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Standfirst 
Observational data on COVID-19 including hypothesised risk factors for infection and 
progression are accruing rapidly. Here, we highlight the challenge of interpreting observational 
evidence from non-random samples of the population, which may be affected by collider bias. 
We illustrate these issues using data from the UK Biobank in which individuals tested for 
COVID-19 are highly selected for a wide range of genetic, behavioural, cardiovascular, 
demographic, and anthropometric traits. We discuss the sampling mechanisms that leave 
aetiological studies of COVID-19 infection and progression particularly susceptible to collider 
bias. We also describe several tools and strategies that could help mitigate the effects of collider 
bias in extant studies of COVID-19 and make available a web app for performing sensitivity 
analyses. While bias due to non-random sampling should be explored in existing studies, the 
optimal way to mitigate the problem is to use appropriate sampling strategies at the study 
design stage.  

Key messages 
● Collider bias can occur in studies that non-randomly sample people from the population 

of interest. This bias can distort associations between variables or induce spurious 
associations.  

● It may be possible to estimate the underlying selection model or run sensitivity analyses 
to examine the credibility of the threat of collider bias, but it is difficult to prove that bias 
has been reduced or eliminated.  

● Tested samples in the UK Biobank cohort are highly selected for a range of traits. 
● Sampling strategies that are resilient to collider bias issues should be used at the design 

stage of data collection where possible. 
● Where this is not possible, linkage or collection of data on the target population can help 

in sensitivity and validation analyses. 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.04.20090506doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.04.20090506
http://creativecommons.org/licenses/by/4.0/


 

3 

Introduction 
Government health organisations, researchers and private companies, amongst others, are 
generating data on the COVID-19 status of millions of people, along with measures of health 
and behaviour, for the purpose of using these samples to understand the risk factors (see Box 1 
for scope) relevant to the disease in the general population. Numerous studies have reported 
risk factors associated with COVID-19 infection and subsequent disease severity, such as age, 
sex, occupation, smoking, and ACE-inhibitor use (1–7). But if we are to make reliable inference 
about the causes of infection and severity, we need to be aware that there are serious 
limitations to such observational data. Of particular importance to understanding the aetiology of 
COVID-19 or developing predictors for infection or severity is the problem of collider bias 
(sometimes referred to as selection bias, sampling bias, ascertainment bias). Emerging 
datasets relating to COVID-19 may be particularly susceptible to this issue, having serious 
implications for the reliability of causal inference and generalisability of predictors. 

Collider bias can be counter-intuitive and its implications highly context-specific, but several 
illustrative examples have been published to aid with understanding this issue (8–10). Consider 
the situation where we want to test whether a hypothesised risk factor (e.g. tobacco smoke) 
causes an outcome (e.g. contracting COVID-19). If the hypothesised risk factor and the 
outcome each influence a third variable, conditioning on that third variable will induce an 
artifactual association between the risk factor and the outcome even if the risk factor does not 
cause the outcome(Figure 1A). Collider bias can induce associations where there is no true 
causal effect in the general population, attenuate or inflate true causal effects, or reverse the 
sign of true causal effects.  

