genetic CVIs.
By merging the data from GWAS, PheWAS, and advanced genetic testing approaches, big data can be generated to enable doctors and scientists to re-examine rare genetic diseases on a larger scale (Figure 2). Using this approach, the pathological changes occurring in these rare genetic diseases can be associated with common molecular pathways (Table 2). From a clinical view, proper annotation of molecular pathogenesis in rare diseases may well facilitate accurate diagnosis, comprehensive assessment, on-hit intervention, and prophylactic support remedies. Therefore, possible treatments could be designed for the diseases which were previously ignored due to their low incidence.

4. Multiple Sclerosis: A Typical Case of Brain-Eye Parallelism

Multiple sclerosis (MS) is a prevalent genetic disorder that causes brain and eye disability in young populations. MS has a disease onset pattern, in which manifestations in the eye often precede the onset in the brain [176]. In particular, common MS ocular features are optic neuritis (ON) and internuclear ophthalmoplegia [177], while cerebral manifestations are trigeminal neuralgia (TN) and glossopharyngeal neuralgia (GN) (Table 3) [178]. Among these features, the correlation between MS and ON is relatively well-reported: an observational study concluded that half of MS patients have ON [176], and within 10 to 15 years, 34–75% of confirmed diagnosed ON patients develop MS (Table 4) [179,180]. In a similar but independent study on a specialized ON cohort (n = 115) at Moorfields Eye Hospital, it was shown that patients with new MRI T2 brain lesions within 1 year of ON diagnosis were likely to develop concurrent MS in the following three years (prediction: 85% sensitivity and 79% specificity) [181]. Taken together, the coupled manifestations between the brain and the eye are evident, and they conform to certain chronological patterns in clinical presentation.
To elucidate the molecular mechanisms that contribute to the association between ON and MS [136,182,183], investigation approaches such as histology biomarker measurements, establishing MS animal models, and cell-based transcriptome analysis were conducted. Nevertheless, the major MS–ON correlation finding was discovered by the conjunction of GWAS sequencing and PheWAS characterization. Particularly, the SNP variants of MS–ON patients were highly enriched in the genomic regions encoding human leukocyte antigen (HLA) family members [135], major histocompatibility complex (MHC) [136], inflammasome units [137], and members of complement pathways [79]. These SNPs may affect the immune system-related pathways and thus underly the demyelinating features of the central nervous system (CNS) and the neuritis in the retina. Such studies follow a common scenario in which the genetic finding gives clues to molecular mechanisms in clinical pathology. In MS, the genetic profile of inflammation genes could predict ocular manifestations; for instance, the C3 mutations were associated with ganglion cell/inner plexiform layer atrophy (p = 0.004) in the retina; meanwhile, C1QA and CR1 gene mutations were associated with low-contrast letter acuity (LCLA) loss, a hallmark ocular manifestation in MS. In addition to the eye, C3 gain-of-function mutation rs2230199 has also been linked to lower brain volumes [184,185,186], indicating that the same set of inflammation gene mutations have prediction values in both the brain and the eye manifestations of the MS patients.
To link these genetic findings to the actual molecular pathogenesis mechanisms, animal models were established to validate the causal effects of gene SNP candidates. Experimental autoimmune encephalomyelitis (EAE) is a frequently used MS-mimicking mouse model, in which C3 pathway upregulation was found in the neurotoxic astrocytes of the brain shrinkage region, a consequence of demyelinating neuron atrophy [187]. To confirm the role of the C3 pathway as a direct contributor to MS development, several studies were performed to knock out C3 genes in the EAE mouse model. Importantly, the ablation of the C3 pathway reduced T cell infiltration and inflammatory cytokine production in these MS-conditioned mice [188]. It is worth mentioning that C3 protein expression was found to be more elevated in the female mice astrocytes than in the litter-mate male control, this pattern fits the clinical finding of female MS patients subjects exhibiting worse neurology symptoms. Additionally, female EAE mice were found to be subject to more severe retinal ganglion cell (RGC) axon loss than the male EAE control, revealing a negative correlation between C3 expression level and the RGC axon length (r = −0.64, p = 0.04) [187]. Using this approach, EAE animal models validated the role of C3 in MS, and meanwhile highlighted both the pathological (brain atrophy and retina axon loss) and epidemiological (gender subjectivity) clinical features of MS.
To summarize, the investigation of correlations between C3 and MS is an example of a combined genetic and animal study effort to characterize the disease pathogenesis in a collaborative but independent manner. Nevertheless, in addition to MS, there are plenty of other brain-eye CVI diseases which also show parallelism [189,190,191,192,193], but have yet to be fully studied (listed as in Table 4). In the following section of this review, we summarize other CVI diseases by addressing such details as documented phenotypes, genetic diagnosis, and histology findings with molecular characterization.
Table 3. Brain-Eye Correlations in Cerebral Visual Impairments.
Table 3. Brain-Eye Correlations in Cerebral Visual Impairments.
TypeDisorder 1Cerebral 2Visual 3
CiliopathyJB-RetMTS (100%) [194,195]
developmental delay (100%)
mental retardation (100%)
hypotonia (100%) [196]
Dandy-Walker malformation (10%) [197]
RP (100%) [198]
ocular motor apraxia (80%)
strabismus (74%)
nystagmus (72%) [199]
RD (30%) [198]
chorioretinal coloboma (30%)
optic nerve atrophy (22%) [199]
BBSdevelopmental delay (50–91%)
ataxia (40–86%) [200]
cognitive impairment (66%)
central obesity (89%) [201]
functional independence (74%)
attention capacity (69%) [202]
ID (62%) [203]
perceptual reasoning (53%)
verbal fluency (22–44%) [202]
RD (94%)
RP (43%) [201]
Alstrom Syndromedevelopmental delay (45%) [204]RD (100%) [27]
blind (90%) [205]
DemyelinationMSDawson’s fingers (92.5%) [206]
central pain (15–85%) [207]
central trigeminal involvement (12–38%) [208]
braunstem dysfunction (25%)
sensory disturbances (18.3%)
motor disturbances (17.5%) [209]
TN (6%) [210]
ID (2%) [211]
ON (50%) [176]
abnormal blink reflex (89%) [212]
nystagmus (10%) [213]
AxDbulbar sign (83.3%)
changes in lower brain stem or upper cervical cord (82.4%) [214]
cerebral white matter lesions (80%) [215]
pyramidal sign (63.4%)
changes in cerebellum or dentate hilum (54.1%)
ataxia (50%)
dysarthria (42%) [214]
mental retardation (29.0%)
epilepsy seizure (26.5%)
pseudobulbar sign (21.6%) [216]
cyst formation (25%) [217]
changes in basal ganglia or thalami signal (17.6%)
autonomic disturbances (11.4%)
macrocephaly (9.8%)
cranial sensory disturbances (6.8%) [216]
ocular motor abnormalities (46.1%) [216]
nystagmus (33%) [214]
PMDdevelopmental delay (100%)
corpus callosum atrophy (100%)
hypotonia (83.8%)
displayed supratentorial brain atrophy (29.0%)
pyramidal sign (5.4–22.2%)
epilepsy seizure (7.1–14.3%)
ataxia (5.4–7.4%)
cerebellum atrophy (3.2%) [193]
nystagmus (99.1%) [193]
Transcriptional DeregulationMWShypotonia (93%) [47]
microcephaly (81%) [141,218,219,220,221,222]
neocortical projections (79.6%)
hippocampal abnormalities (77.8%)
enlargement of cerebral ventricle (68.5%) [47]
epilepsy seizure (73%) [141,218,219,220,221,222]
brain anomalies (43%)
reduction of white matter thickness (40.7%)
localized signal alterations of the white matter (22.2%) [222]
eye anomalies (4.1%) [141,223]
PTHSID (98%)
gross motor development (92%)
hypotonia (69%)
ataxia (57%) [141]
epilepsy seizure (40%)
small corpus callosum (23%)
enlargement of cerebral ventricle (21%)
microcephaly (17%) [50]
strabismus (45%)
myopia (39%) [49]
astigmatism (26%) [50]
nystagmus (4%) [49]
RTTdeceleration of head growth (80%)
epilepsy seizure (60~80%) [224]
language disorder (61.5%)
microcephaly (46.2%)
gross motor development (30.8%) [225]
difficulty recognizing unfamiliar things [226]
selectively focused on specific things [227]
vision search difficulty [228]
CSabnormal myelination in brain (93%) [61]
mental retardation (90%)
microcephaly (83%)
motor disturbance (71%) [229]
tremor (66%) [190]
intracranial calcifications (63%) [61]
ventricular dilatation (23%) [191]
epilepsy seizure (5–10%) [230]
RP (60–100%) [231]
RD (33–89.3%) [58]
cataracts (15–36%) [231]
ATR-Xdevelopmental delay (100%)
ID (100%) [232]
language disorder (95%) [233]
hypotonia (80–90%) [232]
microcephaly (75%) [233]
brain atrophy (63%)
high intensity of white matter (41%) [232]
epilepsy seizure (30–40%) [232]
delayed myelination (15%) [63]
ocular defects (25%) [234]
Compromised PreoxisomeZSDperipheral neuropathy (58%)
T2 hyperintensities (50%)
cerebellar sign (47%)
cerebellar cortical atrophy (38%)
pyramidal sign (26%)
high intensity of white matter (25%)
hypotonia (21%) [65]
VA disability (100%)
RP (84%)
retinopathy (84%)
night blindness (84%)
retinal degeneration (63%) [65]
RDpolyneuropathy (70%)
ataxia (50%) [192]
RP (100%) [192]
pupils (78%)
VA (76.7 %)
visual fields (75%)
cataracts (30%)
nystagmus (22%)
glaucoma (17%) [68]
ChannelopathyNMOSDperiependymal lesions (75%) [235]
central vomiting (65.38%)
central hiccups (50.00%)
pyramidal tract sign (42.31%) [236]
LETM (32.9%)
brainstem symptoms (4.5%) [237]
ON (22.4%) [238]
ophthalmoplegia (19.23%)
MLF syndrome (11.54%) [239]
1 JBTS—Joubert syndrome; BBS—Bardet–Biedl syndrome; MS—multiple sclerosis; AxD—Alexander disease; PMD—Pelizaeus–Merzbacher disease; MWS—Mowat–Wilson disease; PTHS—Pitt–Hopkins disease; RTT—Rett syndrome; CS—Cockayne’s syndrome; ATR-X—X-linked alpha-thalassaemia mental retardation; ZSD—Zellweger spectrum disorder; RD—Refsum disease; and NMOSD—neuromyelitis optica spectrum disorder. 2 MTS—molar tooth sign; TN—trigeminal neuralgia; ID—intellectual disability; and LETM—longitudinally extensive transverse myelitis. 3 RD—retinal dystrophy; RP—retinitis pigmentosa; ON—optic neuritis; VA—visual acuity; and MLF—medial longitudinal fasciculus.
Table 4. Brain-Eye Parallelism in Cerebral Visual Impairments.
Table 4. Brain-Eye Parallelism in Cerebral Visual Impairments.
Disease 1Brain MRI DescriptionCerebral Disorders 2Visual Disorders 2Disease Process 3
IDEpilepsy SeizureHypotoniaAtaxiaMicrocephalyNystagmusRPRDCataractsON
Ciliopathy
JBTSMolar Tooth Sign (MTS) on T2 MRI · ··· Ijms 23 09707 i001
BBSShrinkage of the hippocampus and striatum· · ··
Alstrom SyndromeIncreased white matter density and small leaks near the ventricles on T1 MRI ·
Demyelinating
MSFinger-shaped lesion in the corpus callosum on T2 MRI· · ·Ijms 23 09707 i002
AxDShrinkage of the medulla oblongata and the upper spinal cord·· · ·
PMDCorpus callosum shrinkage···· ·
Transcriptional Deregulation
MWSCorpus callosum hypoplasia, abnormal hippocampus, ventricular enlargement ·· · Ijms 23 09707 i003
PTHSCorpus callosum hypoplasia, ventricular enlargement······
RTTShrinkage of the corpus callosum and the cerebellum, brainstem narrowing·· ·
CSCalcification · · ···
ATR-XBrain shrinkage, ventricular enlargement· · ·
Compromised Peroxisome
ZSDT2 hyperintensity· · · Ijms 23 09707 i004
RDIncreased white matter density near the ventricles on T2 MRI · ·· ·
Channelopathy
NMOSDMarbled lesions above the corpus callosum· ·
1 JBTS—Joubert syndrome; BBS—Bardet–Biedl syndrome; MS—multiple sclerosis; AxD—Alexander disease; PMD—Pelizaeus–Merzbacher disease; MWS—Mowat–Wilson disease; PTHS—Pitt–Hopkins disease; RTT—Rett syndrome; CS—Cockayne syndrome; ATR-X—X-linked alpha-thalassaemia mental retardation; ZSD—Zellweger spectrum disorder; RD—Refsum disease; and NMOSD—neuromyelitis optica spectrum disorder. 2 ID—intellectual disability; RD—retinal dystrophy; RP—retinitis pigmentosa; and ON—optic neuritis. 3 There are some common cerebral and visual disorders (expressed in yellow and blue respectively) shared by different cerebral visual impairments (CVIs) that occur at different timings in the disease’s process [189,190,191,192,193]. By revealing molecular mechanisms underlying these clinical features, physicians will be able to diagnose pathologies and apply treatment before the appearance of symptoms.

5. Ciliopathy

Ciliopathy is a disease category that affects cells and organs with high demands in cytoskeleton turnover. Neuron cells in particular require robust vesicle transportation, axon extension, and dendrite formation/connection. Ciliary gene mutations result in defects of the transition zone (TZ) complex, an anchor structure that lies between the axoneme and the basal body, and play a crucial role in ciliogenesis and ciliary membrane composition [239,240]. For instance, the Abelson helper integration site 1 (AHI1) gene encodes a protein located in the BB of the primary cilia that interacts with Huntingtin-associated protein 1 (HAP1) to facilitate cerebellar and brainstem development [241]. Concurrently, AHI1 mutations have been reported to cause retinal dystrophy [242], a consequence of the abrogated secretion of neurotrophic factors and impaired rhodopsin trafficking in the eye. Since AHI1 function is implicated in both the development of the brain and the homeostasis of the eye, its mutations result in clinical features in similar, but not identical, CVI diseases such as Joubert syndrome and Bardet–Biedl Syndrome.
The importance of ciliary genes was also highlighted in their role in intra- and extra-cellular communication. Specifically, the ciliary microtubules interact with components of several signaling pathways. In such a way, the cytoskeleton systems are synchronized with such signaling pathways as the Sonic Hedgehog (SHH), Wingless and Int-1 (WNT), and the G protein-coupled receptor (GPCR). Moreover, these pathways are essential players in the regulation of neural development. The SHH pathway is essential for triggering midbrain dopaminergic (mDA) neurons generated in the ventral midbrain [243]. WNT pathway aberrations have been linked with cerebellar vermis fusion/hypoplasia [244]. GPCR pathways are mainly studied in a photoreceptor cellular context [245,246]. For instance, the first 2.8 Å resolution crystal structure of the GPCR family protein was established by the model of rhodopsin binding to its substrate, 11-cis retinal [247]. On the whole, the ciliary gene defects may lead to both significant cerebral and retinal disorders.

5.1. Joubert Syndrome

Joubert syndrome (JBTS) and Joubert syndrome-related disorders (JSRD) are the conditions presenting as agenesis of the cerebellar vermis, which is identified by the molar tooth sign (MTS) on the MRI (Table 4).
Since the first gene responsible for JBTS, NPHP1, was identified in 2004 [107], over 40 genes have been found to be associated with this condition, as summarized in the OMIM database (Table S1). Nonetheless, most of these genes each account for less than 10% of cases, as the genes identified thus far are implicated in the functions of the subcellular structure and the primary cilium. On the molecular level, the genes play a role at the transition zone (TZ) (JBTS2, JBTS4-7, JBTS9, JBTS14, JBTS16, JBTS18, JBTS20, JBTS21, JBTS24, JBTS28, JBTS29, and JBTS34), in SHH signaling (JBTS8, JBTS10, JBTS12, JBTS17, JBTS18, JBTS21, and JBTS23), basal body (BB) (JBTS3, JBTS15, JBTS26, JBTS30, JBTS31, and JBTS33), and in other functions of the primary cilia (JBTS1, JBTS13, JBTS19, JBTS22, JBTS25, JBTS27, JBTS32, and JBTS35-40). The primary cilium is an essential regulator of numerous signaling pathways essential for the movement of cells and fluids in response to sensory inputs involved in photoreception [248], so patients with JBTS exhibit co-manifestation of brain and eye symptoms.
Additionally, robust evidence has linked ciliary machinery to GPCR functions that affect brain and retina health. From the preliminary findings of neural development studies in mice, deleting JBTS-related genes Arl13b and Inpp5e implicated in cilia sensing apparatus may abrogate GPCR signaling. Without a proper GPCR signaling cascade, the abrogated PI3K/AKT transcription response leads to the defasciculation and misorientation of brain axon projections [249]. Likewise, in a mouse model of retina-specific Inpp5e knockout (Inpp5eF/F; Six3-Cre), Inpp5e loss impairs photoreceptor axoneme formation and emulates the optic disc dysmorphism seen in JBTS patients [250]. Besides Inpp5e and Arl13b mutation, malfunctioned cilia genes such as CELSR2 [251] and KIAA0586 (TALPID3 in chicken) [252] were also discovered to contribute to JBTS-related symptoms. On the whole, a considerable number of gene mutation studies affecting the primary cilia components have given clues for both in vitro and in vivo pathogenic mechanisms of the retina and brain defects commonly seen in JBTS patients.
Clinically, JBTS is often associated with other diseases, such as oral-facial-digital (OFD) syndrome, acrocallosal (AC) syndrome, Jeune asphyxiating thoracic dystrophy (JATD) features, and retinal, renal or hepatic diseases [253]. In terms of manifestation of CVI-related features, JBTS can be classified into pure JBTS (JBTS8, JBTS13, JBTS15, JBTS22, JBTS25-27, JBTS30, JBTS32, JBTS33, and JBTS35-40), mixed JBTS with retinal diseases (JBTS1-5, JBTS7, JBTS9, JBTS14, JBTS16, JBTS20, JBTS28, and JBTS29), and mixed JBTS without retinal diseases (JBTS6, JBTS10, JBTS12, JBTS17-19, JBTS21, JBTS23, JBTS24, JBTS31, and JBTS34). Pure JBTS has 3 main diagnostic features: MTS, hypotonia in infancy with later ataxia, and developmental delays [131]. JBTS with retinal disease (JS-Ret) is characterized by pigmentary retinopathy similar to classic retinitis pigmentosa, and 30% of JS-Ret patients develop retinal dystrophy [198]. Additionally, clinical features of JB-Ret also include optic nerve atrophy (22%), chorioretinal coloboma (30%), oculomotor-related symptoms (ocular motor apraxia (80%), strabismus (74%), and nystagmus (72%)) (Table 3) [199]. Since most of these symptoms are progressive with age and evolve over time, regular monitoring is essential to ensure diagnosis and treatments on time.

5.2. Bardet–Biedl Syndrome

Bardet–Biedl syndrome (BBS) is a ciliopathy affecting multiple systems, including cognitive impairment (66%), central obesity (89%), and retinal dystrophy (94%) [201] (Table 3). A group of proteins named after this syndrome (BBS proteins) participate in the functions of primary (non-motile) cilia via the BBSome complex (formed by BBS1, BBS2, BBS4, BBS5, BBS7, BBS8, BBS9, and BBS18), chaperonin complex (formed by BBS6 and BBS12), and IFTB (formed by BBS19, BBS20, and BBS22) (Table S2). The BBSome complex regulates cargo delivery in primary cilia at TZ via two signaling pathways: (1) vesicular sorting from the Golgi complex via interacting with the Rabin8 (Rab8 GDP/GTP exchange factor); (2) selective transportation along the cilium via acting as an adaptor between cargo and intraflagellar transport (IFT) particles [254]. The chaperonin complex mediates BBSome assembly at centrosomes [255] and basal bodies [256] by stabilizing the first component BBS7 under the regulation from BBS10 [257], and by acting as an intermediate for the binding between BBS7 and chaperonin containing TCP-1 (CCT) [258], which accomplishes the following assembly. IFTB mediates anterograde trafficking powered by the kinesin-2 motor. Other BBS proteins, such as BBS14, BBS15, and BBS16, function on basal bodies by recruiting the BBSome complex. Because primary cilia regulate the development of the CNS by sensing local environmental signals and promoting neuronal proliferation and differentiation, dysfunctional BBS proteins impair brain and retina health by deregulating primary cilia.
Defects in BBS proteins influence hippocampal development and neurogenesis signaling [259], which impairs consolidation from short-term memory to long-term memory. Patients with BBS exhibit impairments in intellectual functions (20–25%), verbal fluency (22–44%), perceptual reasoning (53%), attention capacity (69%), and functional independence (74%) [202]. Moreover, leptin receptors located on the ciliary membrane in hypothalamic neurons affect hunger and energy use by regulating adipose tissue mass, so transient ciliogenesis causing adipogenesis is one of the reasons for obesity in BBS patients [256]. In the retina, the connecting cilium connects inner and outer segments of photoreceptors, along which proteins of the phototransduction cascade (arrestin and the visual G protein transducin) move in response to light stimulation. Abnormal trafficking across the defective cilia causes retinal dystrophy [254], which leads to retinitis pigmentosa (RP) or eventually causes night blindness or even complete blindness [260].
Since BBS is a multisystem syndrome affecting the brain, retina, and endocrine or metabolic systems, and causes obesity, treatments mainly focus on symptom management. Recently, the FDA approved the first drug, setmelanotide (IMCIVREE), to improve weight management in BBS [261]. Although gene therapy has achieved success in treating other ocular genetic diseases such as Leber congenital amaurosis (LCA) with FDA-approved treatment [262], a pre-clinical gene therapy study in mouse models based on BBS1 overexpression in the wild type retina was shown to cause cytotoxicity [263]. Therefore, gene therapy may not be suitable for BBS.

5.3. Alstrom Syndrome

Alstrom syndrome is a rare autosomal recessive genetic disorder caused by nonsense and frameshift mutations primarily in exons 8 (21%), 10 (23%), and 16 (40%) of the ALMS1 gene (Table 2) [134]. Although the precise functions of ALMS1 remain unknown, it is believed that it is involved in ciliogenesis and the centriolar stability of primary cilium function [264]. Cells with ALMS1 knockdown have longer primary cilia with abnormal morphology, including axonemal segmentation, ciliary bulging, and ciliary bending [265]. The depletion of ALMS1 in cells diminishes transforming growth factor beta/bone morphogenetic protein (TGF-β/BMP) signaling [264], a central regulator of cell proliferation, differentiation, and survival programs regulated by the primary cilium [266]. The depletion of ALMS1 in the cells also diminishes the CNAP1 level [264], the centrosome cohesion protein essential for the linkage between the two basal bodies formed by rootletin fibers [267]. Therefore, mutations of ALMS1 may affect primary cilia, threatening brain and retina health.
Since ALMS1 is found in centrosomes, basal bodies, and cytosol in many organs, including retinal photoreceptors and the brain, the progressive development of multi-organ pathologies of Alstrom syndrome includes retinal dystrophy, neurosensory deficit, and type 2 diabetes mellitus. Abnormal primary cilia caused by ALMS1 mutation lead to defects in the transportation of vesicles or disruption of the exocytosis mechanism, causing accumulation of rhodopsin vesicles [268]. Furthermore, primary cilia with the knockdown of ALMS1 cause defects in the multipolar–bipolar transition and retarded neuronal migration [269]. The reduction of neurons caused by the absence of ALMS1 in basal bodies of hypothalamic neurons in mutated mice causes deregulation of appetite [270]. Therefore, the treatment of Alstrom syndrome is complex and individualized due to the combination of multiple disorders.

6. Demyelinating Diseases

Demyelinating diseases can be categorized by their etiology into extrinsic (caused by toxic, chemical, or autoimmune cues) demyelinating myelinoclastic diseases, and intrinsic genetic-mutated demyelinating leukodystrophy. By such means, MS is clastic, whereas other demyelinating diseases, such as Alexander disease (AxD) and Pelizaeus–Merzbacher disease (PMD), which affect the brain and eye, are leukodystrophic.

6.1. Alexander Disease

90% of currently-identified Alexander disease (AxD) cases are characterized by cellular gain-of-function glial fibroblast acidic protein (GFAP) aggregates, also known as Rosenthal fibers, in the astrocytes [138,139]. The symptoms of the disease include seizures, spasticity, delayed brain and nystagmus development, impaired oculopalatal myoclonus, and saccadic dysmetria of the eye (Table 3) [271]. Recently, as was found and established in the post-mortem brain and induced pluripotent stem cell (iPSC)-derived astrocytes of AxD patients, GFAP accumulation resulted in the upregulated secretion of chitinase-3-like protein 1 (CHI3L1). Although CHI3L1 does not possess chitinase activity to hydrolyze chitin substrates, the protein is widely found to be associated with tissue inflammation, extracellular matrix (ECM) remodeling, fibrosis, and bronchial asthma. Moreover, clinical evidence has tightly linked CHI3L1 to the features of neurodegenerative diseases. Elevated CHI3L1 levels can be detected in the cerebral spinal fluid (CSF) of Alzheimer’s disease patients [272], post-mortem spinal cord biopsy [273] of amyotrophic lateral sclerosis [274], serum and CSF of MS patients [275,276,277], and the RNA-Seq data from the dorsolateral prefrontal cortex biopsies of schizophrenia patients [278]. In the iPSC-derived neuron cell co-culture experiments, CHI3L1 produced from the GFAP-laden astrocytes was recognized as a neuro-paracrine mediator that inhibits the proliferation and myelination of the oligodendrocyte progenitor cells [279]. The demyelinating effects and GFAP aggregates in astrocytic cytoplasm cause variable neurological symptoms, resulting in AxD. In addition to the brain involvement in AxD, recent studies have shown the association of CHI3L1 with aberrant autophagy in the retinal pigment epithelium (RPE) by activating AKT/mTOR and ERK pathways in rat models, indicating the possible consequence of eye symptoms [280].
The disease has been categorized into infantile, juvenile, and adult forms according to the respective timing of disease onset, and neurodegenerative symptoms can be observed from the prenatal period through to adulthood. However, especially in late-onset AxD, patients’ conditions are frequently complicated by oculomotor defects. This may be confusing as GFAP dysregulation in the ocular context is often linked with stress response in the Muller cells, which may perturb the photosensory retina but not the oculomotor function. Although direct evidence has yet to be obtained on clinical or post-mortem AxD patient samples, the GFAP-positive astrocytes have been known to form the glia limitans at the junctions between the motor neuron rootlet outlet and the CNS nuclei [281]. GFAP-positive astrocytes, as seen by confocal microscopy, form seals at the interlining of the oculomotor nerve and the cortex boundary [282]. In early animal studies using the Gallotia galloti lizard to elucidate the roles of GFAP in midbrain development, Monzon-Mayor, et al. found that GFAP-positive radial glia, together with GFAP-positive astrocytes, preferentially locate in the periphery of the marginal optic tract and the oculomotor nuclei [283]. Therefore, it was speculated that the GFAP-positive glia and astrocytes may be involved in oculomotor nuclei wiring with oculomotor nerves in midbrain development.

6.2. Pelizaeus–Merzbacher Disease

Pelizaeus–Merzbacher Disease (PMD) is a demyelinating disease characterized by oligodendrocyte impairment in the CNS system. The broadly-affected brain areas lead to both psychomotor retardation and spastic quadriparesis in the brain as well as nystagmus in the eye. PMD is caused by mutations in a myelin component gene proteolipid protein 1 (PLP1). PLP1 normally encodes a full-length PLP1 protein and a truncated product DM20 which are both important for myelin formation (Table 2). When mutated, distinct types of PLP1 and DM20 malfunctioned proteins contribute to varying degrees of PMD-associated demyelination; the degree of brainstem demyelination on T2 MRI can distinguish the severe PMD form from the mild forms (Table 4); other detailed radiology correlations with PMD have been reviewed elsewhere [284]. From the genetic perspective, the complete loss (due to deletion and early premature stop codon) of PLP1 and DM20 often gives rise to mild PMD phenotypes [140], whereas the missense mutation types of PLP1 and DM20 elicit a robust unfolded protein response UPR [285] and result in more severe phenotypes of PMD [286]. As shown by in vitro and in vivo experiments, the defect of proper folding as well as the overproduction of PLP1 may lead to excess endoreticular stress and cell death in oligodendrocytes [287,288]. Moreover, PLP1 dysfunction may lead to the accelerated turnover of myelin structure, henceforth enhancing the recycling of myelin lipids. Lipid peroxidation and its subsequent stress-induced cellular sensitization toward free iron implicates the role of ferroptosis in the death of PMD oligodendrocytes [289]. On the whole, the elucidation of the role of GFAP aggregates and PLP1 accumulation in AxD and PMD pathogenesis, respectively, has facilitated research into therapeutic strategies.

6.3. Possible Treatments

Given the deleterious consequences of GFAP overexpression in AxD, a research group from the Waisman Center at the University of Wisconsin-Madison applied intracerebroventricular (ICV) bolus injection of an antisense oligonucleotide (ASO) targeting Gfap transcript in Gfap+/R236H mice. Merely 8 weeks post-injection, GFAP protein content in the mutants dropped to an undetectable level in the region of the hippocampus and olfactory bulb. This promising observation is indicative of the rapid turnover of GFAP by the proteasome system that lasts for a period sufficient to show improved body condition in mutant mice [290]. Similarly to the ASO approach that restricts GFAP expression at a transcriptional level, RNAi-mediated inhibition of Gfap may potentially ameliorate retinal and CNS degeneration [291]. Another strategy to prevent GFAP aggregation reported by Bargagna-Mohan et al. showed that withaferin A could covalently bind GFAP and downregulate its expression in Muller cells in the mouse retina [292]. The cellular stress caused by abnormal PLP1 in PMD was addressed by a number of studies to design stress-countering strategies to minimize the detrimental effects caused by defective PLP1 and myelin metabolites [46,289,293]. Notably, a recent study using PLP1-targeting ASO has demonstrated a prominent therapeutic effect in the PMD patient iPSC-derived oligodendrocytes as well as the PMD-mimic Plp1 mutant Jimpy mice [293]. The PLP1-targeting ASO rescued a number of MYRF-stained oligodendrocytes in the brain regions of corpus callosum, cerebellum, and brainstem. Plp1 mutant Jimpy mice receiving one dose of PLP1 ASO exhibited reduced seizure onset and gained resistance to hypoxia condition, indicating that PLP1 ASO treatment could improve the neural commands on respiratory functioning in the PMD mice. In parallel, another research group successfully restored proper myelin formation in oligodendrocytes by applying systemic iron chelator deferiprone to the iron-intoxicated Plp1 mutant Jimpy mice [289].

