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ABSTRACT

The aggregation of a series of N-of-1 trials presents an innovative and efficient study design, as an
alternative to traditional randomized clinical trials. Challenges for the statistical analysis arise when
there is carry-over or complex dependencies of the treatment effect of interest.
In this study, we evaluate and compare methods for the analysis of aggregated N-of-1 trials in different
scenarios with carry-over and complex dependencies of treatment effects on covariates. For this, we
simulate data of a series of N-of-1 trials for Chronic Nonspecific Low Back Pain based on assumed
causal relationships parameterized by directed acyclic graphs. In addition to existing statistical
methods such as regression models, Bayesian Networks, and G-estimation, we introduce a carry-over
adjusted parametric model (COAPM).
The results show that all evaluated existing models have a good performance when there is no
carry-over and no treatment dependence. When there is carry-over, COAPM yields unbiased and
more efficient estimates while all other methods show some bias in the estimation. When there is
known treatment dependence, all approaches that are capable to model it yield unbiased estimates.
Finally, the efficiency of all methods decreases slightly when there are missing values, and the bias in
the estimates can also increase.
This study presents a systematic evaluation of existing and novel approaches for the statistical analysis
of a series of N-of-1 trials. We derive practical recommendations which methods may be best in
which scenarios.

Keywords Causal Inferences · Time-varying Treatment · Data Simulation

1 Introduction

Within the last decade, personalized medicine has been on the rise. Treating patients on an individual level has been
improved by the numerous possibilities to measure health outcomes with smart devices and application of novel data
science approaches. In order to evaluate the effectiveness of health interventions on an individual level, N-of-1 trials
have been established as the gold standard Nikles and Mitchell [2015], Davidson et al. [2021]. N-of-1 trials are
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multi-crossover controlled trials, where each patient is their own control group. In addition to individual-level analyses
for personalized treatment, series of N-of-1 trials can be analyzed jointly Stunnenberg et al. [2018], or also combined
with results from standard randomized controlled trials (RCTs) to obtain population-level estimates on the effectiveness
of treatments with equal or superior efficiency compared to non-crossover RCTs Punja et al. [2016], Blackston et al.
[2019]. In addition to research on appropriate statistical models for the analysis of aggregate and individual n-of-1 trials,
previous studies have investigated approaches to derive optimal designs regarding sample size and number of cycles
Diaz [2021], Senn [2019], Yang et al. [2021]. For the aggregate statistical analysis of series of N-of-1 trials, popularly
used methods include non-parametric methods like the Wilcoxon signed-rank test Green et al. [2004], Sierra-Arango
et al. [2019], two-sample mean tests Schmid CH, Duan N., the DEcIDE Methods Center N-of-1 Guidance Panel [2014],
methods that allow for covariate adjustments like linear models Odineal et al. [2019], Vrinten et al. [2015], linear
mixed models Herrett et al. [2021], and Bayesian approaches Chen and Chen [2014], Samuel et al. [2019]. Also,
autoregressive models to account for time dependencies have been proposed for the analysis Zhou et al. [2017]. Daza
introduced a counterfactual framework for time-dependent treatments to estimate average period treatment effects in
N-of-1 trials Daza [2018].This framework is also applicable to the analysis of n-of-1 observational studies, where the
order of the treatment phases is not randomized and may be affected by confounding Daza and Schneider [2022].

Some studies have evaluated and compared different methods for the analysis. For example, Stunnenberg et al.
Stunnenberg et al. [2018] applied both frequentist linear mixed models as well as Bayesian models, and compared the
approaches in a study on the effect of mexiletine on muscle stiffness in patients with nondystrophic myotonia. Zucker
et al. Zucker et al. [2010] compared repeated-measure models, Bayesian hierarchical models, and simpler single-period,
single-pair, and averaged outcome crossover models in the analysis of a published series of N-of-1 trials on rheumatolic
treatments. Their results showed that depending on the assumptions, different mixed models yielded the best fit and that
Bayesian models were sensitive to the specification of the priors. Chen & Chen Chen and Chen [2014] compared t-tests
and mixed models in a simulation study when no carry-over was present, and found t-tests to yield highest power under
this assumption. Finally, Araujo et al. Araujo et al. [2016] extended the work of Chen & Chen and considered t-tests
and linear mixed models under different model assumptions on the study design, with a focus on how the study design
incorporated randomization.