In the context of this paper, conditioning upon the third variable can mean examining the effect 
of the risk factor in only the subset of individuals with that particular characteristic (e.g. only 
analysing disease cases for disease progression), or non-randomly selecting samples from the 
target population. An intuitive example of collider bias is as follows. Suppose we want to test the 
hypothesis that being a health worker is a risk factor for severe COVID-19 symptoms. Our target 
population for hypothesis is all adults in the general population. However, our study sample will 
be restricted only to those who are tested for active COVID-19 infection. If we take the UK as an 
example (until late April 2020), the majority of tests were performed either on health workers, or 
members of the general public who had symptoms severe enough to require hospitalisation. In 
this testing environment, our sample of participants will be selected for both the hypothesised 
risk factor (being a healthcare worker) and the outcome of interest (severe symptoms). In this 
strata of the population, healthcare workers will generally appear to have relatively low severity 
(inducing a negative observational association, Figure 1B). In reality, there are real 
occupational hazards of being a healthcare worker, and the true causal effect is likely to be in 
the opposite direction, as healthcare workers are likely exposed to higher viral loads. In this 
paper, we discuss why collider bias should be of particular concern to observational studies of 
COVID-19, and show how sample selection can lead to dramatic biases. We then go on to 
describe the approaches that are available to explore and mitigate this problem. 
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Why observational COVID-19 research is particularly 
susceptible to collider bias 
Though unquestionably valuable, observational datasets can be something of a black box 
because the associations to which they give rise can be due to many different mechanisms. 
Suppose we wish to draw inferences that can be generalised to a wider population such as the 
UK (the population). To conduct our observational study, we must first define a group of people 
that we wish to sample (the target population) who are representative of the target population. 
The members of the target population who respond to the invitation and participate in the study 
form the study sample. If individual characteristics cause people to be more likely to respond to 
an invitation to participate in the study, the study sample will not be representative of the target 
population. To give context on how serious a problem collider bias can be, there is a continuing 
debate in the literature about the extent to which it is appropriate to adjust for covariates in 
observational associations (11–14). If we assume that a given covariate influences both the 
hypothesised risk factor and the outcome, it is appropriate to condition on that covariate to 
remove bias induced by the confounding structure. However, if the covariate is a common 
consequence rather than a common cause, then we risk inducing, rather than reducing bias 
(15). A priori knowledge of what the hidden causal structure truly is can be hard to deduce, and 
it is appropriate to treat collider bias with a similar level of caution to confounding bias. 
 
There are multiple ways in which data are being collected on COVID-19, and they can introduce 
unintentional conditioning in the selected sample in various ways. The characteristics of 
participants recruited are related to a range of factors including policy decisions, cost limitations, 
technological access, and testing methods. It is also widely acknowledged that the true 
prevalence of disease in the population remains unknown (16). Here we describe the forms of 
data collection for COVID-19 and then go on to detail the circumstances surrounding COVID-19 
that make its analysis susceptible to collider bias. 

COVID-19 sampling strategies and case definitions 
Sampling conditional on voluntary participation (Case definition: probable COVID-19, 
Figure 1A) 
Probable COVID-19 status can be determined through studies that require voluntary 
participation. These may include, for example, surveys conducted by existing cohort and 
longitudinal studies (17,18), data linkage to administrative records is also available in some 
cohort studies such as the UK Biobank (19), or mobile phone based app programmes (20,21). 
Participation in scientific studies has been shown to be strongly non-random (e.g. participants 
are disproportionately likely to be highly educated, health conscious, and non-smokers), so the 
volunteers in these samples are likely to differ substantially from the general population (22–24). 
See Box 2 for a vignette on how one study (21) explored collider bias in this context. 
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Sampling conditional on being tested for active COVID-19 infection (Case definition: 
positive test for COVID-19, Figure 1B) 
Polymerase chain reaction (PCR) antigen tests are used to confirm a suspected (currently 
active) COVID-19 infection. Studies that aim to determine the risk factors for confirmed current 
COVID-19 infection therefore rely on participants having received a COVID-19 antigen test 
(hereafter for simplicity: COVID-19 test or test). Unless a random sample or the entire 
population are tested, these studies do not provide an unbiased estimate of active COVID-19 
infection prevalence in the general population. As testing is a resource limited endeavour, 
different countries have been using different (pragmatic) strategies for prioritising testing, 
including on the basis of characteristics such as occupation, symptom presentation and 
perceived risk. See Box 3 for an investigation into the extent to which testing is non-random 
with respect to a range of measurable potential risk factors, using the recently released COVID-
19 test data in the UK-Biobank. 
 
Sampling conditional on having a positive test for active COVID-19 infection (Case 
definition: COVID-19 severity, Figure 1B) 
Studies that aim to determine the risk factors for severity of confirmed current COVID-19 
infection therefore rely on participants having received a COVID-19 antigen test (hereafter for 
simplicity: COVID-19 test or test), and that the result of the test was positive. As above, testing 
is unlikely to be random, and conditioning on the positive result will also mean bias can be 
induced by all factors causing infection, as well as those causing increased likelihood of testing. 
 