7. Transcriptional Deregulation

7.1. Mowat–Wilson Syndrome

Mowat–Wilson syndrome (MWS) is a multiple congenital anomaly syndrome caused by mutations in the zinc finger E-box-binding homeobox 2 gene (ZEB2, also called ZFHX1B) (Table 2). The initiation codon is located in exon 2, the stop codon is in exon 10, and mutations most frequently occur in exon 8 (58%) [141], which comprises around 60% of the coding sequence [294]. The heterozygous pathogenic variant is more common (84%) and results in milder forms of MWS, while the heterozygous deletion is less common (15%) but results in an earlier onset [43]. ZEB2 is a DNA-binding zinc-finger transcription repressor targeting 5′-CACCT sequences in different promoters, interacting with activated SMADs, transducers of TGF-β signaling [295], and NuRD complex [296], so it is also called the SMAD-interacting protein-1 (SMADIP1 or SIP1). TGF-β is a superfamily of signaling molecules acting on membrane receptors to influence embryogenesis and control neural development, including bone morphogenetic proteins (BMPs). SMAD proteins are a family of intracellular effectors downstream of TGF-β that trigger the phosphorylation of cytoplasmic molecules. NuRD is a nucleosome-remodeling and histone deacetylation complex repressing E-cadherin (CDH1), the gene which is involved in developmental processes and also targeted by ZEB2 [297]. Therefore, mutations of ZEB2 directly or indirectly influence gene expression.
Clinical features of MWS include epilepsy seizures (79%), microcephaly (78%), CNS anomalies (68.5%), strabismus (50%), and structural eye anomalies (10%) (Table 3) [42]. Epilepsy seizures result from a complex network of pathological events caused by the hypersynchronized activity of neurons and dysfunctional inhibitory interneurons [298]. Both cortical and striatal interneurons are generated from medial ganglionic eminence (MGE) [299]. A homeobox domain-containing transcription factor NKX2-1, which is normally repressed by ZEB2 after immature interneurons migrate from MGE to the cortex, causes interneurons to differentiate into normal cortical neurons. In the absence of ZEB2, NKX2-1 induces transformation of interneurons into striatal nNOS/NPY/Sst GABAergic interneurons [300]. The diverse population of GABAergic interneurons increases the risk of epilepsy by disturbing the balance between excitation and inhibition [298].
CNS anomalies often present as hippocampal abnormalities (77.8%), neocortical projections (79.6%), white matter (40.7%), and enlargement of cerebral ventricles (68.5%) [221]. Hippocampal interneurons are also MGE-derived, indirectly regulated by ZEB2. The microtubule minus-end binding protein ninein is regulated by ZEB2 and stabilizes microtubules and accelerates their growth, thereby enhancing the formation of neocortical axons [301]. Neocortical axons include intercortical connections (corpus callosum (CC)), anterior commissure (AC)), corticofugal projections (corticothalamic tract (CT)), and corticospinal tract (CST) [302,303]. Moreover, since ZEB2 promotes the transition from immature to mature myelinating oligodendrocytes by antagonizing BMP receptor-activated SMAD activity [304], mutations of ZEB2 lead to the reduction of white matter thickness (40.7%) and localized signal alterations of the white matter (22.2%) [221]. Furthermore, neurotrophin-3 (NTF3) and fibroblast growth factor 9 (FGF9), the signaling factors normally repressed by ZEB2, can feed back from postmitotic neurons to progenitors, to regulate the timing of maturity and the number of neurons and glial cells throughout corticogenesis [305], thereby influencing the volume of cerebral ventricles. ZEB2 is also expressed in the neural retina [306] and whole lens [307]. The interactions between ZEB2 and TGF-β influence the development of neural crest-derived cells [308], causing structural eye anomalies including microphthalmia, retinal colobomas, axenfeld anomaly, ptosis, cataract, and retinal aplasia [42]. Without advanced genetic testing, MWS case numbers are likely under-reported, since the survival of MWS patients into adulthood up to as much as 60 years old is possible [43]. Nonetheless, there is no specific treatment for MWS because the defects result from mutations affecting embryonic development [307].

7.2. Pitt–Hopkins Syndrome

Pitt–Hopkins syndrome (PTHS) is known by the TCF4 mutation and chromosome 18 aberrations (Table 2). Common presentations of PTHS patients are severe motor and mental retardation, typical facial features, and breathing anomalies, which share phenotypic similarities to Angelman syndrome (associated with UBE3A) and Mowat–Wilson syndrome (MWS) (associated with ZEB2) (Table 3) [309]. TCF4 is a histone deacetylase that regulates the chromatin structure and transcription during neurogenesis. Transcriptome studies of TCF4 knockdown in neuroblastoma cell lines have demonstrated the abrogation of several pathways, such as in EMT and TGF-β signaling. The link of TCF4 defects with neurogenesis has been explored in neural precursor proliferation and differentiation as well as axonal migration and dendritogenesis in synapse formation. In GFAP-cre::Tcf4Fl/Fl neural-specific Tcf4 knockout mice, neural precursor cells experienced a severe differentiation delay and displayed shortened apical dendrites with increased branching [142]. TCF4 was found to bind MATH1, a proneural transcription factor of rhombic lip progenitor neurons that were required for hindbrain establishment [310]. Additionally, TCF4 is highly expressed in the adult hippocampal dentate gyrus, one of the few brain regions where neural stem/progenitor cells generate new functional neurons throughout life. Scientists also assayed whether histone deacetylase (HDAC) inhibition would be sufficient to normalize the enhanced hippocampal long-term potentiation (LTP) phenotype [311]. Surprisingly, treatment with the HDAC inhibitor trichostatin resulted in significantly reduced LTP in the Tcf4+/− mouse hippocampus. Moreover, Hdac2 knockdown and subchronic treatment with HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) were sufficient to improve learning and memory in Tcf4+/− mice, thus indicating that cognition in PTHS model mice can be improved by HDAC inhibitors through normalization of synaptic plasticity.

7.3. Rett Syndrome

Rett syndrome (RTT) is an unusual CVI in which visual impairment is mainly caused by defects in the brain instead of dysfunctions in the eyes [312]. Patients have difficulty recognizing unfamiliar objects [226] and their vision is selectively focused on specific objects [227]. It is difficult for them to search for specific objects in the visual field because they are unable to distribute their attention across it or shift attention from the distractors [228].
RTT is a rare neurodevelopmental disorder with normal initial development caused by loss-of-function mutations in the X-linked gene, methyl CpG binding protein 2 (MECP2) (Table 2), which encodes a DNA and histone methylation reader [143] with both transcription repressive and activating functions mediated through interactions with different cofactors [313]. In addition to methylated DNA and histones, MeCP2 also binds to RNA and is involved in mRNA splicing, miRNA processing, and other non-coding RNA-associated processes. Despite being an intrinsically disordered protein with a low content of secondary and tertiary structures [314], MeCP2 can be divided into several functional domains, namely N-terminal (NTD), methyl binding (MBD), intervening (ID), transcription repression (TRD), NCoR interaction (NID), and C-terminal (CTD) [315]. Such structural organization facilitates MBD-dependent binding to methylated DNA and is essential for interaction with transcriptional repressor mSin3A [316], nuclear receptor corepressor (NCoR) [317], Ski [318], putative Xenopus protease p20 [319], and DNA methyltransferase DNMT1 [320]. TRD is a secondary structure regulator recruitment platform for Ski [318], Ets family transcription factor PU.1 [321], splicing factors formin-binding protein (FBP) [322], Brahma (Brm) [323], RNA [324], and Y box-binding protein 1 (YB-1) of RNA splicing machinery [325]. NID functions to recruit the NCoR1/2 co-repressor complex to methylated DNA [326] but the targeted genomic sites remain unknown [327]. Most studies focus on mutations in NTD and MBD because of their importance for DNA and RNA binding [328]. NTD modulates the interaction with DNA [329] and influences the turnover rate of MeCP2 [330]. Although NTD of longer MeCP2-E1 isoform is encoded from exon 1 and NTD of shorter MeCP2-E2 isoform is encoded from exon 2, mutations in exon 1 would also reduce translation of MeCP2-E2 [331]. Insertions and deletions in exon 1 mainly occur at the polyalanine and polyglycine regions which are encoded from polyGGC and polyGGA stretches, respectively. Missense mutations are rarely reported but cause clinical severity. A2V mutation affects co- and post-translational modifications, reducing N-acetylation and polyalanine, eventually causing higher proteasomal degradation [330]. A59P mutation affects the overall conformation of the protein backbone, which influences MBD expression [332]. There has been only one RTT patient with mutations in exon 2 ever reported [333], so more studies are needed to confirm the pathological mechanisms.
Since MBD is the only domain with a well-defined tertiary structure in MeCP2, it is solely responsible for methylation-specific binding [315], which affects the stability [334] and affinity [333] of DNA and RNA binding. Although the change in folding free energy caused by missense mutations is small in absolute magnitude, ranging from a fraction of a kcal/mol up to more than 1 kcal/mol, the effect is significant because the total folding free energy in wild type is only about 2 kcal/mol [335]. Making up 45% RTT cases [336], missense mutations in MBD can be divided into three categories based on the stability of protein structure, namely reduced binding affinity with less stable structures (such as L100V, S134C, P152R, and D156E), reduced binding affinity without structural change (such as R106W, R106Q, R133H, R133C, F155S, T158M, and T158A) [337], and reduced binding affinity with more stable but less flexible structures (such as R111G and A140V) [338].
MeCP2 is expressed in all tissues but reaches near-histone abundance in neurons (~16 × 106 molecules per nucleus) [338]. While MeCP2 mostly binds to chromatin and localizes within highly nuclease-accessible regions, a fraction of MeCP2 molecules can loosely bind to the nucleosome-depleted regions [143]. Moreover, several studies have shown that MeCP2 can regulate alternative splicing, which is a strict requirement for almost all neurotransmitter receptors and channels [325]. Although the molecular mechanisms of genetic disruptions in brain and eye functions remain obscure [334], it is believed that MeCP2 affects the maturation of the CNS because it is expressed earlier in the ontogenetically older structures, such as the brainstem, than in the newer structures, such as the hippocampus or cerebral cortex [339]. Neurons seem to be less mature in RTT patients based on the decrease in brain size [340], neuronal size [341], and dendritic branching instead of neuron number [342]. Therefore, patients with RTT display microcephaly [343], seizures [344], and developmental regression in speech and hand skills after initially normal development [345].
For disease management, although there have not been any FDA-approved treatments for RTT, gene therapy experiments in mice showed restoration of MeCP2 reverses pathology even at adult stages (Table 5) [346]. Vectors for gene therapy are mainly based on retroviruses, including lentivirus and adeno-associated virus (AAV) [347]. However, lentivirus cannot cross the blood–brain barrier (BBB) and its spread beyond the injection site is limited [348], so AAV is a better choice for nervous system disorders [349] as it can mediate long-term transgene expression [350]. Nonetheless, it should be noted that AAV-mediated gene delivery may cause toxicity due to the uncontrolled expression level of the transgene [351], and any overexpression of MeCP2 would impair brain functions [352]. Given that RTT is a disorder caused by the lack of neuronal maturation, treatment during infancy could improve the effects and reduce the amount of treatments required. In addition, since the deletion of MeCP2 in mature neurons is deleterious [353], long-lasting treatment effects are required. CRISPR/Cas9-mediated mutation correction may be a potential treatment [354], but more studies are still needed in order to reach clinical requirements.

7.4. Cockayne Syndrome

Cockayne syndrome (CS) is an autosomal recessive multisystem degenerative disorder caused by the mutations in two complementary genes, namely the excision repair cross-complementation group 6 (ERCC6) (80%) [144] and the excision repair cross-complementation group 8 (ERCC8) (20%) (Table 2) [145]. ERCC6, also known as Cockayne syndrome B (CSB), is a member of the SWI2/SNF2 family of chromatin remodeling complexes [368], involved in mitochondrial DNA (mtDNA) damage repair, base excision repair (BER), interstrand crosslink (ICL) repair, and double-strand break (DSB) repair. All of the components in the mitochondrial transcription apparatus, including mitochondrial RNA polymerase, transcription factor 2B, and mitochondrial transcription factor A (TFAM), can stimulate ATPase activity of CSB, which is required for mtDNA repair [369]. CSB stimulates the BER pathway to repair oxidatively-induced DNA damage by interacting with poly(ADP-ribose) polymerase 1 (PARP-1) [370] or apurinic/apyrimidinic (AP) endonuclease (APE1) [371]. CSB stimulates the exonuclease activity on single- and double-stranded oligonucleotides of nitrogen mustard 1A (SNM1A) to unhook ICL [372]. The ATPase activity of CSB abrogated by mutations impairs [373] homologous recombination (HR) caused by BRCA1 and nonhomologous end joining (NHEJ) promoted by 53BP1 and Rif1 [374]. Although mutations in CSB impair DNA repair, cells with CSB mutations prematurely enter the G2/M stage of the cell cycle because of the reduction in DNA damage responses mediated by ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) [374].
The Cockayne syndrome A (CSA) protein encoded by ERCC8 belongs to the WD40 repeat family, and binds to CUL4 of the cullin ring ubiquitin ligase complex (CRL4) through the DDB1 adaptor to regulate DNA repair via ATF3, CSB, and p53 [375]. The removal of ATF3, the product of an immediate early gene (IEG), prevents the recruitment of RNA polymerase (Pol II) to DNA damage sites, which blocks the restart of RNA synthesis [376]. Moreover, CSB is another CRL4CSA ubiquitination target, which reversely releases the inhibition of CRL4CSA by the COP9 signalosome complex (CSN) [377]. CRL4CSA as well as CRL4CSB can also stimulate the ubiquitination of tumor suppressor p53 [378], which mediates the balance between the removal of highly damaged cells via apoptosis [379] and the survival of slightly damaged cells after proper repair [380]. By establishing a negative feedback loop, p53 can transcriptionally affect CSB via binding to the promoter region, which results in the maintenance of a steady level of p53.
Clinically, CS spans a phenotypic spectrum of severity, including Cockayne syndrome type I (CS type I), Cockayne syndrome type II (CS type II), and Cockayne syndrome type III (CS type III) [230]. CS type I is a moderate and the most prevalent (85% of cases) [60] form, with normal prenatal growth and 16.1 years of mean age at death [55], mainly caused by mutations in CSA [60]. CS type II is a severe and early-onset form with growth failure at birth and five years of mean age at death, mainly caused by CSB, which participates in more DNA repair pathways [60]. Cerebro-oculo-facio-skeletal (COFS) syndrome is a more severe subtype of CS type II with the presence of arthrogryposis [381]. CS type II is a mild and late-onset form with symptoms occurring from two years after birth, with a mean death age of 30.3 years [60]. Premature ageing caused by defects in DNA repair lead to ageing-related abnormalities, such as neurodevelopmental defect and loss of retinal cells [382]. Therefore, patients with CS selectively exhibit abnormal myelination in the brain (93%), intracranial calcifications (63%) [61], epilepsy (5–10%) [230], pigmentary retinopathy (60–100%), and cataracts (15–36%) [383].
Additionally, some CS patients exhibit the combined phenotype with xeroderma pigmentosum neurological disease (XP/CS) [61]. While XP is primarily a neurodegenerative disease caused by defects in the nucleotide excision repair (NER) system, and CS appears to be a neurodevelopmental disease, clinical features of patients with XP/CS intertwine. There are seven XP complementation groups: XPA, XPB, XPC, XPD, XPE, XPF, XPG, and XPV. XP/CS is often associated with XPB (encoded by ERCC3), XPD (encoded by ERCC2), XPF (encoded by ERCC4), and XPG (encoded by ERCC5) [61]. Patients with XP/CS are susceptible to acute sunburns after minimum exposure and are likely to have facial freckling or pigmentary changes that are uncommon in pure CS [61].
In terms of disease management, there are currently no FDA-approved drugs or curable treatments for CS. Since survival beyond childhood is unusual, the main goal of management is to maximize quality of life. Presently, there is one study attempting to correct genes with CRISPR/Cas9 in iPSCs reprogrammed from the fibroblasts of a CS patient, and the results showed some recovery of DNA repairability (Table 5) [360]. More studies are needed for better management of CS.

7.5. X-linked Alpha Thalassaemia Mental Retardation

X-linked alpha thalassaemia mental retardation (ATR-X) syndrome is a rare human congenital X-linked recessive neurodevelopmental disease primarily affecting males. ATR-X presents with a wide range of symptoms, including developmental impairment, intellectual disability, growth impairment, gastrointestinal manifestations, genital anomalies, hypotonia, seizures [384], and ocular defects [241]. Susceptible loci related to the neurodevelopmental disease are mostly involved in chromatin or transcriptional regulation, including chromatin remodelers altering nucleosome spacing or facilitating histone variant exchange using energy from ATP hydrolysis [385]. The ATRX locus encodes two major transcripts encoding transcriptional regulators, one full-length protein and one truncated isoform lacking an ATP-dependent remodeling domain [146]. ATR-X and death domain associated protein (DAXX) interact with each other via the regions of ATRX-DNMT3-DNMT3L (ADD) and SNF2-ATPase domains. ATRX-DAXX deposits the histone variant H3.3 at pericentric and telomeric repeats [386] mediated by promyelocytic leukemia protein (PML) [387] to the heterochromatin histone mark, H3K9me3, by either indirectly interacting with heterochromatin protein 1 (HP1α) [388] or methyl-CpG-binding protein (MeCP2) [389], or by directly binding to H3K9me3 with ADD [390]. H3.3K9me3 recruits more ATRX-DAXX-H3.3 complexes, which creates a positive feedback loop to silence non-coding telomeres [391]. Recently, several studies showed that ATRX promotes telomere cohesion between sister telomeres to mediate the repair of double-strand DNA breaks [392]. In brief, ATRX regulates the transcription of telomeres via histone variants.
Patients with ATR-X syndrome have reduced ATRX protein levels [393] which are mainly caused by missense mutations in the ADD domain (50%) [394] and SNF2-ATPase (30%) [395]. ADD mutations occur in the N-terminus of both transcripts and reduce localization to chromocenters [393], whereas SNF2-ATPase mutations only occur in the C-terminus of full-length protein and cause attenuation of ATPase activity and the reduction of localization to PML nuclear bodies [396].
In ATRX-null cells, the increase of telomeric repeat-containing RNA (TERRA) enhances the formation of RNA-DNA hybrids (R-loops) and stabilizes G-quadruplex secondary DNA (G4 DNA) [397], which are the structures formed by tandem repeat DNA elements such as variable number tandem repeats (VNTRs) [398]. Both R-loops and G4 DNA structures can recruit ATRX to re-establish a normal chromatin structure, but they cannot be resolved effectively in the absence of ATRX [397]. Delayed cell-cycle progression is observed in the S and G2/M phases of the cell cycle [399]. In the mid-late S-phase, genomic instability is enriched at telomeres and pericentromeric heterochromatin [399] and in the G2/M phase, sister chromatid cohesion and congression defects affect separation at anaphase [400]. To sum up, the loss of ATRX causes delay cell cycle and genomic instability.
In ATR-X syndrome, microcephaly occurs in 75% of the cases [233] and ocular defects are present in ~25% of the cases (Table 3) [234]. The delayed cell cycle reduces the stability of the neural progenitor cell (NPC) pool, which leads to a reduction in upper layer neurons and a decrease in brain size [401]. Therefore, most ATR-X patients develop postnatal microcephaly [233] and patients with a higher number of variant number tandem repeats exhibit more severe α-thalassemia [402]. An in vivo study also found that a reduced ATRX protein level leads to the loss of amacrine and horizontal cells [234] and defects in retinal bipolar cells by affecting post-replicative neuronal integrity in the CNS [403]. Transcriptional deficits associated with ATRX mutations are the main molecular pathological mechanism of ATR-X syndrome.
For clinical management, so far there are no FDA-approved therapies for ATR-X syndrome. 5-aminolevulinic acid (5-ALA) can be a potential therapeutic strategy to target G4 DNA, which has shown promising results in ATR-X model mice [404] and Japanese patients [405]. However, more studies are required.

8. Compromised Peroxisomes

Cellular stress arises from either the overloading of misfolded proteins or the clearance of malfunctioned peroxisome debris (Figure 1). Peroxisome component gene mutations have been found to cause diseases such as Zellweger spectrum disorders (ZSDs) including Refsum disease.

8.1. Zellweger Spectrum Disorder

Zellweger spectrum disorders (ZSDs) are a group of diseases that include such disease entities as Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD). The diseases result from different gene mutations but have overlapping clinical presentations, with ZS being the most severe and IRD the least severe form. Individuals with ZS typically do not survive past the first year after birth and develop hypotonia, cataracts, nystagmus, seizures, renal and hepatic problems, and craniofacial dysmorphia in their lifespan. NALD patients can survive until teenage years and IRD patients even until adulthood, however, symptoms such as developmental delay, hypotonia, chorioretinopathy, sensorineural hearing loss, and hepatomegaly still emerge in late infancy and persist in the long term [406,407].
The PEX gene family encodes peroxins whose functions are crucial for peroxisome biogenesis and peroxisomal transport, and the mutations in PEX genes are often implicated in ZS [147]. The most prevalent PEX mutations occur in PEX1 (58.9%), PEX6 (15.9%), and PEX12 (7.1%) genes. PEX1 and PEX6 encode cytosolic AAA ATPase protein family members, while PEX12 encodes peroxisomal membrane protein [408]. PEX1 and PEX6 form a heterodimer with ATPase activity by interacting via their C-terminal nucleotide-binding domains. The ATPase activity is required for translocation and unfolding the substrates for further hydrolysis. It has been demonstrated that yeast growing on oleic acid media requires the intact pore loop of the PEX1/6 D2 domain to execute oleic acid β-oxidation within the peroxisome [409]. In mammals, the branched and very long chain fatty acids (VLCFAs, C > 22) are catabolized mostly in mitochondria, but the proper peroxisome function is required to clear out the excessive VLCFA metabolites. In ZSDs, the PEX mutations often jeopardize the peroxisomal function in β-oxidation of the VLCFAs. Docosahexaenoic acid (DHA) is one of such fatty acids, and the biogenesis and catabolizing of DHA are crucial for neuronal health, as its deficiency is associated with visual impairment [410].
The accumulation of VLCFA and the absence of plasminogen synergistically modulates gliosis, inflammation, and axonopathy in Pex7:Abcd1 double KO mice, resulting in tremors and hindlimb ataxia [411]. To summarize, altering such pathways as β-oxidation of methyl-branched fatty acids (e.g., pristanic acid), dihydrocaffeic acid (DHCA), tetrahydrocannabinolic acid (THCA), α-oxidation of fatty acids such as phytanic acid [412], fatty acid racemization, ether phospholipid (plasmalogen) biosynthesis, detoxification of glyoxylate, and reactive oxygen species is associated with both brain damage and visual impairment [413].

8.2. Refsum Disease

Refsum disease (RD) is a rare autosomal recessive hereditary motor and sensory neuropathy type IV caused by deficient oxidation of phytanic acids (PA) [414]. Despite the polyisoprenoid-like structure of PA, in vivo studies in humans and animals indicate that PA is derived only from dietary sources, especially from dairy products and ruminant fats, instead of endogenous synthesis, in a way similar to the synthesis of isoprenoids from acetate via the mevalonate pathway [415]. Although the mechanisms of the elevated levels of PA resulting in disease remain unknown, several susceptibility genes have been discovered [416].
There are two subtypes of RD: adult Refsum disease (ARD) [148] and infantile Refsum disease (IRD) [417]. ARD is caused by the deficiency of phytanoyl-CoA hydroxylase (PAHX) encoded by PHYH (90%) or the type 2 peroxisomal targeting signal (PTS2) receptor encoded by PEX7 (10%) (Table 2). PAHX requires 2-oxoglutarate, Fe2+ and ascorbate to catalyze the first step in the α-oxidation of PA [418] in peroxisomes [419]. PAHX is a typical PTS2 protein with an Xn–RL–X5–HL–Xn consensus motif near the N-terminus to be recognized by the PTS2-receptor. PAHX-PTS2 receptors are then recognized by the proteins on the peroxisomal membrane, followed by the translocation of PAHX across the peroxisomal membrane and the recycling of the PTS2 receptors back to the cytosol [415]. IRD is associated with the mutations in at least 12 different PEX class genes [420], including PEX1, PEX2, and PEX26 encoding ATPases, which import cytosolic proteins into peroxisomes [69]. In addition to PA, accumulation of other substrates, primarily VLCFA and di- and tri-hydroxycholestanoic acid, and pipecolic acid, also occur in IRD [420]. Therefore, IRD is more severe, with the onset occurring in early infancy [67] and a survival of only 5–13 years [69], while ARD is milder with the onset in 2–7 years [67] and a survival of 4–5 decades [69].
The main clinical features of RD include ophthalmology (100%) and polyneuropathy (70%) (Table 3) [192]. Retinitis pigmentosa (RP) with constricted visual fields and night blindness was observed in all patients [421], mostly before additional clinical symptoms [68]. Similar to other forms of rod-cone dystrophy, cataracts often develop earlier than age-related cataracts, but surgery may be constrained by poor pupillary dilatation caused by atrophy of the iris dilator muscle [417]. Polyneuropathy is a chronic and progressive mixed-motor and sensory type, eventually leading to muscular atrophy and weakness [69]. Additionally, protein levels increase in the CSF without an increase in the number of cells [422]. The main purpose of treatment is to reduce PA levels in plasma and tissue. Dietary restriction in PA, including beef, lamb, and dairy products, is recommended to be 10–20 mg/day compared to the normal average intake of 50–100 mg/day [414]. In order to achieve a rapid and significant decrease in PA levels, plasma exchange should also be taken into consideration [423]. Although PA levels are not normalized completely in most patients, the reduction of PA still shows definite clinical improvement [424].

9. Channelopathies

Channelopathies, including neuromyelitis optica spectrum disorder (NMOSD), are a group of disorders of the nervous system resulting from the dysfunction of ion channels. NMOSD is an autoimmune disease characterized by optic neuritis (ON), longitudinally extensive transverse myelitis (LETM), area postrema syndrome, and acute brainstem syndrome, affecting the optic nerve and spinal cord (Table 3). Compared to MS, ON is more likely to have initial simultaneous bilateral manifestations, recurrence, and poorer long-term visual outcomes [425]. LETM is often accompanied by profound bilateral motor weakness, prominent dysesthesias, and sensory level sphincter dysfunction [426]. Area postrema syndrome features nausea [427], and brainstem syndromes often include vomiting, hiccups, facial nerve palsy, oculomotor dysfunction, and vertigo [237]. Because NMOSD was once regarded as a subtype of MS, early attempts to find its susceptibility loci focused on the human leukocyte antigen (HLA) region. However, various studies have found different susceptibility alleles between MS and NMOSD in HLA-A [167], B [167], C [168], DPB1 [80], DRB1 [168,169,170,171,428], DQA1 [168,172], DQB [171], and DQB1 (Table S3) [171,174]. Eventually, NMOSD was recognized as a distinct disease because of the discovery of antibody biomarkers (NMO-IgG) [429]. Identified within NMO-IgG, pathogenic water channel aquaporin 4 (AQP4) antibodies, a T cell-dependent immunoglobulin subclass (IgG1), were detected in 60–90% of NMO patients [430]. AQP4 is expressed mostly in the astrocytes of the CNS which happen to be at the interface of blood vessels and neuron systems [431]. Moreover, AQP4 is also expressed in the supportive Müller cells of the retina [432]. After entering the CNS from plasma [433] or secreted by plasma cells in the CSF [434], AQP4-IgGs bind preferentially to orthogonal arrays of particles (OAPs), the supramolecular assemblies of AQP4 tetramers, and initially lead to complement-dependent cytotoxicity (CDC) under the presence of complement or antibody-dependent cellular cytotoxicity (ADCC) under the presence of the effector cells, such as natural killer cells (NK cells) [435]. Subsequent astrocyte cytotoxicity caused by inflammatory events, such as granulocyte infiltration or macrophage infiltration [436], leads to the loss of AQP4 and the astrocyte marker glial fibrillary acidic protein (GFAP) as well as the disruption of the blood–brain barrier (BBB), followed by oligodendrocyte and neuronal cell death. Therefore, SNPs in AQP4 [156] or T cell marker genes (such as CD58 [159,162,163,164], CD127 [165], CD226 [166], and NECL2 [155]) and susceptible loci related to complement system (such as CFB [149] and C4B [175]) or NK cell markers (such as PRF1 [151]) can be associated with susceptibility to NMOSD.
Approximately 90% of NMOSD patients exhibit a relapsing course: 50% within 1 year and 90% within 5 years, with the risk not diminishing with age [437]. Therefore, long-term immunotherapy is usually conducted soon after diagnosis to avoid disability accrual. There are only three treatments for NMOSD approved by the FDA, but only for adult patients with AQP4-IgG+, including a terminal complement protein (C5) inhibitor Soliris (eculizumab) injection in 2019 [438], an afucosylated IgG1 kappa monoclonal antibody Uplizna (inebilizumab-cdon) injection targeting CD19 [439], and a humanized monoclonal antibody Enspryng (satralizumab-mwge) targeting the interleukin-6 (IL-6) receptor in 2020 [436]. Additionally, monoclonal antibody rituximab-targeting CD20 [440], purine analog azathioprine-blocking deoxyribonucleic acid synthesis during B and T cell proliferation [441], and mycophenolate mofetil (MMF), the prodrug of mycophenolic acid [442], have been widely used off-label to prevent relapses. Tocilizumab, the first humanized anti-IL-6 receptor monoclonal antibody, has demonstrated safety and efficacy in an open-label, multicentre, randomized phase 2 trial [443]. Currently, an open-label phase I clinical trial is ongoing, using T lymphocytes with genetic modification of chimeric antigen receptors (CAR) targeting B cell maturation antigen (BCMA) in AQP4-IgG-positive patients, and the first results are expected in 2023 ([361]). However, since the molecular mechanisms of pathology in AQP4-IgG-negative disease remain unclear [444], initiation of immunosuppressive therapy is recommended [445].

10. Conclusions

CVIs are a type of comorbidities affecting both visual and CNS functions due to common mechanisms underlying the functionality of the eye and the brain. While CVIs are often underdiagnosed, the genetic background underlying CVIs deserves more clinical attention and advanced technology investment. Fortunately, the transactions between GWAS and PheWAS fostered big data that enables physicians and scientists to revisit the genetics aspect and to develop intervention strategies for CVIs. With this review, readers could acquire the multifaceted perspectives of the pathomechanisms in these rare diseases.