In this study, we focus on two particular challenges for the analysis of aggregated N-of-1 trials: (i) carry-over and (ii)
complex dependencies and time-varying interactions of the treatment effect with covariates. First, as a patient cannot
receive two treatments at the same time, the treatment is time-varying. This may introduce carry-over - i.e., that the
effect of one treatment is still active when the other treatment is applied - complicating the analysis of the trials and
the interpretation of the results. As one solution, wash-out periods can be introduced in the study design, where the
patient does not receive any of the treatments. However, this is not always possible, so statistical methods have to be
investigated regarding their robustness against known or unknown carry-over. Second, for the aggregated analysis
of N-of-1 trials, treatment effects may often depend on covariates, their effect might be modified by them, and this
might be further complicated if time-varying interactions between treatment and effect modifiers exist. Carry-over and
such complex dependencies have to be considered to ensure unbiased estimates of the causal treatment effects, but
best-practise recommendations are not available Gamble et al. [2017].

Our paper is organized as follows. In Section 2, we describe a general data generation model and how we applied it to
generate data for our simulation study. Then, we describe the evaluated statistical models which include our newly
proposed carry-over adjusted parametric model (COAPM). In Section 3, we describe the results of the simulation study
evaluating the performance of these statistical methods across four scenarios. We conclude with a discussion in Section
4.

2 Methods

In the following, we investigate different statistical methods for the analysis of aggregated N-of-1 trials on simulated
data sets that contain different levels of carry-over and treatment-covariate dependencies. Additionally, we compare the
methods on data sets with and without missing data due to participants’ dropout. As traditional methods, we include
a sample mean comparison and linear regression model in the analysis Schmid CH, Duan N., the DEcIDE Methods
Center N-of-1 Guidance Panel [2014], Nikles and Mitchell [2015]. Further, we introduce a parametric model that
specifically models how carry-over modifies the treatment effect. Finally, we consider Bayesian Networks Pearl et al.
[2016] and G-estimation Hernan and Robins [2019], Daza [2018].

To evaluate and compare the different statistical methods, we perform a Monte Carlo simulation study. In the
following, we describe the simulation study set-up including the data generation model, a specific application of
the data generation model to generate synthetic data of a series of N-of-1 trials on Chronic Nonspecific Low Back
Pain, and the different evaluated statistical methods. The data generation model is available through the Python
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package sinot (github.com/HIAlab/sinot), and the statistical methods are implemented in the R package cinof1
(github.com/HIAlab/cinof1).

2.1 Data Generation

2.1.1 Data Model

In the simulation model, we combine data generation based on stochastic processes, time-varying and covariate-
dependent treatment effects, and effects onto the outcome variable embedded in a causal graph. For the notation in the
following, let Z denote any of the variables in our model including the outcome O, treatment T , or other variables C.

First, we embed the outcome variable O and treatment variable T in a directed acyclic graph (DAG) with further
variables C, which may be constant or time-varying, and can be simulated from several common distributions like
Bernoulli, Gaussian, Poisson, or uniform. Time-invariant variables would not change over time and describe for instance
Demographics or baseline conditions like Previous Diagnosis (of Nonspecific Low Back Pain). Time-varying variables
may change on each observation and could be measurements like the number of steps per day.

We include linear effects from variables Zj on Zi at time point t, t ≥ 0, where i and j index distinct variables:

Zt
i =

∑
j

(wj,i · Zt
j) + εi, (1)

where wj,i denotes the linear causal effect of Zj on Zi and εi denotes some random noise with mean µi and variance
σ2
i , εi ∼ N(µi, σ

2
i ). A treatment period may consist of one or more time points, i.e. days in our simulation.

To simulate binary variables, we define a threshold λi ∈ R and apply a step function f defined as:

f(Zt
i , λi) =

{
0 if (Zt

i < λi)

1 if (Zt
i ≥ λi)

. (2)

Time dependencies can be added to the data simulation by letting the variable Zt
i depend on the weighted values of Zj

at time points (t− l), i.e. adding lags l:

Zt
i =

∑
j

∑
l∈L

(wl
j,i · Zt−l

j ) + εi, (3)

where L is a nonempty set of integers greater or equal to 0 and smaller or equal to t.

The treatment variables T have an exponential decay defined through wash-in τ and wash-out γ to simulate carry-over,
similar to Percha et al. Percha et al. [2019] (see Supplementary Figure FS1 for an illustration). Daza described the
carry-over as slow onset and slow decay Daza [2018].

After drawing the exogenous variables from pre-specified distributions, the endogenous variables are generated based
on assumed weights wj,i and the DAG.