Prognosis and mortality sampling conditional on hospitalisation (Case definition: COVID-
19 death, Figure 1C) 
Many studies have started analysing the influences on disease progression once individuals are 
infected, or infected and then admitted to hospital (i.e. the factors that influence survival). Such 
datasets necessarily condition upon a positive test. Figure 1C illustrates how this so-called 
‘index event bias’ is a special case of collider bias (25–27). If we accept that COVID-19 
increases mortality, and there are risk factors for infection of COVID-19, then in a representative 
sample of the target population, any cause of infection would also exert a causal influence on 
mortality, mediated by infection. However, once we condition on being infected, all factors for 
infection become correlated with each other. If some of those factors influence both infection 
and progression then the association between a factor for infection and death in the selected 
sample will be biased. This could lead to factors that increase risk of infection falsely appearing 
to be protective for severe progression (1,28). An example of this relevant to COVID-19 is 
discussed in Box 2. How different directions of selective sampling influence the direction of bias 
is discussed in Figures 1 and 2. 
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Sample selection pressures for COVID-19 testing 
While some of the factors that impact the sampling processes may be common across all 
modes of sampling listed above, some will be mode-specific. In general, these factors will differ 
across national and healthcare system contexts. Here we list a series of possible selection 
pressures acting upon COVID-19 testing and case identification/definition and detail how they 
may bias inference if left unexplored. 
 
Symptom severity 
With few notable exceptions (e.g. (3)), population testing for COVID-19 is not generally 
performed in random samples. Several countries adopted the strategy of offering tests 
predominantly to patients experiencing symptoms severe enough to require medical attention, 
e.g. hospitalisation, as is the case in the UK until the end of April 2020. Many true positive cases 
in the population will therefore remain undetected and be subject to negative sample selection if 
enrollment is dependent upon test status. High rates of asymptomatic virus carriers or cases 
with atypical presentation will further compound this issue.  
 
Symptom recognition 
Related to but distinct from symptom severity, inclusion in COVID-19 datasets will vary based 
upon symptom recognition (29). If an individual fails to recognise the correct symptoms or 
deems their symptoms to be nonsevere, they are less likely to seek medical attention and 
therefore be tested for COVID-19. People will also assess their symptom severity differently; 
those with health related anxiety may be more likely to over-report symptoms, while those with 
less awareness or access to health advice may be under-represented. This problem may be 
compounded by changing symptom guidelines which could induce systematic relationships 
between symptom presentation and testing (29,30).  
 
Occupation 
In many countries, frontline healthcare workers are far more likely to be tested for COVID-19 
than the general population (5,31) due to their proximity to the virus and the potential 
consequences of infection related transmission (32). As such, they will be heavily over-
represented in samples conditional on test status. Other key workers may be at high risk of 
infection due to large numbers of contacts relative to non-key workers, and may therefore be 
over-represented in samples conditional on test status or cause of death. Any factors related to 
these occupations (e.g. ethnicity, socio-economic position, age and baseline health) will 
therefore also be associated with sample selection. Figure 1B illustrates an example where the 
hypothesised risk factor does not need to influence sample selection causally, it could simply be 
associated due to a confounding between the risk factor and sample selection. 
 
Place of residence and social connectedness 
A number of more distal or indirect influences on sample selection likely exist. People with 
better access to healthcare services may be more likely to be tested than those with poorer 
access. Those in areas with a greater number of medical services or better public transport may 
find it easier to access services for testing, while those in areas with lower local medical service 
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utilisation may be more likely to be tested as a function of service capacity (33). People living in 
areas with stronger spatial or social ties to existing outbreaks may also be more likely to be 
tested due to increased medical vigilance in those areas. Family and community support 
networks are also likely to influence access to medical care, for instance, those with caring 
responsibilities and weak support networks may be less able to seek medical attention (34). 
 
Frailty 
Some groups of the population, such as elderly in care homes, are treated differently in terms of 
reporting on COVID-19 in different countries (35). For example in the UK early reports of deaths 
“due to COVID-19” may have been conflated with deaths “while infected with COVID-19” (36). 
Individuals at high risk are more likely to be tested in general, but specific demographics at high 
risk such as those in care homes have been liable to under-representation. A challenge that 
arises with trying to evaluate the problem of collider bias is that it may be difficult to ascertain if 
particular groups with COVID-19 are being over or under represented in the selected sample, 
making sensitivity analysis difficult. 