Supplementary Materials

Author Contributions

Conceptualization, K.-J.C. and H.-Y.W.; methodology, K.-J.C. and H.-Y.W.; software, Y.-C.C. and D.-H.L.; validation, A.A.Y. and S.-J.C.; formal analysis, Y.-J.H. and A.A.Y.; investigation, K.-J.C. and H.-Y.W.; resources, T.-C.L. and Y.-C.Y.; data curation, S.-J.C. and H.-J.D.; writing—original draft preparation, K.-J.C. and H.-Y.W.; writing—review and editing, A.A.Y. and Y.-J.H.; visualization, K.-J.C. and C.-Y.L.; supervision, C.-C.H. and C.-L.K.; project administration, D.-H.L. and D.-K.H.; funding acquisition, C.-C.H. and C.-L.K. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Taipei Veterans General Hospital (VGHTPE), grant number V111C-189 and V111C-085, and Ministry of Science and Technology (MOST), grant number MOST 108-2314-B-010-042-MY3 and MOST 111-2314-B-A49-057-MY3.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References

  1. Boonstra, N.; Limburg, H.; Tijmes, N.; van Genderen, M.; Schuil, J.; van Nispen, R. Changes in causes of low vision between 1988 and 2009 in a Dutch population of children. Acta Ophthalmol. 2012, 90, 277–286. [Google Scholar] [CrossRef] [PubMed]
  2. Flanagan, N.M.; Jackson, A.J.; Hill, A.E. Visual impairment in childhood: Insights from a community-based survey. Child. Care Health Dev. 2003, 29, 493–499. [Google Scholar] [CrossRef] [PubMed]
  3. McConnell, E.L.; Saunders, K.J.; Little, J.A. What assessments are currently used to investigate and diagnose cerebral visual impairment (CVI) in children? A systematic review. Ophthalmic Physiol. Opt. 2021, 41, 224–244. [Google Scholar] [CrossRef]
  4. Lueck, A.H.; Dutton, G.N.; Chokron, S. Profiling Children With Cerebral Visual Impairment Using Multiple Methods of Assessment to Aid in Differential Diagnosis. Semin. Pediatr. Neurol. 2019, 31, 5–14. [Google Scholar] [CrossRef]
  5. Surguchev, A.; Surguchov, A. Conformational diseases: Looking into the eyes. Brain Res. Bull. 2010, 81, 12–24. [Google Scholar] [CrossRef] [PubMed]
  6. Maurage, C.A.; Ruchoux, M.M.; De Vos, R.; Surguchov, A.; Destee, A. Retinal involvement in dementia with Lewy bodies: A clue to hallucinations? Ann. Neurol. 2003, 54, 542–547. [Google Scholar] [CrossRef]
  7. Jonsson, H.; Sulem, P.; Kehr, B.; Kristmundsdottir, S.; Zink, F.; Hjartarson, E.; Hardarson, M.T.; Hjorleifsson, K.E.; Eggertsson, H.P.; Gudjonsson, S.A.; et al. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature 2017, 549, 519–522. [Google Scholar] [CrossRef]
  8. Junemann, S.; Sedlazeck, F.J.; Prior, K.; Albersmeier, A.; John, U.; Kalinowski, J.; Mellmann, A.; Goesmann, A.; von Haeseler, A.; Stoye, J.; et al. Updating benchtop sequencing performance comparison. Nat. Biotechnol. 2013, 31, 294–296. [Google Scholar] [CrossRef]
  9. Jabara, C.B.; Jones, C.D.; Roach, J.; Anderson, J.A.; Swanstrom, R. Accurate sampling and deep sequencing of the HIV-1 protease gene using a Primer ID. Proc. Natl. Acad. Sci. USA 2011, 108, 20166–20171. [Google Scholar] [CrossRef]
  10. Lou, D.I.; Hussmann, J.A.; McBee, R.M.; Acevedo, A.; Andino, R.; Press, W.H.; Sawyer, S.L. High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing. Proc. Natl. Acad. Sci. USA 2013, 110, 19872–19877. [Google Scholar] [CrossRef]
  11. Povysil, G.; Heinzl, M.; Salazar, R.; Stoler, N.; Nekrutenko, A.; Tiemann-Boege, I. Erratum: Increased yields of duplex sequencing data by a series of quality control tools. NAR Genom. Bioinform. 2021, 3, lqab014. [Google Scholar] [CrossRef] [PubMed]
  12. Lunde, H.M.B.; Assmus, J.; Myhr, K.M.; Bo, L.; Grytten, N. Survival and cause of death in multiple sclerosis: A 60-year longitudinal population study. J. Neurol. Neurosurg. Psychiatry 2017, 88, 621–625. [Google Scholar] [CrossRef] [PubMed]
  13. Elhassanien, A.F.; Alghaiaty, H.A. Joubert syndrome: Clinical and radiological characteristics of nine patients. Ann. Indian Acad. Neurol. 2013, 16, 239–244. [Google Scholar] [CrossRef]
  14. Dempsey, J.C.; Phelps, I.G.; Bachmann-Gagescu, R.; Glass, I.A.; Tully, H.M.; Doherty, D. Mortality in Joubert syndrome. Am. J. Med. Genet. A 2017, 173, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
  15. Brancati, F.; Dallapiccola, B.; Valente, E.M. Joubert Syndrome and related disorders. Orphanet J. Rare Dis. 2010, 5, 20. [Google Scholar] [CrossRef]
  16. Kroes, H.Y.; Monroe, G.R.; van der Zwaag, B.; Duran, K.J.; de Kovel, C.G.; van Roosmalen, M.J.; Harakalova, M.; Nijman, I.J.; Kloosterman, W.P.; Giles, R.H.; et al. Joubert syndrome: Genotyping a Northern European patient cohort. Eur. J. Hum. Genet. 2016, 24, 214–220. [Google Scholar] [CrossRef]
  17. Phelps, I.G.; Dempsey, J.C.; Grout, M.E.; Isabella, C.R.; Tully, H.M.; Doherty, D.; Bachmann-Gagescu, R. Interpreting the clinical significance of combined variants in multiple recessive disease genes: Systematic investigation of Joubert syndrome yields little support for oligogenicity. Genet. Med. 2018, 20, 223–233. [Google Scholar] [CrossRef]
  18. Nuovo, S.; Bacigalupo, I.; Ginevrino, M.; Battini, R.; Bertini, E.; Borgatti, R.; Casella, A.; Micalizzi, A.; Nardella, M.; Romaniello, R.; et al. Age and sex prevalence estimate of Joubert syndrome in Italy. Neurology 2020, 94, e797–e801. [Google Scholar] [CrossRef]
  19. Beales, P.; Elcioglu, N.; Woolf, A.; Parker, D.; Flinter, F. New criteria for improved diagnosis of Bardet-Biedl syndrome: Results of a population survey. J. Med. Genet. 1999, 36, 437–446. [Google Scholar] [CrossRef]
  20. O’Dea, D.; Parfrey, P.S.; Harnett, J.D.; Hefferton, D.; Cramer, B.C.; Green, J. The importance of renal impairment in the natural history of Bardet-Biedl syndrome. Am. J. Kidney Dis. 1996, 27, 776–783. [Google Scholar] [CrossRef]
  21. Klein, D.; Ammann, F. The syndrome of Laurence-Moon-Bardet-Biedl and allied diseases in Switzerland: Clinical, genetic and epidemiological studies. J. Neurol. Sci. 1969, 9, 479–513. [Google Scholar] [CrossRef]
  22. Beales, P.L.; Warner, A.M.; Hitman, G.A.; Thakker, R.; Flinter, F.A. Bardet-Biedl syndrome: A molecular and phenotypic study of 18 families. J. Med. Genet. 1997, 34, 92–98. [Google Scholar] [CrossRef] [PubMed]
  23. Farag, T.I.; Teebi, A.S. Bardet-Biedl and Laurence-Moon syndromes in a mixed Arab population. Clin. Genet. 1988, 33, 78–82. [Google Scholar] [CrossRef] [PubMed]
  24. Forsythe, E.; Beales, P.L. Bardet-Biedl syndrome. Eur. J. Hum. Genet. 2013, 21, 8–13. [Google Scholar] [CrossRef]
  25. Marshall, J.D.; Bronson, R.T.; Collin, G.B.; Nordstrom, A.D.; Maffei, P.; Paisey, R.B.; Carey, C.; Macdermott, S.; Russell-Eggitt, I.; Shea, S.E.; et al. New Alstrom syndrome phenotypes based on the evaluation of 182 cases. Arch. Intern. Med. 2005, 165, 675–683. [Google Scholar] [CrossRef]
  26. Marshall, J.D.; Maffei, P.; Collin, G.B.; Naggert, J.K. Alstrom syndrome: Genetics and clinical overview. Curr. Genom. 2011, 12, 225–235. [Google Scholar] [CrossRef]
  27. Tahani, N.; Maffei, P.; Dollfus, H.; Paisey, R.; Valverde, D.; Milan, G.; Han, J.C.; Favaretto, F.; Madathil, S.C.; Dawson, C.; et al. Consensus clinical management guidelines for Alstrom syndrome. Orphanet J. Rare Dis. 2020, 15, 253. [Google Scholar] [CrossRef]
  28. Jacob, J.; Robertson, N.J.; Hilton, D.A. The clinicopathological spectrum of Rosenthal fibre encephalopathy and Alexander’s disease: A case report and review of the literature. J. Neurol. Neurosurg. Psychiatry 2003, 74, 807–810. [Google Scholar] [CrossRef]
  29. Paty, D.W.; Boiko, A.N.; Vorobeychi, G. Multiple sclerosis with early and late disease onset. In Blue Books of Practical Neurology; Elsevier: Amsterdam, The Netherlands, 2003; Volume 27, pp. 285–302. [Google Scholar]
  30. Midgard, R.; Albrektsen, G.; Riise, T.; Kvåle, G.; Nyland, H. Prognostic factors for survival in multiple sclerosis: A longitudinal, population based study in Møre and Romsdal, Norway. J. Neurology. Neurosurg. Psychiatry 1995, 58, 417–421. [Google Scholar] [CrossRef]
  31. Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. 2020, 26, 1816–1821. [Google Scholar] [CrossRef]
  32. Bostrom, I.; Stawiarz, L.; Landtblom, A.M. Sex ratio of multiple sclerosis in the National Swedish MS Register (SMSreg). Mult. Scler. 2013, 19, 46–52. [Google Scholar] [CrossRef] [PubMed]
  33. Srivastava, S.; Waldman, A.; Naidu, S. Alexander Disease. In GeneReviews(®); Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
  34. Yoshida, T.; Sasaki, M.; Yoshida, M.; Namekawa, M.; Okamoto, Y.; Tsujino, S.; Sasayama, H.; Mizuta, I.; Nakagawa, M.; Alexander Disease Study Group in Japan. Nationwide survey of Alexander disease in Japan and proposed new guidelines for diagnosis. J. Neurol. 2011, 258, 1998–2008. [Google Scholar] [CrossRef] [PubMed]
  35. Bassuk, A.G.; Joshi, A.; Burton, B.K.; Larsen, M.B.; Burrowes, D.M.; Stack, C. Alexander disease with serial MRS and a new mutation in the glial fibrillary acidic protein gene. Neurology 2003, 61, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
  36. Pareyson, D.; Fancellu, R.; Mariotti, C.; Romano, S.; Salmaggi, A.; Carella, F.; Girotti, F.; Gattellaro, G.; Carriero, M.R.; Farina, L.; et al. Adult-onset Alexander disease: A series of eleven unrelated cases with review of the literature. Brain 2008, 131 Pt 9, 2321–2331. [Google Scholar] [CrossRef] [PubMed]
  37. Kuhn, J.; Cascella, M. Alexander Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
  38. Goldman, L.; Schafer, A.I. Goldman-Cecil Medicine E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2015. [Google Scholar]
  39. Bonkowsky, J.L.; Nelson, C.; Kingston, J.L.; Filloux, F.M.; Mundorff, M.B.; Srivastava, R. The burden of inherited leukodystrophies in children. Neurology 2010, 75, 718–725. [Google Scholar] [CrossRef] [PubMed]
  40. Numata, Y.; Gotoh, L.; Iwaki, A.; Kurosawa, K.; Takanashi, J.; Deguchi, K.; Yamamoto, T.; Osaka, H.; Inoue, K. Epidemiological, clinical, and genetic landscapes of hypomyelinating leukodystrophies. J. Neurol. 2014, 261, 752–758. [Google Scholar] [CrossRef] [PubMed]
  41. Xia, J.; Wang, L. Pelizaeus-Merzbacher disease: Molecular diagnosis and therapy. Intractable Rare Dis. Res. 2013, 2, 103–105. [Google Scholar] [CrossRef]
  42. Ivanovski, I.; Djuric, O.; Caraffi, S.G.; Santodirocco, D.; Pollazzon, M.; Rosato, S.; Cordelli, D.M.; Abdalla, E.; Accorsi, P.; Adam, M.P.; et al. Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care. Genet. Med. 2018, 20, 965–975. [Google Scholar] [CrossRef]
  43. Adam, M.P.; Conta, J.; Bean, L.J.H. Mowat-Wilson Syndrome. In GeneReviews(®); Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
  44. Mowat, D.; Wilson, M. Mowat-Wilson syndrome. In Cassidy and Allanson’s Management of Genetic Syndromes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 597–609. [Google Scholar]
  45. Cassidy, S.B.; Allanson, J.E. Management of Genetic Syndromes, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; p. xxii. 962p. [Google Scholar]
  46. Mowat, D.R.; Wilson, M.J.; Goossens, M. Mowat-Wilson syndrome. J. Med. Genet. 2003, 40, 305–310. [Google Scholar] [CrossRef]
  47. Garavelli, L.; Mainardi, P.C. Mowat-Wilson syndrome. Orphanet J. Rare Dis. 2007, 2, 42. [Google Scholar] [CrossRef]
  48. Pitt, D.; Hopkins, I. A syndrome of mental retardation, wide mouth and intermittent overbreathing. J. Paediatr. Child Health 1978, 14, 182–184. [Google Scholar] [CrossRef] [PubMed]
  49. Peippo, M.; Ignatius, J. Pitt-Hopkins Syndrome. Mol. Syndromol. 2012, 2, 171–180. [Google Scholar] [CrossRef] [PubMed]
  50. Zollino, M.; Zweier, C.; Van Balkom, I.D.; Sweetser, D.A.; Alaimo, J.; Bijlsma, E.K.; Cody, J.; Elsea, S.H.; Giurgea, I.; Macchiaiolo, M.; et al. Diagnosis and management in Pitt-Hopkins syndrome: First international consensus statement. Clin. Genet. 2019, 95, 462–478. [Google Scholar] [CrossRef] [PubMed]
  51. Jian, L.; Nagarajan, L.; de Klerk, N.; Ravine, D.; Bower, C.; Anderson, A.; Williamson, S.; Christodoulou, J.; Leonard, H. Predictors of seizure onset in Rett syndrome. J. Pediatr. 2006, 149, 542–547. [Google Scholar] [CrossRef]
  52. Fehr, S.; Bebbington, A.; Nassar, N.; Downs, J.; Ronen, G.M.; Leonard, H. Trends in the diagnosis of Rett syndrome in Australia. Pediatr. Res. 2011, 70, 313–319. [Google Scholar] [CrossRef]
  53. Chahil, G.; Bollu, P.C. Rett Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
  54. Reichow, B.; George-Puskar, A.; Lutz, T.; Smith, I.C.; Volkmar, F.R. Brief report: Systematic review of Rett syndrome in males. J. Autism Dev. Disord. 2015, 45, 3377–3383. [Google Scholar] [CrossRef]
  55. Natale, V. A comprehensive description of the severity groups in Cockayne syndrome. Am. J. Med. Genet. A 2011, 155A, 1081–1095. [Google Scholar] [CrossRef]
  56. Pascucci, B.; Fragale, A.; Marabitti, V.; Leuzzi, G.; Calcagnile, A.S.; Parlanti, E.; Franchitto, A.; Dogliotti, E.; D’Errico, M. CSA and CSB play a role in the response to DNA breaks. Oncotarget 2018, 9, 11581–11591. [Google Scholar] [CrossRef]
  57. Pines, A.; Dijk, M.; Makowski, M.; Meulenbroek, E.M.; Vrouwe, M.G.; van der Weegen, Y.; Baltissen, M.; French, P.J.; van Royen, M.E.; Luijsterburg, M.S.; et al. TRiC controls transcription resumption after UV damage by regulating Cockayne syndrome protein A. Nat. Commun. 2018, 9, 1040. [Google Scholar] [CrossRef]
  58. Karikkineth, A.C.; Scheibye-Knudsen, M.; Fivenson, E.; Croteau, D.L.; Bohr, V.A. Cockayne syndrome: Clinical features, model systems and pathways. Ageing Res. Rev. 2017, 33, 3–17. [Google Scholar] [CrossRef]
  59. Ataee, P.; Karimi, A.; Eftekhari, K. Hepatic Failure following Metronidazole in Children with Cockayne Syndrome. Case Rep. Pediatr. 2020, 2020, 9634196. [Google Scholar] [CrossRef]
  60. Laugel, V. Cockayne syndrome: The expanding clinical and mutational spectrum. Mech. Ageing Dev. 2013, 134, 161–170. [Google Scholar] [CrossRef] [PubMed]
  61. Natale, V.; Raquer, H. Xeroderma pigmentosum-Cockayne syndrome complex. Orphanet J. Rare Dis. 2017, 12, 65. [Google Scholar] [CrossRef]
  62. Villard, L.; Fontes, M. Alpha-thalassemia/mental retardation syndrome, X-Linked (ATR-X, MIM #301040, ATR-X/XNP/XH2 gene MIM #300032). Eur. J. Hum. Genet. 2002, 10, 223–225. [Google Scholar] [CrossRef] [PubMed]
  63. Wada, T.; Ban, H.; Matsufuji, M.; Okamoto, N.; Enomoto, K.; Kurosawa, K.; Aida, N. Neuroradiologic features in X-linked α-thalassemia/mental retardation syndrome. AJNR Am. J. Neuroradiol. 2013, 34, 2034–2038. [Google Scholar] [CrossRef]
  64. Bose, M.; Yergeau, C.; D’Souza, Y.; Cuthbertson, D.D.; Lopez, M.J.; Smolen, A.K.; Braverman, N.E. Characterization of Severity in Zellweger Spectrum Disorder by Clinical Findings: A Scoping Review, Meta-Analysis and Medical Chart Review. Cells 2022, 11, 1891. [Google Scholar] [CrossRef] [PubMed]
  65. Berendse, K.; Engelen, M.; Ferdinandusse, S.; Majoie, C.B.; Waterham, H.R.; Vaz, F.M.; Koelman, J.H.; Barth, P.G.; Wanders, R.J.; Poll-The, B.T. Zellweger spectrum disorders: Clinical manifestations in patients surviving into adulthood. J. Inherit. Metab. Dis. 2016, 39, 93–106. [Google Scholar] [CrossRef] [PubMed]
  66. Elumalai, V.; Pasrija, D. Zellweger Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
  67. Van den Brink, D.M.; Brites, P.; Haasjes, J.; Wierzbicki, A.S.; Mitchell, J.; Lambert-Hamill, M.; de Belleroche, J.; Jansen, G.A.; Waterham, H.R.; Wanders, R.J. Identification of PEX7 as the second gene involved in Refsum disease. Adv. Exp. Med. Biol. 2003, 544, 69–70. [Google Scholar] [CrossRef] [PubMed]
  68. Claridge, K.G.; Gibberd, F.B.; Sidey, M.C. Refsum disease: The presentation and ophthalmic aspects of Refsum disease in a series of 23 patients. Eye 1992, 6 Pt 4, 371–375. [Google Scholar] [CrossRef]
  69. Kumar, R.; De Jesus, O. Refsum Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
  70. Jayaram, H.; Downes, S.M. Midlife diagnosis of Refsum disease in siblings with retinitis pigmentosa—The footprint is the clue: A case report. J. Med. Case Rep. 2008, 2, 80. [Google Scholar] [CrossRef]
  71. Richterich, R.; Rosin, S.; Rossi, E. Refsum’s disease (heredopathia atactica polyneuritiformis). An inborn error of lipid metabolism with storage of 3,7,11,15 tetramethyl hexadecanoic acid formal genetics. Humangenetik 1965, 1, 333–336. [Google Scholar] [CrossRef] [PubMed]
  72. Wingerchuk, D.M. Neuromyelitis optica: Effect of gender. J. Neurol. Sci. 2009, 286, 18–23. [Google Scholar] [CrossRef] [PubMed]
  73. Mealy, M.A.; Kessler, R.A.; Rimler, Z.; Reid, A.; Totonis, L.; Cutter, G.; Kister, I.; Levy, M. Mortality in neuromyelitis optica is strongly associated with African ancestry. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e468. [Google Scholar] [CrossRef]
  74. Marrie, R.A.; Gryba, C. The incidence and prevalence of neuromyelitis optica: A systematic review. Int. J. MS Care 2013, 15, 113–118. [Google Scholar] [CrossRef] [PubMed]
  75. Hor, J.Y.; Asgari, N.; Nakashima, I.; Broadley, S.A.; Leite, M.I.; Kissani, N.; Jacob, A.; Marignier, R.; Weinshenker, B.G.; Paul, F.; et al. Epidemiology of Neuromyelitis Optica Spectrum Disorder and Its Prevalence and Incidence Worldwide. Front. Neurol. 2020, 11, 501. [Google Scholar] [CrossRef]
  76. Lana-Peixoto, M.A.; Talim, N. Neuromyelitis Optica Spectrum Disorder and Anti-MOG Syndromes. Biomedicines 2019, 7, 42. [Google Scholar] [CrossRef]
  77. McKeon, A.; Lennon, V.A.; Lotze, T.; Tenenbaum, S.; Ness, J.M.; Rensel, M.; Kuntz, N.L.; Fryer, J.P.; Homburger, H.; Hunter, J.; et al. CNS aquaporin-4 autoimmunity in children. Neurology 2008, 71, 93–100. [Google Scholar] [CrossRef]
  78. Ozaki, K.; Ohnishi, Y.; Iida, A.; Sekine, A.; Yamada, R.; Tsunoda, T.; Sato, H.; Sato, H.; Hori, M.; Nakamura, Y.; et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 2002, 32, 650–654. [Google Scholar] [CrossRef]
  79. Fitzgerald, K.C.; Kim, K.; Smith, M.D.; Aston, S.A.; Fioravante, N.; Rothman, A.M.; Krieger, S.; Cofield, S.S.; Kimbrough, D.J.; Bhargava, P.; et al. Early complement genes are associated with visual system degeneration in multiple sclerosis. Brain 2019, 142, 2722–2736. [Google Scholar] [CrossRef]
  80. Watanabe, M.; Nakamura, Y.; Sato, S.; Niino, M.; Fukaura, H.; Tanaka, M.; Ochi, H.; Kanda, T.; Takeshita, Y.; Yokota, T.; et al. HLA genotype-clinical phenotype correlations in multiple sclerosis and neuromyelitis optica spectrum disorders based on Japan MS/NMOSD Biobank data. Sci. Rep. 2021, 11, 607. [Google Scholar] [CrossRef]
  81. Denny, J.C.; Ritchie, M.D.; Basford, M.A.; Pulley, J.M.; Bastarache, L.; Brown-Gentry, K.; Wang, D.; Masys, D.R.; Roden, D.M.; Crawford, D.C. PheWAS: Demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 2010, 26, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
  82. Paaby, A.B.; Rockman, M.V. The many faces of pleiotropy. Trends Genet. 2013, 29, 66–73. [Google Scholar] [CrossRef] [PubMed]
  83. Barnard, B.; Sussman, M.; Bondurant, S.S.; Nienhuis, J.; Krysan, P. Microarrays (DNA chips) for the classroom laboratory. Biochem. Mol. Biol. Educ. 2006, 34, 355–359. [Google Scholar] [CrossRef] [PubMed]
  84. Barbitoff, Y.A.; Polev, D.E.; Glotov, A.S.; Serebryakova, E.A.; Shcherbakova, I.V.; Kiselev, A.M.; Kostareva, A.A.; Glotov, O.S.; Predeus, A.V. Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of coding sequence coverage. Sci. Rep. 2020, 10, 2057. [Google Scholar] [CrossRef] [PubMed]
  85. Bodi, K.; Perera, A.G.; Adams, P.S.; Bintzler, D.; Dewar, K.; Grove, D.S.; Kieleczawa, J.; Lyons, R.H.; Neubert, T.A.; Noll, A.C.; et al. Comparison of commercially available target enrichment methods for next-generation sequencing. J. Biomol. Tech. 2013, 24, 73–86. [Google Scholar] [CrossRef]
  86. Hayden, E.C. Technology: The $1000 genome. Nature 2014, 507, 294–295. [Google Scholar] [CrossRef]
  87. Schaller, R.R. Moore’s law: Past, present and future. IEEE Spectr. 1997, 34, 52–59. [Google Scholar] [CrossRef]
  88. Cantagrel, V.; Silhavy, J.L.; Bielas, S.L.; Swistun, D.; Marsh, S.E.; Bertrand, J.Y.; Audollent, S.; Attie-Bitach, T.; Holden, K.R.; Dobyns, W.B.; et al. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am. J. Hum. Genet. 2008, 83, 170–179. [Google Scholar] [CrossRef] [PubMed]
  89. Mégarbané, A.; Hmaimess, G.; Bizzari, S.; El-Bazzal, L.; Al-Ali, M.T.; Stora, S.; El-Hayek, S. A novel PDE6D mutation in a patient with Joubert syndrome type 22 (JBTS22). Eur. J. Med. Genet. 2019, 62, 103576. [Google Scholar] [CrossRef]
  90. Lee, J.E.; Silhavy, J.L.; Zaki, M.S.; Schroth, J.; Bielas, S.L.; Marsh, S.E.; Olvera, J.; Brancati, F.; Iannicelli, M.; Ikegami, K.; et al. CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nat. Genet. 2012, 44, 193–199. [Google Scholar] [CrossRef]
  91. Thomas, S.; Wright, K.J.; Le Corre, S.; Micalizzi, A.; Romani, M.; Abhyankar, A.; Saada, J.; Perrault, I.; Amiel, J.; Litzler, J.; et al. A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum. Mutat. 2014, 35, 137–146. [Google Scholar] [CrossRef] [PubMed]
  92. Srour, M.; Hamdan, F.F.; McKnight, D.; Davis, E.; Mandel, H.; Schwartzentruber, J.; Martin, B.; Patry, L.; Nassif, C.; Dionne-Laporte, A. Joubert syndrome in French Canadians and identification of mutations in CEP104. Am. J. Hum. Genet. 2015, 97, 744–753. [Google Scholar] [CrossRef]
  93. Cauley, E.S.; Hamed, A.; Mohamed, I.N.; Elseed, M.; Martinez, S.; Yahia, A.; Abozar, F.; Abubakr, R.; Koko, M.; Elsayed, L. Overlap of polymicrogyria, hydrocephalus, and Joubert syndrome in a family with novel truncating mutations in ADGRG1/GPR56 and KIAA0556. Neurogenetics 2019, 20, 91–98. [Google Scholar] [CrossRef] [PubMed]
  94. Romani, M.; Micalizzi, A.; Kraoua, I.; Dotti, M.T.; Cavallin, M.; Sztriha, L.; Ruta, R.; Mancini, F.; Mazza, T.; Castellana, S.; et al. Mutations in B9D1 and MKS1 cause mild Joubert syndrome: Expanding the genetic overlap with the lethal ciliopathy Meckel syndrome. Orphanet J. Rare Dis. 2014, 9, 72. [Google Scholar] [CrossRef] [PubMed]
  95. Van De Weghe, J.C.; Rusterholz, T.D.S.; Latour, B.; Grout, M.E.; Aldinger, K.A.; Shaheen, R.; Dempsey, J.C.; Maddirevula, S.; Cheng, Y.H.; Phelps, I.G.; et al. Mutations in ARMC9, which Encodes a Basal Body Protein, Cause Joubert Syndrome in Humans and Ciliopathy Phenotypes in Zebrafish. Am. J. Hum. Genet. 2017, 101, 23–36. [Google Scholar] [CrossRef]
  96. De Mori, R.; Romani, M.; D’Arrigo, S.; Zaki, M.S.; Lorefice, E.; Tardivo, S.; Biagini, T.; Stanley, V.; Musaev, D.; Fluss, J.; et al. Hypomorphic Recessive Variants in SUFU Impair the Sonic Hedgehog Pathway and Cause Joubert Syndrome with Cranio-facial and Skeletal Defects. Am. J. Hum. Genet. 2017, 101, 552–563. [Google Scholar] [CrossRef]
  97. Satoda, Y.; Noguchi, T.; Fujii, T.; Taniguchi, A.; Katoh, Y.; Nakayama, K. BROMI/TBC1D32 together with CCRK/CDK20 and FAM149B1/JBTS36 contributes to IFT turnaround involving ICK/CILK1. Mol. Biol. Cell 2022, 33, 9. [Google Scholar] [CrossRef]
  98. Alkanderi, S.; Molinari, E.; Shaheen, R.; Elmaghloob, Y.; Stephen, L.A.; Sammut, V.; Ramsbottom, S.A.; Srivastava, S.; Cairns, G.; Edwards, N.; et al. ARL3 Mutations Cause Joubert Syndrome by Disrupting Ciliary Protein Composition. Am. J. Hum. Genet. 2018, 103, 612–620. [Google Scholar] [CrossRef]
  99. Shaheen, R.; Jiang, N.; Alzahrani, F.; Ewida, N.; Al-Sheddi, T.; Alobeid, E.; Musaev, D.; Stanley, V.; Hashem, M.; Ibrahim, N.; et al. Bi-allelic Mutations in FAM149B1 Cause Abnormal Primary Cilium and a Range of Ciliopathy Phenotypes in Humans. Am. J. Hum. Genet. 2019, 104, 731–737. [Google Scholar] [CrossRef]
  100. Latour, B.L.; Van De Weghe, J.C.; Rusterholz, T.D.; Letteboer, S.J.; Gomez, A.; Shaheen, R.; Gesemann, M.; Karamzade, A.; Asadollahi, M.; Barroso-Gil, M.; et al. Dysfunction of the ciliary ARMC9/TOGARAM1 protein module causes Joubert syndrome. J. Clin. Investig. 2020, 130, 4423–4439. [Google Scholar] [CrossRef]