To simulate the outcome O, we model an underlying state U with a baseline drift as a discrete-time stochastic process
(Wiener process); see Supplementary Text 1 and Supplementary Figure FS2 for more details. Baseline drift here
describes the observed change over time in the outcome variable if left untreated, which can be a time trend in specific
cases (see Supplemental Text 1 for details). Then, O at time t is a linear combination of the causal effects of the other
variables and the underlying state:

Ot = Zt
i=o + U t + εo, (4)

where εo ∼ N(µo, σ
2
o), U t denotes the underlying state at time point t and Zt

i=o denotes the linear causal effects
defined in the DAG of all covariates on the outcome variable O at time point t as defined in equation 3.

2.1.2 Series of simulated N-of-1 trials of Chronic Nonspecific Low Back Pain

For the simulation study, our aim is to generate a realistic synthetic data set from a series of N-of-1 trials, comparing the
effect of daily exercises for back strength (Treatment 1) with the effect of daily exercises for back stretching (Treatment
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Figure 1: DAG of assumed causal effects in the simulated study. Variables having a direct or indirect effect on Activity
were highlighted in red boxes as Activity is an interaction term in scenario 3. The Treatment variable is highlighted in
green.

2) on reducing the outcome variable Chronic Nonspecific Low Back Pain. We assume that Pain is measured daily. The
study includes two blocks of two treatment periods each.

We set each treatment period to a length of 4 weeks. The period order is randomly selected within each treatment
block. An exemplary study scheme could look like ABBA or ABAB, where AB (or BA) would be a block with two
treatment periods and a total study duration of 4x4 = 16 weeks. Additionally, the study contains a baseline assessment of
medication use and different sociodemographic variables. We identified these variables on a literature review including
Burdorf and Sorock [1997] and expert interviews.

Demographics encompasses variables gender and age at baseline, which are modeled as constant variables across all
time points. Education assesses if the patient had an academic degree or was enrolled in an academic program. The
variable Work identifies whether the patient is working or not. Both Work and Education are assumed as constant across
all time points. Health status is assessed including daily measurements of Medication, (which identifies if a patient was
using painkillers), Previous Diagnosis (of Nonspecific Low Back Pain), and Chronic Diseases (indicating whether a
patient has been diagnosed with related chronic diseases, for instance scoliosis or muscular disorders). Besides health
status, lifestyle factors are tracked on a daily basis, including physical Activity, Stress levels, and Quality of Sleep.

We create a DAG with the assumed causal relationships between all the identified variables, see Figure 1, based
on a literature review and expert knowledge. We assume effects from Demographics on Education, Activity, Work,
Previous Diagnosis, Medication and Chronic Diseases. Furthermore, we assume that there is no direct causal effect
of Demographics on Nonspecific Low Back Pain, but an effect mediated by proxy variables, which leads to indirect
causal paths from Demographics to Nonspecific Low Back Pain through, e.g., Activity. We assume that Treatment
has an effect on Stress, Quality of Sleep, and Nonspecific Low Back Pain. We assume that Treatment does not affect
Demographics, Education, Work, Chronic Diseases, Medication, and Previous Diagnosis, as they are assumed to be
constant over time. As will be described in more detail in the next Section 2.1.3, we model a complex dependence of
the treatment effect on Activity (see Figure 3).

These effects are summarized in the DAG shown in Figure 1, and are used to generate the data. In addition to the
dependencies shown in the graph, time dependencies are specified: Quality of Sleep as well as Activity depend on
Treatment at the previous timepoint.

2.1.3 Generated data sets

Based on the data generation model, the Nonspecific Low Back Pain study design, the DAG shown in Figure 1, and the
time dependencies between variables described above, we generate data sets under four different scenarios, shown in
Table 1.

All scenarios include covariate effects following the DAG in Figure 1, with the exception of the interactions and
temporal effects between Activity and Treatment, which are only included in some scenarios (i.e., 3 and 4). In scenario
1, we generate the data as the baseline data set for all methods and do not include carry-over, time dependencies, or
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Table 1: Overview of the different scenarios. In the scenarios with carry-over, the parameters for wash-in τ and
wash-out γ simulating the exponential decay are changed. wA,T denotes an effect modifier of Activity on Treatment.
Hence, the treatment effect depends on Activity whenever wA,T 6= 0.