Sample selection pressures for voluntary self-reporting 
Sample selection pressures for voluntary self-reporting COVID-19 efforts are likely distinct from 
those for COVID-19 testing. 
 
Internet access and Technological Engagement 
Sample recruitment via internet applications has been shown to under-represent certain groups 
(23,37). Furthermore, voluntary “pull-in” data collection methods have been shown to produce 
more engaged but less representative samples than “push out” advertisement methods (24). 
These groups likely have greater access to electronic methods of data collection, and greater 
engagement in social media campaigns that are designed to recruit participants. As such, 
younger people are more likely to be over-represented in app based voluntary participation 
studies (20).  
 
Medical and scientific interest 
Voluntary participation studies are likely to contain a disproportionate amount of people who 
have a strong medical or scientific interest. It is likely that these people will themselves have 
greater health awareness, healthier behaviour, be more educated, and have higher incomes 
(22,38).  
 
Ethnicity 
Some groups may experience barriers into voluntary participation of scientific studies due to 
many factors, for example language, cultural norms or access to information. 
 
Many of the factors for being tested or being included in datasets described here are borne out 
in the analysis of the UK Biobank test data (Box 2). 
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Methods for overcoming collider bias 
In this section we describe methods to either overcome bias or evaluate how sensitive any 
associations could be to collider bias. The primary task in any analysis is to evaluate the extent 
to which sample selection is likely to have actually occurred. This can be done by comparing 
means and prevalences in the selected sample against those obtained from external data that 
represents the target population. Ideally, this would be done for the hypothesised risk factor and 
outcome, as well as any related variables. If there are even subtle departures in the 
characteristics of the study sample from the general population then this provides evidence of 
selective sampling. With respect to analysis of COVID-19 disease risk, one major obstacle to 
this endeavour is that in most cases the actual prevalence of infection in the general population 
is unknown, making it impossible to prove an absence of selection through validation. 
 
If a study is at risk of selective sampling, the unfortunate truth is that it is very difficult to prove 
that any method has resolved issues with collider bias. Sensitivity analyses are therefore crucial 
in exploring factors that could be related to selection, and examining robustness of conclusions 
to plausible selection mechanisms.  
 
Several methods exist that do attempt to adjust for collider bias or examine how sensitive the 
study is to collider bias. The likelihood and extent of collider bias induced by sample selection 
can be evaluated by comparing distributions of variables in the sample with those in the target 
population (or a representative sample of the target population). This provides information about 
the profile of individuals selected into the sample from the target population of interest, such as 
whether they tend to be older or more likely to have comorbidities. It is particularly valuable to 
report these comparisons for key variables in the analysis, such as the hypothesised risk factor 
and outcome, and other variables related to these.  
 
The applicability of different methods depends on the data that are available on non-
participants. These methods can broadly be split into two categories: a) where the selected 
sample is nested within a larger dataset that comprises samples believed to be representative 
of the target population, or b) where the entire dataset comprises only the selected samples 
used for hypothesis testing (stand-alone).  

Nested sample 
In the case that we have a selected sample with COVID-19 measures, which is a subset of a 
sample that is representative of the target population, one approach is to use inverse probability 
weighting (39,40). Here the causal effect of risk factor on outcome is examined using a 
weighted regression, where the participants who are overrepresented are down-weighted and 
the participants who are underrepresented are up-weighted. In practice, we estimate the 
probability of different individuals selecting into the sample from the population-representative 
sample based on their measured covariates, using a statistical model (the “sample selection 
model”),  and use this to create a weight for each participant (41).  An example is where the 
study sample is those with a positive covid test, nested within the UK Biobank study. If we 
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assume that UK Biobank is representative of the target population (the general population of the 
UK), then we can use data from UK Biobank to estimate the probability of having a covid test for 
each individual in UK Biobank. We can then appropriately re-weight the study sample to 
represent the population of UK Biobank.  
 
Seaman and White (2013) provide a detailed overview of the practical considerations and 
assumptions for inverse probability weighting, such as correct specification of the sample 
selection model, variable selection and approaches for handling unstable weights (i.e. weights 
which are zero or near-zero). An additional assumption for inverse probability weighting is that 
each individual in the target population must have a non-zero probability of being selected into 
the sample. Neither this assumption, nor the assumption that the selection model has been 
correctly specified, are testable using the observed data. A conceptually related approach, using 
propensity score matching, is sometimes used to avoid index event bias (42,43). 