  101. Stephen, J.; Vilboux, T.; Mian, L.; Kuptanon, C.; Sinclair, C.M.; Yildirimli, D.; Maynard, D.M.; Bryant, J.; Fischer, R.; Vemulapalli, M.; et al. Mutations in KIAA0753 cause Joubert syndrome associated with growth hormone deficiency. Hum. Genet. 2017, 136, 399–408. [Google Scholar] [CrossRef] [PubMed]
  102. Van De Weghe, J.C.; Giordano, J.L.; Mathijssen, I.B.; Mojarrad, M.; Lugtenberg, D.; Miller, C.V.; Dempsey, J.C.; Mohajeri, M.S.A.; van Leeuwen, E.; Pajkrt, E.; et al. TMEM218 dysfunction causes ciliopathies, including Joubert and Meckel syndromes. HGG Adv. 2021, 2, 100016. [Google Scholar] [CrossRef] [PubMed]
  103. Luo, M.; Lin, Z.; Zhu, T.; Jin, M.; Meng, D.; He, R.; Cao, Z.; Shen, Y.; Lu, C.; Cai, R.; et al. Disrupted intraflagellar transport due to IFT74 variants causes Joubert syndrome. Genet. Med. 2021, 23, 1041–1049. [Google Scholar] [CrossRef]
  104. Bielas, S.L.; Silhavy, J.L.; Brancati, F.; Kisseleva, M.V.; Al-Gazali, L.; Sztriha, L.; Bayoumi, R.A.; Zaki, M.S.; Abdel-Aleem, A.; Rosti, R.O.; et al. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet. 2009, 41, 1032–1036. [Google Scholar] [CrossRef]
  105. Valente, E.M.; Logan, C.V.; Mougou-Zerelli, S.; Lee, J.H.; Silhavy, J.L.; Brancati, F.; Iannicelli, M.; Travaglini, L.; Romani, S.; Illi, B.; et al. Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat. Genet. 2010, 42, 619–625. [Google Scholar] [CrossRef] [PubMed]
  106. Ferland, R.J.; Eyaid, W.; Collura, R.V.; Tully, L.D.; Hill, R.S.; Al-Nouri, D.; Al-Rumayyan, A.; Topcu, M.; Gascon, G.; Bodell, A.; et al. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat. Genet. 2004, 36, 1008–1013. [Google Scholar] [CrossRef]
  107. Parisi, M.A.; Bennett, C.L.; Eckert, M.L.; Dobyns, W.B.; Gleeson, J.G.; Shaw, D.W.; McDonald, R.; Eddy, A.; Chance, P.F.; Glass, I.A. The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. Am. J. Hum. Genet. 2004, 75, 82–91. [Google Scholar] [CrossRef]
  108. Valente, E.M.; Silhavy, J.L.; Brancati, F.; Barrano, G.; Krishnaswami, S.R.; Castori, M.; Lancaster, M.A.; Boltshauser, E.; Boccone, L.; Al-Gazali, L.; et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat. Genet. 2006, 38, 623–625. [Google Scholar] [CrossRef]
  109. Delous, M.; Baala, L.; Salomon, R.; Laclef, C.; Vierkotten, J.; Tory, K.; Golzio, C.; Lacoste, T.; Besse, L.; Ozilou, C.; et al. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat. Genet. 2007, 39, 875–881. [Google Scholar] [CrossRef]
  110. Gorden, N.T.; Arts, H.H.; Parisi, M.A.; Coene, K.L.; Letteboer, S.J.; van Beersum, S.E.; Mans, D.A.; Hikida, A.; Eckert, M.; Knutzen, D.; et al. CC2D2A is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein CEP290. Am. J. Hum. Genet. 2008, 83, 559–571. [Google Scholar] [CrossRef]
  111. Valente, E.M.; Brancati, F.; Boltshauser, E.; Dallapiccola, B. Clinical utility gene card for: Joubert Syndrome—update 2013. Eur. J. Hum. Genet. 2013, 21, 1187. [Google Scholar] [CrossRef] [PubMed]
  112. Lee, J.H.; Silhavy, J.L.; Lee, J.E.; Al-Gazali, L.; Thomas, S.; Davis, E.E.; Bielas, S.L.; Hill, K.J.; Iannicelli, M.; Brancati, F.; et al. Evolutionarily assembled cis-regulatory module at a human ciliopathy locus. Science 2012, 335, 966–969. [Google Scholar] [CrossRef] [PubMed]
  113. Srour, M.; Hamdan, F.F.; Schwartzentruber, J.A.; Patry, L.; Ospina, L.H.; Shevell, M.I.; Desilets, V.; Dobrzeniecka, S.; Mathonnet, G.; Lemyre, E.; et al. Mutations in TMEM231 cause Joubert syndrome in French Canadians. J. Med. Genet. 2012, 49, 636–641. [Google Scholar] [CrossRef] [PubMed]
  114. Lambacher, N.J.; Bruel, A.L.; van Dam, T.J.; Szymanska, K.; Slaats, G.G.; Kuhns, S.; McManus, G.J.; Kennedy, J.E.; Gaff, K.; Wu, K.M.; et al. TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat. Cell Biol. 2016, 18, 122–131. [Google Scholar] [CrossRef]
  115. Baala, L.; Romano, S.; Khaddour, R.; Saunier, S.; Smith, U.M.; Audollent, S.; Ozilou, C.; Faivre, L.; Laurent, N.; Foliguet, B.; et al. The Meckel-Gruber syndrome gene, MKS3, is mutated in Joubert syndrome. Am. J. Hum. Genet. 2007, 80, 186–194. [Google Scholar] [CrossRef]
  116. Coene, K.L.; Roepman, R.; Doherty, D.; Afroze, B.; Kroes, H.Y.; Letteboer, S.J.; Ngu, L.H.; Budny, B.; van Wijk, E.; Gorden, N.T.; et al. OFD1 is mutated in X-linked Joubert syndrome and interacts with LCA5-encoded lebercilin. Am. J. Hum. Genet. 2009, 85, 465–481. [Google Scholar] [CrossRef]
  117. Dafinger, C.; Liebau, M.C.; Elsayed, S.M.; Hellenbroich, Y.; Boltshauser, E.; Korenke, G.C.; Fabretti, F.; Janecke, A.R.; Ebermann, I.; Nurnberg, G.; et al. Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics. J. Clin. Investig. 2011, 121, 2662–2667. [Google Scholar] [CrossRef]
  118. Srour, M.; Schwartzentruber, J.; Hamdan, F.F.; Ospina, L.H.; Patry, L.; Labuda, D.; Massicotte, C.; Dobrzeniecka, S.; Capo-Chichi, J.M.; Papillon-Cavanagh, S.; et al. Mutations in C5ORF42 cause Joubert syndrome in the French Canadian population. Am. J. Hum. Genet. 2012, 90, 693–700. [Google Scholar] [CrossRef]
  119. Thomas, S.; Legendre, M.; Saunier, S.; Bessieres, B.; Alby, C.; Bonniere, M.; Toutain, A.; Loeuillet, L.; Szymanska, K.; Jossic, F.; et al. TCTN3 mutations cause Mohr-Majewski syndrome. Am. J. Hum. Genet. 2012, 91, 372–378. [Google Scholar] [CrossRef]
  120. Chaki, M.; Airik, R.; Ghosh, A.K.; Giles, R.H.; Chen, R.; Slaats, G.G.; Wang, H.; Hurd, T.W.; Zhou, W.; Cluckey, A.; et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 2012, 150, 533–548. [Google Scholar] [CrossRef]
  121. Shaheen, R.; Shamseldin, H.E.; Loucks, C.M.; Seidahmed, M.Z.; Ansari, S.; Ibrahim Khalil, M.; Al-Yacoub, N.; Davis, E.E.; Mola, N.A.; Szymanska, K.; et al. Mutations in CSPP1, encoding a core centrosomal protein, cause a range of ciliopathy phenotypes in humans. Am. J. Hum. Genet. 2014, 94, 73–79. [Google Scholar] [CrossRef] [PubMed]
  122. Akizu, N.; Silhavy, J.L.; Rosti, R.O.; Scott, E.; Fenstermaker, A.G.; Schroth, J.; Zaki, M.S.; Sanchez, H.; Gupta, N.; Kabra, M.; et al. Mutations in CSPP1 lead to classical Joubert syndrome. Am. J. Hum. Genet. 2014, 94, 80–86. [Google Scholar] [CrossRef] [PubMed]
  123. Tuz, K.; Bachmann-Gagescu, R.; O’Day, D.R.; Hua, K.; Isabella, C.R.; Phelps, I.G.; Stolarski, A.E.; O’Roak, B.J.; Dempsey, J.C.; Lourenco, C.; et al. Mutations in CSPP1 cause primary cilia abnormalities and Joubert syndrome with or without Jeune asphyxiating thoracic dystrophy. Am. J. Hum. Genet. 2014, 94, 62–72. [Google Scholar] [CrossRef] [PubMed]
  124. Bachmann-Gagescu, R.; Phelps, I.G.; Dempsey, J.C.; Sharma, V.A.; Ishak, G.E.; Boyle, E.A.; Wilson, M.; Marques Lourenco, C.; Arslan, M.; University of Washington Center for Mendelian, G.; et al. KIAA0586 is Mutated in Joubert Syndrome. Hum. Mutat. 2015, 36, 831–835. [Google Scholar] [CrossRef] [PubMed]
  125. Roosing, S.; Hofree, M.; Kim, S.; Scott, E.; Copeland, B.; Romani, M.; Silhavy, J.L.; Rosti, R.O.; Schroth, J.; Mazza, T.; et al. Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome. Elife 2015, 4, e06602. [Google Scholar] [CrossRef]
  126. Malicdan, M.C.; Vilboux, T.; Stephen, J.; Maglic, D.; Mian, L.; Konzman, D.; Guo, J.; Yildirimli, D.; Bryant, J.; Fischer, R.; et al. Mutations in human homologue of chicken talpid3 gene (KIAA0586) cause a hybrid ciliopathy with overlapping features of Jeune and Joubert syndromes. J. Med. Genet. 2015, 52, 830–839. [Google Scholar] [CrossRef]
  127. Sang, L.; Miller, J.J.; Corbit, K.C.; Giles, R.H.; Brauer, M.J.; Otto, E.A.; Baye, L.M.; Wen, X.; Scales, S.J.; Kwong, M.; et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 2011, 145, 513–528. [Google Scholar] [CrossRef]
  128. Shaheen, R.; Schmidts, M.; Faqeih, E.; Hashem, A.; Lausch, E.; Holder, I.; Superti-Furga, A.; Consortium, U.K.; Mitchison, H.M.; Almoisheer, A.; et al. A founder CEP120 mutation in Jeune asphyxiating thoracic dystrophy expands the role of centriolar proteins in skeletal ciliopathies. Hum. Mol. Genet. 2015, 24, 1410–1419. [Google Scholar] [CrossRef]
  129. Bachmann-Gagescu, R.; Dempsey, J.C.; Phelps, I.G.; O’Roak, B.J.; Knutzen, D.M.; Rue, T.C.; Ishak, G.E.; Isabella, C.R.; Gorden, N.; Adkins, J.; et al. Joubert syndrome: A model for untangling recessive disorders with extreme genetic heterogeneity. J. Med. Genet. 2015, 52, 514–522. [Google Scholar] [CrossRef]
  130. Davis, E.E.; Zhang, Q.; Liu, Q.; Diplas, B.H.; Davey, L.M.; Hartley, J.; Stoetzel, C.; Szymanska, K.; Ramaswami, G.; Logan, C.V.; et al. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat. Genet. 2011, 43, 189–196. [Google Scholar] [CrossRef]
  131. Parisi, M.A. The molecular genetics of Joubert syndrome and related ciliopathies: The challenges of genetic and phenotypic heterogeneity. Transl. Sci. Rare Dis. 2019, 4, 25–49. [Google Scholar] [CrossRef] [PubMed]
  132. Mykytyn, K.; Nishimura, D.Y.; Searby, C.C.; Shastri, M.; Yen, H.J.; Beck, J.S.; Braun, T.; Streb, L.M.; Cornier, A.S.; Cox, G.F.; et al. Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nat. Genet. 2002, 31, 435–438. [Google Scholar] [CrossRef] [PubMed]
  133. Florea, L.; Caba, L.; Gorduza, E.V. Bardet-Biedl Syndrome-Multiple Kaleidoscope Images: Insight into Mechanisms of Genotype-Phenotype Correlations. Genes 2021, 12, 1353. [Google Scholar] [CrossRef]
  134. Marshall, J.D.; Hinman, E.G.; Collin, G.B.; Beck, S.; Cerqueira, R.; Maffei, P.; Milan, G.; Zhang, W.; Wilson, D.I.; Hearn, T.; et al. Spectrum of ALMS1 variants and evaluation of genotype-phenotype correlations in Alstrom syndrome. Hum. Mutat. 2007, 28, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
  135. Moutsianas, L.; Jostins, L.; Beecham, A.H.; Dilthey, A.T.; Xifara, D.K.; Ban, M.; Shah, T.S.; Patsopoulos, N.A.; Alfredsson, L.; Anderson, C.A.; et al. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat. Genet. 2015, 47, 1107–1113. [Google Scholar] [CrossRef]
  136. International Multiple Sclerosis Genetics, C. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019, 365, eaav7188. [Google Scholar] [CrossRef]
  137. Govindarajan, V.; de Rivero Vaccari, J.P.; Keane, R.W. Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. J. Neuroinflammation 2020, 17, 260. [Google Scholar] [CrossRef]
  138. Iwaki, T.; Kume-Iwaki, A.; Liem, R.K.; Goldman, J.E. αB-crystallin is expressed in non-lenticular tissues and accumulates in Alexander’s disease brain. Cell 1989, 57, 71–78. [Google Scholar] [CrossRef]
  139. Johnson, A.B.; Bettica, A. On-grid immunogold labeling of glial intermediate filaments in epoxy-embedded tissue. Am. J. Anat. 1989, 185, 335–341. [Google Scholar] [CrossRef]
  140. Inoue, K.; Osaka, H.; Thurston, V.C.; Clarke, J.T.; Yoneyama, A.; Rosenbarker, L.; Bird, T.D.; Hodes, M.E.; Shaffer, L.G.; Lupski, J.R. Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females. Am. J. Hum. Genet. 2002, 71, 838–853. [Google Scholar] [CrossRef]
  141. Dastot-Le Moal, F.; Wilson, M.; Mowat, D.; Collot, N.; Niel, F.; Goossens, M. ZFHX1B mutations in patients with Mowat-Wilson syndrome. Hum. Mutat. 2007, 28, 313–321. [Google Scholar] [CrossRef] [PubMed]
  142. Schoof, M.; Hellwig, M.; Harrison, L.; Holdhof, D.; Lauffer, M.C.; Niesen, J.; Virdi, S.; Indenbirken, D.; Schuller, U. The basic helix-loop-helix transcription factor TCF4 impacts brain architecture as well as neuronal morphology and differentiation. Eur. J. Neurosci. 2020, 51, 2219–2235. [Google Scholar] [CrossRef]
  143. Thambirajah, A.A.; Ng, M.K.; Frehlick, L.J.; Li, A.; Serpa, J.J.; Petrotchenko, E.V.; Silva-Moreno, B.; Missiaen, K.K.; Borchers, C.H.; Adam Hall, J.; et al. MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain. Nucleic Acids Res. 2012, 40, 2884–2897. [Google Scholar] [CrossRef] [PubMed]
  144. Spivak, G. The many faces of Cockayne syndrome. Proc. Natl. Acad. Sci. USA 2004, 101, 15273–15274. [Google Scholar] [CrossRef] [PubMed]
  145. Stefanini, M.; Fawcett, H.; Botta, E.; Nardo, T.; Lehmann, A.R. Genetic analysis of twenty-two patients with Cockayne syndrome. Hum.Genet. 1996, 97, 418–423. [Google Scholar] [CrossRef]
  146. Garrick, D.; Samara, V.; McDowell, T.L.; Smith, A.J.; Dobbie, L.; Higgs, D.R.; Gibbons, R.J. A conserved truncated isoform of the ATR-X syndrome protein lacking the SWI/SNF-homology domain. Gene 2004, 326, 23–34. [Google Scholar] [CrossRef]
  147. Steinberg, S.J.; Dodt, G.; Raymond, G.V.; Braverman, N.E.; Moser, A.B.; Moser, H.W. Peroxisome biogenesis disorders. Biochim. Biophys. Acta 2006, 1763, 1733–1748. [Google Scholar] [CrossRef]
  148. Nanetti, L.; Pensato, V.; Leoni, V.; Rizzetto, M.; Caccia, C.; Taroni, F.; Mariotti, C.; Gellera, C. PEX7 mutations cause congenital cataract retinopathy and late-onset ataxia and cognitive impairment: Report of two siblings and review of the literature. J. Clin. Neurol. 2015, 11, 197–199. [Google Scholar] [CrossRef]
  149. Li, T.; Li, H.; Li, Y.; Dong, S.A.; Yi, M.; Zhang, Q.X.; Feng, B.; Yang, L.; Shi, F.D.; Yang, C.S. Multi-Level Analyses of Genome-Wide Association Study to Reveal Significant Risk Genes and Pathways in Neuromyelitis Optica Spectrum Disorder. Front. Genet. 2021, 12, 690537. [Google Scholar] [CrossRef]
  150. Zhong, X.; Chen, C.; Sun, X.; Wang, J.; Li, R.; Chang, Y.; Fan, P.; Wang, Y.; Wu, Y.; Peng, L.; et al. Whole-exome sequencing reveals the major genetic factors contributing to neuromyelitis optica spectrum disorder in Chinese patients with aquaporin 4-IgG seropositivity. Eur. J. Neurol. 2021, 28, 2294–2304. [Google Scholar] [CrossRef]
  151. Palterer, B.; Brugnolo, F.; Sieni, E.; Barilaro, A.; Parronchi, P. Neuromyelitis optica, atypical hemophagocytic lymphohistiocytosis and heterozygous perforin A91V mutation. J. Neuroimmunol. 2017, 311, 10–13. [Google Scholar] [CrossRef] [PubMed]
  152. Cai, P.P.; Wang, H.X.; Zhuang, J.C.; Liu, Q.B.; Zhao, G.X.; Li, Z.X.; Wu, Z.Y. Variants of autophagy-related gene 5 are associated with neuromyelitis optica in the Southern Han Chinese population. Autoimmunity 2014, 47, 563–566. [Google Scholar] [CrossRef] [PubMed]
  153. Kim, H.J.; Park, H.Y.; Kim, E.; Lee, K.S.; Kim, K.K.; Choi, B.O.; Kim, S.M.; Bae, J.S.; Lee, S.O.; Chun, J.Y.; et al. Common CYP7A1 promoter polymorphism associated with risk of neuromyelitis optica. Neurobiol. Dis. 2010, 37, 349–355. [Google Scholar] [CrossRef]
  154. Zhao, G.X.; Liu, Y.; Li, Z.X.; Lv, C.Z.; Traboulsee, A.; Sadovnick, A.D.; Wu, Z.Y. Variants in the promoter region of CYP7A1 are associated with neuromyelitis optica but not with multiple sclerosis in the Han Chinese population. Neurosci. Bull. 2013, 29, 525–530. [Google Scholar] [CrossRef]
  155. Xu, Y.; Li, L.; Ren, H.T.; Yin, B.; Yuan, J.G.; Peng, X.Z.; Qiang, B.Q.; Cui, L.Y. Mutation of the cellular adhesion molecule NECL2 is associated with neuromyelitis optica spectrum disorder. J. Neurol. Sci. 2018, 388, 133–138. [Google Scholar] [CrossRef] [PubMed]
  156. Wei, Q.; Yanyu, C.; Rui, L.; Caixia, L.; Youming, L.; Jianhua, H.; Weihua, M.; Xiaobo, S.; Wen, X.; Ying, C.; et al. Human aquaporin 4 gene polymorphisms in Chinese patients with neuromyelitis optica. J. Neuroimmunol. 2014, 274, 192–196. [Google Scholar] [CrossRef]
  157. Lan, W.; Fang, S.; Zhang, H.; Wang, D.T.J.; Wu, J. The Fc Receptor-Like 3 Polymorphisms (rs7528684, rs945635, rs3761959 and rs2282284) and The Risk of Neuromyelitis Optica in A Chinese Population. Medicine (Baltimore) 2015, 94, e1320. [Google Scholar] [CrossRef]
  158. Shin, J.G.; Kim, H.J.; Park, B.L.; Bae, J.S.; Kim, L.H.; Cheong, H.S.; Shin, H.D. Putative association of GPC5 polymorphism with the risk of inflammatory demyelinating diseases. J. Neurol. Sci. 2013, 335, 82–88. [Google Scholar] [CrossRef]
  159. Matsushita, T.; Masaki, K.; Isobe, N.; Sato, S.; Yamamoto, K.; Nakamura, Y.; Watanabe, M.; Suenaga, T.; Kira, J.I.; Japan Multiple Sclerosis Genetic, C. Genetic factors for susceptibility to and manifestations of neuromyelitis optica. Ann. Clin. Transl. Neurol. 2020, 7, 2082–2093. [Google Scholar] [CrossRef]
  160. Mei, S.; Li, X.; Gong, X.; Li, X.; Yang, L.; Zhou, H.; Liu, Y.; Zhou, A.; Zhu, L.; Zhang, X.; et al. LC-MS/MS Analysis of Erythrocyte Thiopurine Nucleotides and Their Association with Genetic Variants in Patients With Neuromyelitis Optica Spectrum Disorders Taking Azathioprine. Ther. Drug. Monit. 2017, 39, 5–12. [Google Scholar] [CrossRef]
  161. Dai, Y.; Li, J.; Zhong, X.; Wang, Y.; Qiu, W.; Lu, Z.; Wu, A.; Bao, J.; Peng, F.; Hu, X. IL2RA Allele Increases Risk of Neuromyelitis Optica in Southern Han Chinese. Can. J. Neurol. Sci. 2013, 40, 832–835. [Google Scholar] [CrossRef] [PubMed]
  162. Kim, J.Y.; Bae, J.S.; Kim, H.J.; Shin, H.D. CD58 polymorphisms associated with the risk of neuromyelitis optica in a Korean population. BMC Neurol. 2014, 14, 57. [Google Scholar] [CrossRef] [PubMed]
  163. Park, T.J.; Kim, H.J.; Kim, J.H.; Bae, J.S.; Cheong, H.S.; Park, B.L.; Shin, H.D. Associations of CD6, TNFRSF1A and IRF8 polymorphisms with risk of inflammatory demyelinating diseases. Neuropathol. Appl. Neurobiol. 2013, 39, 519–530. [Google Scholar] [CrossRef] [PubMed]
  164. Liu, J.; Shi, Z.; Lian, Z.; Chen, H.; Zhang, Q.; Feng, H.; Miao, X.; Du, Q.; Zhou, H. Association of CD58 gene polymorphisms with NMO spectrum disorders in a Han Chinese population. J. Neuroimmunol. 2017, 309, 23–30. [Google Scholar] [CrossRef]
  165. Zhuang, J.C.; Wu, L.; Qian, M.Z.; Cai, P.P.; Liu, Q.B.; Zhao, G.X.; Li, Z.X.; Wu, Z.Y. Variants of Interleukin-7/Interleukin-7 Receptor Alpha are Associated with Both Neuromyelitis Optica and Multiple Sclerosis Among Chinese Han Population in Southeastern China. Chin. Med. J. (Engl.) 2015, 128, 3062–3068. [Google Scholar] [CrossRef]
  166. Liu, C.; Wang, G.; Liu, H.; Li, Y.; Li, J.; Dai, Y.; Hu, X. CD226 Gly307Ser association with neuromyelitis optica in Southern Han Chinese. Can. J. Neurol. Sci. 2012, 39, 488–490. [Google Scholar] [CrossRef]
  167. Bruijstens, A.L.; Wong, Y.Y.M.; van Pelt, D.E.; van der Linden, P.J.E.; Haasnoot, G.W.; Hintzen, R.Q.; Claas, F.H.J.; Neuteboom, R.F.; Wokke, B.H.A. HLA association in MOG-IgG- and AQP4-IgG-related disorders of the CNS in the Dutch population. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e702. [Google Scholar] [CrossRef]
  168. Kay, C.S.K.; Scola, R.H.; Arndt, R.C.; Lorenzoni, P.J.; Werneck, L.C. HLA-alleles class I and II associated with genetic susceptibility to neuromyelitis optica in Brazilian patients. Arq. Neuropsiquiatr. 2019, 77, 239–247. [Google Scholar] [CrossRef]
  169. Alvarenga, M.P.; Fernandez, O.; Leyva, L.; Campanella, L.; Vasconcelos, C.F.; Alvarenga, M.; Papais Alvarenga, R.M. The HLA DRB1*03:01 allele is associated with NMO regardless of the NMO-IgG status in Brazilian patients from Rio de Janeiro. J. Neuroimmunol. 2017, 310, 1–7. [Google Scholar] [CrossRef]
  170. Deschamps, R.; Paturel, L.; Jeannin, S.; Chausson, N.; Olindo, S.; Bera, O.; Bellance, R.; Smadja, D.; Cesaire, D.; Cabre, P. Different HLA class II (DRB1 and DQB1) alleles determine either susceptibility or resistance to NMO and multiple sclerosis among the French Afro-Caribbean population. Mult. Scler. 2011, 17, 24–31. [Google Scholar] [CrossRef]
  171. Romero-Hidalgo, S.; Flores-Rivera, J.; Rivas-Alonso, V.; Barquera, R.; Villarreal-Molina, M.T.; Antuna-Puente, B.; Macias-Kauffer, L.R.; Villalobos-Comparan, M.; Ortiz-Maldonado, J.; Yu, N.; et al. Native American ancestry significantly contributes to neuromyelitis optica susceptibility in the admixed Mexican population. Sci. Rep. 2020, 10, 13706. [Google Scholar] [CrossRef] [PubMed]
  172. Zephir, H.; Fajardy, I.; Outteryck, O.; Blanc, F.; Roger, N.; Fleury, M.; Rudolf, G.; Marignier, R.; Vukusic, S.; Confavreux, C.; et al. Is neuromyelitis optica associated with human leukocyte antigen? Mult. Scler. 2009, 15, 571–579. [Google Scholar] [CrossRef] [PubMed]
  173. Ogawa, K.; Okuno, T.; Hosomichi, K.; Hosokawa, A.; Hirata, J.; Suzuki, K.; Sakaue, S.; Kinoshita, M.; Asano, Y.; Miyamoto, K.; et al. Next-generation sequencing identifies contribution of both class I and II HLA genes on susceptibility of multiple sclerosis in Japanese. J. Neuroinflammation 2019, 16, 162. [Google Scholar] [CrossRef]
  174. Hofer, L.S.; Ramberger, M.; Gredler, V.; Pescoller, A.S.; Rostasy, K.; Sospedra, M.; Hegen, H.; Berger, T.; Lutterotti, A.; Reindl, M. Comparative Analysis of T-Cell Responses to Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein in Inflammatory Demyelinating Central Nervous System Diseases. Front. Immunol. 2020, 11, 1188. [Google Scholar] [CrossRef] [PubMed]
  175. Estrada, K.; Whelan, C.W.; Zhao, F.; Bronson, P.; Handsaker, R.E.; Sun, C.; Carulli, J.P.; Harris, T.; Ransohoff, R.M.; McCarroll, S.A.; et al. A whole-genome sequence study identifies genetic risk factors for neuromyelitis optica. Nat. Commun. 2018, 9, 1929. [Google Scholar] [CrossRef]
  176. Arnold, A.C. Evolving management of optic neuritis and multiple sclerosis. Am. J. Ophthalmol. 2005, 139, 1101–1108. [Google Scholar] [CrossRef]
  177. Chen, L.; Gordon, L.K. Ocular manifestations of multiple sclerosis. Curr. Opin. Ophthalmol. 2005, 16, 315–320. [Google Scholar] [CrossRef]
  178. De Santi, L.; Annunziata, P. Symptomatic cranial neuralgias in multiple sclerosis: Clinical features and treatment. Clin. Neurol. Neurosurg. 2012, 114, 101–107. [Google Scholar] [CrossRef]
  179. Rizzo, J.F., 3rd; Lessell, S. Risk of developing multiple sclerosis after uncomplicated optic neuritis: A long-term prospective study. Neurology 1988, 38, 185–190. [Google Scholar] [CrossRef]
  180. Francis, D.A.; Compston, D.A.; Batchelor, J.R.; McDonald, W.I. A reassessment of the risk of multiple sclerosis developing in patients with optic neuritis after extended follow-up. J. Neurol. Neurosurg. Psychiatry 1987, 50, 758–765. [Google Scholar] [CrossRef]
  181. Dalton, C.M.; Brex, P.A.; Miszkiel, K.A.; Fernando, K.; MacManus, D.G.; Plant, G.T.; Thompson, A.J.; Miller, D.H. Spinal cord MRI in clinically isolated optic neuritis. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1577–1580. [Google Scholar] [CrossRef] [PubMed]
  182. Vilarino-Guell, C.; Zimprich, A.; Martinelli-Boneschi, F.; Herculano, B.; Wang, Z.; Matesanz, F.; Urcelay, E.; Vandenbroeck, K.; Leyva, L.; Gris, D.; et al. Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genet. 2019, 15, e1008180. [Google Scholar] [CrossRef] [PubMed]
  183. Gil-Varea, E.; Urcelay, E.; Vilarino-Guell, C.; Costa, C.; Midaglia, L.; Matesanz, F.; Rodriguez-Antiguedad, A.; Oksenberg, J.; Espino-Paisan, L.; Dessa Sadovnick, A.; et al. Exome sequencing study in patients with multiple sclerosis reveals variants associated with disease course. J. Neuroinflammation 2018, 15, 265. [Google Scholar] [CrossRef] [PubMed]
  184. Hayashi, T.; Morimoto, C.; Burks, J.S.; Kerr, C.; Hauser, S.L. Dual-label immunocytochemistry of the active multiple sclerosis lesion: Major histocompatibility complex and activation antigens. Ann. Neurol. 1988, 24, 523–531. [Google Scholar] [CrossRef] [PubMed]
  185. Mews, I.; Bergmann, M.; Bunkowski, S.; Gullotta, F.; Bruck, W. Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Mult. Scler. 1998, 4, 55–62. [Google Scholar] [CrossRef] [PubMed]
  186. Roostaei, T.; Sadaghiani, S.; Mashhadi, R.; Falahatian, M.; Mohamadi, E.; Javadian, N.; Nazeri, A.; Doosti, R.; Naser Moghadasi, A.; Owji, M.; et al. Convergent effects of a functional C3 variant on brain atrophy, demyelination, and cognitive impairment in multiple sclerosis. Mult. Scler. 2019, 25, 532–540. [Google Scholar] [CrossRef]
  187. Tassoni, A.; Farkhondeh, V.; Itoh, Y.; Itoh, N.; Sofroniew, M.V.; Voskuhl, R.R. The astrocyte transcriptome in EAE optic neuritis shows complement activation and reveals a sex difference in astrocytic C3 expression. Sci. Rep. 2019, 9, 10010. [Google Scholar] [CrossRef]
  188. Szalai, A.J.; Hu, X.; Adams, J.E.; Barnum, S.R. Complement in experimental autoimmune encephalomyelitis revisited: C3 is required for development of maximal disease. Mol. Immunol. 2007, 44, 3132–3136. [Google Scholar] [CrossRef]