No Activity interaction Activity interaction
Scenario 1 Scenario 3

No carry-over γ = τ = 1 γ = τ = 1
wA,T = 0 wA,T 6= 0
Scenario 2 Scenario 4

With carry-over γ1 = 3; τ1 = 6 γ1 = 3; τ1 = 6
γ2 = 4; τ2 = 5 γ2 = 4; τ2 = 5
wA,T = 0 wA,T 6= 0

interaction between Activity and Treatment. In scenario 2, the data are simulated with carry-over so that the treatment
effect is heavily time-dependent within a treatment period as we add wash-in and wash-out phases.

In scenario 3, a complex dependence of the Treatment effect on Physical Activity is modeled in the simulation
additionally to the covariables shown in Figure 1. The observed Treatment variable indicating whether the patient is
exposed to the Treatment or not is not affected by Physical Activity, but the underlying treatment effect is modified
through wA,T . With that, we have modeled an interaction of Treatment and Activity. In addition, there is a temporal
effect of Treatment at t− l on Activity at t so that the Activity distribution differs between the treatment groups. In
scenario 4, we generate a data set with both carry-over and Treatment-Activity interactions as in scenario 3.

If the edge from a variable j to a variable i is present in the DAG, the effect is set to wj,i 6= 0. If the edge is not present
in the DAG, it represents our assumption that there is no effect of Zj on Zi; equivalently wj,i = 0. Time dependencies
are simulated in the same way, where we set wl

j,i 6= 0 when we assume a time dependency between the variable Zt−l
j

and the variable Zt
i . For all scenarios, the effects are identical except for the specifications mentioned in Table 1.

Treatment effects were set to be constant over time. The effect of treatment 1 on the outcome was set to -2, and of
treatment 2 on the outcome to -4, both compared to no treatment (i.e. baseline drift and covariate effects). Hence, this
results in a treatment effect difference of 2 between the treatments (see Supplementary Text 2 for more details).

In addition to these four scenarios, we further investigate how the methods perform on data sets with missing values by
replicating the 4 scenarios with missing values. For this, we use the same parameters and introduce row-wise missing
values (i.e., across all variables of an individual) through two mechanisms. The first mechanism deletes 10% of the
data points randomly with increased probability over time to mimic random drop-out. Second, we add a block of 10
consecutive missing days that were drawn randomly for each patient to simulate vacation (see Supplementary Text 3 for
more details).

2.2 Statistical Methods

2.2.1 Overview

As described in the previous section, we generate data sets from 4 different scenarios, each a series of N-of-1 trials
on Chronic Nonspecific Low Back Pain with 1000 participants. For the evaluation of the statistical models, in each
scenario, we draw 100 samples each of 5, 10, 25, 50 and 100 participants, to also investigate the influence of the sample
size in aggregated N-of-1 trials. Then we apply different statistical models, and evaluate their bias and efficiency in
estimating the treatment effect difference in outcomes between treatment groups 1 and 2 across all participants. We
compare standard statistical models for the analysis of aggregated N-of-1 trials, COAPM, G-estimation, and Bayesian
Networks.

2.2.2 Standard Statistical Models

First, we compute the sample means of both treatment groups, and the naive estimate of the treatment effect difference.
We call this the Sample Mean model. Its standard error is estimated as the empirical standard deviation of the estimated
treatment effect difference across the 100 samples.

O = α0 + α1T. (5)

Second, we fit a standard multiple linear regression model with pain as the response variable, and the treatment and
covariates as predictors. We call this the Linear Model. Hence, β̂1 in model (6) is an estimate of the average direct
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effect of the treatment T on the pain outcome O adjusted for all covariates C in Figure 1 with direct effects on the
outcome (i.e., excluding Demographics). That is, β̂1 is an estimate of the direct effect of T on O:

O = β0 + β1T +
∑
j

β2,jCj + ε, (6)

where ε follows a normal distribution. For the implementation, we use the lm function in R from the base package
with default settings, assuming independence between observations of different patients, to compute non-weighted
ordinary least squares estimates of the regression coefficients, along with standard error estimates and Wald test results.
The effect estimates are then averaged across the 100 samples as the empirical mean, and standard error estimates are
estimated as the empirical standard deviation of the effect estimates.

2.2.3 Linear Models Adjusting for Wash-In and Wash-Out

To reduce the bias due to carry-over, we adjust the multiple linear regression model for wash-in τk and wash-out γk,
where k = 1 indicates treatment 1 and k = 2 indicates treatment 2. For that, we include a continuous time-dependent
treatment effect variable instead of the binary treatment assignment variable. We call this the carry-over adjusted
parametric model (COAPM).