Stand-alone samples 
When we only have data on the study sample (e.g. only data on participants who were tested 
for COVID-19) it is not possible to estimate the selection model directly since non-selected 
(untested) individuals are unobserved. Instead, it is important to apply sensitivity analyses to 
assess the plausibility that sample selection induces collider bias.  
 
Bounds and parameter searches 
It is possible to infer the extent of collider bias given knowledge of the likely size and direction of 
influences of risk factor and outcome on sample selection (whether these are direct, or via other 
factors) (12,44,45). However, this approach depends on the size and direction being correct, 
and there being no other factors influencing selection. It is therefore important to explore 
different possible sample selection mechanisms and examine their impact on study conclusions. 
We created a simple web application guided by these assumptions to allow researchers to 
explore simple patterns of selection that would be required to induce an observational 
association: http://apps.mrcieu.ac.uk/ascrtain/. In Figure 3 we use a recent report of a 
protective association of smoking on COVID-19 infection (46) to explore the magnitude of 
collider bias that can be induced due to selected sampling, under the null hypothesis of no 
causal effect. 
 
Several other approaches have also been implemented into convenient online web apps 
(Appendix). For example Smith and VanderWeele (2019) proposed a sensitivity analysis which 
allows researchers to bound their estimates by specifying sensitivity parameters representing 
the strength of sample selection (in terms of relative risk ratios). They also provide an ‘E-value’, 
which is the smallest magnitude of these parameters that would explain away an observed 
association (47). Aronow and Lee (2013) proposed a sensitivity analysis for sample averages 
based on inverse probability weighting when the weights cannot be estimated but are assumed 
to be bounded between two researcher-specified values (48). This work has been generalised 
to allow regression models to incorporate relevant external information (e.g. summary statistics 
from the census) (49). Zhao et al (2017) developed a sensitivity analysis for the degree to which 
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estimated probability weights differ from the true probability weights due to misspecification (50). 
This approach is particularly useful when we can estimate probability weights including some, 
but not necessarily all, of the relevant predictors of sample selection. For example, where we 
have the study sample being those with a covid test, nested within the UK Biobank, we may 
have data within UK Biobank on some predictors of testing, but there could be other factors that 
are not recorded within UK Biobank (e.g. general predisposition for seeking healthcare). 
 
These sensitivity analysis approaches allow researchers to explore whether there are credible 
collider structures that could explain away observational associations. However, they do not 
represent an exhaustive set of models that could give rise to bias, nor do they necessarily prove 
that collider bias influences the results. If the risk factor for selection is itself the result of further 
upstream causes then it is important that the impact of these upstream selection effects are 
considered (i.e. not only how the risk factor influences selection but also how the causes of the 
risk factor and/or the causes of the outcome influence selection e.g. Figure 1B). While these 
upstream causes may individually have a small effect on selection, it is possible that lots of 
factors with individually small effects could jointly have a large selection effect and introduce 
collider bias (Groenwold et al. 2016).  
 
Negative control analyses 
If there are factors measured in the selected sample that are known to have no influence on the 
outcome, then testing these factors for association with the outcome within the selected sample 
can serve as a negative control (51,52). By virtue, negative control associations should be null 
and they are therefore useful as a tool to provide evidence in support of selection. If we observe 
associations with larger magnitudes than expected then this indicates that the sample is 
selected on both the negative control and the outcome of interest (53,54).  
 
Correlation analyses 
Conceptually similar to the negative controls approach above, when a sample is selected, all the 
features that influenced selection become correlated within the sample (except for the highly 
unlikely case that causes are perfectly multiplicative). Testing for correlations amongst 
hypothesised risk factors where it is expected that there should be no relationship can indicate 
the presence and magnitude of sampling bias, and therefore the likelihood of collider bias 
distorting the primary analysis (55). 