  189. Lipsker, D. The schnitzler syndrome. Orphanet J. Rare Dis. 2010, 5, 38. [Google Scholar] [CrossRef]
  190. Wilson, B.T.; Stark, Z.; Sutton, R.E.; Danda, S.; Ekbote, A.V.; Elsayed, S.M.; Gibson, L.; Goodship, J.A.; Jackson, A.P.; Keng, W.T.; et al. The Cockayne Syndrome Natural History (CoSyNH) study: Clinical findings in 102 individuals and recommendations for care. Genet. Med. 2016, 18, 483–493. [Google Scholar] [CrossRef]
  191. Lewis, J.M. COCKAYNE SYNDROME (CS) MASQUERADING AS SECKEL SYNDROME (SS). Pediatric Res. 1987, 21, 229. [Google Scholar] [CrossRef]
  192. Wierzbicki, A.S.; Lloyd, M.D.; Schofield, C.J.; Feher, M.D.; Gibberd, F.B. Refsum’s disease: A peroxisomal disorder affecting phytanic acid alpha-oxidation. J. Neurochem. 2002, 80, 727–735. [Google Scholar] [CrossRef] [PubMed]
  193. Duan, R.; Ji, H.; Yan, H.; Wang, J.; Zhang, Y.; Zhang, Q.; Li, D.; Cao, B.; Gu, Q.; Wu, Y.; et al. Genotype-phenotype correlation and natural history analyses in a Chinese cohort with pelizaeus-merzbacher disease. Orphanet J. Rare Dis. 2022, 17, 137. [Google Scholar] [CrossRef] [PubMed]
  194. Maria, B.L.; Quisling, R.G.; Rosainz, L.C.; Yachnis, A.T.; Gitten, J.; Dede, D.; Fennell, E. Molar tooth sign in Joubert syndrome: Clinical, radiologic, and pathologic significance. J. Child Neurol. 1999, 14, 368–376. [Google Scholar] [CrossRef]
  195. Maria, B.L.; Hoang, K.B.; Tusa, R.J.; Mancuso, A.A.; Hamed, L.M.; Quisling, R.G.; Hove, M.T.; Fennell, E.B.; Booth-Jones, M.; Ringdahl, D.M.; et al. “Joubert syndrome” revisited: Key ocular motor signs with magnetic resonance imaging correlation. J. Child Neurol. 1997, 12, 423–430. [Google Scholar] [CrossRef]
  196. Parisi, M.A.; Doherty, D.; Chance, P.F.; Glass, I.A. Joubert syndrome (and related disorders) (OMIM 213300). Eur. J. Hum. Genet. 2007, 15, 511–521. [Google Scholar] [CrossRef]
  197. Maria, B.L.; Bozorgmanesh, A.; Kimmel, K.N.; Theriaque, D.; Quisling, R.G. Quantitative assessment of brainstem development in Joubert syndrome and Dandy-Walker syndrome. J. Child. Neurol. 2001, 16, 751–758. [Google Scholar] [CrossRef]
  198. Doherty, D. Joubert syndrome: Insights into brain development, cilium biology, and complex disease. Semin. Pediatr. Neurol. 2009, 16, 143–154. [Google Scholar] [CrossRef]
  199. Wang, S.F.; Kowal, T.J.; Ning, K.; Koo, E.B.; Wu, A.Y.; Mahajan, V.B.; Sun, Y. Review of Ocular Manifestations of Joubert Syndrome. Genes 2018, 9, 605. [Google Scholar] [CrossRef]
  200. Forsythe, E.; Kenny, J.; Bacchelli, C.; Beales, P.L. Managing Bardet-Biedl Syndrome-Now and in the Future. Front. Pediatr. 2018, 6, 23. [Google Scholar] [CrossRef]
  201. Niederlova, V.; Modrak, M.; Tsyklauri, O.; Huranova, M.; Stepanek, O. Meta-analysis of genotype-phenotype associations in Bardet-Biedl syndrome uncovers differences among causative genes. Hum. Mutat. 2019, 40, 2068–2087. [Google Scholar] [CrossRef] [PubMed]
  202. Kerr, E.N.; Bhan, A.; Heon, E. Exploration of the cognitive, adaptive and behavioral functioning of patients affected with Bardet-Biedl syndrome. Clin. Genet. 2016, 89, 426–433. [Google Scholar] [CrossRef] [PubMed]
  203. Liu, Y.P.; Katsanis, N. Bardet-Biedl Syndrome. In Polycystic Kidney Disease: Translating Mechanisms into Therapy; Cowley, J.B.D., Bissler, J.J., Eds.; Springer: New York, NY, USA, 2018; pp. 27–50. [Google Scholar]
  204. Joy, T.; Cao, H.; Black, G.; Malik, R.; Charlton-Menys, V.; Hegele, R.A.; Durrington, P.N. Alstrom syndrome (OMIM 203800): A case report and literature review. Orphanet J. Rare Dis. 2007, 2, 49. [Google Scholar] [CrossRef] [PubMed]
  205. Marshall, J.D.; Beck, S.; Maffei, P.; Naggert, J.K. Alström syndrome. Eur. J. Hum. Genet. 2007, 15, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
  206. Raz, E.; Loh, J.P.; Saba, L.; Omari, M.; Herbert, J.; Lui, Y.; Kister, I. Periventricular lesions help differentiate neuromyelitis optica spectrum disorders from multiple sclerosis. Mult. Scler. Int. 2014, 2014, 986923. [Google Scholar] [CrossRef] [PubMed]
  207. Borazanci, A.P.; Harris, M.K.; Schwendimann, R.N.; Gonzalez-Toledo, E.; Maghzi, A.H.; Etemadifar, M.; Alekseeva, N.; Pinkston, J.; Kelley, R.E.; Minagar, A. Multiple sclerosis: Clinical features, pathophysiology, neuroimaging and future therapies. Future Neurol. 2009, 4, 229–246. [Google Scholar] [CrossRef]
  208. Mills, R.J.; Young, C.A.; Smith, E.T. Central trigeminal involvement in multiple sclerosis using high-resolution MRI at 3 T. Br. J. Radiol. 2010, 83, 493–498. [Google Scholar] [CrossRef]
  209. Ghezzi, A.; Deplano, V.; Faroni, J.; Grasso, M.G.; Liguori, M.; Marrosu, G.; Pozzilli, C.; Simone, I.L.; Zaffaroni, M. Multiple sclerosis in childhood: Clinical features of 149 cases. Mult. Scler. 1997, 3, 43–46. [Google Scholar] [CrossRef]
  210. Putzki, N.; Pfriem, A.; Limmroth, V.; Yaldizli, O.; Tettenborn, B.; Diener, H.C.; Katsarava, Z. Prevalence of migraine, tension-type headache and trigeminal neuralgia in multiple sclerosis. Eur. J. Neurol. 2009, 16, 262–267. [Google Scholar] [CrossRef]
  211. van Dijkman, S.C.; de Jager, N.C.B.; Rauwé, W.M.; Danhof, M.; Della Pasqua, O. Effect of Age-Related Factors on the Pharmacokinetics of Lamotrigine and Potential Implications for Maintenance Dose Optimisation in Future Clinical Trials. Clin. Pharm. 2018, 57, 1039–1053. [Google Scholar] [CrossRef]
  212. Cruccu, G.; Biasiotta, A.; Di Rezze, S.; Fiorelli, M.; Galeotti, F.; Innocenti, P.; Mameli, S.; Millefiorini, E.; Truini, A. Trigeminal neuralgia and pain related to multiple sclerosis. Pain 2009, 143, 186–191. [Google Scholar] [CrossRef] [PubMed]
  213. Lopez, L.I.; Bronstein, A.M.; Gresty, M.A.; Du Boulay, E.P.; Rudge, P. Clinical and MRI correlates in 27 patients with acquired pendular nystagmus. Brain 1996, 119 Pt 2, 465–472. [Google Scholar] [CrossRef] [PubMed]
  214. Yoshida, T.; Sasayama, H.; Mizuta, I.; Okamoto, Y.; Yoshida, M.; Riku, Y.; Hayashi, Y.; Yonezu, T.; Takata, Y.; Ohnari, K.; et al. Glial fibrillary acidic protein mutations in adult-onset Alexander disease: Clinical features observed in 12 Japanese patients. Acta Neurol. Scand. 2011, 124, 104–108. [Google Scholar] [CrossRef] [PubMed]
  215. Yoshida, T. Clinical characteristics of Alexander disease. Neurodegener. Dis. Manag. 2020, 10, 325–333. [Google Scholar] [CrossRef]
  216. Balbi, P.; Salvini, S.; Fundarò, C.; Frazzitta, G.; Maestri, R.; Mosah, D.; Uggetti, C.; Sechi, G. The clinical spectrum of late-onset Alexander disease: A systematic literature review. J. Neurol. 2010, 257, 1955–1962. [Google Scholar] [CrossRef]
  217. Yoshida, T.; Mizuta, I.; Yasuda, R.; Nakagawa, M.; Mizuno, T. Characteristics of cerebral lesions in adult-onset Alexander disease. Neurol. Sci. 2020, 41, 225–227. [Google Scholar] [CrossRef]
  218. Adam, M.P.; Schelley, S.; Gallagher, R.; Brady, A.N.; Barr, K.; Blumberg, B.; Shieh, J.T.; Graham, J.; Slavotinek, A.; Martin, M.; et al. Clinical features and management issues in Mowat-Wilson syndrome. Am. J. Med. Genet. A 2006, 140, 2730–2741. [Google Scholar] [CrossRef]
  219. Horn, D.; Weschke, B.; Zweier, C.; Rauch, A. Facial phenotype allows diagnosis of Mowat-Wilson syndrome in the absence of Hirschsprung disease. Am. J. Med. Genet. A 2004, 124, 102–104. [Google Scholar] [CrossRef]
  220. Hoffer, M.J.; Hilhorst-Hofstee, Y.; Knijnenburg, J.; Hansson, K.B.; Engelberts, A.C.; Laan, L.A.; Bakker, E.; Rosenberg, C. A 6Mb deletion in band 2q22 due to a complex chromosome rearrangement associated with severe psychomotor retardation, microcephaly and distinctive dysmorphic facial features. Eur. J. Med. Genet. 2007, 50, 149–154. [Google Scholar] [CrossRef]
  221. Silengo, M.; Ferrero, G.B.; Tornetta, L.; Cortese, M.G.; Canavese, F.; D’Alonzo, G.; Papalia, F. Pachygyria and cerebellar hypoplasia in Goldberg-Shprintzen syndrome. Am. J. Med. Genet. A 2003, 118, 388–390. [Google Scholar] [CrossRef]
  222. Garavelli, L.; Ivanovski, I.; Caraffi, S.G.; Santodirocco, D.; Pollazzon, M.; Cordelli, D.M.; Abdalla, E.; Accorsi, P.; Adam, M.P.; Baldo, C.; et al. Neuroimaging findings in Mowat-Wilson syndrome: A study of 54 patients. Genet. Med. 2017, 19, 691–700. [Google Scholar] [CrossRef] [PubMed]
  223. Zweier, C.; Thiel, C.T.; Dufke, A.; Crow, Y.J.; Meinecke, P.; Suri, M.; Ala-Mello, S.; Beemer, F.; Bernasconi, S.; Bianchi, P.; et al. Clinical and mutational spectrum of Mowat-Wilson syndrome. Eur. J. Med. Genet. 2005, 48, 97–111. [Google Scholar] [CrossRef] [PubMed]
  224. Kaur, S.; Christodoulou, J. MECP2 Disorders. In GeneReviews(®); Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
  225. Han, Z.A.; Jeon, H.R.; Kim, S.W.; Park, J.Y.; Chung, H.J. Clinical characteristics of children with rett syndrome. Ann. Rehabil. Med. 2012, 36, 334–339. [Google Scholar] [CrossRef]
  226. de Breet, L.H.M.; Townend, G.S.; Curfs, L.M.G.; Kingma, H.; Smeets, E.E.J.; Lucieer, F.; Widdershoven, J.; van de Berg, R. Challenges in evaluating the oculomotor function in individuals with Rett syndrome using electronystagmography. Eur. J. Paediatr. Neurol. 2019, 23, 262–269. [Google Scholar] [CrossRef]
  227. Rose, S.A.; Djukic, A.; Jankowski, J.J.; Feldman, J.F.; Fishman, I.; Valicenti-McDermott, M. Rett syndrome: An eye-tracking study of attention and recognition memory. Dev. Med. Child Neurol. 2013, 55, 364–371. [Google Scholar] [CrossRef] [PubMed]
  228. Rose, S.A.; Wass, S.; Jankowski, J.J.; Feldman, J.F.; Djukic, A. Impaired Visual Search in Children with Rett Syndrome. Pediatr. Neurol. 2019, 92, 26–31. [Google Scholar] [CrossRef]
  229. Ji, H.; Huang, Z.; Xia, Z.; Molokeev, M.S.; Jiang, X.; Lin, Z.; Atuchin, V.V. Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3. Dalton Trans. 2015, 44, 7679–7686. [Google Scholar] [CrossRef]
  230. Nance, M.A.; Berry, S.A. Cockayne syndrome: Review of 140 cases. Am. J. Med. Genet. 1992, 42, 68–84. [Google Scholar] [CrossRef]
  231. Laugel, V. Cockayne Syndrome. In GeneReviews(®); Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
  232. Stevenson, R.E. Alpha-Thalassemia X-Linked Intellectual Disability Syndrome. In GeneReviews(®); Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
  233. Gibbons, R. Alpha thalassaemia-mental retardation, X linked. Orphanet J. Rare Dis. 2006, 1, 15. [Google Scholar] [CrossRef]
  234. Medina, C.F.; Mazerolle, C.; Wang, Y.; Berube, N.G.; Coupland, S.; Gibbons, R.J.; Wallace, V.A.; Picketts, D.J. Altered visual function and interneuron survival in Atrx knockout mice: Inference for the human syndrome. Hum. Mol. Genet. 2009, 18, 966–977. [Google Scholar] [CrossRef]
  235. Wang, K.Y.; Chetta, J.; Bains, P.; Balzer, A.; Lincoln, J.; Uribe, T.; Lincoln, C.M. Spectrum of MRI brain lesion patterns in neuromyelitis optica spectrum disorder: A pictorial review. Br. J. Radiol. 2018, 91, 20170690. [Google Scholar] [CrossRef] [PubMed]
  236. Ji, Q.; Dong, H.; Lee, H.; Liu, Z.; Tong, Y.; Elkin, K.; Haddad, Y.; Geng, X.; Ding, Y. Clinical Characteristics and Outcomes of Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder With Brainstem Lesions as Heralding Prodrome. Front. Neurol. 2022, 13, 836337. [Google Scholar] [CrossRef] [PubMed]
  237. Ashtari, F.; Safaei, A.; Shaygannejad, V.; Najafi, M.A.; Vesal, S. Neuromyelitis optica spectrum disease characteristics in Isfahan, Iran: A cross-sectional study. J. Res. Med. Sci. 2017, 22, 41. [Google Scholar] [CrossRef] [PubMed]
  238. Fukuda, T.G.; Silva, I.T.F.; Dos Santos, T.S.S.; Filho, M.B.P.; de Abreu, F.F.; Oliveira-Filho, J. Clinical and prognostic aspects of patients with the Neuromyelitis Optica Spectrum Disorder (NMOSD) from a cohort in Northeast Brazil. BMC Neurol. 2022, 22, 95. [Google Scholar] [CrossRef]
  239. Garcia-Gonzalo, F.R.; Corbit, K.C.; Sirerol-Piquer, M.S.; Ramaswami, G.; Otto, E.A.; Noriega, T.R.; Seol, A.D.; Robinson, J.F.; Bennett, C.L.; Josifova, D.J. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 2011, 43, 776–784. [Google Scholar] [CrossRef]
  240. Huang, L.; Szymanska, K.; Jensen, V.L.; Janecke, A.R.; Innes, A.M.; Davis, E.E.; Frosk, P.; Li, C.; Willer, J.R.; Chodirker, B.N. TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am. J. Hum. Genet. 2011, 89, 713–730. [Google Scholar] [CrossRef]
  241. Sheng, G.; Xu, X.; Lin, Y.F.; Wang, C.E.; Rong, J.; Cheng, D.; Peng, J.; Jiang, X.; Li, S.H.; Li, X.J. Huntingtin-associated protein 1 interacts with Ahi1 to regulate cerebellar and brainstem development in mice. J. Clin. Investig. 2008, 118, 2785–2795. [Google Scholar] [CrossRef]
  242. Bennett, P.; Glass, I.; Swaid, S.; Dohayan, N.; Bakhsh, E.; Indridason, O.; Dobyns, W.; Parisi, C.; Doherty, D.; Eckert, M. mutations cause both retinal dystrophy and AHI1. J. Med. Genet. 2006, 43, 334–339. [Google Scholar] [CrossRef]
  243. Gazea, M.; Tasouri, E.; Heigl, T.; Bosch, V.; Tucker, K.L.; Blaess, S. Definition of a critical spatiotemporal window within which primary cilia control midbrain dopaminergic neurogenesis. Neurogenesis (Austin) 2016, 3, e1248206. [Google Scholar] [CrossRef]
  244. Lancaster, M.A.; Gopal, D.J.; Kim, J.; Saleem, S.N.; Silhavy, J.L.; Louie, C.M.; Thacker, B.E.; Williams, Y.; Zaki, M.S.; Gleeson, J.G. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat. Med. 2011, 17, 726–731. [Google Scholar] [CrossRef]
  245. Martemyanov, K.A. G protein signaling in the retina and beyond: The Cogan lecture. Investig. Ophthalmol. Vis. Sci. 2014, 55, 8201–8207. [Google Scholar] [CrossRef] [PubMed]
  246. Rajala, R.V.S. Signaling roles of phosphoinositides in the retina. J. Lipid. Res. 2021, 62, 100041. [Google Scholar] [CrossRef] [PubMed]
  247. Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C.A.; Motoshima, H.; Fox, B.A.; Le Trong, I.; Teller, D.C.; Okada, T.; Stenkamp, R.E.; et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000, 289, 739–745. [Google Scholar] [CrossRef] [PubMed]
  248. Berbari, N.F.; O’Connor, A.K.; Haycraft, C.J.; Yoder, B.K. The primary cilium as a complex signaling center. Curr. Biol. 2009, 19, R526-35. [Google Scholar] [CrossRef]
  249. Guo, J.; Otis, J.M.; Suciu, S.K.; Catalano, C.; Xing, L.; Constable, S.; Wachten, D.; Gupton, S.; Lee, J.; Lee, A.; et al. Primary Cilia Signaling Promotes Axonal Tract Development and Is Disrupted in Joubert Syndrome-Related Disorders Models. Dev. Cell 2019, 51, 759–774.e5. [Google Scholar] [CrossRef] [PubMed]
  250. Sharif, A.S.; Gerstner, C.D.; Cady, M.A.; Arshavsky, V.Y.; Mitchell, C.; Ying, G.; Frederick, J.M.; Baehr, W. Deletion of the phosphatase INPP5E in the murine retina impairs photoreceptor axoneme formation and prevents disc morphogenesis. J. Biol. Chem. 2021, 296, 100529. [Google Scholar] [CrossRef]
  251. Vilboux, T.; Malicdan, M.C.; Roney, J.C.; Cullinane, A.R.; Stephen, J.; Yildirimli, D.; Bryant, J.; Fischer, R.; Vemulapalli, M.; Mullikin, J.C.; et al. CELSR2, encoding a planar cell polarity protein, is a putative gene in Joubert syndrome with cortical heterotopia, microophthalmia, and growth hormone deficiency. Am. J. Med. Genet. A 2017, 173, 661–666. [Google Scholar] [CrossRef]
  252. Stephen, L.A.; Tawamie, H.; Davis, G.M.; Tebbe, L.; Nurnberg, P.; Nurnberg, G.; Thiele, H.; Thoenes, M.; Boltshauser, E.; Uebe, S.; et al. TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23). Elife 2015, 4, e08077. [Google Scholar] [CrossRef]
  253. Parisi, M.; Glass, I. Joubert Syndrome. In GeneReviews(®); Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
  254. Mockel, A.; Perdomo, Y.; Stutzmann, F.; Letsch, J.; Marion, V.; Dollfus, H. Retinal dystrophy in Bardet-Biedl syndrome and related syndromic ciliopathies. Prog. Retin. Eye Res. 2011, 30, 258–274. [Google Scholar] [CrossRef]
  255. Kim, J.C.; Ou, Y.Y.; Badano, J.L.; Esmail, M.A.; Leitch, C.C.; Fiedrich, E.; Beales, P.L.; Archibald, J.M.; Katsanis, N.; Rattner, J.B.; et al. MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis. J. Cell Sci. 2005, 118 Pt 5, 1007–1020. [Google Scholar] [CrossRef]
  256. Marion, V.; Stoetzel, C.; Schlicht, D.; Messaddeq, N.; Koch, M.; Flori, E.; Danse, J.M.; Mandel, J.L.; Dollfus, H. Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc. Natl. Acad. Sci. USA 2009, 106, 1820–1825. [Google Scholar] [CrossRef] [PubMed]
  257. Zhang, Q.; Yu, D.; Seo, S.; Stone, E.M.; Sheffield, V.C. Intrinsic protein-protein interaction-mediated and chaperonin-assisted sequential assembly of stable bardet-biedl syndrome protein complex, the BBSome. J. Biol. Chem. 2012, 287, 20625–20635. [Google Scholar] [CrossRef] [PubMed]
  258. Seo, S.; Baye, L.M.; Schulz, N.P.; Beck, J.S.; Zhang, Q.; Slusarski, D.C.; Sheffield, V.C. BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Proc. Natl. Acad. Sci. USA 2010, 107, 1488–1493. [Google Scholar] [CrossRef] [PubMed]
  259. Baker, K.; Northam, G.B.; Chong, W.K.; Banks, T.; Beales, P.; Baldeweg, T. Neocortical and hippocampal volume loss in a human ciliopathy: A quantitative MRI study in Bardet-Biedl syndrome. Am. J. Med. Genet. A 2011, 155A, 1–8. [Google Scholar] [CrossRef]
  260. Hulleman, J.D.; Nguyen, A.; Ramprasad, V.L.; Murugan, S.; Gupta, R.; Mahindrakar, A.; Angara, R.; Sankurathri, C.; Mootha, V.V. A novel H395R mutation in MKKS/BBS6 causes retinitis pigmentosa and polydactyly without other findings of Bardet-Biedl or McKusick-Kaufman syndrome. Mol. Vis. 2016, 22, 73–81. [Google Scholar] [PubMed]
  261. FDA Approves Treatment for Weight Management in Patients with Bardet-Biedl Syndrome Aged 6 or Older. Available online: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-weight-management-patients-bardet-biedl-syndrome-aged-6-or-older (accessed on 31 July 2022).
  262. Prado, D.A.; Acosta-Acero, M.; Maldonado, R.S. Gene therapy beyond luxturna: A new horizon of the treatment for inherited retinal disease. Curr. Opin. Ophthalmol. 2020, 31, 147–154. [Google Scholar] [CrossRef]
  263. Seo, S.; Mullins, R.F.; Dumitrescu, A.V.; Bhattarai, S.; Gratie, D.; Wang, K.; Stone, E.M.; Sheffield, V.; Drack, A.V. Subretinal gene therapy of mice with Bardet-Biedl syndrome type 1. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6118–6132. [Google Scholar] [CrossRef]
  264. Knorz, V.J.; Spalluto, C.; Lessard, M.; Purvis, T.L.; Adigun, F.F.; Collin, G.B.; Hanley, N.A.; Wilson, D.I.; Hearn, T. Centriolar association of ALMS1 and likely centrosomal functions of the ALMS motif-containing proteins C10orf90 and KIAA1731. Mol. Biol. Cell 2010, 21, 3617–3629. [Google Scholar] [CrossRef]
  265. Alvarez-Satta, M.; Lago-Docampo, M.; Bea-Mascato, B.; Solarat, C.; Castro-Sanchez, S.; Christensen, S.T.; Valverde, D. ALMS1 Regulates TGF-beta Signaling and Morphology of Primary Cilia. Front. Cell Dev. Biol. 2021, 9, 623829. [Google Scholar] [CrossRef]
  266. Massague, J. TGFbeta signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef]
  267. Yang, J.; Adamian, M.; Li, T. Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol. Biol. Cell 2006, 17, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
  268. Collin, G.B.; Cyr, E.; Bronson, R.; Marshall, J.D.; Gifford, E.J.; Hicks, W.; Murray, S.A.; Zheng, Q.Y.; Smith, R.S.; Nishina, P.M.; et al. Alms1-disrupted mice recapitulate human Alstrom syndrome. Hum. Mol. Genet. 2005, 14, 2323–2333. [Google Scholar] [CrossRef]
  269. Guo, J.; Higginbotham, H.; Li, J.; Nichols, J.; Hirt, J.; Ghukasyan, V.; Anton, E.S. Developmental disruptions underlying brain abnormalities in ciliopathies. Nat. Commun. 2015, 6, 7857. [Google Scholar] [CrossRef]
  270. Heydet, D.; Chen, L.X.; Larter, C.Z.; Inglis, C.; Silverman, M.A.; Farrell, G.C.; Leroux, M.R. A truncating mutation of Alms1 reduces the number of hypothalamic neuronal cilia in obese mice. Dev. Neurobiol. 2013, 73, 1–13. [Google Scholar] [CrossRef] [PubMed]
  271. Messing, A.; Brenner, M.; Feany, M.B.; Nedergaard, M.; Goldman, J.E. Alexander disease. J. Neurosci. 2012, 32, 5017–5023. [Google Scholar] [CrossRef] [PubMed]
  272. Craig-Schapiro, R.; Perrin, R.J.; Roe, C.M.; Xiong, C.; Carter, D.; Cairns, N.J.; Mintun, M.A.; Peskind, E.R.; Li, G.; Galasko, D.R.; et al. YKL-40: A novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol. Psychiatry 2010, 68, 903–912. [Google Scholar] [CrossRef]
  273. Gispert, J.D.; Monte, G.C.; Falcon, C.; Tucholka, A.; Rojas, S.; Sanchez-Valle, R.; Antonell, A.; Llado, A.; Rami, L.; Molinuevo, J.L. CSF YKL-40 and pTau181 are related to different cerebral morphometric patterns in early AD. Neurobiol. Aging 2016, 38, 47–55. [Google Scholar] [CrossRef]
  274. Sanfilippo, C.; Longo, A.; Lazzara, F.; Cambria, D.; Distefano, G.; Palumbo, M.; Cantarella, A.; Malaguarnera, L.; Di Rosa, M. CHI3L1 and CHI3L2 overexpression in motor cortex and spinal cord of sALS patients. Mol. Cell Neurosci. 2017, 85, 162–169. [Google Scholar] [CrossRef]
  275. Bonneh-Barkay, D.; Wang, G.; Starkey, A.; Hamilton, R.L.; Wiley, C.A. In vivo CHI3L1 (YKL-40) expression in astrocytes in acute and chronic neurological diseases. J. Neuroinflammation. 2010, 7, 34. [Google Scholar] [CrossRef]
  276. Hinsinger, G.; Galeotti, N.; Nabholz, N.; Urbach, S.; Rigau, V.; Demattei, C.; Lehmann, S.; Camu, W.; Labauge, P.; Castelnovo, G.; et al. Chitinase 3-like proteins as diagnostic and prognostic biomarkers of multiple sclerosis. Mult. Scler. 2015, 21, 1251–1261. [Google Scholar] [CrossRef]
  277. Burman, J.; Raininko, R.; Blennow, K.; Zetterberg, H.; Axelsson, M.; Malmestrom, C. YKL-40 is a CSF biomarker of intrathecal inflammation in secondary progressive multiple sclerosis. J. Neuroimmunol. 2016, 292, 52–57. [Google Scholar] [CrossRef] [PubMed]
  278. Arion, D.; Unger, T.; Lewis, D.A.; Levitt, P.; Mirnics, K. Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol. Psychiatry 2007, 62, 711–721. [Google Scholar] [CrossRef] [PubMed]
  279. Li, L.; Tian, E.; Chen, X.; Chao, J.; Klein, J.; Qu, Q.; Sun, G.; Sun, G.; Huang, Y.; Warden, C.D.; et al. GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease. Cell Stem Cell 2018, 23, 239–251. [Google Scholar] [CrossRef] [PubMed]
  280. Lian, C.; Lou, H.; Zhang, J.; Tian, H.; Ou, Q.; Xu, J.Y.; Jin, C.; Gao, F.; Zhang, J.; Wang, J.; et al. MicroRNA-24 protects retina from degeneration in rats by down-regulating chitinase-3-like protein 1. Exp. Eye Res. 2019, 188, 107791. [Google Scholar] [CrossRef] [PubMed]
  281. Fraher, J.P.; Dockery, P.; O’Donoghue, O.; Riedewald, B.; O’Leary, D. Initial motor axon outgrowth from the developing central nervous system. J. Anat. 2007, 211, 600–611. [Google Scholar] [CrossRef]
  282. Nazareth, L.; Chen, M.; Shelper, T.; Shah, M.; Tello Velasquez, J.; Walkden, H.; Beacham, I.; Batzloff, M.; Rayfield, A.; Todorovic, M.; et al. Novel insights into the glia limitans of the olfactory nervous system. J. Comp. Neurol. 2019, 527, 1228–1244. [Google Scholar] [CrossRef]
  283. Monzon-Mayor, M.; Yanes, C.; Ghandour, M.S.; de Barry, J.; Gombos, G. Glial fibrillary acidic protein and vimentin immunohistochemistry in the developing and adult midbrain of the lizard Gallotia galloti. J. Comp. Neurol. 1990, 295, 569–579. [Google Scholar] [CrossRef]
  284. Gow, A.; Sharma, R. The unfolded protein response in protein aggregating diseases. Neuromolecular Med. 2003, 4, 73–94. [Google Scholar] [CrossRef]
  285. Garbern, J.Y. Pelizaeus-Merzbacher disease: Genetic and cellular pathogenesis. Cell. Mol. Life Sci. 2007, 64, 50–65. [Google Scholar] [CrossRef]
  286. Southwood, C.M.; Garbern, J.; Jiang, W.; Gow, A. The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease. Neuron 2002, 36, 585–596. [Google Scholar] [CrossRef]
  287. Sistermans, E.A.; de Coo, R.F.; De Wijs, I.J.; Van Oost, B.A. Duplication of the proteolipid protein gene is the major cause of Pelizaeus-Merzbacher disease. Neurology 1998, 50, 1749–1754. [Google Scholar] [CrossRef]