Let T t
k indicate whether the patient was exposed to treatment k at time point t and let Et

k denote the exponential decay
treatment indicator, which we parameterize given τk and γk:

Et
k(T t

k, γk, τk) = Et−1
k +

1− Et−1
k

τk
· T t

k −
Et−1

k

γk
· (1− T t

k) (7)

for t ≥ 1. We initialize E0
k=1 = E0

k=2 = 0, as we assume no treatment effect at the start point of the study. For an
example, consider treatment k = 1 and wash-in τ1 = 2. Then, E1

1 = 1/2, E2
1 = 3/4, E3

1 = 7/8, . . . . That is, instead
of using a treatment indicator T which takes values 0 or 1, Ek is a treatment indicator which incorporates wash-in and
wash-out through exponential decay and either targets the value 1 (for wash-in) or 0 (for wash-out). Then we estimate
the average effect of each treatment over time using the following linear regression model:

Ot = fCOAPM (t, C) = β0 + β1E
t
1(T t

1 , γ1, τ1) + β2E
t
2(T t

2 , γ2, τ2) +
∑
j

β3,jC
t
j + ε. (8)

With that, β̂1 estimates the carry-over adjusted average effect of treatment 1 compared to no treatment (i.e. neither
treatment 1 nor treatment 2, which would be baseline), and β̂2 the carry-over adjusted average effect of treatment
2 compared to no treatment. Compared to the model in Equation 6, the COAPM model estimates the effect of Et

k,
yielding an estimate of the carry-over adjusted treatment effect instead of the treatment indicator variable Tk. Hence
β̂1 − β̂2 is an estimate of the treatment effect difference adjusted for carry-over.

As Ek is a function on τk and γk which are unknown, it is approximated through a grid search. In more detail, we
iterate over several combinations of τk and γk and fit a linear model for each combination. Then, we estimate τk and γk
from the model with highest R2 value. Estimates of β1 and its standard error are obtained from the final model with
highest R2, using the lm function in R with default settings. The effect estimates and standard error estimates are then
averaged across the 100 samples.

For an illustration, Figure 2 shows the treatment effects for two treatments with carry-over and the resulting overall
treatment effect, which can be computed as the sum of the two treatment effects Et

k(Tk, τk, γk). As the observed overall
treatment effect contains the effects from both treatments, it over- or underestimates the treatment effects.

2.2.4 Bayesian Networks with Time-Dependent Variables

Bayesian Networks are graphical networks in which the joint and conditional probability distributions given by the
assumed DAG are estimated, and can be used for inference. We call this the unadjusted Bayesian Network model. To
consider time dependencies, we specify lags of size 1 for the treatment variable and for Nonspecific Low Back Pain
(see Figure 3). These lags are created during preprocessing and are included in the analysis as additional variables. We
call this the Bayesian Network with time adjustment model.

For the implementation, the bnlearn package is used. In the first step, we implement an interface to convert the
DAGitty graph to a Bayesian Network and defined the appropriate scale of each variable. Then, the Bayesian Network
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Figure 2: Illustration of the treatment effects with carry-over for a simulated patient. The patient was exposed to
treatment 1 until day 14. Starting on day 14, the treatment effect of treatment 1 washes out and converges to 0 as the
treatment was not given anymore. At this point, the patient started the second treatment period. With being exposed to
of treatment 2, the effect of treatment 2 washes in and it takes time until it reaches the full effect on the outcome.

is fitted to the data with the bnlearn::bn.fit function with default settings. We estimate the parameters by the
empirical mean of their posterior distribution using the method = "bayes" argument. For estimating the average
treatment effect difference, we use the bnlearn::cpdist function of the fitted network Scutari et al. [2017], and first
generate two random samples of patients under treatment 1 and under treatment 2, each of size 1000 through likelihood
weighting given the treatment and confounding variables to have equal confounding distributions among the treatment
groups. Then, we estimate the average treatment effect difference by the mean outcome difference between the two
random samples. The standard error estimate of the estimated treatment effect difference is calculated as the standard
deviation of the estimated average treatment effect across the 100 samples.

In the analysis, we apply two Bayesian Networks. The first model is fitted to the DAG without any time dependencies.
The second model additionally includes the lags to model time-dependencies as described above.