Implications 
The majority of scientific evidence informing policy and clinical decision making during the 
COVID-19 pandemic has come from observational studies (56). We have illustrated how these 
observational studies are particularly susceptible to non-random sampling. Randomised clinical 
trials will provide experimental evidence for treatment, but experimental studies of infection will 
not be possible for ethical reasons. The impact of collider bias on inferences from observational 
studies could be considerable, not only for disease transmission modelling (57,58), but also for 
causal inference (7) and prediction modelling (2). 
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While many approaches exist that attempt to ameliorate the problem of collider bias, they rely 
on untestable assumptions. It is difficult to know the extent of sample selection, and even if that 
were known it cannot be proven that it has been fully accounted for by any method. 
Representative population surveys or sampling strategies that avoid the problems of collider 
bias (59) are urgently required to provide reliable evidence. Results from samples that are likely 
not representative of the target population should be treated with caution by scientists and 
policy makers. 
 

Appendix 
Exploring bounds and spaces that could explain an observational association can easily be 
achieved using a range of packages and apps: 

● AscRtain app: http://apps.mrcieu.ac.uk/ascrtain/ 
● CollideR app (10): https://watzilei.com/shiny/collider/ 
● Selection bias app (47): https://selection-bias.herokuapp.com/ 
● Bias app (45): https://remlapmot.shinyapps.io/bias-app/  
● Lavaan R package (60): http://lavaan.ugent.be/ 
● Dagitty R package (61): http://www.dagitty.net/ 
● simMixedDAG: https://github.com/IyarLin/simMixedDAG 
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Box 1: Collider bias in the context of prediction and aetiological studies 
 
An aetiological study seeks to identify causes of the outcome of interest (“causal factors”), 
whereas a predictive study aims to predict the outcome from a range of variables (“predictors”) 
which need not be causal. The term “risk factor” has been used synonymously for both causal 
factors and predictors in the literature (62,63).   
 
Risk factors measured in observational studies, may associate with outcomes of interest (e.g. 
hospitalised with COVID-19), for many reasons. For example, the factor may affect the outcome 
(true causal interpretation), statistical evidence of association may be purely due to chance, the 
outcome may affect the factor (reverse causation), there may be a third factor that causes both 
the exposure and the outcome (confounding), or the exposure and outcome (or causes of the 
exposure and/or outcome) may influence likelihood of being selected into the study (collider 
bias).  
 
Aetiological studies are in principle only concerned with the causal effect, and aim to avoid all 
forms of bias. By contrast, some forms of bias such as confounding or reverse causation can 
actually improve the performance of a prediction study. As long as the causal structure by which 
the study sample is drawn from the target population is the same as in the population in which 
predictions will be made, it can be of benefit to leverage these distinct association mechanisms 
to improve prediction accuracy (64,65).  
 
Under certain circumstances collider bias can improve prediction performance if the training 
sample and the sample to be predicted have the same patterns of sample selection. For 
example, if the factors causing having a test for COVID-19 are the same/similar across the UK, 
a predictive model for the result being positive that was developed in London will perform well in 
the North East if those samples are both selected in the same way. However, collider bias is a 
problem for the generalisability of both causal inference and prediction in the target population 
when the training sample is selected, because it induces artifactual associations that are 
idiosyncratic to that dataset. If the intention is to predict COVID-19 status, rather than COVID-19 
status conditional on being tested, the prediction will underperform. 
 
While the term ‘risk factor’ can be ambiguous and refer to either a hypothesised causal 
determinant or a predictor of the disease, we intentionally use it throughout this paper for the 
sake of brevity as causal inference and prediction analyses both share a vulnerability to the 
detrimental impacts of collider bias in the COVID-19 context - where typically the selected 
samples are being used to develop models relevant to the general population. 
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Box 2. The potential association between ACE inhibitors and COVID-19: why sampling 
bias matters 

One research question that has gained attention is whether blood pressure lowering drugs such 
as ACE inhibitors (ACE-i) and angiotensin-receptor blockers (ARBs), which act on the Renin–
Angiotensin–Aldosterone System (RAAS) system, make patients more susceptible to COVID-19 
infection (66–70). 