  288. Nobuta, H.; Yang, N.; Ng, Y.H.; Marro, S.G.; Sabeur, K.; Chavali, M.; Stockley, J.H.; Killilea, D.W.; Walter, P.B.; Zhao, C.; et al. Oligodendrocyte Death in Pelizaeus-Merzbacher Disease Is Rescued by Iron Chelation. Cell Stem Cell 2019, 25, 531–541.e6. [Google Scholar] [CrossRef] [PubMed]
  289. Hagemann, T.L.; Powers, B.; Mazur, C.; Kim, A.; Wheeler, S.; Hung, G.; Swayze, E.; Messing, A. Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease. Ann. Neurol. 2018, 83, 27–39. [Google Scholar] [CrossRef]
  290. Hippert, C.; Graca, A.B.; Basche, M.; Kalargyrou, A.A.; Georgiadis, A.; Ribeiro, J.; Matsuyama, A.; Aghaizu, N.; Bainbridge, J.W.; Smith, A.J.; et al. RNAi-mediated suppression of vimentin or glial fibrillary acidic protein prevents the establishment of Muller glial cell hypertrophy in progressive retinal degeneration. Glia 2021, 69, 2272–2290. [Google Scholar] [CrossRef] [PubMed]
  291. Bargagna-Mohan, P.; Paranthan, R.R.; Hamza, A.; Dimova, N.; Trucchi, B.; Srinivasan, C.; Elliott, G.I.; Zhan, C.G.; Lau, D.L.; Zhu, H.; et al. Withaferin A targets intermediate filaments glial fibrillary acidic protein and vimentin in a model of retinal gliosis. J. Biol. Chem. 2010, 285, 7657–7669. [Google Scholar] [CrossRef] [PubMed]
  292. Elitt, M.S.; Barbar, L.; Shick, H.E.; Powers, B.E.; Maeno-Hikichi, Y.; Madhavan, M.; Allan, K.C.; Nawash, B.S.; Gevorgyan, A.S.; Hung, S.; et al. Suppression of proteolipid protein rescues Pelizaeus-Merzbacher disease. Nature 2020, 585, 397–403. [Google Scholar] [CrossRef]
  293. Crunkhorn, S. ASO rescues Pelizaeus-Merzbacher disease. Nat. Rev. Drug. Discov. 2020, 19, 512. [Google Scholar] [CrossRef] [PubMed]
  294. Verschueren, K.; Remacle, J.E.; Collart, C.; Kraft, H.; Baker, B.S.; Tylzanowski, P.; Nelles, L.; Wuytens, G.; Su, M.T.; Bodmer, R.; et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5’-CACCT sequences in candidate target genes. J. Biol. Chem. 1999, 274, 20489–20498. [Google Scholar] [CrossRef] [PubMed]
  295. Verstappen, G.; van Grunsven, L.A.; Michiels, C.; Van de Putte, T.; Souopgui, J.; Van Damme, J.; Bellefroid, E.; Vandekerckhove, J.; Huylebroeck, D. Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex. Hum. Mol. Genet. 2008, 17, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
  296. Comijn, J.; Berx, G.; Vermassen, P.; Verschueren, K.; van Grunsven, L.; Bruyneel, E.; Mareel, M.; Huylebroeck, D.; Van Roy, F. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell 2001, 7, 1267–1278. [Google Scholar] [CrossRef]
  297. Magloire, V.; Mercier, M.S.; Kullmann, D.M.; Pavlov, I. GABAergic Interneurons in Seizures: Investigating Causality with Optogenetics. Neuroscientist 2019, 25, 344–358. [Google Scholar] [CrossRef]
  298. Marın, O.; Anderson, S.A.; Rubenstein, J.L. Origin and molecular specification of striatal interneurons. J. Neurosci. 2000, 20, 6063–6076. [Google Scholar] [CrossRef]
  299. McKinsey, G.L.; Lindtner, S.; Trzcinski, B.; Visel, A.; Pennacchio, L.A.; Huylebroeck, D.; Higashi, Y.; Rubenstein, J.L. Dlx1&2-dependent expression of Zfhx1b (Sip1, Zeb2) regulates the fate switch between cortical and striatal interneurons. Neuron 2013, 77, 83–98. [Google Scholar] [CrossRef]
  300. Srivatsa, S.; Parthasarathy, S.; Molnar, Z.; Tarabykin, V. Sip1 downstream Effector ninein controls neocortical axonal growth, ipsilateral branching, and microtubule growth and stability. Neuron 2015, 85, 998–1012. [Google Scholar] [CrossRef]
  301. Fame, R.M.; MacDonald, J.L.; Macklis, J.D. Development, specification, and diversity of callosal projection neurons. Trends Neurosci. 2011, 34, 41–50. [Google Scholar] [CrossRef]
  302. Molyneaux, B.J.; Arlotta, P.; Menezes, J.R.; Macklis, J.D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 2007, 8, 427–437. [Google Scholar] [CrossRef]
  303. Weng, Q.; Chen, Y.; Wang, H.; Xu, X.; Yang, B.; He, Q.; Shou, W.; Chen, Y.; Higashi, Y.; van den Berghe, V.; et al. Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system. Neuron 2012, 73, 713–728. [Google Scholar] [CrossRef] [PubMed]
  304. Seuntjens, E.; Nityanandam, A.; Miquelajauregui, A.; Debruyn, J.; Stryjewska, A.; Goebbels, S.; Nave, K.A.; Huylebroeck, D.; Tarabykin, V. Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat. Neurosci. 2009, 12, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
  305. Espinosa-Parrilla, Y.; Amiel, J.; Augé, J.; Encha-Razavi, F.; Munnich, A.; Lyonnet, S.; Vekemans, M.; Attié-Bitach, T. Expression of the SMADIP1 gene during early human development. Mech. Dev. 2002, 114, 187–191. [Google Scholar] [CrossRef]
  306. Bassez, G.; Camand, O.J.; Cacheux, V.; Kobetz, A.; Dastot-Le Moal, F.; Marchant, D.; Catala, M.; Abitbol, M.; Goossens, M. Pleiotropic and diverse expression of ZFHX1B gene transcripts during mouse and human development supports the various clinical manifestations of the “Mowat-Wilson” syndrome. Neurobiol. Dis. 2004, 15, 240–250. [Google Scholar] [CrossRef]
  307. Ariss, M.; Natan, K.; Friedman, N.; Traboulsi, E.I. Ophthalmologic abnormalities in Mowat-Wilson syndrome and a mutation in ZEB2. Ophthalmic Genet. 2012, 33, 159–160. [Google Scholar] [CrossRef]
  308. Forrest, M.P.; Waite, A.J.; Martin-Rendon, E.; Blake, D.J. Knockdown of human TCF4 affects multiple signaling pathways involved in cell survival, epithelial to mesenchymal transition and neuronal differentiation. PLoS ONE 2013, 8, e73169. [Google Scholar] [CrossRef]
  309. Flora, A.; Garcia, J.J.; Thaller, C.; Zoghbi, H.Y. The E-protein Tcf4 interacts with Math1 to regulate differentiation of a specific subset of neuronal progenitors. Proc. Natl. Acad. Sci. USA 2007, 104, 15382–15387. [Google Scholar] [CrossRef]
  310. Malvaez, M.; Greenfield, V.Y.; Matheos, D.P.; Angelillis, N.A.; Murphy, M.D.; Kennedy, P.J.; Wood, M.A.; Wassum, K.M. Habits Are Negatively Regulated by Histone Deacetylase 3 in the Dorsal Striatum. Biol. Psychiatry 2018, 84, 383–392. [Google Scholar] [CrossRef]
  311. Townend, G.S.; van de Berg, R.; de Breet, L.H.M.; Hiemstra, M.; Wagter, L.; Smeets, E.; Widdershoven, J.; Kingma, H.; Curfs, L.M.G. Oculomotor Function in Individuals With Rett Syndrome. Pediatr. Neurol. 2018, 88, 48–58. [Google Scholar] [CrossRef]
  312. Chahrour, M.; Zoghbi, H.Y. The story of Rett syndrome: From clinic to neurobiology. Neuron 2007, 56, 422–437. [Google Scholar] [CrossRef]
  313. Hite, K.C.; Kalashnikova, A.A.; Hansen, J.C. Coil-to-helix transitions in intrinsically disordered methyl CpG binding protein 2 and its isolated domains. Protein Sci. 2012, 21, 531–538. [Google Scholar] [CrossRef] [PubMed]
  314. Ghosh, R.P.; Nikitina, T.; Horowitz-Scherer, R.A.; Gierasch, L.M.; Uversky, V.N.; Hite, K.; Hansen, J.C.; Woodcock, C.L. Unique physical properties and interactions of the domains of methylated DNA binding protein 2. Biochemistry 2010, 49, 4395–4410. [Google Scholar] [CrossRef] [PubMed]
  315. Nan, X.; Ng, H.H.; Johnson, C.A.; Laherty, C.D.; Turner, B.M.; Eisenman, R.N.; Bird, A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393, 386–389. [Google Scholar] [CrossRef] [PubMed]
  316. Lunyak, V.V.; Burgess, R.; Prefontaine, G.G.; Nelson, C.; Sze, S.H.; Chenoweth, J.; Schwartz, P.; Pevzner, P.A.; Glass, C.; Mandel, G.; et al. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 2002, 298, 1747–1752. [Google Scholar] [CrossRef] [PubMed]
  317. Kokura, K.; Kaul, S.C.; Wadhwa, R.; Nomura, T.; Khan, M.M.; Shinagawa, T.; Yasukawa, T.; Colmenares, C.; Ishii, S. The Ski protein family is required for MeCP2-mediated transcriptional repression. J. Biol. Chem. 2001, 276, 34115–34121. [Google Scholar] [CrossRef]
  318. Carro, S.; Bergo, A.; Mengoni, M.; Bachi, A.; Badaracco, G.; Kilstrup-Nielsen, C.; Landsberger, N. A novel protein, Xenopus p20, influences the stability of MeCP2 through direct interaction. J. Biol. Chem. 2004, 279, 25623–25631. [Google Scholar] [CrossRef]
  319. Kimura, H.; Shiota, K. Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1. J. Biol. Chem. 2003, 278, 4806–4812. [Google Scholar] [CrossRef]
  320. Suzuki, M.; Yamada, T.; Kihara-Negishi, F.; Sakurai, T.; Oikawa, T. Direct association between PU.1 and MeCP2 that recruits mSin3A-HDAC complex for PU.1-mediated transcriptional repression. Oncogene 2003, 22, 8688–8698. [Google Scholar] [CrossRef]
  321. Buschdorf, J.P.; Stratling, W.H. A WW domain binding region in methyl-CpG-binding protein MeCP2: Impact on Rett syndrome. J. Mol. Med. (Berl.) 2004, 82, 135–143. [Google Scholar] [CrossRef]
  322. Harikrishnan, K.N.; Chow, M.Z.; Baker, E.K.; Pal, S.; Bassal, S.; Brasacchio, D.; Wang, L.; Craig, J.M.; Jones, P.L.; Sif, S.; et al. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat. Genet. 2005, 37, 254–264. [Google Scholar] [CrossRef]
  323. Jeffery, L.; Nakielny, S. Components of the DNA methylation system of chromatin control are RNA-binding proteins. J. Biol. Chem. 2004, 279, 49479–49487. [Google Scholar] [CrossRef]
  324. Young, J.I.; Hong, E.P.; Castle, J.C.; Crespo-Barreto, J.; Bowman, A.B.; Rose, M.F.; Kang, D.; Richman, R.; Johnson, J.M.; Berget, S.; et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc. Natl. Acad. Sci. USA 2005, 102, 17551–17558. [Google Scholar] [CrossRef] [PubMed]
  325. Tillotson, R.; Bird, A. The Molecular Basis of MeCP2 Function in the Brain. J. Mol. Biol. 2019, Online ahead of print. [Google Scholar] [CrossRef]
  326. Connolly, D.R.; Zhou, Z. Genomic insights into MeCP2 function: A role for the maintenance of chromatin architecture. Curr. Opin. Neurobiol. 2019, 59, 174–179. [Google Scholar] [CrossRef] [PubMed]
  327. Good, K.V.; Vincent, J.B.; Ausio, J. MeCP2: The Genetic Driver of Rett Syndrome Epigenetics. Front. Genet. 2021, 12, 620859. [Google Scholar] [CrossRef]
  328. Martinez de Paz, A.; Khajavi, L.; Martin, H.; Claveria-Gimeno, R.; Tom Dieck, S.; Cheema, M.S.; Sanchez-Mut, J.V.; Moksa, M.M.; Carles, A.; Brodie, N.I.; et al. MeCP2-E1 isoform is a dynamically expressed, weakly DNA-bound protein with different protein and DNA interactions compared to MeCP2-E2. Epigenetics Chromatin 2019, 12, 63. [Google Scholar] [CrossRef]
  329. Sheikh, T.I.; de Paz, A.M.; Akhtar, S.; Ausio, J.; Vincent, J.B. MeCP2_E1 N-terminal modifications affect its degradation rate and are disrupted by the Ala2Val Rett mutation. Hum. Mol. Genet. 2017, 26, 4132–4141. [Google Scholar] [CrossRef] [PubMed]
  330. Saxena, A.; de Lagarde, D.; Leonard, H.; Williamson, S.L.; Vasudevan, V.; Christodoulou, J.; Thompson, E.; MacLeod, P.; Ravine, D. Lost in translation: Translational interference from a recurrent mutation in exon 1 of MECP2. J. Med. Genet. 2006, 43, 470–477. [Google Scholar] [CrossRef]
  331. Kharrat, M.; Hsairi, I.; Fendri-Kriaa, N.; Kenoun, H.; Othmen, H.B.; Ben Mahmoud, A.; Ghorbel, R.; Abid, I.; Triki, C.; Fakhfakh, F. A Novel Mutation p. A59P in N-Terminal Domain of Methyl-CpG–Binding Protein 2 Confers Phenotypic Variability in 3 Cases of Tunisian Rett Patients: Clinical Evaluations and In Silico Investigations. J. Child Neurol. 2015, 30, 1715–1721. [Google Scholar] [CrossRef]
  332. Wen, Y.; Wang, J.; Zhang, Q.; Chen, Y.; Wu, X.; Bao, X. MECP2 mutation spectrum and its clinical characteristics in a Chinese cohort. Clin. Genet. 2020, 98, 240–250. [Google Scholar] [CrossRef]
  333. Kucukkal, T.G.; Yang, Y.; Uvarov, O.; Cao, W.; Alexov, E. Impact of Rett Syndrome Mutations on MeCP2 MBD Stability. Biochemistry 2015, 54, 6357–6368. [Google Scholar] [CrossRef] [PubMed]
  334. Yang, Y.; Kucukkal, T.G.; Li, J.; Alexov, E.; Cao, W. Binding Analysis of Methyl-CpG Binding Domain of MeCP2 and Rett Syndrome Mutations. ACS Chem. Biol. 2016, 11, 2706–2715. [Google Scholar] [CrossRef]
  335. Ghosh, R.P.; Horowitz-Scherer, R.A.; Nikitina, T.; Gierasch, L.M.; Woodcock, C.L. Rett syndrome-causing mutations in human MeCP2 result in diverse structural changes that impact folding and DNA interactions. J. Biol. Chem. 2008, 283, 20523–20534. [Google Scholar] [CrossRef] [PubMed]
  336. Spiga, O.; Gardini, S.; Rossi, N.; Cicaloni, V.; Pettini, F.; Niccolai, N.; Santucci, A. Structural investigation of Rett-inducing MeCP2 mutations. Genes Dis. 2019, 6, 31–34. [Google Scholar] [CrossRef] [PubMed]
  337. 344 Skene, P.J.; Illingworth, R.S.; Webb, S.; Kerr, A.R.; James, K.D.; Turner, D.J.; Andrews, R.; Bird, A.P. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 2010, 37, 457–468. [Google Scholar] [CrossRef]
  338. Shahbazian, M.D.; Antalffy, B.; Armstrong, D.L.; Zoghbi, H.Y. Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum. Mol. Genet. 2002, 11, 115–124. [Google Scholar] [CrossRef]
  339. Jellinger, K.; Seitelberger, F. Neuropathology of Rett syndrome. Am. J. Med. Genet. Suppl. 1986, 1, 259–288. [Google Scholar] [CrossRef]
  340. Bauman, M.L.; Kemper, T.L.; Arin, D.M. Microscopic observations of the brain in Rett syndrome. Neuropediatrics 1995, 26, 105–108. [Google Scholar] [CrossRef]
  341. Armstrong, D.; Dunn, J.K.; Antalffy, B.; Trivedi, R. Selective dendritic alterations in the cortex of Rett syndrome. J. Neuropathol. Exp. Neurol. 1995, 54, 195–201. [Google Scholar] [CrossRef]
  342. Kerr, A.M.; Stephenson, J.B. Rett’s syndrome in the west of Scotland. Br. Med. J. (Clin. Res. Ed.) 1985, 291, 579–582. [Google Scholar] [CrossRef]
  343. Hagberg, B.; Aicardi, J.; Dias, K.; Ramos, O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: Report of 35 cases. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 1983, 14, 471–479. [Google Scholar] [CrossRef] [PubMed]
  344. Neul, J.L.; Kaufmann, W.E.; Glaze, D.G.; Christodoulou, J.; Clarke, A.J.; Bahi-Buisson, N.; Leonard, H.; Bailey, M.E.; Schanen, N.C.; Zappella, M.; et al. Rett syndrome: Revised diagnostic criteria and nomenclature. Ann. Neurol. 2010, 68, 944–950. [Google Scholar] [CrossRef] [PubMed]
  345. Gadalla, K.K.; Ross, P.D.; Hector, R.D.; Bahey, N.G.; Bailey, M.E.; Cobb, S.R. Gene therapy for Rett syndrome: Prospects and challenges. Future Neurol. 2015, 10, 467–484. [Google Scholar] [CrossRef]
  346. Kay, M.A.; Glorioso, J.C.; Naldini, L. Viral vectors for gene therapy: The art of turning infectious agents into vehicles of therapeutics. Nat. Med. 2001, 7, 33–40. [Google Scholar] [CrossRef]
  347. Brooks, A.I.; Stein, C.S.; Hughes, S.M.; Heth, J.; McCray, P.M., Jr.; Sauter, S.L.; Johnston, J.C.; Cory-Slechta, D.A.; Federoff, H.J.; Davidson, B.L. Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc. Natl. Acad. Sci. USA 2002, 99, 6216–6221. [Google Scholar] [CrossRef]
  348. Grieger, J.C.; Samulski, R.J. Adeno-associated virus as a gene therapy vector: Vector development, production and clinical applications. Gene Ther. Gene Deliv. Syst. 2005, 119–145. [Google Scholar] [CrossRef]
  349. Arruda, V.R.; Stedman, H.H.; Nichols, T.C.; Haskins, M.E.; Nicholson, M.; Herzog, R.W.; Couto, L.B.; High, K.A. Regional intravascular delivery of AAV-2-F. IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood 2005, 105, 3458–3464. [Google Scholar] [CrossRef]
  350. Gadalla, K.K.; Bailey, M.E.; Spike, R.C.; Ross, P.D.; Woodard, K.T.; Kalburgi, S.N.; Bachaboina, L.; Deng, J.V.; West, A.E.; Samulski, R.J.; et al. Improved survival and reduced phenotypic severity following AAV9/MECP2 gene transfer to neonatal and juvenile male Mecp2 knockout mice. Mol. Ther. 2013, 21, 18–30. [Google Scholar] [CrossRef]
  351. Na, E.S.; Nelson, E.D.; Adachi, M.; Autry, A.E.; Mahgoub, M.A.; Kavalali, E.T.; Monteggia, L.M. A mouse model for MeCP2 duplication syndrome: MeCP2 overexpression impairs learning and memory and synaptic transmission. J. Neurosci. 2012, 32, 3109–3117. [Google Scholar] [CrossRef]
  352. McGraw, C.M.; Samaco, R.C.; Zoghbi, H.Y. Adult neural function requires MeCP2. Science 2011, 333, 186. [Google Scholar] [CrossRef]
  353. Le, T.T.H.; Tran, N.T.; Dao, T.M.L.; Nguyen, D.D.; Do, H.D.; Ha, T.L.; Kuhn, R.; Nguyen, T.L.; Rajewsky, K.; Chu, V.T. Efficient and Precise CRISPR/Cas9-Mediated MECP2 Modifications in Human-Induced Pluripotent Stem Cells. Front. Genet. 2019, 10, 625. [Google Scholar] [CrossRef] [PubMed]
  354. Garg, S.K.; Lioy, D.T.; Cheval, H.; McGann, J.C.; Bissonnette, J.M.; Murtha, M.J.; Foust, K.D.; Kaspar, B.K.; Bird, A.; Mandel, G. Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J. Neurosci. 2013, 33, 13612–13620. [Google Scholar] [CrossRef] [PubMed]
  355. Matagne, V.; Ehinger, Y.; Saidi, L.; Borges-Correia, A.; Barkats, M.; Bartoli, M.; Villard, L.; Roux, J.C. A codon-optimized Mecp2 transgene corrects breathing deficits and improves survival in a mouse model of Rett syndrome. Neurobiol. Dis. 2017, 99, 1–11. [Google Scholar] [CrossRef]
  356. Gadalla, K.K.E.; Vudhironarit, T.; Hector, R.D.; Sinnett, S.; Bahey, N.G.; Bailey, M.E.S.; Gray, S.J.; Cobb, S.R. Development of a Novel AAV Gene Therapy Cassette with Improved Safety Features and Efficacy in a Mouse Model of Rett Syndrome. Mol. Ther. Methods Clin. Dev. 2017, 5, 180–190. [Google Scholar] [CrossRef] [PubMed]
  357. Sinnett, S.E.; Hector, R.D.; Gadalla, K.K.E.; Heindel, C.; Chen, D.; Zaric, V.; Bailey, M.E.S.; Cobb, S.R.; Gray, S.J. Improved MECP2 Gene Therapy Extends the Survival of MeCP2-Null Mice without Apparent Toxicity after Intracisternal Delivery. Mol. Ther. Methods Clin. Dev. 2017, 5, 106–115. [Google Scholar] [CrossRef] [PubMed]
  358. Sinnett, S.E.; Boyle, E.; Lyons, C.; Gray, S.J. Engineered microRNA-based regulatory element permits safe high-dose miniMECP2 gene therapy in Rett mice. Brain 2021, 144, 3005–3019. [Google Scholar] [CrossRef] [PubMed]
  359. Wang, S.; Min, Z.; Ji, Q.; Geng, L.; Su, Y.; Liu, Z.; Hu, H.; Wang, L.; Zhang, W.; Suzuiki, K.; et al. Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction. Protein Cell 2020, 11, 1–22. [Google Scholar] [CrossRef] [PubMed]
  360. Safety and Efficacy of CT103A Cells for Relapsed/Refractory Antibody-Associated Idiopathic Inflammatory Diseases of the Nervous System (CARTinNS). Available online: https://clinicaltrials.gov/ct2/show/NCT04561557 (accessed on 31 July 2022).
  361. Bakondi, B.; Lv, W.; Lu, B.; Jones, M.K.; Tsai, Y.; Kim, K.J.; Levy, R.; Akhtar, A.A.; Breunig, J.J.; Svendsen, C.N.; et al. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa. Mol. Ther. 2016, 24, 556–563. [Google Scholar] [CrossRef]
  362. Suzuki, K.; Tsunekawa, Y.; Hernandez-Benitez, R.; Wu, J.; Zhu, J.; Kim, E.J.; Hatanaka, F.; Yamamoto, M.; Araoka, T.; Li, Z.; et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 2016, 540, 144–149. [Google Scholar] [CrossRef]
  363. Zhu, J.; Ming, C.; Fu, X.; Duan, Y.; Hoang, D.A.; Rutgard, J.; Zhang, R.; Wang, W.; Hou, R.; Zhang, D.; et al. Gene and mutation independent therapy via CRISPR-Cas9 mediated cellular reprogramming in rod photoreceptors. Cell Res. 2017, 27, 830–833. [Google Scholar] [CrossRef]
  364. Li, P.; Kleinstiver, B.P.; Leon, M.Y.; Prew, M.S.; Navarro-Gomez, D.; Greenwald, S.H.; Pierce, E.A.; Joung, J.K.; Liu, Q. Allele-Specific CRISPR-Cas9 Genome Editing of the Single-Base P23H Mutation for Rhodopsin-Associated Dominant Retinitis Pigmentosa. Crispr. J. 2018, 1, 55–64. [Google Scholar] [CrossRef] [PubMed]
  365. Tsai, Y.T.; Wu, W.H.; Lee, T.T.; Wu, W.P.; Xu, C.L.; Park, K.S.; Cui, X.; Justus, S.; Lin, C.S.; Jauregui, R.; et al. Clustered Regularly Interspaced Short Palindromic Repeats-Based Genome Surgery for the Treatment of Autosomal Dominant Retinitis Pigmentosa. Ophthalmology 2018, 125, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
  366. Cai, Y.; Cheng, T.; Yao, Y.; Li, X.; Ma, Y.; Li, L.; Zhao, H.; Bao, J.; Zhang, M.; Qiu, Z.; et al. In vivo genome editing rescues photoreceptor degeneration via a Cas9/RecA-mediated homology-directed repair pathway. Sci. Adv. 2019, 5, eaav3335. [Google Scholar] [CrossRef]
  367. Matson, S.W.; Bean, D.W.; George, J.W. DNA helicases: Enzymes with essential roles in all aspects of DNA metabolism. Bioessays 1994, 16, 13–22. [Google Scholar] [CrossRef] [PubMed]
  368. Osenbroch, P.O.; Auk-Emblem, P.; Halsne, R.; Strand, J.; Forstrom, R.J.; van der Pluijm, I.; Eide, L. Accumulation of mitochondrial DNA damage and bioenergetic dysfunction in CSB defective cells. FEBS J. 2009, 276, 2811–2821. [Google Scholar] [CrossRef]
  369. Thorslund, T.; von Kobbe, C.; Harrigan, J.A.; Indig, F.E.; Christiansen, M.; Stevnsner, T.; Bohr, V.A. Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress. Mol. Cell. Biol. 2005, 25, 7625–7636. [Google Scholar] [CrossRef]
  370. Wong, H.K.; Muftuoglu, M.; Beck, G.; Imam, S.Z.; Bohr, V.A.; Wilson, D.M. 3rd, Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. Nucleic Acids Res. 2007, 35, 4103–4113. [Google Scholar] [CrossRef]
  371. Iyama, T.; Lee, S.Y.; Berquist, B.R.; Gileadi, O.; Bohr, V.A.; Seidman, M.M.; McHugh, P.J.; Wilson, D.M. 3rd, CSB interacts with SNM1A and promotes DNA interstrand crosslink processing. Nucleic Acids Res. 2015, 43, 247–258. [Google Scholar] [CrossRef]
  372. Batenburg, N.L.; Thompson, E.L.; Hendrickson, E.A.; Zhu, X.D. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation. EMBO J. 2015, 34, 1399–1416. [Google Scholar] [CrossRef]
  373. Bunting, S.F.; Callen, E.; Wong, N.; Chen, H.T.; Polato, F.; Gunn, A.; Bothmer, A.; Feldhahn, N.; Fernandez-Capetillo, O.; Cao, L.; et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 2010, 141, 243–254. [Google Scholar] [CrossRef]
  374. Fischer, E.S.; Scrima, A.; Bohm, K.; Matsumoto, S.; Lingaraju, G.M.; Faty, M.; Yasuda, T.; Cavadini, S.; Wakasugi, M.; Hanaoka, F.; et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 2011, 147, 1024–1039. [Google Scholar] [CrossRef] [PubMed]
  375. Epanchintsev, A.; Costanzo, F.; Rauschendorf, M.A.; Caputo, M.; Ye, T.; Donnio, L.M.; Proietti-de-Santis, L.; Coin, F.; Laugel, V.; Egly, J.M. Cockayne’s Syndrome A and B Proteins Regulate Transcription Arrest after Genotoxic Stress by Promoting ATF3 Degradation. Mol. Cell 2017, 68, 1054–1066. [Google Scholar] [CrossRef] [PubMed]
  376. Bennett, E.J.; Rush, J.; Gygi, S.P.; Harper, J.W. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 2010, 143, 951–965. [Google Scholar] [CrossRef] [PubMed]
  377. Latini, P.; Frontini, M.; Caputo, M.; Gregan, J.; Cipak, L.; Filippi, S.; Kumar, V.; Velez-Cruz, R.; Stefanini, M.; Proietti-De-Santis, L. CSA and CSB proteins interact with p53 and regulate its Mdm2-dependent ubiquitination. Cell Cycle 2011, 10, 3719–3730. [Google Scholar] [CrossRef] [PubMed]
  378. Llanos, S.; Serrano, M. Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway. Cell Cycle 2010, 9, 4005–4012. [Google Scholar] [CrossRef]
  379. Feng, Z.; Hu, W.; Rajagopal, G.; Levine, A.J. The tumor suppressor p53: Cancer and aging. Cell Cycle 2008, 7, 842–847. [Google Scholar] [CrossRef]
  380. Rapin, I.; Weidenheim, K.; Lindenbaum, Y.; Rosenbaum, P.; Merchant, S.N.; Krishna, S.; Dickson, D.W. Cockayne syndrome in adults: Review with clinical and pathologic study of a new case. J. Child Neurol. 2006, 21, 991–1006. [Google Scholar] [CrossRef]
  381. Laugel, V.; Dalloz, C.; Tobias, E.S.; Tolmie, J.L.; Martin-Coignard, D.; Drouin-Garraud, V.; Valayannopoulos, V.; Sarasin, A.; Dollfus, H. Cerebro-oculo-facio-skeletal syndrome: Three additional cases with CSB mutations, new diagnostic criteria and an approach to investigation. J. Med. Genet. 2008, 45, 564–571. [Google Scholar] [CrossRef]
  382. Hasty, P.; Campisi, J.; Hoeijmakers, J.; van Steeg, H.; Vijg, J. Aging and genome maintenance: Lessons from the mouse? Science 2003, 299, 1355–1359. [Google Scholar] [CrossRef]
  383. Yun, K.W.; Chae, S.A.; Lee, J.J.; Yun, S.W.; Yoo, B.H.; Lim, I.S.; Lee, M.K. The first case of X-linked alpha-thalassemia/mental retardation (ATR-X) syndrome in Korea. J. Korean Med. Sci. 2011, 26, 146–149. [Google Scholar] [CrossRef]
  384. Hall, J.; Weksberg, R. Pediatric diseases and epigenetics. In Medical Epigenetics; Elsevier: Amsterdam, The Netherlands, 2021; pp. 377–406. [Google Scholar]