2.2.5 G-estimation

G-estimation estimates average treatment effects - in our case, treatment effect differences in average outcomes between
treatment groups - in a structural nested mean model Naimi et al. [2016], Hernan and Robins [2019], and can be applied
to both time-varying and time-invariant treatment variables. Rubin [1974], Holland [1986], Splawa-Neyman et al.
[1990]

In the structural nested mean model, following the notation of Hernán and Robins (2019), we model the expected
conditional difference between the outcome under treatment Tk,OTk , and the potential outcome under the first treatment,
OTk=1 , as

E[OTk −OTk=1 |T,C] = β1Tk + Σjβ2,jCj , (9)

where β1 denotes the average treatment, C includes all variables (with direct or indirect effect on the outcome) observed
in the data set, and Tk indicates whether treatment 1 (Tk=1) or treatment 2 (Tk=2) was given. For estimating the average
treatment effect difference using G-estimation, we search for ψ which minimizes |θ1| in the following equation:

logit(P (T = 1|H(ψ), C)) = θ0 + θ1H(ψ) +
∑
j

θ2,jCj , (10)
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Figure 3: The DAG shows the assumed network structure between the nodes Activity (A), Treatment (T ) and Nonspecific
Low Back Pain (O) at time point t that is modeled in the Bayesian Network with time adjustment with lags. With that,
the model is accounting for Activity as a confounding variable, although we do not simulate it. This is a snippet of the
relationships between these three variables, and embedded in the bigger network in Figure 1.

where ψ is the individual causal effect induced by the corresponding assumed rank-preserving model and H(ψ) is
defined as H(ψ) = O−ψT . We assume that the conditional exchangeability assumption holds, which implies that |θ1|
should be 0 at the true ψ. In this way, minimizing |θ1| allows us to estimate the true ψ. We assume that conditional
additive rank preservation holds, such that ψ = β1, the average treatment effect of interest.

Compared to the Bayesian Network with time adjustment and the unadjusted Bayesian Network, we do not use lags
in this model. Here, we used generalized estimating equations with independence and autoregressive order 1 (AR1)
working correlation structure from the R-package geepack Højsgaard et al. [2005] to fit equation 10. We call these the
G-estimation (independence) and G-estimation (AR1) models, respectively. In the model based on the AR1 correlation
matrix in the generalized estimating equations, the value for the estimated effect difference is based on the difference
between the treatment effects incorporating the introduced wash-in. The standard error estimate of the estimated
treatment effect difference is calculated as the standard deviation of the estimated average treatment effect across the
100 samples.

3 Results

As described in section 2.1.3, we consider four different scenarios in the simulation study. In each scenario, all methods
were evaluated on 100 samples of 5, 10, 25, 50, and 100 patients, respectively. Figure 4 shows the mean estimates of the
treatment effect difference for all models, in all scenarios, with and without missing values, along with their respective
standard error estimates. Supplementary Text 4 provides the plotted numeric values and other details.

3.1 Scenario 1: No Carry-Over and No Activity interaction

In the first scenario without Activity interaction and without carry-over, all methods provide unbiased estimates of the
true treatment effect difference of 2. As can be expected, the estimates are more efficient; i.e. had smaller standard
errors for larger sample sizes. For the smallest sample size with 5 patients, the G-Estimation (AR1) model slightly
underestimates the treatment effect as it assumes autocorrelation, which is not present in this scenario. For the data with
missing values, the models also provided unbiased treatment effect estimates, with expected slightly larger standard
errors as we have fewer observations.

8

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 5, 2023. ; https://doi.org/10.1101/2022.07.21.22277832doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.21.22277832


Estimate Causal Treatment Effects in Aggregated N-of-1 Trials A PREPRINT

3.2 Scenario 2: Carry-Over Only

In the second scenario, we investigate wash-in and a wash-out influences to our treatment variables. With these, the true
simulated treatment effect slightly increases over time up to the full treatment effect for each treatment compared to no
effect (i.e., zero). As a result, the sample mean model, linear model, G-estimation (independence), and the Bayesian
Network with time adjustment all underestimate the simulated treatment effect difference of 2. As the treatment effect
increases over time up to the full effect size, the models could not estimate the simulated treatment effect size. Compared
to the unadjusted Bayesian Network, we expected the Bayesian Network with time adjustment to improve the estimated
treatment effect difference, which was not reflected in the results as the model did not improve the estimate and also
underestimated the treatment effect difference. G-estimation (AR1) assumes an AR1 dependence structure within the
data, violated through the exponential decay. Hence, it strongly underestimates the treatment effect in simulation with
carry over. The only model that yields unbiased estimates of the treatment effect difference for all sample sizes was the
COAPM with parameters for wash-in and wash-out, which is close to the data simulation process.