Relationships between ACE-i/ARBs and COVID-19 are to be investigated in clinical trials 
(71,72), but in the meantime have been rapidly investigated through observational studies (73–
75). One such recent analysis used data from a UK COVID-19 symptom tracker app (76), which 
was released in March just before the UK Lockdown policy was implemented to increase social 
distancing. The app allows members of the public to contribute to research through self-
reporting data including demographics, conditions, medications, symptoms and COVID-19 test 
results. The researchers observed that people reporting ACE-i use were twice as likely to report 
COVID-19 symptoms, even after adjusting for differences in age, BMI, sex, diabetes, and heart 
disease (21). 

The researchers investigated whether sampling bias may play a role. If taking ACE-i and having 
COVID-19 symptoms would lead to being either less or more likely to sign up to the app or 
contribute data, this could induce an association between these factors (Figure 1A). Since ACE-
is are prescribed to those with diabetes, heart disease, or hypertension, ACE-i users are likely 
to be considered high-risk for COVID-19 (77). They are therefore potentially more sensitised to 
their current health status and may be more likely to use the app (78,79). People who are 
COVID-19 symptomatic may also be more likely to remember to contribute data than 
asymptomatic people. Taken together, this could result in a false or inflated association between 
taking ACE-i and COVID-19. However, in reality, deciding in which direction ACE-i and COVID-
19 symptoms would influence participation is complicated. For example, people with severe 
COVID-19 symptoms who are hospitalised could be too ill to contribute data. 

Careful consideration is required for each set of exposures and outcomes that are studied. 
Amongst those participants who were actually tested in the COVID-19 symptom tracker app  
study, there was no evidence for an association between ACE-i use and COVID-19 positive 
status (21). In this analysis there are joint selection pressures of a) factors underlying being 
tested and b) factors underlying app participation. 

Should ACE-i use truly increase risk of COVID-19 infection, it could imply that observational 
results for disease progression studies are influenced by collider bias. For example, it has been 
reported that ACE-i/ARB use may be protective against severe symptoms, conditional on 
already being infected (80,81), which is consistent with index event bias as illustrated in Figure 
1C.  

It is important to consider the plausibility of the different selection pathways, both statistically (for 
example, through methods such as bounds and parameter searches) and biologically. Such 
considerations will ensure that data interpretation is at least robust to known biases of unknown 
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magnitude, and policy decisions are based on the best interpretation of the scientific evidence. 
Indeed, in consideration of the benefits that ACE-i/ARBs have on the cardio-respiratory system, 
current guidelines should continue to recommend use of these drugs until there is sufficiently 
reliable scientific evidence against this (82,83).  
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Box 3. Factors influencing being tested in UK Biobank 
 
In April 2020, General Practices across the UK released primary care data on COVID-19 testing 
for linkage to the participants in the UK Biobank project (84) and analyses are already 
appearing (85). Of the 486,967 participants, 1,410 currently have data on COVID-19 testing. 
While it may be tempting to look for factors that influence whether an individual tests positive, it 
is crucial to evaluate the potential that those tested are not a random sample of the UK-Biobank 
participants (who are themselves not a random sample of the UK population). 
 
We examined 2,556 different characteristics for association with whether or not a UK Biobank 
participant had been tested for COVID-19. There was very large enrichment for associations 
(Figure 2), with 811 of the phenotypes (32%) giving rise to a false discovery rate < 0.05. These 
associations involved a wide range of traits, including measures of frailty, medications used, 
genetic principal components, air pollution, socio-economic status, hypertension and other 
cardiovascular traits, anthropometric measures, psychological measures, behavioural traits, and 
nutritional measures. A full list of all traits assessed and their associations with whether a 
participant had COVID-19 test data are available in Supplementary Table 1. The first genetic 
principal component, which relates to major ethnic groups, was one of the strongest 
associations with being tested, which may have implications for understanding the association 
of race on testing positive for COVID-19 (85). 
 
We can not know the actual COVID-19 prevalence amongst all participants, but if it is different 
from the prevalence amongst those tested, then every one of the traits listed above could be 
associated with COVID-19 in the dataset solely due to collider bias, or at least the magnitude of 
those associations could be biased as a result. The fact that the UK Biobank data are already a 
non-random sample of the UK population further complicates the matter (26). 
 