  385. Bowman, G.D.; Poirier, M.G. Post-translational modifications of histones that influence nucleosome dynamics. Chem. Rev. 2015, 115, 2274–2295. [Google Scholar] [CrossRef] [PubMed]
  386. Lewis, P.W.; Elsaesser, S.J.; Noh, K.M.; Stadler, S.C.; Allis, C.D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl. Acad. Sci. USA 2010, 107, 14075–14080. [Google Scholar] [CrossRef] [PubMed]
  387. Delbarre, E.; Ivanauskiene, K.; Spirkoski, J.; Shah, A.; Vekterud, K.; Moskaug, J.O.; Boe, S.O.; Wong, L.H.; Kuntziger, T.; Collas, P. PML protein organizes heterochromatin domains where it regulates histone H3.3 deposition by ATRX/DAXX. Genome Res. 2017, 27, 913–921. [Google Scholar] [CrossRef]
  388. Berube, N.G.; Smeenk, C.A.; Picketts, D.J. Cell cycle-dependent phosphorylation of the ATRX protein correlates with changes in nuclear matrix and chromatin association. Hum. Mol. Genet. 2000, 9, 539–547. [Google Scholar] [CrossRef]
  389. Nan, X.; Hou, J.; Maclean, A.; Nasir, J.; Lafuente, M.J.; Shu, X.; Kriaucionis, S.; Bird, A. Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc. Natl. Acad. Sci. USA 2007, 104, 2709–2714. [Google Scholar] [CrossRef] [PubMed]
  390. Eustermann, S.; Yang, J.C.; Law, M.J.; Amos, R.; Chapman, L.M.; Jelinska, C.; Garrick, D.; Clynes, D.; Gibbons, R.J.; Rhodes, D.; et al. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat. Struct. Mol. Biol. 2011, 18, 777–782. [Google Scholar] [CrossRef]
  391. Udugama, M.; FT, M.C.; Chan, F.L.; Tang, M.C.; Pickett, H.A.; JD, R.M.; Mayne, L.; Collas, P.; Mann, J.R.; Wong, L.H. Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Res. 2015, 43, 10227–10237. [Google Scholar] [CrossRef]
  392. Lovejoy, C.A.; Takai, K.; Huh, M.S.; Picketts, D.J.; de Lange, T. ATRX affects the repair of telomeric DSBs by promoting cohesion and a DAXX-dependent activity. PLoS Biol. 2020, 18, e3000594. [Google Scholar] [CrossRef]
  393. Cardoso, C.; Lutz, Y.; Mignon, C.; Compe, E.; Depetris, D.; Mattei, M.G.; Fontes, M.; Colleaux, L. ATR-X mutations cause impaired nuclear location and altered DNA binding properties of the XNP/ATR-X protein. J. Med. Genet. 2000, 37, 746–751. [Google Scholar] [CrossRef]
  394. Argentaro, A.; Yang, J.C.; Chapman, L.; Kowalczyk, M.S.; Gibbons, R.J.; Higgs, D.R.; Neuhaus, D.; Rhodes, D. Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX. Proc. Natl. Acad. Sci. USA 2007, 104, 11939–11944. [Google Scholar] [CrossRef]
  395. Gibbons, R.J.; Wada, T.; Fisher, C.A.; Malik, N.; Mitson, M.J.; Steensma, D.P.; Fryer, A.; Goudie, D.R.; Krantz, I.D.; Traeger-Synodinos, J. Mutations in the chromatin-associated protein ATRX. Hum. Mutat. 2008, 29, 796–802. [Google Scholar] [CrossRef] [PubMed]
  396. Berube, N.G.; Healy, J.; Medina, C.F.; Wu, S.; Hodgson, T.; Jagla, M.; Picketts, D.J. Patient mutations alter ATRX targeting to PML nuclear bodies. Eur. J. Hum. Genet. 2008, 16, 192–201. [Google Scholar] [CrossRef] [PubMed]
  397. Nguyen, D.T.; Voon, H.P.J.; Xella, B.; Scott, C.; Clynes, D.; Babbs, C.; Ayyub, H.; Kerry, J.; Sharpe, J.A.; Sloane-Stanley, J.A.; et al. The chromatin remodelling factor ATRX suppresses R-loops in transcribed telomeric repeats. EMBO Rep. 2017, 18, 914–928. [Google Scholar] [CrossRef]
  398. Rhodes, D.; Lipps, H.J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015, 43, 8627–8637. [Google Scholar] [CrossRef]
  399. Watson, L.A.; Solomon, L.A.; Li, J.R.; Jiang, Y.; Edwards, M.; Shin-ya, K.; Beier, F.; Berube, N.G. Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span. J. Clin. Investig. 2013, 123, 2049–2063. [Google Scholar] [CrossRef] [PubMed]
  400. Ritchie, K.; Seah, C.; Moulin, J.; Isaac, C.; Dick, F.; Berube, N.G. Loss of ATRX leads to chromosome cohesion and congression defects. J. Cell Biol. 2008, 180, 315–324. [Google Scholar] [CrossRef] [PubMed]
  401. Ritchie, K.; Watson, L.A.; Davidson, B.; Jiang, Y.; Berube, N.G. ATRX is required for maintenance of the neuroprogenitor cell pool in the embryonic mouse brain. Biol. Open 2014, 3, 1158–1163. [Google Scholar] [CrossRef] [PubMed]
  402. Law, M.J.; Lower, K.M.; Voon, H.P.; Hughes, J.R.; Garrick, D.; Viprakasit, V.; Mitson, M.; De Gobbi, M.; Marra, M.; Morris, A.; et al. ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 2010, 143, 367–378. [Google Scholar] [CrossRef]
  403. Lagali, P.S.; Zhao, B.Y.H.; Yan, K.; Baker, A.N.; Coupland, S.G.; Tsilfidis, C.; Picketts, D.J. Sensory Experience Modulates Atrx-mediated Neuronal Integrity in the Mouse Retina. Neuroscience 2021, 452, 169–180. [Google Scholar] [CrossRef]
  404. Shioda, N.; Yabuki, Y.; Yamaguchi, K.; Onozato, M.; Li, Y.; Kurosawa, K.; Tanabe, H.; Okamoto, N.; Era, T.; Sugiyama, H.; et al. Targeting G-quadruplex DNA as cognitive function therapy for ATR-X syndrome. Nat. Med. 2018, 24, 802–813. [Google Scholar] [CrossRef]
  405. Wada, T.; Suzuki, S.; Shioda, N. 5-Aminolevulinic acid can ameliorate language dysfunction of patients with ATR-X syndrome. Congenit. Anom. (Kyoto) 2020, 60, 147–148. [Google Scholar] [CrossRef] [PubMed]
  406. Poll-The, B.T.; Saudubray, J.M.; Ogier, H.A.; Odievre, M.; Scotto, J.M.; Monnens, L.; Govaerts, L.C.; Roels, F.; Cornelis, A.; Schutgens, R.B.; et al. Infantile Refsum disease: An inherited peroxisomal disorder. Comparison with Zellweger syndrome and neonatal adrenoleukodystrophy. Eur. J. Pediatr. 1987, 146, 477–483. [Google Scholar] [CrossRef] [PubMed]
  407. Kelley, R.I.; Datta, N.S.; Dobyns, W.B.; Hajra, A.K.; Moser, A.B.; Noetzel, M.J.; Zackai, E.H.; Moser, H.W. Neonatal adrenoleukodystrophy: New cases, biochemical studies, and differentiation from Zellweger and related peroxisomal polydystrophy syndromes. Am. J. Med. Genet. 1986, 23, 869–901. [Google Scholar] [CrossRef] [PubMed]
  408. Waterham, H.R.; Ebberink, M.S. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim. Biophys. Acta 2012, 1822, 1430–1441. [Google Scholar] [CrossRef] [PubMed]
  409. Ciniawsky, S.; Grimm, I.; Saffian, D.; Girzalsky, W.; Erdmann, R.; Wendler, P. Molecular snapshots of the Pex1/6 AAA+ complex in action. Nat. Commun. 2015, 6, 7331. [Google Scholar] [CrossRef]
  410. Sugasini, D.; Yalagala, P.C.R.; Subbaiah, P.V. Efficient Enrichment of Retinal DHA with Dietary Lysophosphatidylcholine-DHA: Potential Application for Retinopathies. Nutrients 2020, 12, 3114. [Google Scholar] [CrossRef]
  411. Brites, P.; Mooyer, P.A.; El Mrabet, L.; Waterham, H.R.; Wanders, R.J. Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain 2009, 132 Pt 2, 482–492. [Google Scholar] [CrossRef]
  412. Verhoeven, N.M.; Jakobs, C. Human metabolism of phytanic acid and pristanic acid. Prog. Lipid Res. 2001, 40, 453–466. [Google Scholar] [CrossRef]
  413. Klouwer, F.C.; Berendse, K.; Ferdinandusse, S.; Wanders, R.J.; Engelen, M.; Poll-The, B.T. Zellweger spectrum disorders: Clinical overview and management approach. Orphanet J. Rare Dis. 2015, 10, 151. [Google Scholar] [CrossRef]
  414. Wills, A.J.; Manning, N.J.; Reilly, M.M. Refsum’s disease. QJM 2001, 94, 403–406. [Google Scholar] [CrossRef]
  415. Wanders, R.J.; Jansen, G.A.; Skjeldal, O.H. Refsum disease, peroxisomes and phytanic acid oxidation: A review. J. Neuropathol. Exp. Neurol. 2001, 60, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
  416. Zahid, S.; Branham, K.; Schlegel, D.; Pennesi, M.E.; Michaelides, M.; Heckenlively, J.; Jayasundera, T. PHYH. In Retinal Dystrophy Gene Atlas; Springer: Berlin/Heidelberg, Germany, 2018; p. 185. [Google Scholar]
  417. Waterham, H.R.; Wanders, R.J.A.; Leroy, B.P. Adult Refsum Disease. In GeneReviews(®); Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
  418. Mihalik, S.J.; Rainville, A.M.; Watkins, P.A. Phytanic acid alpha-oxidation in rat liver peroxisomes. Production of alpha-hydroxyphytanoyl-CoA and formate is enhanced by dioxygenase cofactors. Eur. J. Biochem. 1995, 232, 545–551. [Google Scholar] [CrossRef]
  419. Jansen, G.A.; Mihalik, S.J.; Watkins, P.A.; Moser, H.W.; Jakobs, C.; Denis, S.; Wanders, R.J. Phytanoyl-CoA hydroxylase is present in human liver, located in peroxisomes, and deficient in Zellweger syndrome: Direct, unequivocal evidence for the new, revised pathway of phytanic acid alpha-oxidation in humans. Biochem. Biophys. Res. Commun. 1996, 229, 205–210. [Google Scholar] [CrossRef]
  420. Molzer, B.; Stockler, S.; Bernheimer, H. Peroxisomal neurologic diseases and Refsum disease: Very long chain fatty acids and phytanic acid as diagnostic markers. Wien. Klin. Wochenschr. 1992, 104, 665–670. [Google Scholar] [PubMed]
  421. Skjeldal, O.H.; Stokke, O.; Refsum, S.; Norseth, J.; Petit, H. Clinical and biochemical heterogeneity in conditions with phytanic acid accumulation. J. Neurol. Sci. 1987, 77, 87–96. [Google Scholar] [CrossRef]
  422. Jansen, G.A.; Ofman, R.; Ferdinandusse, S.; Ijlst, L.; Muijsers, A.O.; Skjeldal, O.H.; Stokke, O.; Jakobs, C.; Besley, G.T.; Wraith, J.E.; et al. Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat. Genet. 1997, 17, 190–193. [Google Scholar] [CrossRef]
  423. Harari, D.; Gibberd, F.B.; Dick, J.P.; Sidey, M.C. Plasma exchange in the treatment of Refsum’s disease (heredopathia atactica polyneuritiformis). J. Neurol. Neurosurg. Psychiatry 1991, 54, 614–617. [Google Scholar] [CrossRef]
  424. Gibberd, F.B.; Billimoria, J.D.; Goldman, J.M.; Clemens, M.E.; Evans, R.; Whitelaw, M.N.; Retsas, S.; Sherratt, R.M. Heredopathia atactica polyneuritiformis: Refsum’s disease. Acta Neurol. Scand. 1985, 72, 1–17. [Google Scholar] [CrossRef]
  425. Srikajon, J.; Siritho, S.; Ngamsombat, C.; Prayoonwiwat, N.; Chirapapaisan, N.; Siriraj Neuroimmunology Research, G. Differences in clinical features between optic neuritis in neuromyelitis optica spectrum disorders and in multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2018, 4, 2055217318791196. [Google Scholar] [CrossRef]
  426. Wingerchuk, D.M.; Lennon, V.A.; Pittock, S.J.; Lucchinetti, C.F.; Weinshenker, B.G. Revised diagnostic criteria for neuromyelitis optica. Neurology 2006, 66, 1485–1489. [Google Scholar] [CrossRef]
  427. Shosha, E.; Dubey, D.; Palace, J.; Nakashima, I.; Jacob, A.; Fujihara, K.; Takahashi, T.; Whittam, D.; Leite, M.I.; Misu, T.; et al. Area postrema syndrome: Frequency, criteria, and severity in AQP4-IgG-positive NMOSD. Neurology 2018, 91, e1642–e1651. [Google Scholar] [CrossRef] [PubMed]
  428. Brum, D.G.; Barreira, A.A.; dos Santos, A.C.; Kaimen-Maciel, D.R.; Matiello, M.; Costa, R.M.; Deghaide, N.H.; Costa, L.S.; Louzada-Junior, P.; Diniz, P.R.; et al. HLA-DRB association in neuromyelitis optica is different from that observed in multiple sclerosis. Mult. Scler. 2010, 16, 21–29. [Google Scholar] [CrossRef] [PubMed]
  429. Connell, C.M.; Janevic, M.R.; Gallant, M.P. The costs of caring: Impact of dementia on family caregivers. J. Geriatr. Psychiatry Neurol. 2001, 14, 179–187. [Google Scholar] [CrossRef] [PubMed]
  430. Jarius, S.; Wildemann, B. AQP4 antibodies in neuromyelitis optica: Diagnostic and pathogenetic relevance. Nat. Rev. Neurol. 2010, 6, 383–392. [Google Scholar] [CrossRef] [PubMed]
  431. Nielsen, S.; Nagelhus, E.; Amiry-Moghaddam, M.; Bourque, C.; Agre, P.; Ottersen, O.P. Specialized membrane domains for water transport in glial cells: High-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci. 1997, 17, 171–180. [Google Scholar] [CrossRef] [PubMed]
  432. Li, J.; Patil, R.V.; Verkman, A.S. Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Invest. Ophthalmol. Vis. Sci. 2002, 43, 573–579. [Google Scholar]
  433. Jarius, S.; Franciotta, D.; Paul, F.; Ruprecht, K.; Bergamaschi, R.; Rommer, P.S.; Reuss, R.; Probst, C.; Kristoferitsch, W.; Wandinger, K.P.; et al. Cerebrospinal fluid antibodies to aquaporin-4 in neuromyelitis optica and related disorders: Frequency, origin, and diagnostic relevance. J. Neuroinflammation 2010, 7, 52. [Google Scholar] [CrossRef]
  434. Bennett, J.L.; Lam, C.; Kalluri, S.R.; Saikali, P.; Bautista, K.; Dupree, C.; Glogowska, M.; Case, D.; Antel, J.P.; Owens, G.P.; et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann. Neurol. 2009, 66, 617–629. [Google Scholar] [CrossRef]
  435. Ratelade, J.; Verkman, A.S. Neuromyelitis optica: Aquaporin-4 based pathogenesis mechanisms and new therapies. Int. J. Biochem. Cell Biol. 2012, 44, 1519–1530. [Google Scholar] [CrossRef]
  436. Yamamura, T.; Kleiter, I.; Fujihara, K.; Palace, J.; Greenberg, B.; Zakrzewska-Pniewska, B.; Patti, F.; Tsai, C.P.; Saiz, A.; Yamazaki, H.; et al. Trial of Satralizumab in Neuromyelitis Optica Spectrum Disorder. N. Engl. J. Med. 2019, 381, 2114–2124. [Google Scholar] [CrossRef]
  437. Wingerchuk, D.M.; Hogancamp, W.F.; O’Brien, P.C.; Weinshenker, B.G. The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 1999, 53, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
  438. Frampton, J.E. Eculizumab: A Review in Neuromyelitis Optica Spectrum Disorder. Drugs 2020, 80, 719–727. [Google Scholar] [CrossRef] [PubMed]
  439. Cree, B.A.; Bennett, J.L.; Kim, H.J.; Weinshenker, B.G.; Pittock, S.J.; Wingerchuk, D.M.; Fujihara, K.; Paul, F.; Cutter, G.R.; Marignier, R. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): A double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019, 394, 1352–1363. [Google Scholar] [CrossRef]
  440. Jade, J.D.; Bansi, S.; Singhal, B. Rituximab in Neuromyelitis Optica Spectrum Disorders: Our Experience. Ann. Indian Acad. Neurol. 2017, 20, 229–232. [Google Scholar] [CrossRef] [PubMed]
  441. Espiritu, A.I.; Pasco, P.M.D. Efficacy and tolerability of azathioprine for neuromyelitis optica spectrum disorder: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2019, 33, 22–32. [Google Scholar] [CrossRef] [PubMed]
  442. Huh, S.Y.; Kim, S.H.; Hyun, J.W.; Joung, A.R.; Park, M.S.; Kim, B.J.; Kim, H.J. Mycophenolate mofetil in the treatment of neuromyelitis optica spectrum disorder. JAMA Neurol. 2014, 71, 1372–1378. [Google Scholar] [CrossRef]
  443. Zhang, C.; Zhang, M.; Qiu, W.; Ma, H.; Zhang, X.; Zhu, Z.; Yang, C.-S.; Jia, D.; Zhang, T.-X.; Yuan, M. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): An open-label, multicentre, randomised, phase 2 trial. Lancet Neurol. 2020, 19, 391–401. [Google Scholar] [CrossRef]
  444. Papadopoulos, S.; Christodoulidou, M.; Gerasimidis, T. Perioperative Use of Antibiotics in Intra-Abdominal Surgical Infections. Surg. Infect. 2010, 11, 535–544. [Google Scholar] [CrossRef]
  445. Chen, X.; Zhou, J.; Li, R.; Zhang, B.; Wang, Y.; Zhong, X.; Shu, Y.; Chang, Y.; Qiu, W. Disease Course and Outcomes in Patients With the Limited Form of Neuromyelitis Optica Spectrum Disorders and Negative AQP4-IgG Serology at Disease Onset: A Prospective Cohort Study. J. Clin. Neurol. 2022, 18, 453–462. [Google Scholar] [CrossRef]
  446. Higginbotham, H.; Eom, T.Y.; Mariani, L.E.; Bachleda, A.; Hirt, J.; Gukassyan, V.; Cusack, C.L.; Lai, C.; Caspary, T.; Anton, E.S. Arl13b in primary cilia regulates the migration and placement of interneurons in the developing cerebral cortex. Dev. Cell 2012, 23, 925–938. [Google Scholar] [CrossRef]
  447. Thomas, S.; Cantagrel, V.; Mariani, L.; Serre, V.; Lee, J.E.; Elkhartoufi, N.; de Lonlay, P.; Desguerre, I.; Munnich, A.; Boddaert, N.; et al. Identification of a novel ARL13B variant in a Joubert syndrome-affected patient with retinal impairment and obesity. Eur. J. Hum. Genet. 2015, 23, 621–627. [Google Scholar] [CrossRef] [PubMed]
  448. Shi, Y.; Su, Y.; Lipschutz, J.H.; Lobo, G.P. Zebrafish as models to study ciliopathies of the eye and kidney. Clin. Nephrol. Res. 2017, 1, 6–9. [Google Scholar] [PubMed]
  449. Humbert, M.C.; Weihbrecht, K.; Searby, C.C.; Li, Y.; Pope, R.M.; Sheffield, V.C.; Seo, S. ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc. Natl. Acad. Sci. USA 2012, 109, 19691–19696. [Google Scholar] [CrossRef]
  450. Roosing, S.; Rosti, R.O.; Rosti, B.; de Vrieze, E.; Silhavy, J.L.; van Wijk, E.; Wakeling, E.; Gleeson, J.G. Identification of a homozygous nonsense mutation in KIAA0556 in a consanguineous family displaying Joubert syndrome. Hum. Genet. 2016, 135, 919–921. [Google Scholar] [CrossRef]
  451. Sanders, A.A.; de Vrieze, E.; Alazami, A.M.; Alzahrani, F.; Malarkey, E.B.; Sorusch, N.; Tebbe, L.; Kuhns, S.; van Dam, T.J.; Alhashem, A.; et al. KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome. Genome Biol. 2015, 16, 293. [Google Scholar] [CrossRef]
  452. Wheway, G.; Schmidts, M.; Mans, D.A.; Szymanska, K.; Nguyen, T.T.; Racher, H.; Phelps, I.G.; Toedt, G.; Kennedy, J.; Wunderlich, K.A.; et al. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat. Cell. Biol. 2015, 17, 1074–1087. [Google Scholar] [CrossRef] [PubMed]
  453. Ott, T.; Kaufmann, L.; Granzow, M.; Hinderhofer, K.; Bartram, C.R.; Theiss, S.; Seitz, A.; Paramasivam, N.; Schulz, A.; Moog, U.; et al. The Frog Xenopus as a Model to Study Joubert Syndrome: The Case of a Human Patient With Compound Heterozygous Variants in PIBF1. Front. Physiol. 2019, 10, 134. [Google Scholar] [CrossRef]
  454. Hebbar, M.; Kanthi, A.; Shukla, A.; Bielas, S.; Girisha, K.M. A biallelic 36-bp insertion in PIBF1 is associated with Joubert syndrome. J. Hum. Genet. 2018, 63, 935–939. [Google Scholar] [CrossRef]
  455. Morbidoni, V.; Agolini, E.; Slep, K.C.; Pannone, L.; Zuccarello, D.; Cassina, M.; Grosso, E.; Gai, G.; Salviati, L.; Dallapiccola, B.; et al. Biallelic mutations in the TOGARAM1 gene cause a novel primary ciliopathy. J. Med. Genet. 2021, 58, 526–533. [Google Scholar] [CrossRef]
  456. Jacoby, M.; Cox, J.J.; Gayral, S.; Hampshire, D.J.; Ayub, M.; Blockmans, M.; Pernot, E.; Kisseleva, M.V.; Compere, P.; Schiffmann, S.N.; et al. INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat. Genet. 2009, 41, 1027–1031. [Google Scholar] [CrossRef]
  457. Valente, E.M.; Marsh, S.E.; Castori, M.; Dixon-Salazar, T.; Bertini, E.; Al-Gazali, L.; Gleeson, J.G. Distinguishing the four genetic causes of Jouberts syndrome–related disorders. Ann. Neurol. 2005, 57, 513–519. [Google Scholar] [CrossRef] [PubMed]
  458. Edvardson, S.; Shaag, A.; Zenvirt, S.; Erlich, Y.; Hannon, G.J.; Shanske, A.L.; Gomori, J.M.; Ekstein, J.; Elpeleg, O. Joubert syndrome 2 (JBTS2) in Ashkenazi Jews is associated with a TMEM216 mutation. Am. J. Hum. Genet. 2010, 86, 93–97. [Google Scholar] [CrossRef] [PubMed]
  459. Liu, Y.; Cao, S.; Yu, M.; Hu, H. TMEM216 Deletion Causes Mislocalization of Cone Opsin and Rhodopsin and Photoreceptor Degeneration in Zebrafish. Invest. Ophthalmol. Vis. Sci. 2020, 61, 24. [Google Scholar] [CrossRef] [PubMed]
  460. Dixon-Salazar, T.; Silhavy, J.L.; Marsh, S.E.; Louie, C.M.; Scott, L.C.; Gururaj, A.; Al-Gazali, L.; Al-Tawari, A.A.; Kayserili, H.; Sztriha, L.; et al. Mutations in the AHI1 gene, encoding jouberin, cause Joubert syndrome with cortical polymicrogyria. Am. J. Hum. Genet. 2004, 75, 979–987. [Google Scholar] [CrossRef]
  461. Utsch, B.; Sayer, J.A.; Attanasio, M.; Hennies, H.C.; Pohl, M.; Omran, H.; Hildebrandt, F. Confirmation of the JBTS3 locus and identification of a new ahi1 gene mutation in Joubert syndrome (JS) type 3 with renal involvement–evidence for other JS-causing genes in this region? Neuropediatrics 2005, 36, 31. [Google Scholar] [CrossRef]
  462. Brooks, B.P.; Zein, W.M.; Thompson, A.H.; Mokhtarzadeh, M.; Doherty, D.A.; Parisi, M.; Glass, I.A.; Malicdan, M.C.; Vilboux, T.; Vemulapalli, M.; et al. Joubert Syndrome: Ophthalmological Findings in Correlation with Genotype and Hepatorenal Disease in 99 Patients Prospectively Evaluated at a Single Center. Ophthalmology 2018, 125, 1937–1952. [Google Scholar] [CrossRef]
  463. Valente, E.M.; Brancati, F.; Silhavy, J.L.; Castori, M.; Marsh, S.E.; Barrano, G.; Bertini, E.; Boltshauser, E.; Zaki, M.S.; Abdel-Aleem, A.; et al. AHI1 gene mutations cause specific forms of Joubert syndrome-related disorders. Ann. Neurol. 2006, 59, 527–534. [Google Scholar] [CrossRef]
  464. Brancati, F.; Barrano, G.; Silhavy, J.L.; Marsh, S.E.; Travaglini, L.; Bielas, S.L.; Amorini, M.; Zablocka, D.; Kayserili, H.; Al-Gazali, L.; et al. CEP290 mutations are frequently identified in the oculo-renal form of Joubert syndrome-related disorders. Am. J. Hum. Genet. 2007, 81, 104–113. [Google Scholar] [CrossRef]
  465. Vilboux, T.; Doherty, D.; Glass, I.; Parisi, M.; Phelps, I.; Cullinane, A.; Zein, W.; Brooks, B.; Heller, T.; Soldatos, A.; et al. Molecular genetic findings and clinical correlations in 100 patients with Joubert syndrome and related disorders prospectively evaluated at a single center. Genet. Med. 2017, 19, 875–882. [Google Scholar] [CrossRef]
  466. Sayer, J.A.; Otto, E.A.; O’Toole, J.F.; Nurnberg, G.; Kennedy, M.A.; Becker, C.; Hennies, H.C.; Helou, J.; Attanasio, M.; Fausett, B.V.; et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet. 2006, 38, 674–681. [Google Scholar] [CrossRef]
  467. Valente, E.M.; Brancati, F.; Dallapiccola, B. Genotypes and phenotypes of Joubert syndrome and related disorders. Eur. J. Med. Genet. 2008, 51, 1–23. [Google Scholar] [CrossRef] [PubMed]
  468. Travaglini, L.; Brancati, F.; Attie-Bitach, T.; Audollent, S.; Bertini, E.; Kaplan, J.; Perrault, I.; Iannicelli, M.; Mancuso, B.; Rigoli, L.; et al. Expanding CEP290 mutational spectrum in ciliopathies. Am. J. Med. Genet. A 2009, 149A, 2173–2180. [Google Scholar] [CrossRef] [PubMed]
  469. Brancati, F.; Travaglini, L.; Zablocka, D.; Boltshauser, E.; Accorsi, P.; Montagna, G.; Silhavy, J.L.; Barrano, G.; Bertini, E.; Emma, F.; et al. RPGRIP1L mutations are mainly associated with the cerebello-renal phenotype of Joubert syndrome-related disorders. Clin. Genet. 2008, 74, 164–170. [Google Scholar] [CrossRef] [PubMed]
  470. Arts, H.H.; Doherty, D.; van Beersum, S.E.; Parisi, M.A.; Letteboer, S.J.; Gorden, N.T.; Peters, T.A.; Märker, T.; Voesenek, K.; Kartono, A. Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat. Genet. 2007, 39, 882–888. [Google Scholar] [CrossRef]
  471. Parisi, M.A. Clinical and molecular features of Joubert syndrome and related disorders. Am. J. Med. Genet. C Semin. Med. Genet. 2009, 151C, 326–340. [Google Scholar] [CrossRef]
  472. Noor, A.; Windpassinger, C.; Patel, M.; Stachowiak, B.; Mikhailov, A.; Azam, M.; Irfan, M.; Siddiqui, Z.K.; Naeem, F.; Paterson, A.D.; et al. CC2D2A, encoding a coiled-coil and C2 domain protein, causes autosomal-recessive mental retardation with retinitis pigmentosa. Am. J. Hum. Genet. 2008, 82, 1011–1018. [Google Scholar] [CrossRef]
  473. Doherty, D.; Parisi, M.A.; Finn, L.S.; Gunay-Aygun, M.; Al-Mateen, M.; Bates, D.; Clericuzio, C.; Demir, H.; Dorschner, M.; van Essen, A.J.; et al. Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J. Med. Genet. 2010, 47, 8–21. [Google Scholar] [CrossRef]
  474. Ben-Salem, S.; Al-Shamsi, A.M.; Gleeson, J.G.; Ali, B.R.; Al-Gazali, L. Mutation spectrum of Joubert syndrome and related disorders among Arabs. Hum. Genome Var. 2014, 1, 14020. [Google Scholar] [CrossRef]
  475. Janecke, A.R.; Muller, T.; Gassner, I.; Kreczy, A.; Schmid, E.; Kronenberg, F.; Utermann, B.; Utermann, G. Joubert-like syndrome unlinked to known candidate loci. J. Pediatr. 2004, 144, 264–269. [Google Scholar] [CrossRef]
  476. Slaats, G.G.; Isabella, C.R.; Kroes, H.Y.; Dempsey, J.C.; Gremmels, H.; Monroe, G.R.; Phelps, I.G.; Duran, K.J.; Adkins, J.; Kumar, S.A.; et al. MKS1 regulates ciliary INPP5E levels in Joubert syndrome. J. Med. Genet. 2016, 53, 62–72. [Google Scholar] [CrossRef]
  477. Utsch, B.; Sayer, J.A.; Attanasio, M.; Pereira, R.R.; Eccles, M.; Hennies, H.C.; Otto, E.A.; Hildebrandt, F. Identification of the first AHI1 gene mutations in nephronophthisis-associated Joubert syndrome. Pediatr. Nephrol. 2006, 21, 32–35. [Google Scholar] [CrossRef] [PubMed]
  478. Mougou-Zerelli, S.; Thomas, S.; Szenker, E.; Audollent, S.; Elkhartoufi, N.; Babarit, C.; Romano, S.; Salomon, R.; Amiel, J.; Esculpavit, C.; et al. CC2D2A mutations in Meckel and Joubert syndromes indicate a genotype-phenotype correlation. Hum. Mutat. 2009, 30, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