Within the data set with missing values, the COAPM tends to overestimate the treatment effect. The other models
performed similarly poorly (with respect to bias) when there were missing values compared to no missing values, but
with slightly increased standard errors.

3.3 Scenario 3: Activity interaction Only

In this scenario, we are considering complex Treatment effect dependencies on Activity. As expected, the sample
mean model heavily underestimates the treatment effect for all sample sizes. The linear model, COAPM, G-Estimation
(AR1), and G-Estimation (independence) all provide unbiased estimates for all sample sizes. Surprisingly, both the
Bayesian Network with time adjustment and the unadjusted Bayesian Network slightly underestimate the treatment
effect difference, which becomes more apparent for larger sample sizes. It could be, that the priors were uninformative
in this scenario or the number of cycles was too small. As another observation, both the Bayesian Network with time
adjustment and the unadjusted Bayesian Network yield larger standard errors compared to linear models. This could be
due to the fact, that we model Activity as an effect modifier and with temporal dependencies. By increasing the sample
size, all standard errors decrease. In this scenario, missing values yield slightly larger standard errors.

3.4 Scenario 4: Carry-over and Activity interaction

The last investigated scenario contains both carry-over and Activity interaction. We observe that both the sample mean
and G-estimation (AR1) strongly underestimate the treatment effect, both for complete data and data with missing
values. Both the Bayesian Network with time adjustment and unadjusted Bayesian Network provide treatment effect
difference estimates of about 1.5, hence underestimating the effect difference, and also yield larger standard errors
compared to the other methods as seen already in scenario 3. The Bayesian Network with time adjustment yields
slightly better results than the unadjusted Bayesian Network, but does not provide a major improvement. The linear
model and G-estimation (independence) provide less biased treatment effect estimates, but still also underestimate
the treatment effect difference. Finally, the COAPM again provides good results in this scenario. Across all sample
sizes with complete data, this model yields unbiased estimates of the treatment effect difference. When data points are
missing, this model slightly overestimates the treatment effect.

3.5 Summary

Overall, COAPM yields robust results, the best results among all considered models, in all scenarios with complete
data. However, when data is missing and carry-over is present, then this approach tends to overestimate the treatment
effect difference. Linear models and 2-sample t-tests are robust against simulated missing values, but yield biased
effect estimates when strong carry-over is present as they are not adjusted for it. Furthermore, the sample mean yields
biased effect estimates when Activity interaction is present. Bayesian Networks and G-estimation show a good overall
performance, but Bayesian Networks yield wider confidence intervals of effect estimates especially for small sample
sizes.

4 Discussion

In this study, as a first contribution, we demonstrate how to simulate data for a series of N-of-1 trials by marrying stochas-
tic processes with time-varying treatment effects embedded in a DAG. In our complex simulation models, we made
assumptions about the causal structure underlying Chronic Nonspecific Low Back Pain, and provide recommendations
for analyses, that can be translated into an actual conducted series of N-of-1 trials. As a main contribution, we evaluate
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and compare different models for estimating the treatment effect under the presence of carry-over, complex dependencies
of the treatment effect on covariates, and missing values. These results can provide guidelines which methods should be
used in practical applications, and we provide the R package cinof1 (available from github.com/HIAlab/cinof1)
with an implementation of all investigated methods.

One of our main findings is that simple statistical models can provide unbiased treatment estimates across different
scenarios. Furthermore, we show that if carry-over is present and has not been prevented by the study design (e.g.
by including wash-out phases), it is possible to still obtain unbiased treatment effect estimates when the carry-over
is modeled in the analysis. This adds an interesting novel perspective, in contrast to previous studies which have
largely focused on the removal of carry-over through study design, and have recommended against the adjustment for
carry-over in statistical modeling Araujo et al. [2016]. For this situation, we provide a simple method called COAPM to
incorporate carry-over into linear regression models. COAPM yields unbiased estimates even if a strong carry-over is
present, but requires complete data. Finally, our results showed that G-estimation and both the Bayesian Network with
time adjustment and the unadjusted Bayesian Network can provide unbiased and efficient treatment estimates, but they
suffer from limitations in some scenarios.

Simple methods like sample mean comparisons and linear models are easy to apply and evaluate. They are also robust
to missing values and applicable for any sample size, and deliver good results on the data sets without strong carry-over
and without treatment-activity dependencies. This is in line with the results from previous studies that t-tests yield
robust and valid results Chen and Chen [2014], Araujo et al. [2016]. On the other hand, sample mean comparisons do
not account for carry-over and time dependencies, and did not yield good results in the presence of confounding. Linear
models performed better, but do not account for carry-over.

In order to model carry-over, we introduce COAPM for wash-in and wash-out. It yields unbiased estimates for the
treatment effects difference across all data sets, except for some scenarios with missing data. Here, it overestimates
the treatment effects but still has less bias than all other methods. All other investigated methods are not able to yield
unbiased treatment effect estimates when there is carry-over. As the COAPM was close to the data simulation, it
delivered the best results across the different scenarios.

G-estimation performed very similar to linear models unadjusted for carry-over, yielding unbiased treatment effect
estimates across many scenarios when there is no carry-over, and is robust to missing values. However, how the GEE
correlation structure is specified proved to be very important, and AR1 yields largely biased estimates when there is
carry-over as wash-in and wash-out periods are simulated through an exponential decay and not as an AR1 process. This
was interesting to observe as it could be hypothesized that even a misspecified AR1 working correlation can make the
GEE estimator more statistically efficient. But this was not observed in the results, so it seems that the misspecification
played a larger role and the small sample size might have also contributed.

Finally, we investigated two implementations of both the Bayesian Network with time adjustment and the unadjusted
Bayesian Network which show robust results with respect to variations in sample size and missing values when there is
no carry-over, similar to G-Estimation. Interestingly, the Bayesian Network with time adjustment did not outperform
the unadjusted Bayesian Network. In the Bayesian Network with time adjustment, we included lags of 1 in the network.
However, the exponential decay used in the simulation takes multiple previous states of the treatment into account,
which are not reflected in the model. We hypothesize that this misspecification of the time dependency led to this
model’s poor performance. For fitting Bayesian Networks, a graph has to be constructed in a first step. This can be
computed based on the data, but is not recommended [Hernan and Robins, 2019, Chapter 6.5]. Assuming a pre-specified
DAG is preferred for interpretability, similar to all other investigated methods. Furthermore, the DAG serves to ensure
generalizability, since it is not constructed on the sample data but a priori. It should be noted that we obtained parameter
estimates from Bayesian Networks in order to compare the results to the other methods in this study; however, the
full posterior distribution of the parameters are estimated in Bayesian Networks, allowing for other analyses and
interpretations if desired.

One limitation of our simulation study is that we only included linear dependencies and fixed effects. In follow-up
studies, nonlinear dependencies and random effects models could be incorporated to provide even more realistic
data models. The Nonspecific Low Back Pain application that we considered provided a complex N-of-1 trial, and
necessitated a complex generation of the DAG and simulation. For this study, we generated an outcome variable
measured on an ordinal scale. In the analysis, however, we modeled the variable as a truncated Gaussian outcome.
While this provides some model misspecification of all models that we investigated, we chose this evaluation to mimic
a situation that occurs very often in practical analyses. In follow-up studies, other outcome distributions and other
statistical models for the analysis can be investigated. Additionally, the study design, number of cycles, length of
treatment periods, and baseline periods can affect the model performance, but were all not investigated in our study.
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We also examined the impact of missing values. In practical applications, it is recommended to include some form of
imputation, for example, multiple imputation. This would be especially important for the application of time-dependent
methods and when the data are not missing completely at random.

In follow-up analyses, it would be interesting to compare these methods in a real series of N-of-1 trials on Chronic
Nonspecific Low Back Pain. Furthermore, additional methods like propensity score matching and inverse probability
weighting could be interesting for analyzing aggregated N-of-1 trials, especially when there is missing data and selection
bias.

We plan to further develop the R package with all implemented methods to handle plausibility checks and include
further automated tests, and to provide a computationally more efficient process of estimating τj and γj in the COAPM
compared to the currently implemented grid search. Finally, we think that incorporating an adjustment for carry-over
into G-estimation or Bayesian Networks, and investigating the use of autoregressive moving average models including
exogenous covariates (ARIMAX), e.g. Daza and Schneider [2022]’s n-of-1 ARCO model, in addition to methods to
control for selection bias, can provide even more powerful and robust tools to estimate causal treatment effects in series
of N-of-1 trials.
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Figure 4: Overview of the estimates of the treatment effect differences (y-axis), with a true value of 2 (broken red
horizontal line), with standard error bars, across the four scenarios (1-4 displayed in order from top to bottom) with and
without missing values, for different sample sizes on the x-axis.
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