Ideally, inverse-probability weighted regressions would be performed to minimise any such bias. 
However, because we can not know the COVID-19 status of participants outside the tested 
group (sampling fractions), such weights will be impossible to calculate without strong 
assumptions that are currently untestable (50). Inverse-probability-weighting also depends on 
the selection model being correctly specified, including that all characteristics predicting 
selection (that are related to variables in the analysis model) have been included, and in the 
right functional form. As with unmeasured confounding, there is always the possibility of having 
unmeasured selection factors. 
 
Methods: UK-Biobank phenotypes were processed using the PHESANT pipeline (86) and 
filtered to include only quantitative traits or case-control traits that had at least 10,000 cases. In 
addition, sex, genotype chip and the first 40 genetic principal components were included for 
analysis (2,556 traits in total). A ‘tested’ variable was generated that indicated whether an 
individual had been tested for COVID-19 or not within UK Biobank, and logistic regression was 
performed for each of the 2,556 traits against the ‘tested’ variable. Code: 
https://github.com/explodecomputer/covid_ascertainment  
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Figures 

 

Figure 1: Collider bias induced by conditioning on a collider in three scenarios relating to 
COVID-19 analysis. These are simplified Directed Acyclic Diagrams where only the main 
variables of interest have been represented for sake of illustrating collider bias scenarios. All 
assume no unspecified confounding or other biases. Rectangles represent observed variables 
and solid directed arrows represent causal effects. The dashed line represents an induced 
association when conditioning on the collider, which in these scenarios are variables that 
indicate whether an individual is selected into the sample. (A) When some hypothesised risk 
factor (e.g. age) and outcome (e.g. COVID-19 infection) each associate with sample selection 
(e.g. voluntary data collection via mobile-phone apps), the hypothesised risk factor and outcome 
will be associated within the sample. The presence and direction of these biases are model 
dependent; where causes are supra-multiplicative they will be positively associated in the 
sample; where they are sub-multiplicative they will be negatively correlated; and where they are 
exactly multiplicative they will remain unassociated. We extend this scenario in (B) where the 
association between the hypothesised risk factor and the collider does not need to be causal. 
(C) When inferring the influence of some hypothesised risk factor on mortality, in an unselected 
sample the risk factor for infection is a causal factor for death (mediated by COVID-19 infection).
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However, if analysed only amongst individuals who are known to have COVID-19 (i.e. we 
condition on the COVID-19 infection variable) then the risk factor for infection will appear to be 
associated with any other variable that influences both infection and progression. In many 
circumstances this can lead to a risk factor for disease onset that appears to be protective for 
disease progression. Each of these scenarios represent those described in the main text. 

 

Figure 2: Quantile-Quantile plot of -log10 p-values for factors influencing being tested for 
COVID-19 in UK Biobank. The x-axis represents the expected p-value for 2,556 hypothesis 
tests and y-axis represents the observed p-values. The red line represents the expected 
relationship under the null hypothesis of no associations. 
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Figure 3: Large associations can be induced by collider bias under the null hypothesis of 
no causal relationship, using scenarios similar to those reported for the observed 
protective association of smoking on COVID-19 infection. Assume a scenario in which the 
hypothesised exposure (A) and outcome (Y) are both binary and each influence probability of 
being selected into the sample (S) e.g.  where  is the 
baseline probability of being selected,  is the effect of A,  is the effect of Y and  is the 
effect of the interaction between A and Y. This plot shows which combinations of these 
parameters would be required to induce an apparent risk effect with magnitude OR > 2 (blue 
region) or an apparent protective effect with magnitude OR < 0.5 (red region) under the null 
hypothesis of no causal effect (45). To create a simplified scenario similar to that in Miyara et al 
2020 we use a general population prevalence of smoking of 0.27 and a sample prevalence of 
0.05, thus fixing  at 0.22. Because the prevalence of COVID-19 is not known in the general 
population, we allow the sample to be over or under representative (y-axis). We also allow 
modest interaction effects. Calculating over this parameter space, 40% of all possible 
combinations lead to an artifactual 2-fold protective or risk association operating through this 
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simple model of bias alone. It is important to disclose this level of uncertainty when publishing 
observational estimates. 
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Supplementary tables 
 
Supplementary Table 1: Association results for each of 2,556 variables in the UK Biobank 
cohort, testing for their influence on being tested for COVID-19 
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