  479. Brancati, F.; Iannicelli, M.; Travaglini, L.; Mazzotta, A.; Bertini, E.; Boltshauser, E.; D’Arrigo, S.; Emma, F.; Fazzi, E.; Gallizzi, R.; et al. MKS3/TMEM67 mutations are a major cause of COACH Syndrome, a Joubert Syndrome related disorder with liver involvement. Hum. Mutat. 2009, 30, E432–E442. [Google Scholar] [CrossRef] [PubMed]
  480. Watson, C.M.; Crinnion, L.A.; Berry, I.R.; Harrison, S.M.; Lascelles, C.; Antanaviciute, A.; Charlton, R.S.; Dobbie, A.; Carr, I.M.; Bonthron, D.T. Enhanced diagnostic yield in Meckel-Gruber and Joubert syndrome through exome sequencing supplemented with split-read mapping. BMC Med. Genet. 2016, 17, 1. [Google Scholar] [CrossRef]
  481. Ferrante, M.I.; Zullo, A.; Barra, A.; Bimonte, S.; Messaddeq, N.; Studer, M.; Dolle, P.; Franco, B. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat. Genet. 2006, 38, 112–117. [Google Scholar] [CrossRef]
  482. Putoux, A.; Thomas, S.; Coene, K.L.; Davis, E.E.; Alanay, Y.; Ogur, G.; Uz, E.; Buzas, D.; Gomes, C.; Patrier, S.; et al. KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat. Genet. 2011, 43, 601–606. [Google Scholar] [CrossRef]
  483. Ali, B.R.; Silhavy, J.L.; Akawi, N.A.; Gleeson, J.G.; Al-Gazali, L. A mutation in KIF7 is responsible for the autosomal recessive syndrome of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance. Orphanet J. Rare Dis. 2012, 7, 27. [Google Scholar] [CrossRef]
  484. Lewis, T.R.; Kundinger, S.R.; Pavlovich, A.L.; Bostrom, J.R.; Link, B.A.; Besharse, J.C. Cos2/Kif7 and Osm-3/Kif17 regulate onset of outer segment development in zebrafish photoreceptors through distinct mechanisms. Dev. Biol. 2017, 425, 176–190. [Google Scholar] [CrossRef]
  485. Niceta, M.; Dentici, M.L.; Ciolfi, A.; Marini, R.; Barresi, S.; Lepri, F.R.; Novelli, A.; Bertini, E.; Cappa, M.; Digilio, M.C.; et al. Co-occurrence of mutations in KIF7 and KIAA0556 in Joubert syndrome with ocular coloboma, pituitary malformation and growth hormone deficiency: A case report and literature review. BMC Pediatr. 2020, 20, 120. [Google Scholar] [CrossRef]
  486. Zhu, H.; Chen, W.; Ren, H.; Zhang, Y.; Niu, Y.; Wu, D.; Jiang, L. Non-classic splicing mutation in the CPLANE1 (C5orf42) gene cause Joubert syndrome in a fetus with severe craniocerebral dysplasia. Eur. J. Med. Genet. 2021, 64, 104212. [Google Scholar] [CrossRef]
  487. Asadollahi, R.; Strauss, J.E.; Zenker, M.; Beuing, O.; Edvardson, S.; Elpeleg, O.; Strom, T.M.; Joset, P.; Niedrist, D.; Otte, C.; et al. Clinical and experimental evidence suggest a link between KIF7 and C5orf42-related ciliopathies through Sonic Hedgehog signaling. Eur. J. Hum. Genet. 2018, 26, 197–209. [Google Scholar] [CrossRef] [PubMed]
  488. Joubert, M.; Eisenring, J.J.; Robb, J.P.; Andermann, F. Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology 1969, 19, 813–825. [Google Scholar] [CrossRef] [PubMed]
  489. Wang, C.; Li, J.; Meng, Q.; Wang, B. Three Tctn proteins are functionally conserved in the regulation of neural tube patterning and Gli3 processing but not ciliogenesis and Hedgehog signaling in the mouse. Dev. Biol. 2017, 430, 156–165. [Google Scholar] [CrossRef]
  490. Casoni, F.; Croci, L.; Bosone, C.; D’Ambrosio, R.; Badaloni, A.; Gaudesi, D.; Barili, V.; Sarna, J.R.; Tessarollo, L.; Cremona, O.; et al. Zfp423/ZNF423 regulates cell cycle progression, the mode of cell division and the DNA-damage response in Purkinje neuron progenitors. Development 2017, 144, 3686–3697. [Google Scholar] [CrossRef]
  491. Casoni, F.; Croci, L.; Vincenti, F.; Podini, P.; Riba, M.; Massimino, L.; Cremona, O.; Consalez, G.G. ZFP423 regulates early patterning and multiciliogenesis in the hindbrain choroid plexus. Development 2020, 147, dev190173. [Google Scholar] [CrossRef] [PubMed]
  492. Wang, B.; Zhang, Y.; Dong, H.; Gong, S.; Wei, B.; Luo, M.; Wang, H.; Wu, X.; Liu, W.; Xu, X.; et al. Loss of Tctn3 causes neuronal apoptosis and neural tube defects in mice. Cell Death Dis. 2018, 9, 520. [Google Scholar] [CrossRef] [PubMed]
  493. Yin, Y.; Bangs, F.; Paton, I.R.; Prescott, A.; James, J.; Davey, M.G.; Whitley, P.; Genikhovich, G.; Technau, U.; Burt, D.W.; et al. The Talpid3 gene (KIAA0586) encodes a centrosomal protein that is essential for primary cilia formation. Development 2009, 136, 655–664. [Google Scholar] [CrossRef]
  494. Huppke, P.; Wegener, E.; Bohrer-Rabel, H.; Bolz, H.J.; Zoll, B.; Gartner, J.; Bergmann, C. Tectonic gene mutations in patients with Joubert syndrome. Eur. J. Hum. Genet. 2015, 23, 616–620. [Google Scholar] [CrossRef]
  495. Roosing, S.; Romani, M.; Isrie, M.; Rosti, R.O.; Micalizzi, A.; Musaev, D.; Mazza, T.; Al-Gazali, L.; Altunoglu, U.; Boltshauser, E.; et al. Mutations in CEP120 cause Joubert syndrome as well as complex ciliopathy phenotypes. J. Med. Genet. 2016, 53, 608–615. [Google Scholar] [CrossRef]
  496. Brooks, E.R.; Islam, M.T.; Anderson, K.V.; Zallen, J.A. Sonic hedgehog signaling directs patterned cell remodeling during cranial neural tube closure. eLife 2020, 9, e60234. [Google Scholar] [CrossRef]
  497. Beck, B.B.; Phillips, J.B.; Bartram, M.P.; Wegner, J.; Thoenes, M.; Pannes, A.; Sampson, J.; Heller, R.; Gobel, H.; Koerber, F.; et al. Mutation of POC1B in a severe syndromic retinal ciliopathy. Hum. Mutat. 2014, 35, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
  498. Innes, A.M.; Boycott, K.M.; Puffenberger, E.G.; Redl, D.; MacDonald, I.M.; Chudley, A.E.; Beaulieu, C.; Perrier, R.; Gillan, T.; Wade, A.; et al. A founder mutation in BBS2 is responsible for Bardet-Biedl syndrome in the Hutterite population: Utility of SNP arrays in genetically heterogeneous disorders. Clin. Genet. 2010, 78, 424–431. [Google Scholar] [CrossRef] [PubMed]
  499. Ghadami, M.; Tomita, H.A.; Najafi, M.T.; Damavandi, E.; Farahvash, M.S.; Yamada, K.; Majidzadeh-A, K.; Niikawa, N. Bardet-Biedl syndrome type 3 in an Iranian family: Clinical study and confirmation of disease localization. Am. J. Med. Genet. 2000, 94, 433–437. [Google Scholar] [CrossRef]
  500. Scheidecker, S.; Hull, S.; Perdomo, Y.; Studer, F.; Pelletier, V.; Muller, J.; Stoetzel, C.; Schaefer, E.; Defoort-Dhellemmes, S.; Drumare, I.; et al. Predominantly Cone-System Dysfunction as Rare Form of Retinal Degeneration in Patients With Molecularly Confirmed Bardet-Biedl Syndrome. Am. J. Ophthalmol. 2015, 160, 364–372.e1. [Google Scholar] [CrossRef] [PubMed]
  501. Young, T.L.; Penney, L.; Woods, M.O.; Parfrey, P.S.; Green, J.S.; Hefferton, D.; Davidson, W.S. A fifth locus for Bardet-Biedl syndrome maps to chromosome 2q31. Am. J. Hum. Genet. 1999, 64, 900–904. [Google Scholar] [CrossRef] [PubMed]
  502. Stoetzel, C.; Laurier, V.; Davis, E.E.; Muller, J.; Rix, S.; Badano, J.L.; Leitch, C.C.; Salem, N.; Chouery, E.; Corbani, S.; et al. BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus. Nat. Genet. 2006, 38, 521–524. [Google Scholar] [CrossRef]
  503. Chiang, A.P.; Beck, J.S.; Yen, H.J.; Tayeh, M.K.; Scheetz, T.E.; Swiderski, R.E.; Nishimura, D.Y.; Braun, T.A.; Kim, K.Y.; Huang, J.; et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc. Natl. Acad. Sci. USA 2006, 103, 6287–6292. [Google Scholar] [CrossRef]
  504. Billingsley, G.; Vincent, A.; Deveault, C.; Heon, E. Mutational analysis of SDCCAG8 in Bardet-Biedl syndrome patients with renal involvement and absent polydactyly. Ophthalmic Genet. 2012, 33, 150–154. [Google Scholar] [CrossRef]
  505. Otto, E.A.; Hurd, T.W.; Airik, R.; Chaki, M.; Zhou, W.; Stoetzel, C.; Patil, S.B.; Levy, S.; Ghosh, A.K.; Murga-Zamalloa, C.A.; et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat. Genet. 2010, 42, 840–850. [Google Scholar] [CrossRef]
  506. Novas, R.; Cardenas-Rodriguez, M.; Irigoin, F.; Badano, J.L. Bardet-Biedl syndrome: Is it only cilia dysfunction? FEBS Lett. 2015, 589, 3479–3491. [Google Scholar] [CrossRef]
  507. Schaefer, E.; Lauer, J.; Durand, M.; Pelletier, V.; Obringer, C.; Claussmann, A.; Braun, J.J.; Redin, C.; Mathis, C.; Muller, J.; et al. Mesoaxial polydactyly is a major feature in Bardet-Biedl syndrome patients with LZTFL1 (BBS17) mutations. Clin. Genet. 2014, 85, 476–481. [Google Scholar] [CrossRef] [PubMed]
  508. Scheidecker, S.; Etard, C.; Pierce, N.W.; Geoffroy, V.; Schaefer, E.; Muller, J.; Chennen, K.; Flori, E.; Pelletier, V.; Poch, O.; et al. Exome sequencing of Bardet-Biedl syndrome patient identifies a null mutation in the BBSome subunit BBIP1 (BBS18). J. Med. Genet. 2014, 51, 132–136. [Google Scholar] [CrossRef] [PubMed]
  509. Aldahmesh, M.A.; Li, Y.; Alhashem, A.; Anazi, S.; Alkuraya, H.; Hashem, M.; Awaji, A.A.; Sogaty, S.; Alkharashi, A.; Alzahrani, S.; et al. IFT27, encoding a small GTPase component of IFT particles, is mutated in a consanguineous family with Bardet-Biedl syndrome. Hum. Mol. Genet. 2014, 23, 3307–3315. [Google Scholar] [CrossRef]
  510. Schaefer, E.; Delvallee, C.; Mary, L.; Stoetzel, C.; Geoffroy, V.; Marks-Delesalle, C.; Holder-Espinasse, M.; Ghoumid, J.; Dollfus, H.; Muller, J. Identification and Characterization of Known Biallelic Mutations in the IFT27 (BBS19) Gene in a Novel Family With Bardet-Biedl Syndrome. Front. Genet. 2019, 10, 21. [Google Scholar] [CrossRef]
  511. Heon, E.; Kim, G.; Qin, S.; Garrison, J.E.; Tavares, E.; Vincent, A.; Nuangchamnong, N.; Scott, C.A.; Slusarski, D.C.; Sheffield, V.C. Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21). Hum. Mol. Genet. 2016, 25, 2283–2294. [Google Scholar] [CrossRef]
  512. Khan, A.O.; Decker, E.; Bachmann, N.; Bolz, H.J.; Bergmann, C. C8orf37 is mutated in Bardet-Biedl syndrome and constitutes a locus allelic to non-syndromic retinal dystrophies. Ophthalmic Genet. 2016, 37, 290–293. [Google Scholar] [CrossRef] [PubMed]
  513. Lindstrand, A.; Frangakis, S.; Carvalho, C.M.; Richardson, E.B.; McFadden, K.A.; Willer, J.R.; Pehlivan, D.; Liu, P.; Pediaditakis, I.L.; Sabo, A.; et al. Copy-Number Variation Contributes to the Mutational Load of Bardet-Biedl Syndrome. Am. J. Hum. Genet. 2016, 99, 318–336. [Google Scholar] [CrossRef] [PubMed]
  514. Kleinendorst, L.; Alsters, S.I.M.; Abawi, O.; Waisfisz, Q.; Boon, E.M.J.; van den Akker, E.L.T.; van Haelst, M.M. Second case of Bardet-Biedl syndrome caused by biallelic variants in IFT74. Eur. J. Hum. Genet. 2020, 28, 943–946. [Google Scholar] [CrossRef]
  515. Mardy, A.H.; Hodoglugil, U.; Yip, T.; Slavotinek, A.M. Third case of Bardet-Biedl syndrome caused by a biallelic variant predicted to affect splicing of IFT74. Clin. Genet. 2021, 100, 93–99. [Google Scholar] [CrossRef]
  516. Iannaccone, A.; Mykytyn, K.; Persico, A.M.; Searby, C.C.; Baldi, A.; Jablonski, M.M.; Sheffield, V.C. Clinical evidence of decreased olfaction in Bardet-Biedl syndrome caused by a deletion in the BBS4 gene. Am. J. Med. Genet. A 2005, 132A, 343–346. [Google Scholar] [CrossRef]
  517. Katsanis, N.; Eichers, E.R.; Ansley, S.J.; Lewis, R.A.; Kayserili, H.; Hoskins, B.E.; Scambler, P.J.; Beales, P.L.; Lupski, J.R. BBS4 is a minor contributor to Bardet-Biedl syndrome and may also participate in triallelic inheritance. Am. J. Hum. Genet. 2002, 71, 22–29. [Google Scholar] [CrossRef] [PubMed]
  518. Slavotinek, A.M.; Stone, E.M.; Mykytyn, K.; Heckenlively, J.R.; Green, J.S.; Heon, E.; Musarella, M.A.; Parfrey, P.S.; Sheffield, V.C.; Biesecker, L.G. Mutations in MKKS cause Bardet-Biedl syndrome. Nat. Genet. 2000, 26, 15–16. [Google Scholar] [CrossRef]
  519. Harville, H.M.; Held, S.; Diaz-Font, A.; Davis, E.E.; Diplas, B.H.; Lewis, R.A.; Borochowitz, Z.U.; Zhou, W.; Chaki, M.; MacDonald, J.; et al. Identification of 11 novel mutations in eight BBS genes by high-resolution homozygosity mapping. J. Med. Genet. 2010, 47, 262–267. [Google Scholar] [CrossRef] [PubMed]
  520. Ansley, S.J.; Badano, J.L.; Blacque, O.E.; Hill, J.; Hoskins, B.E.; Leitch, C.C.; Kim, J.C.; Ross, A.J.; Eichers, E.R.; Teslovich, T.M.; et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 2003, 425, 628–633. [Google Scholar] [CrossRef] [PubMed]
  521. Abu-Safieh, L.; Al-Anazi, S.; Al-Abdi, L.; Hashem, M.; Alkuraya, H.; Alamr, M.; Sirelkhatim, M.O.; Al-Hassnan, Z.; Alkuraya, B.; Mohamed, J.Y.; et al. In search of triallelism in Bardet-Biedl syndrome. Eur. J. Hum. Genet. 2012, 20, 420–427. [Google Scholar] [CrossRef] [PubMed]
  522. Xing, D.J.; Zhang, H.X.; Huang, N.; Wu, K.C.; Huang, X.F.; Huang, F.; Tong, Y.; Pang, C.P.; Qu, J.; Jin, Z.B. Comprehensive molecular diagnosis of Bardet-Biedl syndrome by high-throughput targeted exome sequencing. PLoS ONE 2014, 9, e90599. [Google Scholar] [CrossRef]
  523. Leitch, C.C.; Zaghloul, N.A.; Davis, E.E.; Stoetzel, C.; Diaz-Font, A.; Rix, S.; Alfadhel, M.; Lewis, R.A.; Eyaid, W.; Banin, E.; et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Nat. Genet. 2008, 40, 443–448. [Google Scholar] [CrossRef]
  524. Suspitsin, E.N.; Imyanitov, E.N. Bardet-Biedl Syndrome. Mol Syndromol 2016, 7, 62–71. [Google Scholar] [CrossRef]
  525. Saida, K.; Inaba, Y.; Hirano, M.; Satake, W.; Toda, T.; Suzuki, Y.; Sudo, A.; Noda, S.; Hidaka, Y.; Hirabayashi, K.; et al. A case of Bardet-Biedl syndrome complicated with intracranial hypertension in a Japanese child. Brain Dev. 2014, 36, 721–724. [Google Scholar] [CrossRef]
  526. Bujakowska, K.M.; Zhang, Q.; Siemiatkowska, A.M.; Liu, Q.; Place, E.; Falk, M.J.; Consugar, M.; Lancelot, M.E.; Antonio, A.; Lonjou, C.; et al. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum. Mol. Genet. 2015, 24, 230–242. [Google Scholar] [CrossRef]
  527. Zhuang, J.C.; Huang, Z.Y.; Zhao, G.X.; Yu, H.; Li, Z.X.; Wu, Z.Y. Variants of CYP27B1 are associated with both multiple sclerosis and neuromyelitis optica patients in Han Chinese population. Gene 2015, 557, 236–239. [Google Scholar] [CrossRef] [PubMed]
  528. Hoshino, Y.; Noto, D.; Sano, S.; Tomizawa, Y.; Yokoyama, K.; Hattori, N.; Miyake, S. Dysregulated B cell differentiation towards antibody-secreting cells in neuromyelitis optica spectrum disorder. J. Neuroinflammation 2022, 19, 6. [Google Scholar] [CrossRef]
  529. Brill, L.; Lavon, I.; Vaknin-Dembinsky, A. Reduced expression of the IL7Ra signaling pathway in Neuromyelitis optica. J. Neuroimmunol. 2018, 324, 81–89. [Google Scholar] [CrossRef] [PubMed]
  530. Chen, P.; Wu, M.; Wang, N.; Xia, F.; Du, F.; Liu, Z.; Wang, J.; Jin, J.; Jin, B.; Zhao, G.; et al. Expression of CD226 is upregulated on Tr1 cells from neuromyelitis optica spectrum disorder patients. Brain Behav. 2022, 12, e2623. [Google Scholar] [CrossRef] [PubMed]
  531. Gough, S.C.; Simmonds, M.J. The HLA Region and Autoimmune Disease: Associations and Mechanisms of Action. Curr. Genom. 2007, 8, 453–465. [Google Scholar] [CrossRef]
  532. Chang, Y.Y.; Wang, Y.G.; Fan, P.; Wang, J.Q.; Shu, Y.Q.; Li, R.; Zhong, X.N.; Long, L.; Zhao, Z.H.; Li, C.X.; et al. Expression of HLA-DP in patients with neuromyelitis optica spectrum disorders. Zhonghua Yi Xue Za Zhi 2019, 99, 3574–3580. [Google Scholar] [CrossRef] [PubMed]
  533. Pache, F.; Ringelstein, M.; Aktas, O.; Kleiter, I.; Jarius, S.; Siebert, N.; Bellmann-Strobl, J.; Paul, F.; Ruprecht, K. C3 and C4 complement levels in AQP4-IgG-positive NMOSD and in MOGAD. J. Neuroimmunol. 2021, 360, 577699. [Google Scholar] [CrossRef]
Figure 1. Five categories of pathology of cerebral visual impairments. (a) Compromised peroxisome diseases occurring because of deformation of peroxisomes or failure in peroxisomal protein transportation; (b) transcriptional deregulation diseases resulting from mutant transcription factors; (c) ciliopathies caused by instability of transportation and structure in the cilia; (d) Channelopathies resulting in cytotoxicity; (e) demyelinations associated with abnormal immune systems.
Figure 1. Five categories of pathology of cerebral visual impairments. (a) Compromised peroxisome diseases occurring because of deformation of peroxisomes or failure in peroxisomal protein transportation; (b) transcriptional deregulation diseases resulting from mutant transcription factors; (c) ciliopathies caused by instability of transportation and structure in the cilia; (d) Channelopathies resulting in cytotoxicity; (e) demyelinations associated with abnormal immune systems.
Ijms 23 09707 g001
Figure 2. Revisiting cerebral visual impairments (CVIs) by genome-wide and phenome-wide association studies (GWAS and PheWAS). Cerebral visual impairments result from hidden common pathomechanisms. With the transactions between GWAS and PheWAS, hidden pathologies could be revealed and further proved by studies in induced pluripotent stem (iPS) cell and animal models, which could stimulate the inventions of novel therapeutics.
Figure 2. Revisiting cerebral visual impairments (CVIs) by genome-wide and phenome-wide association studies (GWAS and PheWAS). Cerebral visual impairments result from hidden common pathomechanisms. With the transactions between GWAS and PheWAS, hidden pathologies could be revealed and further proved by studies in induced pluripotent stem (iPS) cell and animal models, which could stimulate the inventions of novel therapeutics.
Ijms 23 09707 g002
Table 2. Pathomechanisms of Cerebral Visual Impairments.
Table 2. Pathomechanisms of Cerebral Visual Impairments.
TypeDisorder 1Phenotype OMIM 2 NumberSubtypesGene or Susceptibility LocusChromosomal LocationGene OMIM 2 NumberProteinMolecular LevelReference
CiliopathyJBTS2See in Table S1Transition zone (TZ)
SHH signaling
basal body (BB)
[88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131]
BBS2See in Table S2BBSome protein
chaperonin complex
IFT
[132,133]
Alstrom syndrome203,800-ALMS12p13.1606,844ALMS1 unclear[134]
DemyelinationMS 2126,200MS1HLA-DQB1
HLA-DRB1
6p21.32604,305
142,857
HLA class II histocompatibility antigen, DQ beta 1 chain
HLA class II histocompatibility antigen, DRB1 beta chain
chronic inflammation[79,135,136,137]
612,594MS2MS210p15.1612,594-
612,595MS3MS35p13.2612,595-
612,596MS4MS41p36612,596-
614,810MS5TNFRSF1A12p13.31191,190Tumor necrosis factor receptor superfamily member 1A
AxD 2203,450-GFAP17q21.31137,780Glial fibrillary acidic proteinGFAP aggregates[138,139]
PMD 2312,080-PLP1Xq22.2300,401Myelin proteolipid proteinPLP1 accumulation[140]
Transcriptional DeregulationMWS 2235,730-ZEB22q22.3605,802Zinc finger E-box-binding homeobox 2transcription repressor targeting 5′-CACCT sequences
interaction with Smads, TGFβ, and NuRD complex
[141]
PTHS 2610,954-TCF418q21.2602,272Transcription factor 4transcription of neurogenesis[142]
RTT 2312,750-MeCP2Xq28300,005Methyl-CpG-binding protein 2DNA and histone methylation reader
transcription factor
[143]
CS 2-CS type I ERCC6
ERCC8
10q11.23
5q12.1
-CSB
CSA
DNA repair[144,145]
CS type II
CS type III
XP/CSERCC2
ERCC4
ERCC5
19q13.32
16p13.12
13q33.1
-General transcription and DNA repair factor IIH helicase subunit XPD
DNA repair endonuclease XPF
DNA excision repair protein XPG
ATR-X 2301,040-ATRXXq21.1301,040Transcriptional regulator ATRXdepositting histone variant[146]
Compromised PreoxisomeZSD 2--PEX1~13---peroxisome formation
peroxisomal protein transport
[147]
RD 2-ARDPHYH
PEX7
10p13
6q23.3
-phytanoyl-CoA hydroxylase
type 2 peroxisomal targeting signal receptor
oxidation of phytanic acid[148]
IRDPEX1~13---
ChannelopathyNMOSD 2--See in Table S3cytotoxicity related to T cell, complement, NK [79,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175]
1 OMIM—Online Mendelian Inheritance in Man. 2 JBTS—Joubert syndrome; BBS—Bardet–Biedl syndrome; MS—multiple sclerosis; AxD—Alexander disease; PMD—Pelizaeus–Merzbacher disease; MWS—Mowat–Wilson disease; PTHS—Pitt–Hopkins disease; RTT—Rett syndrome; CS—Cockayne syndrome; ATR-X—X-linked alpha-thalassaemia mental retardation; ZSD—Zellweger spectrum disorder; RD—Refsum disease; and NMOSD—neuromyelitis optica spectrum disorder.
Table 5. Research in Gene Therapy.
Table 5. Research in Gene Therapy.
Disease 1Target GeneMutationCas9 Ortholog and DeliveryEditing MechanismModelMain ResultsReference
BBS1BBS1M390RAAV2/5 vectorsInsert between two ITRsM390R/M390R mice24% to 32% transduction in retina
higher b-wave amplitudes in 50% mice
[263]
RTTMeCP2-AAV9-Mecp2 null miceTransduction efficiency: ~2–4% neurons
observed improvements in survival
[351]
MeCP3-AAV9-Mecp2 null male micePartial amelioration in the null mouse model via provision of exogenously derived MeCP2[351]
MeCP4-scAAV9-Mecp2 stop mice
Mecp2B null mice
Reversing symptoms by ectopic expression of MeCP2 in virus infecting peripheral tissue and multiple cell types within the CNS[355]
MeCP5-AAV9-Mecp2 KO miceMecp2 transgene correcting breathing deficits and improving survival[356]
MeCP6-AAV9-Mecp2 null mice
Mecp2tm1.1Bird mice
Mecp2T158M mice
Direct cerebroventricular injection into neonatal mice resulting in high transduction efficiency, increased survival and body weight, and an amelioration of RTT-like phenotypes[357]
MeCP7-AAV9-Mecp2−/y miceModified vector extending lifespan without rescuing behavior[358]
MeCP8R270XSpCas9, T2Arepairing induced DSBs by HRMECP2R270X iPSCdeveloping CRISPR/Cas9-mediated system modifying MECP2 locus[354]
MeCP9-AAV9-Mecp2−/y miceInsertion of miRARE improving safety without compromising efficacy[359]
CSERCC6c.643G>T (p.E215X)pCAG-mCherry-gRNA vectorreplace mutation with ssODNCS-iPSCsAlleviation of aging defects and recovered DNA repair ability[360]
NMOSDCART-BCMAlentiviral vectorAdd scFv--[361]
adRPRhoS334terSpCas9, plasmid electroporationAllele-specific knockdown by indelS334ter-3 rats Nine-fold increase in photoreceptor nuclei
53% Improvement in the optokinetic response
[362]
Mertk1.9 kB deletion (intron 1–exon 2)SpCas9, two AAV8 or 9 vectorsHITI-mediated insertionRCS ratsElectroretinogram showing improved rod and cone responses compared with untreated and HDR-treated controls[363]
NrlSpCas9, two AAV8 vectorsKnockdown by indel (reprogram rods to cone-like cells)Rho−/− and rd10 mice25% increase in cone photoreceptor preservation and electroretinogram B waves amplitude by ~60%[364]
RhoP23HSpCas9, two AAV8 vectorsAllele-specific knockdown by indel and wild-type supplementationRhoP23H/P23H and RhoP23H/+ knock-in micePreserved electroretinogram B-waves and outer nuclear layer thickness in Cas9-treated mice compared with mice only given gene supplementation[365]
RhoP23HSpCas9-VQR, plasmid electroporationAllele-specific knockdown by indelRhoP23H/+ knock-in miceIncrease in wild-type mRNA by ~20% compared with untreated control
Delayed outer nuclear layer degeneration
[366]
Pde6bY347XSpCas9/RecA, plasmid electroporationInduce HDR using sgRNA-targeted RecArd1 miceIncreased survival of rod photoreceptors five-fold compared with nontreated controls[367]
1 BBS—Bardet–Biedl syndrome; RTT—Rett syndrome; CS—Cockayne syndrome; NMOSD—neuromyelitis optica spectrum disorder; and adRP—autosomal dominant retinitis pigmentosa.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Chang, K.-J.; Wu, H.-Y.; Yarmishyn, A.A.; Li, C.-Y.; Hsiao, Y.-J.; Chi, Y.-C.; Lo, T.-C.; Dai, H.-J.; Yang, Y.-C.; Liu, D.-H.; et al. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int. J. Mol. Sci. 2022, 23, 9707. https://doi.org/10.3390/ijms23179707

AMA Style

Chang K-J, Wu H-Y, Yarmishyn AA, Li C-Y, Hsiao Y-J, Chi Y-C, Lo T-C, Dai H-J, Yang Y-C, Liu D-H, et al. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. International Journal of Molecular Sciences. 2022; 23(17):9707. https://doi.org/10.3390/ijms23179707

Chicago/Turabian Style

Chang, Kao-Jung, Hsin-Yu Wu, Aliaksandr A. Yarmishyn, Cheng-Yi Li, Yu-Jer Hsiao, Yi-Chun Chi, Tzu-Chen Lo, He-Jhen Dai, Yi-Chiang Yang, Ding-Hao Liu, and et al. 2022. "Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology" International Journal of Molecular Sciences 23, no. 17: 9707. https://doi.org/10.3390/ijms23179707

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop